WorldWideScience

Sample records for strong interactions quantum

  1. A strongly interacting polaritonic quantum dot

    Science.gov (United States)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  2. Quantum transport in strongly interacting one-dimensional nanostructures

    NARCIS (Netherlands)

    Agundez, R.R.

    2015-01-01

    In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.

  3. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    -range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....

  4. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system

    International Nuclear Information System (INIS)

    Cardenas, Paulo C; RodrIguez, Boris A; Quesada, Nicolas; Vinck-Posada, Herbert

    2011-01-01

    We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.

  5. Computational strong-field quantum dynamics. Intense light-matter interactions

    International Nuclear Information System (INIS)

    Bauer, Dieter

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  6. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  7. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  8. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders

    2011-01-01

    Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...

  9. Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems

    Science.gov (United States)

    Meyer, Gregory; Machado, Francisco; Yao, Norman

    2017-04-01

    Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.

  10. Les Houches Summer School : Strongly Interacting Quantum Systems out of Equilibrium

    CERN Document Server

    Millis, Andrew J; Parcollet, Olivier; Saleur, Hubert; Cugliandolo, Leticia F

    2016-01-01

    Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define dir...

  11. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    International Nuclear Information System (INIS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)

  12. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  13. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    Science.gov (United States)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  14. Interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields

    International Nuclear Information System (INIS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-01-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and excitonic quantum Hall droplets at a filling factor υ = 2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons. (author)

  15. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  16. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality

    OpenAIRE

    Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.

    2012-01-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...

  17. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    Science.gov (United States)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  18. Density matrix of strongly coupled quantum dot - microcavity system

    International Nuclear Information System (INIS)

    Nguyen Van Hop

    2009-01-01

    Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.

  19. Strong Coupling Corrections in Quantum Thermodynamics

    Science.gov (United States)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.

    2018-03-01

    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

  20. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    Science.gov (United States)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad

  1. A theory of the strong interactions

    International Nuclear Information System (INIS)

    Gross, D.J.

    1979-01-01

    The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)

  2. The quantum Zeno and anti-Zeno effects with strong system-environment coupling.

    Science.gov (United States)

    Chaudhry, Adam Zaman

    2017-05-11

    To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly interacting with their environment. In this paper, we investigate what happens to a quantum system under the action of repeated measurements if the quantum system is strongly interacting with its environment. We consider as the quantum system a single two-level system coupled strongly to a collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem in the strong system-environment coupling regime tractable. We find that the strong coupling case exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, the effective decay rate does not depend linearly on the spectral density of the environment. This then means that, in the strong coupling regime that we investigate, increasing the system-environment coupling strength can actually decrease the effective decay rate. We also consider a collection of two-level atoms coupled strongly with a common environment. In this case, we find that there are further differences between the weak and strong coupling cases since the two-level atoms can now indirectly interact with one another due to the common environment.

  3. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  4. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  5. Quantum field model of strong-coupling binucleon

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.

    1996-01-01

    The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru

  6. Quantum simulation of strongly correlated condensed matter systems

    Science.gov (United States)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  7. Strong chaos in one-dimensional quantum system

    International Nuclear Information System (INIS)

    Yang, C.-D.; Wei, C.-H.

    2008-01-01

    According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position

  8. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  9. QCD : the theory of strong interactions Conference MT17

    CERN Multimedia

    2001-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  10. Strong interaction effects in hadronic atoms

    International Nuclear Information System (INIS)

    Kaufmann, W.B.

    1977-01-01

    The WKB method is applied to the calculation of strong interaction-induced level widths and shifts of hadronic atoms. The calculation, while elementary enough for undergraduate quantum mechanics students, gives a good account of kaonic and antiprotonic atom data

  11. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  12. QCD : the theory of strong interactions Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD),predicts that the strong interac- tion is transmitted by the exchange of particles called glu- ons.Unlike the messengers of electromagnetism -pho- tons,which are electrically neutral -gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies.LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  13. Spin-orbit interaction in multiple quantum wells

    International Nuclear Information System (INIS)

    Hao, Ya-Fei

    2015-01-01

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices

  14. Spin-orbit interaction in multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  15. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    Science.gov (United States)

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  16. Effective interactions in strongly-coupled quantum systems

    International Nuclear Information System (INIS)

    Chen, J.M.C.

    1986-01-01

    In this thesis, they study the role of effective interactions in strongly-coupled Fermi systems where the short-range correlations introduce difficulties requiring special treatment. The correlated basis function method provides the means to incorporate the short-range correlations and generate the matrix elements of the Hamiltonian and identity operators in a nonorthogonal basis of states which are so important to their studies. In the first half of the thesis, the particle-hole channel is examined to elucidate the effects of collective excitations. Proceeding from a least-action principle, a generalization of the random-phase approximation is developed capable of describing such strongly-interacting Fermi systems as nuclei, nuclear matter, neutron-star matter, and liquid 3 He. A linear response of dynamically correlated system to a weak external perturbation is also derived based on the same framework. In the second half of the thesis, the particle-particle channel is examined to elucidate the effects of pairing in nuclear and neutron-star matter

  17. Quantum Simulations of Strongly Coupled Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.

    2013-01-01

    In recent years, there has been an increasing interest in dynamics and thermodynamics of non-Abelian plasmas at both very high temperature and density. It is expected that a specific state of matter with unconfined quarks and gluons - the so called quark - gluon plasma (QGP) - can exist. The most fundamental way to compute properties of the strongly interacting matter is provided by the lattice QCD. Interpretation of these very complicated computations requires application of various QCD motivated, albeit schematic, models simulating various aspects of the full theory. Moreover, such models are needed in cases when the lattice QCD fails, e.g. at large baryon chemical potentials and out of equilibrium. A semi-classical approximation, based on a point like quasi-particle picture has been recently introduced in literature. It is expected that it allows to treat soft processes in the QGP which are not accessible by the perturbative means and the main features of non-Abelian plasmas can be understood in simple semi-classical terms without the difficulties inherent to a full quantum field theoretical analysis. Here we propose stochastic simulation of thermodynamics and kinetic properties for QGP in semi-classical approximation in the wide region of temperature, density and quasi-particles masses. We extend previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime and take into account the Fermi (Bose) statistics of quarks (gluons) and quantum degeneracy self-consistently. In grand canonical ensemble for finite and zero baryon chemical potential we use the direct quantum path integral Monte Carlo method (PIMC) developed for finite temperature within Feynman formulation of quantum mechanics to do calculations of internal energy, pressure and pair correlation functions. The QGP quasi-particles representing dressed quarks, antiquarks and gluons interact via color quantum Kelbg pseudopotential rigorously derived in for Coulomb

  18. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  19. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  20. Strongly correlated quantum transport out-of-equilibrium

    Science.gov (United States)

    Dutt, Prasenjit

    The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally

  1. Mixtures of Strongly Interacting Bosons in Optical Lattices

    International Nuclear Information System (INIS)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.

    2008-01-01

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices

  2. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    Science.gov (United States)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  3. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät

    2017-10-12

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.

  4. The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems

    Science.gov (United States)

    Benatov, Latchezar Latchezarov

    This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure

  5. Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-01-01

    This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.

  6. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    Science.gov (United States)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  7. Strong subadditivity inequality for quantum entropies and four-particle entanglement

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2003-01-01

    The strong subadditivity inequality for a three-particle composite system is an important inequality in quantum information theory which can be studied via a four-particle entangled state. We use two three-level atoms in Λ configuration interacting with a two-mode cavity and the Raman adiabatic passage technique for the production of the four-particle entangled state. Using this four-particle entanglement, we study various aspects of the strong subadditivity inequality

  8. Unification of electromagnetic, strong and weak interaction

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1993-09-01

    The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs

  9. Interaction of a quantum well with squeezed light: Quantum-statistical properties

    International Nuclear Information System (INIS)

    Sete, Eyob A.; Eleuch, H.

    2010-01-01

    We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.

  10. Quantum strongly secure ramp secret sharing

    DEFF Research Database (Denmark)

    Zhang, Paul; Matsumoto, Rytaro Yamashita

    2015-01-01

    Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together...... however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced....... This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can...

  11. Strong field QED in lepton colliders and electron/laser interactions

    Science.gov (United States)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the

  12. A systematic study of the strong interaction with PANDA

    NARCIS (Netherlands)

    Messchendorp, J. G.; Hosaka, A; Khemchandani, K; Nagahiro, H; Nawa, K

    2011-01-01

    The theory of Quantum Chromo Dynamics (QCD) reproduces the strong interaction at distances much shorter than the size of the nucleon. At larger distance scales, the generation of hadron masses and confinement cannot yet be derived from first principles on basis of QCD. The PANDA experiment at FAIR

  13. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  14. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  15. Pulse interactions in a quantum dot waveguide in the regime of electromagnetically Induced transparency

    DEFF Research Database (Denmark)

    Nielsen, Per; Nielsen, Henri; Mørk, Jesper

    2006-01-01

    The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications.......The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications....

  16. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  17. Quantum glassiness in clean strongly correlated systems: an example of topological overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-03-01

    Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.

  18. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  19. Strong quantum scarring by local impurities

    Science.gov (United States)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  20. Quantum Uncertainty and Fundamental Interactions

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-04-01

    Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.

  1. Detection of light-matter interaction in the weak-coupling regime by quantum light

    Science.gov (United States)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  2. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  3. Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2010-01-01

    The quantum screening effects on the ion-ion collisions are investigated in strongly coupled semiclassical hydrogen plasmas. The method of stationary phase and effective interaction potential containing the quantum mechanical effect are employed to obtain the scattering phase shift and scattering cross section as functions of the impact parameter, collision energy, de Broglie wavelength, and Debye length. The result shows that the scattering phase and cross section decrease with increasing de Broglie wavelength. It is also shown that the scattering cross section increases with an increase of the Debye length. Hence, it is found that the quantum effect suppresses the scattering cross section. In addition, the quantum effect on the scattering cross section is found to be more important in small Debye length domains.

  4. Quantum interaction. Proceedings

    International Nuclear Information System (INIS)

    Bruza, Peter; Rijsbergen, Keith van

    2009-01-01

    This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)

  5. Quantum interaction. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bruza, Peter [Queensland Univ. of Technology, Brisbane (Australia). Faculty of Science and Technology; Sofge, Donald [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States). Naval Research Lab.; Lawless, William [Paine Coll., Augusta, GA (United States); Rijsbergen, Keith van [Glasgow Univ. (United Kingdom). Dept. of Computing Science; Klusch, Matthias (eds.) [German Research Center for Artificial Intelligence, Saarbruecken (Germany)

    2009-07-01

    This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)

  6. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  7. Universal contact of strongly interacting fermions at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hui; Liu Xiaji; Drummond, Peter D, E-mail: hhu@swin.edu.au, E-mail: xiajiliu@swin.edu.au, E-mail: pdrummond@swin.edu.au [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-03-15

    The recently discovered universal thermodynamic behavior of dilute, strongly interacting Fermi gases also implies a universal structure in the many-body pair-correlation function at short distances, as quantified by the contact I. Here, we theoretically calculate the temperature dependence of this universal contact for a Fermi gas in free space and in a harmonic trap. At high temperatures above the Fermi degeneracy temperature, T{approx}>T{sub F}, we obtain a reliable non-perturbative quantum virial expansion up to third order. At low temperatures, we compare different approximate strong-coupling theories. These make different predictions, which need to be tested either by future experiments or by advanced quantum Monte Carlo simulations. We conjecture that in the universal unitarity limit, the contact or correlation decreases monotonically with increasing temperature, unless the temperature is significantly lower than the critical temperature, T<

  8. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  9. Entanglement and Zeeman interaction in diluted magnetic semiconductor quantum dot

    International Nuclear Information System (INIS)

    Hichri, A.; Jaziri, S.

    2004-01-01

    We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p-d exchange interaction in diluted magnetic semiconductor (Cd 0.57 Mn 0.43 Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund-Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures

  10. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring

    International Nuclear Information System (INIS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-01-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number. (paper)

  11. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  12. Gravitational interaction to one loop in effective quantum gravity

    International Nuclear Information System (INIS)

    Akhundov, A.

    1996-10-01

    The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature

  13. Gravitational interaction to one loop in effective quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Akhundov, A. [Universitaet-gesamthochschule Siegen (Germany)]|[Azerbaijan Academy of Sciences, Baku (Azerbaijan). Institute of Physics; Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1996-10-01

    The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature.

  14. Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction

    International Nuclear Information System (INIS)

    Vaseghi, B.; Rezaei, G.; Malian, M.

    2011-01-01

    We have studied simultaneous effects of Rashba spin-orbit interaction and external electric and magnetic fields on the subbands energy levels and electron g-factor of spherical quantum dots. It is shown that energy eigenvalues strongly depend on the combined effects of external electric and magnetic fields and spin-orbit interaction strength. The more the spin-orbit interaction strength increase, the more the energy eigenvalues increase. Also, we found that the electron g-factor sensitively differers from the bulk value due to the confinement effects. Furthermore, external fields and spin-orbit interaction have a great influence on this important quantity. -- Highlights: → Energy of spherical quantum dots depends on the spin-orbit interaction strength in external electric and magnetic fields. → Spin-orbit interaction shifts the energy levels. → Electron g-factor differs from the bulk value in spherical quantum dots due to the confinement effects. → Electron g-factor strongly depends on the spin-orbit interaction strength in external electric and magnetic fields.

  15. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  16. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  17. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  18. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  19. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  20. Many Body Structure of Strongly Interacting Systems

    CERN Document Server

    Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI

    2006-01-01

    This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.

  1. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  2. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling

    Science.gov (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-04-01

    We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.

  3. Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    International Nuclear Information System (INIS)

    Lee, J. Y.; Guan, X. W.; Batchelor, M. T.; Lee, C.

    2009-01-01

    We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H c1 ; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m F =1> when the external magnetic field exceeds the upper critical field H c2 ; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H c1 c2 . At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m F =1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

  4. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.; Hauke, N.

    2009-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning...... switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components....

  5. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianwei [Department of Physics, Shanghai University, Shanghai 200444 (China); Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Lu, Jian, E-mail: luj@sari.ac.cn; Wang, Zhongyang, E-mail: wangzy@sari.ac.cn [Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); Wang, Liang [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Tian, Linfan [Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (China); Deng, Xingxia [Research Center of Quantum Macro-Phenomenon and Application, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Lijun [Department of Physics, Shanghai University, Shanghai 200444 (China); Pan, Dengyu [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2016-07-11

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ∼12. These experiment results pave the way for the realization of future high speed light sources applications.

  6. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Directory of Open Access Journals (Sweden)

    C. Eichler

    2015-12-01

    Full Text Available Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  7. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  8. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  9. Quantum interaction. Selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Atmanspacher, Harald [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Haven, Emmanuel [Leicester Univ. (United Kingdom). School of Management; Kitto, Kirsty [Queensland Univ. of Technology, Brisbane, QLD (Australia); Raine, Derek (ed.) [Leicester Univ. (United Kingdom). Centre for Interdisciplinary Science

    2014-07-01

    This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.

  10. Quantum interaction. Selected papers

    International Nuclear Information System (INIS)

    Atmanspacher, Harald; Haven, Emmanuel; Raine, Derek

    2014-01-01

    This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.

  11. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  12. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  13. Instability of collective strong-interaction phenomena in hadron production as a possible origin of the weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1975-12-01

    A systematic calculus of long-range Regge cut effects in multiparticle production is constructed in the form of an infrared-divergent stochastic field theory. Total cross sections and two-body overlap integrals in such a theory may depend very sensitively upon internal quantum-numbers of incident particles, resulting in a strong symmetry breaking at ultra-high energies. Such symmetry violations will influence low energy processes through dispersion relations, and a bootstrap of weak interactions becomes possible. A rough analytic estimate of the scale of thresholds for such effects yields a BCS-type gap equation, which expresses the scale of weak and electromagnetic couplings in terms of purely strong-interaction parameters

  14. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  15. Quantum principles in field interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1986-01-01

    The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions

  16. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  17. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    Science.gov (United States)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  18. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRβ1*0101 interactions

    International Nuclear Information System (INIS)

    Cardenas, Constanza; Villaveces, Jose Luis; Bohorquez, Hugo; Llanos, Eugenio; Suarez, Carlos; Obregon, Mateo; Patarroyo, Manuel Elkin

    2004-01-01

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRβ1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1 >> Pocket 4 > Pocket 9 ∼ Pocket 7 > Pocket 6. Variations produced by 'ideal' amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions

  19. Relativistic strings and dual models of strong interactions

    International Nuclear Information System (INIS)

    Marinov, M.S.

    1977-01-01

    The theory of strong interactions,based on the model depicting a hardon as a one-dimentional elastic relativistic system(''string'') is considered. The relationship between this model and the concepts of quarks and partons is discussed. Presented are the principal results relating to the Veneziano dual theory, which may be considered as the consequence of the string model, and to its modifications. The classical string theory is described in detail. Attention is focused on questions of importance to the construction of the quantum theory - the Hamilton mechanisms and conformal symmetry. Quantization is described, and it is shown that it is not contradictory only in the 26-dimentional space and with a special requirement imposed on the spectrum of states. The theory of a string with a distributed spin is considered. The spin is introduced with the aid of the Grassman algebra formalism. In this case quantization is possible only in the 10-dimentional space. The strings interact by their ruptures and gluings. A method for calculating the interaction amplitudes is indicated

  20. Quantum dynamics of a strongly driven Josephson Junction

    Energy Technology Data Exchange (ETDEWEB)

    Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)

    2015-07-01

    A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.

  1. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  2. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  3. The hadronic standard model for strong and electroweak interactions

    International Nuclear Information System (INIS)

    Raczka, R.

    1993-01-01

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of Λ-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e + + e - → hadrons, e + + e - → W + + W - , e + + e - → p + anti-p, e + p → e + p and p + anti-p → p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant α(M z ) and we predicted the top baryon mass M Λ t ≅ 240 GeV. Since in our model the proton, neutron, Λ-particles, vector mesons like ρ, ω, φ, J/ψ ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab

  4. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  5. Quantum centipedes: collective dynamics of interacting quantum walkers

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2016-01-01

    We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N . Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large- N limit. (paper)

  6. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    Science.gov (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  7. Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.

    Science.gov (United States)

    Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo

    2015-07-01

    We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.

  8. Quantum entanglement in strong-field ionization

    Science.gov (United States)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  9. Strong quasi-particle tunneling study in the paired quantum Hall states

    OpenAIRE

    Nomura, Kentaro; Yoshioka, Daijiro

    2001-01-01

    The quasi-particle tunneling phenomena in the paired fractional quantum Hall states are studied. A single point-contact system is first considered. Because of relevancy of the quasi-particle tunneling term, the strong tunneling regime should be investigated. Using the instanton method it is shown that the strong quasi-particle tunneling regime is described as the weak electron tunneling regime effectively. Expanding to the network model the paired quantum Hall liquid to insulator transition i...

  10. Interaction-aided continuous time quantum search

    International Nuclear Information System (INIS)

    Bae, Joonwoo; Kwon, Younghun; Baek, Inchan; Yoon, Dalsun

    2005-01-01

    The continuous quantum search algorithm (based on the Farhi-Gutmann Hamiltonian evolution) is known to be analogous to the Grover (or discrete time quantum) algorithm. Any errors introduced in Grover algorithm are fatal to its success. In the same way the Farhi-Gutmann Hamiltonian algorithm has a severe difficulty when the Hamiltonian is perturbed. In this letter we will show that the interaction term in quantum search Hamiltonian (actually which is in the generalized quantum search Hamiltonian) can save the perturbed Farhi-Gutmann Hamiltonian that should otherwise fail. We note that this fact is quite remarkable since it implies that introduction of interaction can be a way to correct some errors on the continuous time quantum search

  11. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  12. Repeated interactions in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  13. Interaction between classical and quantum systems

    International Nuclear Information System (INIS)

    Sherry, T.N.; Sudarshan, E.C.G.

    1977-10-01

    An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work

  14. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-07

    In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.

  15. Quantum interaction. Revised selected papers

    International Nuclear Information System (INIS)

    Song, Dawei; Zhang, Peng; Wang, Lei; Arafat, Sachi

    2011-01-01

    This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Symposium on Quantum Interaction, QI 2011, held in Aberdeen, UK, in June 2011. The 26 revised full papers and 6 revised poster papers, presented together with 1 tutorial and 1 invited talk were carefully reviewed and selected from numerous submissions during two rounds of reviewing and improvement. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, mechanics, social interaction, semantic space and information representation and retrieval. (orig.)

  16. Quantum interaction. Revised selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dawei; Zhang, Peng; Wang, Lei [Aberdeen Univ. (United Kingdom). School of Computing; Melucci, Massimo [Padua Univ., Padova (Italy). Dept. of Information Engineering; Frommholz, Ingo [Bedfordshire Univ. (United Kingdom); Arafat, Sachi (eds.) [Glasgow Univ. (United Kingdom). School of Computing Science

    2011-07-01

    This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Symposium on Quantum Interaction, QI 2011, held in Aberdeen, UK, in June 2011. The 26 revised full papers and 6 revised poster papers, presented together with 1 tutorial and 1 invited talk were carefully reviewed and selected from numerous submissions during two rounds of reviewing and improvement. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, mechanics, social interaction, semantic space and information representation and retrieval. (orig.)

  17. Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - a way to spintronics?

    International Nuclear Information System (INIS)

    Birkholz, Jens Eiko

    2008-01-01

    We study the influence of the spin-orbit interaction on the electronic transport through quantum dots and quantum wires of correlated electrons. Starting with a one-dimensional infinite continuum model without Coulomb interaction, we analyze the interplay of the spin-orbit interaction, an external magnetic field, and an external potential leading to currents with significant spin-polarization in appropriate parameter regimes. Since lattice models are known to often be superior to continuum models in describing the experimental situation of low-dimensional mesoscopic systems, we construct a lattice model which exhibits the same low-energy physics in terms of energy dispersion and spin expectation values. Confining the lattice to finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads, we calculate the zero temperature linear conductance using the Landauer-Bttiker formalism and show that spin-polarization effects also evolve for the lattice model by adding an adequate potential structure and can be controlled by tuning the overall chemical potential of the system (quantum wire and leads). Next, we allow for a finite Coulomb interaction and use the functional renormalization group (fRG) method to capture correlation effects induced by the Coulomb interaction. The interacting system is thereby transformed into a noninteracting system with renormalized system parameters. For short wires (∝100 lattice sites), we show that the energy regime in which spin polarization is found is strongly affected by the Coulomb interaction. For long wires (>1000 lattice sites), we find the power-law suppression of the total linear conductance on low energy scales typical for inhomogeneous Luttinger liquids while the degree of spin polarization stays constant. Considering quantum dots which consist of two lattice sites, we observe the well-known Kondo effect and analyze, how the Kondo temperature is affected by the spin-orbit interaction. Moreover, we show

  18. Strong Anderson localization in cold atom quantum quenches.

    Science.gov (United States)

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  19. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  20. Mixed fermion-photon condensate in strongly coupled quantum electrodynamics

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Kushnir, V.A.

    1989-01-01

    The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs

  1. Quantum state detection and state preparation based on cavity-enhanced nonlinear interaction of atoms with single photon

    Science.gov (United States)

    Hosseini, Mahdi

    Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.

  2. Elaboration of the recently proposed test of Pauli's principle under strong interactions

    International Nuclear Information System (INIS)

    Ktorides, C.N.; Myung, H.C.; Santilli, R.M.

    1980-01-01

    The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character

  3. Current-Current Interactions, Dynamical Symmetry - and Quantum Chromodynamics.

    Science.gov (United States)

    Neuenschwander, Dwight Edward, Jr.

    Quantum Chromodynamics with massive gluons (gluon mass (TBOND) xm(,p)) in a contact-interaction limit called CQCD (strong coupling g (--->) (INFIN); x (--->) (INFIN)), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. (1) Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x('2) slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g('2)/x('2) << 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry -breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  4. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  5. Proceedings of the summer institute on particle physics: The strong interaction, from hadrons to partons

    International Nuclear Information System (INIS)

    Chan, J.; DePorcel, L.; Dixon, L.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q 2 . Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  6. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.

    Science.gov (United States)

    Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R

    2018-02-22

    Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

  7. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  8. Quantum Transport in Strongly Correlated Systems

    DEFF Research Database (Denmark)

    Bohr, Dan

    2007-01-01

    the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...

  9. Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction

    International Nuclear Information System (INIS)

    Song, Xue-ke; Wu, Tao; Xu, Shuai; He, Juan; Ye, Liu

    2014-01-01

    In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state

  10. Quantum coherence and quantum phase transition in the XY model with staggered Dzyaloshinsky-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)

    2017-04-01

    We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.

  11. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  12. Metasurface-Enabled Remote Quantum Interference.

    Science.gov (United States)

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  13. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2012-12-15

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau

  14. Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-08-01

    This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.

  15. Quantum phase transition in strongly correlated many-body system

    Science.gov (United States)

    You, Wenlong

    The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M

  16. Quantum Szilard Engine with Attractively Interacting Bosons

    Science.gov (United States)

    Bengtsson, J.; Tengstrand, M. Nilsson; Wacker, A.; Samuelsson, P.; Ueda, M.; Linke, H.; Reimann, S. M.

    2018-03-01

    We show that a quantum Szilard engine containing many bosons with attractive interactions enhances the conversion between information and work. Using an ab initio approach to the full quantum-mechanical many-body problem, we find that the average work output increases significantly for a larger number of bosons. The highest overshoot occurs at a finite temperature, demonstrating how thermal and quantum effects conspire to enhance the conversion between information and work. The predicted effects occur over a broad range of interaction strengths and temperatures.

  17. De Sitter vacua of strongly interacting QFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada)

    2017-03-22

    We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.

  18. Lagrangian formulation for a gauge theory of strong and electromagnetic interactions defined on a Cartan bundle

    International Nuclear Information System (INIS)

    Drechsler, W.

    1977-01-01

    A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory

  19. Designing learning environments to teach interactive Quantum Physics

    NARCIS (Netherlands)

    Gómez Puente, S.M.; Swagten, H.J.M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and

  20. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  1. Interaction Induced Quantum Valley Hall Effect in Graphene

    Directory of Open Access Journals (Sweden)

    E. C. Marino

    2015-03-01

    Full Text Available We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T→0 conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall effect below an activation temperature of the order of 2 K. The transverse (Hall valley conductivity is evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in association with the quantum valley Hall effect.

  2. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  3. Spin interactions in InAs quantum dots

    Science.gov (United States)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  4. Asymptotic freedom in the theory of the strong interaction. Comment on the nobel prize in physics 2004

    International Nuclear Information System (INIS)

    Zhang Zhaoxi

    2005-01-01

    The 2004 Nobel Prize in Physics was awarded to David J. Gross, Frank Wilczek and H. David Politzer for their decisive contributions to the theory of the asymptotic freedom of the strong interaction (a fundamental interaction). The fundamental elements of quantum chromodynamics (QCD) and the theory of the strong interaction are briefly reviewed in their historical context. How to achieve asymptotic freedom is introduced and its physical meaning explained. The latest experimental tests of asymptotic freedom are presented, and it is shown that the theoretical prediction agrees excellently with the experimental measurements. Perturbative QCD which is based on the asymptotic freedom is outlined. It is pointed out that the theoretical discovery and experimental proof of the asymptotic freedom are crucial for QCD to be the correct theory of strong interaction. Certain frontier research areas of QCD, such as 'color confinement', are mentioned. The discovery and confirmation of asymptotic freedom has indeed deeply affected particle physics, and has led to QCD becoming a main content of the standard model, and to further development of the so-called grand unification theories of interactions. (author)

  5. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  6. Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, R., E-mail: afzali@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, Tehran, 15418 (Iran, Islamic Republic of); Ebrahimian, N., E-mail: n.ebrahimian@shahed.ac.ir [Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, 18155-159 (Iran, Islamic Republic of); Eghbalifar, B., E-mail: b.eghbali2011@yahoo.com [Department of Agricultural Management, Marvdasht Branch, Azad University, Marvdasht (Iran, Islamic Republic of)

    2016-10-07

    Highlights: • In contrast to a s-wave superconductor, the quantum correlation of the d-wave superconductor is sensitive to the change of the gap magnitude. • Quantum discord of the d-wave superconductor oscillates. • Quantum discord becomes zero at a characteristic length of the d-wave superconductor. • Quantum correlation strongly depends on the length of grain. Length of the superconductor lower, the quantum correlation length higher. • Quantum tripartite entanglement for a nano-scale d-wave superconductor is better than for a bulk d-wave superconductor. - Abstract: By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.

  7. open-quotes Interaction-freeclose quotes measurements of quantum objects?

    International Nuclear Information System (INIS)

    White, A.G.; Kwiat, P.G.; James, D.F.

    1999-01-01

    It is now well established that the presence of an opaque classical object can be unambiguously determined by an open-quotes interaction-freeclose quotes measurement (IFM), where the object and the probe never directly interact. For quantum objects, we examine open-quotes interaction-freeclose quotes measurement (the object wavefunction is unchanged) and open-quotes interaction-freeclose quotes preparation (the object wavefunction is changed without physical interaction) and find that in general, neither is possible. We propose using high efficiency IFM close-quote s as a quantum information bus to connect disjoint quantum systems. copyright 1999 American Institute of Physics

  8. Macroscopic quantum phenomena in strongly correlated fermionic systems

    International Nuclear Information System (INIS)

    Rech, J.

    2006-06-01

    It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)

  9. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    International Nuclear Information System (INIS)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g→infinity; x→infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x 2 much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g 2 /x 2 much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed

  10. Gravity and strong force: potentially linked by Quantum Wormholes

    International Nuclear Information System (INIS)

    Goradia, Sh.G.

    2004-01-01

    If Newtonian gravitation is modified to use surface-to-surface separation between particles, can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting graviton flux in proportional to particle size, allowing for the point-like treatment above. When le wormholes are 1 Planck length apart, the resultant force is 10 40 times the normal gravitational strength for nucleons. Additionally, the invisible quantum wormholes may form binary effects imparting we properties to all particles

  11. Triviality-quantum decoherence of quantum chromodynamics SU(∞) in the presence of an external strong white-noise electromagnetic field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2004-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of a very strong external white-noise electromagnetic (strength) field within the context of QCD in the 't Hooft limit of a large number of colors

  12. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  13. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  14. The functional renormalization group for interacting quantum systems with spin-orbit interaction

    International Nuclear Information System (INIS)

    Grap, Stephan Michael

    2013-01-01

    We studied the influence of spin-orbit interaction (SOI) in interacting low dimensional quantum systems at zero temperature within the framework of the functional renormalization group (fRG). Among the several types of spin-orbit interaction the so-called Rashba spin-orbit interaction is especially intriguing for future spintronic applications as it may be tuned via external electric fields. We investigated its effect on the low energy physics of an interacting quantum wire in an applied Zeeman field which is modeled as a generalization of the extended Hubbard model. To this end we performed a renormalization group study of the two particle interaction, including the SOI and the Zeeman field exactly on the single particle level. Considering the resulting two band model, we formulated the RG equations for the two particle vertex keeping the full band structure as well as the non trivial momentum dependence of the low energy two particle scattering processes. In order to solve these equations numerically we defined criteria that allowed us to classify whether a given set of initial conditions flows towards the strongly coupled regime. We found regions in the models parameter space where a weak coupling method as the fRG is applicable and it is possible to calculate additional quantities of interest. Furthermore we analyzed the effect of the Rashba SOI on the properties of an interacting multi level quantum dot coupled to two semi in nite leads. Of special interest was the interplay with a Zeeman field and its orientation with respect to the SOI term. We found a renormalization of the spin-orbit energy which is an experimental quantity used to asses SOI effects in transport measurements, as well as renormalized effective g factors used to describe the Zeeman field dependence. In particular in asymmetrically coupled systems the large parameter space allows for rich physics which we studied by means of the linear conductance obtained via the generalized Landauer

  15. Designing Learning Environments to Teach Interactive Quantum Physics

    Science.gov (United States)

    Puente, Sonia M. Gomez; Swagten, Henk J. M.

    2012-01-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…

  16. Game Theoretic Interaction and Decision: A Quantum Analysis

    Directory of Open Access Journals (Sweden)

    Ulrich Faigle

    2017-11-01

    Full Text Available An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context.

  17. Proceedings of the 24. SLAC summer institute on particle physics: The strong interaction, from hadrons to partons

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.; DePorcel, L.; Dixon, L. [eds.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}. Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Quantum and classical behavior in interacting bosonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)

    2016-11-21

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.

  19. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  20. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  1. Spin interactions in InAs quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Doty, M.F.; Ware, M.E.; Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Badescu, S.C.; Reinecke, T.L.; Gammon, D. [Naval Research Lab, Washington, DC 20375 (United States); Korenev, V.L. [A.F. Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation)

    2006-12-15

    Spin interactions between particles in quantum dots or quantum dot molecules appear as fine structure in the photoluminescence spectra. Using the understanding of exchange interactions that has been developed from single dot spectra, we analyze the spin signatures of coupled quantum dots separated by a wide barrier such that inter-dot interactions are negligible. We find that electron-hole exchange splitting is directly evident. In dots charged with an excess hole, an effective hole-hole interaction can be turned on through tunnel coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  3. Physics challenges in the strong interactions

    International Nuclear Information System (INIS)

    Ellis, S.D.

    1992-01-01

    The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders

  4. Physics challenges in the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, S.D. [Univ. of Washington, Seattle (United States)

    1992-12-31

    The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.

  5. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    Science.gov (United States)

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  6. Quantum uncertainty in critical systems with three spins interaction

    International Nuclear Information System (INIS)

    Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C

    2015-01-01

    In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)

  7. Strong Interactions, (De)coherence and Quarkonia

    CERN Document Server

    Bellucci, Stefano; Tiwari, Bhupendra Nath

    2011-01-01

    Quarkonia are the central objects to explore the non-perturbative nature of non-abelian gauge theories. We describe the confinement-deconfinement phases for heavy quarkonia in a hot QCD medium and thereby the statistical nature of the inter-quark forces. In the sense of one-loop quantum effects, we propose that the "quantum" nature of quark matters follows directly from the thermodynamic consideration of Richardson potential. Thereby we gain an understanding of the formation of hot and dense states of quark gluon plasma matter in heavy ion collisions and the early universe. In the case of the non-abelian theory, the consideration of the Sudhakov form factor turns out to be an efficient tool for soft gluons. In the limit of the Block-Nordsieck resummation, the strong coupling obtained from the Sudhakov form factor yields the statistical nature of hadronic bound states, e.g. kaons and Ds particles.

  8. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  9. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  10. Strong Anderson localization in cold atom quantum quenches

    OpenAIRE

    Micklitz, T.; Müller, C. A.; Altland, A.

    2013-01-01

    Signatures of strong Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi one-dimensional cloud initially prepared in a well defined momentum state, and expanding for some time in a disorder speckle potential. Anderson localization leads to a formation of a coherence peak in the \\emph{forward} scattering direction (as opposed to the common weak localization backscattering peak). We present a microscopic, and fully time...

  11. Nanostructure van der Waals interaction between a quantum well and a quantum dot atom

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern

    2006-01-01

    We examine the van der Waals interaction between mobile plasma electrons in a narrow quantum well nanostructure and a quantum dot atom. This formulation of the van der Waals interaction exhibits it to second order as the correlation energy (self-energy) of the dot-atom electrons mediated by the image potential arising from the dynamic, nonlocal and spatially inhomogeneous polarization of the quantum well plasma electrons. This image potential of the quantum-well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous screening function of the quantum well, which involves the space-time matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent dielectric function. The latter matrix inversion is carried out exactly, in closed form, and the van der Waals energy is evaluated in the electrostatic limit to dipole-dipole terms

  12. Is string interaction the origin of quantum mechanics?

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak, E-mail: bars@usc.edu; Rychkov, Dmitry

    2014-12-12

    String theory was developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend that open string field theory is a fully consistent definition of the theory – it is at least a self-consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions. Thus, rather than assuming the quantum commutation rules among the usual canonical variables we derive them from the physical process of string interactions. Morally we could apply such an argument to M-theory to cover quantum mechanics for all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an explanation of the origins of quantum mechanics from the physical processes point of view.

  13. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  14. Classical and quantum models of strong cosmic censorship

    International Nuclear Information System (INIS)

    Moncrief, V.E.

    1983-01-01

    The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models. (author)

  15. Classical and quantum models of strong cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Moncrief, V.E. (Yale Univ., New Haven, CT (USA). Dept. of Physics)

    1983-04-01

    The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models.

  16. Strong interactions in low dimensions

    CERN Document Server

    Baeriswyl, D

    2007-01-01

    This book provides an attempt to convey the colorful facets of condensed matter systems with reduced dimensionality. Some of the specific features predicted for interacting one-dimensional electron systems, such as charge- and spin-density waves, have been observed in many quasi-one-dimensional materials. The two-dimensional world is even richer: besides d-wave superconductivity and the Quantum Hall Effect - perhaps the most spectacular phases explored during the last two decades - many collective charge and spin states have captured the interest of researchers, such as charge stripes or spont

  17. Dynamics of a complex quantum magnet

    International Nuclear Information System (INIS)

    Landry, James W.; Coppersmith, S. N.

    2003-01-01

    We have computed the low energy quantum states and low frequency dynamical susceptibility of complex quantum spin systems in the limit of strong interactions, obtaining exact results for system sizes enormously larger than accessible previously. The ground state is a complex superposition of a substantial fraction of all the classical ground states, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the behavior of single spins. These results show that strongly interacting quantum systems can organize to generate coherent excitations and shed light on recent experiments demonstrating that coherent excitations are present in a disordered spin liquid. The dependence of the energy spectra on system size differs qualitatively from that of the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interactions are giving rise to these unusual spectral properties

  18. Relativistic quantum information in detectors–field interactions

    International Nuclear Information System (INIS)

    Hu, B L; Lin, Shih-Yuin; Louko, Jorma

    2012-01-01

    We review Unruh–DeWitt detectors and other models of detector–field interaction in a relativistic quantum field theory setting as a tool for extracting detector–detector, field–field and detector–field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. In particular, we highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behavior. (paper)

  19. Fab Four self-interaction in quantum regime

    Science.gov (United States)

    Arbuzov, A. B.; Latosh, B. N.

    2017-10-01

    Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed.

  20. Fab Four self-interaction in quantum regime

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A.B.; Latosh, B.N. [JINR, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Dubna State University, Dubna, Moscow Region (Russian Federation)

    2017-10-15

    Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed. (orig.)

  1. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  2. Transport coefficients of strongly interacting matter

    International Nuclear Information System (INIS)

    Heckmann, Klaus

    2011-01-01

    In this thesis, we investigate the dissipative transport phenomena of strongly interacting matter. The special interest is in the shear viscosity and its value divided by entropy density. The performed calculations are based on effective models for Quantum Chromodynamics, mostly focused on the 2-flavor Nambu-Jona-Lasinio model. This allows us to study the hadronic sector as well as the quark sector within one single model. We expand the models up to next-to-leading order in inverse numbers of colors. We present different possibilities of calculating linear transport coefficients and give an overview over qualitative properties as well as over recent ideas concerning ideal fluids. As present methods are not able to calculate the quark two-point function in Minkowski space-time in the self-consistent approximation scheme of the Nambu-Jona-Lasinio model, a new method for this purpose is developed. This self-energy parametrization method is applied to the expansion scheme, yielding the quark spectral function with meson back-coupling effects. The usage of this spectral function in the transport calculation is only one result of this work. We also test the application of different transport approaches in the NJL model, and find an interesting behavior of the shear viscosity at the critical end point of the phase diagram. We also use the NJL model to calculate the viscosity of a pion gas in the dilute regime. After an analysis of other models for pions and their interaction, we find that the NJL-result leads to an important modification of transport properties in comparison with the calculations which purely rely on pion properties in the vacuum. (orig.)

  3. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  4. Detection and Control of Spin-Orbit Interactions in a GaAs Hole Quantum Point Contact

    Science.gov (United States)

    Srinivasan, A.; Miserev, D. S.; Hudson, K. L.; Klochan, O.; Muraki, K.; Hirayama, Y.; Reuter, D.; Wieck, A. D.; Sushkov, O. P.; Hamilton, A. R.

    2017-04-01

    We investigate the relationship between the Zeeman interaction and the inversion-asymmetry-induced spin-orbit interactions (Rashba and Dresselhaus SOIs) in GaAs hole quantum point contacts. The presence of a strong SOI results in the crossing and anticrossing of adjacent spin-split hole subbands in a magnetic field. We demonstrate theoretically and experimentally that the anticrossing energy gap depends on the interplay between the SOI terms and the highly anisotropic hole g tensor and that this interplay can be tuned by selecting the crystal axis along which the current and magnetic field are aligned. Our results constitute the independent detection and control of the Dresselhaus and Rashba SOIs in hole systems, which could be of importance for spintronics and quantum information applications.

  5. On the Effect of Dipole-Dipole Interactions on the Quantum Statistics of Surface Plasmons in Multiparticle Spaser Systems

    Science.gov (United States)

    Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.

    2018-04-01

    The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.

  6. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  7. Cold quantum gases with resonant interactions

    NARCIS (Netherlands)

    Marcelis, B.

    2008-01-01

    We study ultracold gases of alkali-metal atoms in the quantum degenerate regime. The interatomic interactions in these type of systems can be tuned using resonances induced by magnetic or electric fields. The tunability of the interactions, together with the possibility of confining the atoms with

  8. Quantum-optical magnets with competing short- and long-range interactions: Rydberg-dressed spin lattice in an optical cavity

    Directory of Open Access Journals (Sweden)

    Jan Gelhausen, Michael Buchhold, Achim Rosch, Philipp Strack

    2016-10-01

    Full Text Available The fields of quantum simulation with cold atoms [1] and quantum optics [2] are currently being merged. In a set of recent pathbreaking experiments with atoms in optical cavities [3,4] lattice quantum many-body systems with both, a short-range interaction and a strong interaction potential of infinite range -mediated by a quantized optical light field- were realized. A theoretical modelling of these systems faces considerable complexity at the interface of: (i spontaneous symmetry-breaking and emergent phases of interacting many-body systems with a large number of atoms $N\\rightarrow\\infty$, (ii quantum optics and the dynamics of fluctuating light fields, and (iii non-equilibrium physics of driven, open quantum systems. Here we propose what is possibly the simplest, quantum-optical magnet with competing short- and long-range interactions, in which all three elements can be analyzed comprehensively: a Rydberg-dressed spin lattice [5] coherently coupled to a single photon mode. Solving a set of coupled even-odd sublattice Master equations for atomic spin and photon mean-field amplitudes, we find three key results. (R1: Superradiance and a coherent photon field can coexist with spontaneously broken magnetic translation symmetry. The latter is induced by the short-range nearest-neighbor interaction from weakly admixed Rydberg levels. (R2: This broken even-odd sublattice symmetry leaves its imprint in the light via a novel peak in the cavity spectrum beyond the conventional polariton modes. (R3: The combined effect of atomic spontaneous emission, drive, and interactions can lead to phases with anomalous photon number oscillations. Extensions of our work include nano-photonic crystals coupled to interacting atoms and multi-mode photon dynamics in Rydberg systems.

  9. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  10. Strongly-Interacting Fermi Gases in Reduced Dimensions

    Science.gov (United States)

    2015-11-16

    12 2012): 0. doi: 10.1103/PhysRevA.86.063625 Allan Adams , Lincoln D Carr, Thomas Schäfer, Peter Steinberg, John E Thomas. Strongly correlated quantum...Physics (NCSU, 2013) Received Book Chapter TOTAL: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Willie Ong 1.00 Chingyun Cheng 0.50...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: NAME Total Number: NAME Total Number: Willie Ong 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total

  11. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    Science.gov (United States)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  12. Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.

    Science.gov (United States)

    Courtney, Michael

    1995-01-01

    Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  13. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations

    International Nuclear Information System (INIS)

    Dong, B; Ding, G H; Lei, X L

    2015-01-01

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)

  14. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  15. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    argue that there is ample room for improving the oscillator strength with prospects for approaching the ultra-strong-coupling regime of cavity quantum electrodynamics with optical photons. These outstanding gures of merit render interface-uctuation quantum dots excellent candidates for use in cavity...... quantum electrodynamics and quantum-information science. We investigate exciton localization in droplet-epitaxy quantum dots by conducting spectral and time-resolved measurements. We nd small excitons despite the large physical size of dropletepitaxy quantum dots, which is attributed to material inter......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  16. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  17. Quantum centipedes with strong global constraint

    Science.gov (United States)

    Grange, Pascal

    2017-06-01

    A centipede made of N quantum walkers on a one-dimensional lattice is considered. The distance between two consecutive legs is either one or two lattice spacings, and a global constraint is imposed: the maximal distance between the first and last leg is N  +  1. This is the strongest global constraint compatible with walking. For an initial value of the wave function corresponding to a localized configuration at the origin, the probability law of the first leg of the centipede can be expressed in closed form in terms of Bessel functions. The dispersion relation and the group velocities are worked out exactly. Their maximal group velocity goes to zero when N goes to infinity, which is in contrast with the behaviour of group velocities of quantum centipedes without global constraint, which were recently shown by Krapivsky, Luck and Mallick to give rise to ballistic spreading of extremal wave-front at non-zero velocity in the large-N limit. The corresponding Hamiltonians are implemented numerically, based on a block structure of the space of configurations corresponding to compositions of the integer N. The growth of the maximal group velocity when the strong constraint is gradually relaxed is explored, and observed to be linear in the density of gaps allowed in the configurations. Heuristic arguments are presented to infer that the large-N limit of the globally constrained model can yield finite group velocities provided the allowed number of gaps is a finite fraction of N.

  18. Strong interactions and quantum chromodynamics at the leading logarithm approximation

    International Nuclear Information System (INIS)

    Mantrach, A.

    1982-11-01

    This thesis is a contribution to the study of Quantum Chromodynamics (QCD) at the leading logarithm approximation (LLA). We have used the interpretation of the LLA in terms of the generalized parton model to propose tests of elementary processes of QCD in large transverse momentum photoproduction reactions. We have used the LLA to sum gluon radiation effects induced in high energy hadronic reactions. We have obtained this way a rise of the nucleon-nucleon total cross section of 15 mb from 60 GeV to 540 GeV. We have exploited the existence of a preconfinement transition in the LLA to study scaling violations in the framework of the dual parton model [fr

  19. Interaction effects and quantum phase transitions in topological insulators

    International Nuclear Information System (INIS)

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-01-01

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  20. Coulomb drag: a probe of electron interactions in coupled quantum wells

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    1996-01-01

    As semiconductor devices shrink in size and in dimensionality, interactions between charge carriers become more and more important. There is a simple physical reason behind this behavior: fewer carriers lead to less effective screening, and hence stronger effective interactions. A point in case...... are one-dimensional systems (quantum wires): there electron-electron interactions may lead to a behavior, which is qualitatively different from the standard Fermi liquid picture (Luttinger liquids). Electron-electron interactions also play a central role in the fractional quantum Hall effect, which...... be the study of quantum wires: there the interactions may lead to even more dramatic effects...

  1. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  2. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  3. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  4. A quantum annealing architecture with all-to-all connectivity from local interactions.

    Science.gov (United States)

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  5. A quantum annealing architecture with all-to-all connectivity from local interactions

    Science.gov (United States)

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  6. Designing learning environments to teach interactive Quantum Physics

    Science.gov (United States)

    Gómez Puente, Sonia M.; Swagten, Henk J. M.

    2012-10-01

    This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.

  7. STRONG CORRELATIONS AND ELECTRON-PHONON COUPLING IN HIGH-TEMPERATURE SUPERCONDUCTORS - A QUANTUM MONTE-CARLO STUDY

    NARCIS (Netherlands)

    MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W

    We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The

  8. Quantum correlations responsible for remote state creation: strong and weak control parameters

    Science.gov (United States)

    Doronin, S. I.; Zenchuk, A. I.

    2017-03-01

    We study the quantum correlations between the two remote qubits (sender and receiver) connected by the transmission line (homogeneous spin-1/2 chain) depending on the parameters of the sender's and receiver's initial states (control parameters). We consider two different measures of quantum correlations: the entanglement (a traditional measure) and the informational correlation (based on the parameter exchange between the sender and receiver). We find the domain in the control parameter space yielding (i) zero entanglement between the sender and receiver during the whole evolution period and (ii) non-vanishing informational correlation between the sender and receiver, thus showing that the informational correlation is responsible for the remote state creation. Among the control parameters, there are the strong parameters (which strongly effect the values of studied measures) and the weak ones (whose effect is negligible), therewith the eigenvalues of the initial state are given a privileged role. We also show that the problem of small entanglement (concurrence) in quantum information processing is similar (in certain sense) to the problem of small determinants in linear algebra. A particular model of 40-node spin-1/2 communication line is presented.

  9. Extreme states of matter in strong interaction physics an introduction

    CERN Document Server

    Satz, Helmut

    2018-01-01

    This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature latti...

  10. Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.

    Science.gov (United States)

    Vallone, Giuseppe; Dequal, Daniele

    2016-01-29

    Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.

  11. Dynamics of Strong Interactions and the S-Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Omnes, R. [Laboratoire de Physique Theorique et Hautes Energies, Universite de Paris, Orsay (France)

    1969-08-15

    The physical principles underlying the S-matrix theory of strong interactions are reviewed. In particular, the problem of whether these principles are sufficient to completely determine the S-matrix, i.e. to yield a dynamical theory of strong interactions, is discussed. (author)

  12. Dynamical thermalization in isolated quantum dots and black holes

    Science.gov (United States)

    Kolovsky, Andrey R.; Shepelyansky, Dima L.

    2017-01-01

    We study numerically a model of quantum dot with interacting fermions. At strong interactions with small conductance the model is reduced to the Sachdev-Ye-Kitaev black-hole model while at weak interactions and large conductance it describes a Landau-Fermi liquid in a regime of quantum chaos. We show that above the Åberg threshold for interactions there is an onset of dynamical themalization with the Fermi-Dirac distribution describing the eigenstates of an isolated dot. At strong interactions in the isolated black-hole regime there is also the onset of dynamical thermalization with the entropy described by the quantum Gibbs distribution. This dynamical thermalization takes place in an isolated system without any contact with a thermostat. We discuss the possible realization of these regimes with quantum dots of 2D electrons and cold ions in optical lattices.

  13. Effective model with strong Kitaev interactions for α -RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-04-01

    We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.

  14. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  15. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    Science.gov (United States)

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  16. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    Science.gov (United States)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  17. Electron interaction and spin effects in quantum wires, quantum dots and quantum point contacts: a first-principles mean-field approach

    International Nuclear Information System (INIS)

    Zozoulenko, I V; Ihnatsenka, S

    2008-01-01

    We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots

  18. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  19. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  20. Quantum effects in strong fields

    International Nuclear Information System (INIS)

    Roessler, Lars

    2014-01-01

    This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.

  1. Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    D. Ballester

    2012-05-01

    Full Text Available We propose a method to get experimental access to the physics of the ultrastrong- and deep-strong-coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general cavity-QED setups. We provide examples of ultrastrong- and deep-strong-coupling quantum effects that would be otherwise inaccessible.

  2. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  3. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  4. Quantum optics meets quantum many-body theory: coupled cluster studies of the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Davidson, N.J.; Quick, R.M.; Bishop, R.F.; Van der Walt, D.M.

    1998-01-01

    The Rabi Hamiltonian, which describes the interaction of a single mode of electromagnetic radiation with a two level system, is one of the fundamental models of quantum optics. It is also of wider interest as it provides a generic model for the interaction of bosons and fermions. To allow for a systematic analysis of the strong-coupling behaviour, we have applied the coupled cluster method (CCM) to the Rabi Hamiltonian to calculate its spectrum. We find strong evidence for the existence of a somewhat subtle quantum phase transition. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  5. The colours of strong interaction

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

  6. Interactive Quantum Mechanics Quantum Experiments on the Computer

    CERN Document Server

    Brandt, S; Dahmen, H.D

    2011-01-01

    Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: •        harmonic waves and wave packets, •        free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), •        two-particle systems, coupled harmonic oscillators, •        distinguishable and indistinguishable particles, •        coherent and squeezed states in time-dependent motion, •        quantized angular momentum, •        spin and magnetic resonance, •        hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...

  7. Connection between noise and quantum correlations in a double quantum dot

    NARCIS (Netherlands)

    Bodoky, F.; Belzig, W.; Bruder, C.

    We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction and the Pauli principle create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter Ø,

  8. Quantum computation: algorithms and implementation in quantum dot devices

    Science.gov (United States)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  9. Fundamental properties of devices for quantum information technology

    DEFF Research Database (Denmark)

    Nielsen, Per Kær

    This thesis reports a theoretical investigation of the influence of the electronphonon interaction on semiconductor cavity quantum electrodynamical systems, specifically a quantum dot coupled to an optical microcavity. We develop a theoretical description of the decay dynamics of the quantum dot...... interacting with the cavity and the phonons. It is shown that the presence of the phonon interaction, fundamentally changes the spontaneous emission decay behavior of the quantum dot. Especially in the regime where the quantum dotcavity spectral detuning is significantly larger than any linewidth...... of the system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation...

  10. Photon-Electron Interactions in Dirac Quantum Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaodong [Univ. of Washington, Seattle, WA (United States). Dept. of Material Science and Engineering

    2017-11-10

    The objective of this proposal was to explore the fundamental light-matter interactions in a new class of Dirac quantum materials, atomically thin transition metal dichalcogenides (TMDs). Monolayer TMDs are newly discovered two-dimensional semiconductors with direct bandgap. Due to their hexagonal lattice structure, the band edge localizes at corner of Brillouin zone, i.e. “Dirac valleys”. This gives the corresponding electron states a “valley index” (or pseudospin) in addition to the real spin. Remarkably, the valley pseudospins have circularly polarized optical selection rules, providing the first solid state system for dynamic control of the valley degree of freedom. During this award, we have developed a suite of advanced nano-optical spectroscopy tools in the investigation and manipulation of charge, spin, and valley degrees of freedom in monolayer semiconductors. Emerging physical phenomena, such as quantum coherence between valley pseudospins, have been demonstrated for the first time in solids. In addition to monolayers, we have developed a framework in engineering, formulating, and understanding valley pseudospin physics in 2D heterostructures formed by different monolayer semiconductors. We demonstrated long-lived valley-polarized interlayer excitons with valley-dependent many-body interaction effects. These works push the research frontier in understanding the light-matter interactions in atomically-thin quantum materials for protentional transformative energy technologies.

  11. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    Science.gov (United States)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-03-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  12. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    International Nuclear Information System (INIS)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-01-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  13. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-03-15

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  14. Supersymmetric many-particle quantum systems with inverse-square interactions

    International Nuclear Information System (INIS)

    Ghosh, Pijush K

    2012-01-01

    The development in the study of supersymmetric many-particle quantum systems with inverse-square interactions is reviewed. The main emphasis is on quantum systems with dynamical OSp(2|2) supersymmetry. Several results related to the exactly solved supersymmetric rational Calogero model, including shape invariance, equivalence to a system of free superoscillators and non-uniqueness in the construction of the Hamiltonian, are presented in some detail. This review also includes a formulation of pseudo-Hermitian supersymmetric quantum systems with a special emphasis on the rational Calogero model. There are quite a few number of many-particle quantum systems with inverse-square interactions which are not exactly solved for a complete set of states in spite of the construction of infinitely many exact eigenfunctions and eigenvalues. The Calogero–Marchioro model with dynamical SU(1, 1|2) supersymmetry and a quantum system related to the short-range Dyson model belong to this class and certain aspects of these models are reviewed. Several other related and important developments are briefly summarized. (topical review)

  15. Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures

    Science.gov (United States)

    Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-03-01

    We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.

  16. Electroluminescence Caused by the Transport of Interacting Electrons through Parallel Quantum Dots in a Photon Cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-02-01

    We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.

  17. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  18. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.

    Science.gov (United States)

    Vahedi, J; Ashouri, A; Mahdavifar, S

    2016-10-01

    Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.

  19. Matrix-product states for strongly correlated systems and quantum information processing

    International Nuclear Information System (INIS)

    Saberi, Hamed

    2008-01-01

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give

  20. Matrix-product states for strongly correlated systems and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Hamed

    2008-12-12

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any

  1. Evolution of quantum and classical strategies on networks by group interactions

    International Nuclear Information System (INIS)

    Li Qiang; Chen Minyou; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    In this paper, quantum strategies are introduced within evolutionary games in order to investigate the evolution of quantum and classical strategies on networks in the public goods game. Comparing the results of evolution on a scale-free network and a square lattice, we find that a quantum strategy outperforms the classical strategies, regardless of the network. Moreover, a quantum strategy dominates the population earlier in group interactions than it does in pairwise interactions. In particular, if the hub node in a scale-free network is occupied by a cooperator initially, the strategy of cooperation will prevail in the population. However, in other situations, a quantum strategy can defeat the classical ones and finally becomes the dominant strategy in the population. (paper)

  2. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    Science.gov (United States)

    Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan

    2018-04-01

    The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  3. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    Directory of Open Access Journals (Sweden)

    Dingshun Lv

    2018-04-01

    Full Text Available The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  4. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  5. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  6. A theory of strong interactions ''from'' general relativity

    International Nuclear Information System (INIS)

    Caldirola, P.; Recami, E.

    1979-01-01

    In this paper a previous letter (where, among other things, a classical ''quark confinement'' was derived from general relativity plus dilatation-covariance), is completed by showing that the theory is compatible also with quarks ''asymptotic freedom''. Then -within a bi-scale theory of gravitational and strong interactions- a classical field theory is proposed for the (strong) interactions between hadrons. Various consequences are briefly analysed

  7. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  8. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  9. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  10. Quantum gravity. On the entity of gravitation generating interacting fields and the elementary fields of quantum electrodynamics

    International Nuclear Information System (INIS)

    Bencivinni, Daniele

    2011-01-01

    The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to

  11. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    Science.gov (United States)

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  12. Strong enhancement of transport by interaction on contact links

    DEFF Research Database (Denmark)

    Bohr, Dan; Schmitteckert, P.

    2007-01-01

    Strong repulsive interactions within a one-dimensional Fermi system in a two-probe configuration normally lead to a reduced off-resonance conductance. We show that if the repulsive interaction extends to the contact regions, a strong increase of the conductance may occur, even for systems where o...

  13. Nonperturbative stochastic dynamics driven by strongly correlated colored noise

    Science.gov (United States)

    Jing, Jun; Li, Rui; You, J. Q.; Yu, Ting

    2015-02-01

    We propose a quantum model consisting of two remote qubits interacting with two correlated colored noises and establish an exact stochastic Schrödinger equation for this open quantum system. It is shown that the quantum dynamics of the qubit system is profoundly modulated by the mutual correlation between baths and the bath memory capability through dissipation and fluctuation. We report a physical effect on generating inner correlation and entanglement of two distant qubits arising from the strong bath-bath correlation.

  14. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Pan, Dong; Zhao, Jianhua [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Xu, H. Q., E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden)

    2016-08-01

    We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.

  15. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.

    Science.gov (United States)

    Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C

    2013-05-03

    Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

  16. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  17. Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; van Driel, A. Floris

    2007-01-01

    We observe experimentally that ensembles of quantum dots in three-dimensional 3D photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays...... parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals....

  18. Impact of quantum electrodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-12-01

    A review is given of recent developments in quantum electrodynamics, particularly those involving tests of muon dynamics as well as quantum electrodynamics tests. A new limit on possible muon composite structure is also given. The impact of quantum electrodynamics and its generalizations, the gauge theories, to other areas of physics, including the weak and strong interactions and the atomic spectrum of new particles. The consequences of scale invariance in hadron, atomic, and nuclear physics are reviewed. 119 references

  19. Quantum correlations in a bipartite multiqubit spin ring system

    International Nuclear Information System (INIS)

    Doronin, S I; Fel’dman, E B; Kuznetsova, E I

    2015-01-01

    We consider a spin ring with an arbitrary number of spins on the ring and one spin in its center in a strong external magnetic field. The spins on the ring are connected by the secular dipole–dipole interactions and interact with the central spin through the Heisenberg zz-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for an arbitrary number of the spins in the high-temperature approximation. We demonstrate the evolution of quantum correlations at different numbers of the spins. The contributions of longitudinal and transversal spin interactions to the quantum discord are discussed. (paper)

  20. Quantum group random walks in strongly correlated 2+1 D spin systems

    International Nuclear Information System (INIS)

    Protogenov, A.P.; Rostovtsev, Yu.V.; Verbus, V.A.

    1994-06-01

    We consider the temporal evolution of strong correlated degrees of freedom in 2+1 D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k. (author). 20 refs, 1 tab

  1. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket

    Science.gov (United States)

    Gover, Avraham; Pan, Yiming

    2018-06-01

    In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.

  2. Physics challenges in the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, S.D.

    1991-01-01

    An overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.

  3. Physics challenges in the strong interactions

    International Nuclear Information System (INIS)

    Ellis, S.D.

    1991-01-01

    An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders

  4. Interactive simulations for quantum key distribution

    Science.gov (United States)

    Kohnle, Antje; Rizzoli, Aluna

    2017-05-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.

  5. Interactive simulations for quantum key distribution

    International Nuclear Information System (INIS)

    Kohnle, Antje; Rizzoli, Aluna

    2017-01-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels. (paper)

  6. Experimentally measuring a quantum state by the Heisenberg exchange interaction in a single apparatus

    International Nuclear Information System (INIS)

    Peng Xinhua; Du Jiangfeng; Suter, D.

    2005-01-01

    Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)

  7. Quantum Interactive Learning Tutorial on the Double-Slit Experiment to Improve Student Understanding of Quantum Mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-01-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…

  8. Physics challenges in the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, S.D.

    1991-01-01

    An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.

  9. Electron-electron interaction in p-SiGe/Ge quantum wells

    International Nuclear Information System (INIS)

    Roessner, Benjamin; Kaenel, Hans von; Chrastina, Daniel; Isella, Giovanni; Batlogg, Bertram

    2005-01-01

    The temperature dependent magnetoresistance of high mobility p-SiGe/Ge quantum wells is studied with hole densities ranging from 1.7 to 5.9 x 10 11 cm -2 . At magnetic fields below the onset of quantum oscillations that reflect the high mobility values (up to 75000 cm 2 /Vs), we observe the clear signatures of electron-electron interaction. We compare our experiment with the theory of electron-electron interaction including the Zeeman band splitting. The observed magnetoresistance is well explained as a superposition of band structure induced positive magnetoresistance and the negative magntoresistance due to the electron-electron interaction effect

  10. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    Science.gov (United States)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  11. Electron-electron interaction in Multiple Quantum Wells

    Science.gov (United States)

    Zybert, M.; Marchewka, M.; Tomaka, G.; Sheregii, E. M.

    2012-07-01

    The complex investigation of the magneto-transport effects in structures containing multiple quantum well (MQWs) based on the GaAs/AlGaAs-heterostructures has been performed. The MQWs investigated have different electron densities in QWs. The parameters of 2DEG in MQWs were determined from the data of the Integer Quantum Hall Effect (IQHE) and Shubnikov-de Haas oscillations (SdH) observed at low temperatures (0.6-4.2 K). The method of calculation of the electron states energies in MQWs has been developed which is based on the splitting of these states due to the exchange interaction (SAS-splitting, see D. Płoch et al., Phys. Rev. B 79 (2009) 195434) including the screening of this interaction. The IQHE and SdH observed in these multilayer structures with the third degree of freedom for electrons are interpreted from this.

  12. Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Huang, Zhiming

    2018-02-01

    In this article, we investigate the dynamics and correlations of quantum-memory-assisted entropic uncertainty, the tightness of the uncertainty, entanglement, quantum correlation and mixedness for various spin chain models with Dzyaloshinskii-Moriya (DM) interaction, including the XXZ model with DM interaction, the XY model with DM interaction and the Ising model with DM interaction. We find that the uncertainty grows to a stable value with growing temperature but reduces as the coupling coefficient, anisotropy parameter and DM values increase. It is found that the entropic uncertainty is closely correlated with the mixedness of the system. The increasing quantum correlation can result in a decrease in the uncertainty, and the robustness of quantum correlation is better than entanglement since entanglement means sudden birth and death. The tightness of the uncertainty drops to zero, apart from slight volatility as various parameters increase. Furthermore, we propose an effective approach to steering the uncertainty by weak measurement reversal.

  13. Interferometric modulation of quantum cascade interactions

    Science.gov (United States)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  14. Super symmetry in strong and weak interactions

    International Nuclear Information System (INIS)

    Seshavatharam, U.V.S.; Lakshminarayana, S.

    2010-01-01

    For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)

  15. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    Science.gov (United States)

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  16. Photonic and Quantum Interactions of Atomic-Scale Junctions

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, the fundamental quantum and photonic interactions of bimetallic atomic-scale junctions (ASJs) will be explored, with three major space...

  17. Quantum Deformations of Space-Time Symmetries and Interactions

    OpenAIRE

    Lukierski, Jerzy; Stichel, Peter C.

    1996-01-01

    We discuss quantum deformations of Lie algebra as described by the noncoassociative modification of its coalgebra structure. We consider for simplicity the quantum $D=1$ Galilei algebra with four generators: energy $H$, boost $B$, momentum $P$ and central generator $M$ (mass generator). We describe the nonprimitive coproducts for $H$ and $B$ and show that their noncocommutative and noncoassociative structure is determined by the two-body interaction terms. Further we consider the case of phys...

  18. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  19. Observation of the fractional quantum Hall effect in graphene.

    Science.gov (United States)

    Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip

    2009-11-12

    When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.

  20. Efficient interfacing of light and surface plasmon polaritons for quantum optics applications

    DEFF Research Database (Denmark)

    Eran, Kot

    interaction are the window to the underlying quantum world. It is no surprise then that there has always been push to find more, and gain better control over systems in which this interaction can be studied. In the past two decades, this end was further motivated as applications were envisioned to coherent...... control of matter. These include applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits for quantum communications. However, generating and controlling strong coherent interaction between otherwise very weakly interacting...... light and quantum emitters proves a difficult task. Current days solutions range from cavities, atomic ensembles, photonic band gaps structures, ion traps and optical latices are all being improved and studied but none has yet to emerge as superior. Recently, another proposal for such a strong coupling...

  1. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    Science.gov (United States)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  2. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  3. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.

  4. Quark imprisonment as the origin of strong interactions

    CERN Document Server

    Amati, Daniele

    1974-01-01

    A formal scheme is suggested in which the only dynamical ingredients are weak and electro-magnetic interactions with quarks and leptons treated on the same footing. Strong interactions are generated by the requirement that quarks do not appear physically. (7 refs).

  5. A quantum spin system with random interactions I

    Indian Academy of Sciences (India)

    . In order to study the dynamics of a quantum spin glass we model it as a .... Next we construct a family of strongly continuous one-parameter groups of c-auto- morphisms which determine the evolution of the spin system. To this end, we have ...

  6. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  7. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  8. A quantum harmonic oscillator and strong chaos

    International Nuclear Information System (INIS)

    Oprocha, Piotr

    2006-01-01

    It is known that many physical systems which do not exhibit deterministic chaos when treated classically may exhibit such behaviour if treated from the quantum mechanics point of view. In this paper, we will show that an annihilation operator of the unforced quantum harmonic oscillator exhibits distributional chaos as introduced in B Schweizer and J SmItal (1994 Trans. Am. Math. Soc. 344 737-54). Our approach strengthens previous results on chaos in this model and provides a very powerful tool to measure chaos in other (quantum or classical) models

  9. Atomic Fermi-Bose mixtures in inhomogeneous and random lattices: From Fermi glass to quantum spin glass and quantum percolation

    International Nuclear Information System (INIS)

    Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.

    2004-01-01

    We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices

  10. Spontaneous dressed-state polarization in the strong driving regime of cavity QED.

    Science.gov (United States)

    Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo

    2009-10-23

    We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.

  11. Interaction of solitons with a string of coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Swami, O. P., E-mail: omg1789@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com [Department of Physics, Govt. Dungar College, Bikaner, Rajasthan 334001 (India); Taneja, S., E-mail: sachintaneja9@gmail.com [Department of Radiotherapy, CHAF Bangalore, Karnataka 560007 (India)

    2016-05-06

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  12. Storing quantum information in XXZ spin rings with periodically time-controlled interactions

    International Nuclear Information System (INIS)

    Giampaolo, S M; Illuminati, F; Mazzarella, G

    2005-01-01

    We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits

  13. Storing quantum information in XXZ spin rings with periodically time-controlled interactions

    Energy Technology Data Exchange (ETDEWEB)

    Giampaolo, S M; Illuminati, F; Mazzarella, G [Dipartimento di Fisica ' E. R. Caianiello' , Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA (Italy)

    2005-10-01

    We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits.

  14. Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students

    Science.gov (United States)

    Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark

    2017-01-01

    The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…

  15. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  16. Fragility of the fractional quantum spin Hall effect in quantum gases

    International Nuclear Information System (INIS)

    Fialko, O; Brand, J; Zülicke, U

    2014-01-01

    We consider the effect of contact interaction in a prototypical quantum spin Hall system of pseudo-spin-1/2 particles. A strong effective magnetic field with opposite directions for the two spin states restricts two-dimensional particle motion to the lowest Landau level. While interaction between same-spin particles leads to incompressible correlated states at fractional filling factors as known from the fractional quantum Hall effect, these states are destabilized by interactions between opposite spin particles. Exact results for two particles with opposite spin reveal a quasi-continuous spectrum of extended states with a large density of states at low energy. This has implications for the prospects of realizing the fractional quantum spin Hall effect in electronic or ultra-cold atom systems. Numerical diagonalization is used to extend the two-particle results to many bosonic particles and trapped systems. The interplay between an external trapping potential and spin-dependent interactions is shown to open up new possibilities for engineering exotic correlated many-particle states with ultra-cold atoms. (paper)

  17. Lectures on quantum chromodynamics

    CERN Document Server

    Smilga, Andrei

    2001-01-01

    Quantum chromodynamics is the fundamental theory of strong interactions. It is a physical theory describing Nature. Lectures on Quantum Chromodynamics concentrates, however, not on the phenomenological aspect of QCD; books with comprehensive coverage of phenomenological issues have been written. What the reader will find in this book is a profound discussion on the theoretical foundations of QCD with emphasis on the nonperturbative formulation of the theory: What is gauge symmetry on the classical and on the quantum level? What is the path integral in field theory? How to define the path integ

  18. Strong Quantum Size Effects in Pb(111) Thin Films Mediated by Anomalous Friedel Oscillations

    Science.gov (United States)

    Jia, Yu; Wu, Biao; Li, Chong; Einstein, T. L.; Weitering, H. H.; Zhang, Zhenyu

    2010-08-01

    Using first-principles calculations within density functional theory, we study Friedel oscillations (FOs) in the electron density at different metal surfaces and their influence on the lattice relaxation and stability of ultrathin metal films. We show that the FOs at the Pb(111) surface decay as 1/x with the distance x from the surface, different from the conventional 1/x2 power law at other metal surfaces. The underlying physical reason for this striking difference is tied to the strong nesting of the two different Fermi sheets along the Pb(111) direction. The interference of the strong FOs emanating from the two surfaces of a Pb(111) film, in turn, not only results in superoscillatory interlayer relaxations around the center of the film, but also determines its stability in the quantum regime. As a simple and generic picture, the present findings also explain why quantum size effects are exceptionally robust in Pb(111) films.

  19. Substructure and strong interactions at the TeV scale

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-12-01

    A review is given of the current status of the three main theoretical ideas relevant to strong-interaction 1 TeV physics. These are composite vector bosons, Higgs bosons (''Technicolor''), and matter fermions. All involve the assumption that some object which is assumed to be fundamental in the standard model actually has dynamical internal structure. Complex, mechanistic models of the new physics are discussed. A brief digression is then made on how the weak interaction allows probing for this new structure. Direct manifestations of new 1 TeV strong interactions are discussed. 125 refs., 18 figs

  20. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  1. Interaction of strong electromagnetic fields with atoms

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-06-01

    Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt

  2. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  3. Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)

    2016-04-13

    The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.

  4. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    Science.gov (United States)

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  6. Strong excitonic interactions in the oxygen K-edge of perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Kota; Miyata, Tomohiro [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Olovsson, Weine [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2017-07-15

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, together with reference oxides, MgO, CaO, SrO, BaO, and TiO{sub 2}, were investigated using a first-principles Bethe–Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti–O–Ti bonds. - Highlights: • Excitonic interaction in oxygen-K edge is investigated. • Strong excitonic interaction is found in the oxygen-K edge of perovskite oxides. • The strong excitonic interaction is ascribed to the low-dimensional and confined electronic structure.

  7. Magnetic field fluctuations analysis for the ion trap implementation of the quantum Rabi model in the deep strong coupling regime

    Science.gov (United States)

    Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.

    2018-03-01

    The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.

  8. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...

  9. Quantum pattern recognition with multi-neuron interactions

    Science.gov (United States)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  10. Two interacting spins in external fields and application to quantum computation

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Gitman, D.M.; Bagrov, V.G.

    2009-01-01

    We study the four-level system given by two quantum dots immersed in a time-dependent magnetic field, which are coupled to each other by an effective Heisenberg-type interaction. We describe the construction of the corresponding evolution operator in a special case of different time-dependent parallel external magnetic fields. We find a relation between the external field and the effective interaction function. The obtained results are used to analyze the theoretical implementation of a universal quantum gate

  11. Effective lagrangian for strong interactions

    International Nuclear Information System (INIS)

    Jain, P.

    1988-01-01

    We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model

  12. Spin-orbit interaction induced anisotropic property in interacting quantum wires

    Directory of Open Access Journals (Sweden)

    Chang Kai

    2011-01-01

    Full Text Available We investigate theoretically the ground state and transport property of electrons in interacting quantum wires (QWs oriented along different crystallographic directions in (001 and (110 planes in the presence of the Rashba spin-orbit interaction (RSOI and Dresselhaus SOI (DSOI. The electron ground state can cross over different phases, e.g., spin density wave, charge density wave, singlet superconductivity, and metamagnetism, by changing the strengths of the SOIs and the crystallographic orientation of the QW. The interplay between the SOIs and Coulomb interaction leads to the anisotropic dc transport property of QW which provides us a possible way to detect the strengths of the RSOI and DSOI. PACS numbers: 73.63.Nm, 71.10.Pm, 73.23.-b, 71.70.Ej

  13. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  14. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  15. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  16. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  17. Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    International Nuclear Information System (INIS)

    Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C.; Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S.

    2011-01-01

    Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T c , and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T c .

  18. Topics in quantum theory

    International Nuclear Information System (INIS)

    Yuille, A.L.

    1980-11-01

    Topics in the Yang-Mills theories of strong interactions and the quantum theories of gravity are examined, using the path integral approach, including; Yang-Mills instantons in curved spacetimes, Israel-Wilson metrics, Kaehler spacetimes, instantons and anti-instantons. (U.K.)

  19. Spin of a Multielectron Quantum Dot and Its Interaction with a Neighboring Electron

    Directory of Open Access Journals (Sweden)

    Filip K. Malinowski

    2018-03-01

    Full Text Available We investigate the spin of a multielectron GaAs quantum dot in a sequence of nine charge occupancies, by exchange coupling the multielectron dot to a neighboring two-electron double quantum dot. For all nine occupancies, we make use of a leakage spectroscopy technique to reconstruct the spectrum of spin states in the vicinity of the interdot charge transition between a single- and a multielectron quantum dot. In the same regime we also perform time-resolved measurements of coherent exchange oscillations between the single- and multielectron quantum dot. With these measurements, we identify distinct characteristics of the multielectron spin state, depending on whether the dot’s occupancy is even or odd. For three out of four even occupancies, we do not observe any exchange interaction with the single quantum dot, indicating a spin-0 ground state. For the one remaining even occupancy, we observe an exchange interaction that we associate with a spin-1 multielectron quantum dot ground state. For all five of the odd occupancies, we observe an exchange interaction associated with a spin-1/2 ground state. For three of these odd occupancies, we clearly demonstrate that the exchange interaction changes sign in the vicinity of the charge transition. For one of these, the exchange interaction is negative (i.e., triplet preferring beyond the interdot charge transition, consistent with the observed spin-1 for the next (even occupancy. Our experimental results are interpreted through the use of a Hubbard model involving two orbitals of the multielectron quantum dot. Allowing for the spin correlation energy (i.e., including a term favoring Hund’s rules and different tunnel coupling to different orbitals, we qualitatively reproduce the measured exchange profiles for all occupancies.

  20. Time evolution of coarse-grained entropy in classical and quantum motions of strongly chaotic systems

    Science.gov (United States)

    Gu, Yan; Wang, Jiao

    1997-02-01

    We study relaxation of an ensemble of cat maps with initially localized phase-space distributions. Calculations of the coarse-grained entropy Sɛ ( t) for both classical and quantum motions are presented. It is shown that, within the relaxation period, both classical and quantum entropies increase with a nearly constant rate which can be identified as the largest Lyapunov exponent of the classical cat. After an empirical relaxation time, the time behavior for two entropies becomes different. While the classical entropy increases to the equilibrium entropy Seqm and stays there, its quantum analogue fluctuates incessantly around a mean overlineSɛ which is less than Seqm. We regard the entropy difference ΔS = S eqm - overlineSɛ as a measure of nonergodicity of the quantum motion of strongly chaotic systems and investigate its dependence on the Planck constant h. For fixed initial phase-space distributions, numerical results suggest that there is a scaling law ΔSαhβ with β ≈ 0.72 in the semiclassical regime.

  1. Quantum simulation of transverse Ising models with Rydberg atoms

    Science.gov (United States)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  2. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  3. Quantum field theory of photon—Dirac fermion interacting system in graphene monolayer

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu

    2016-01-01

    The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields. (paper)

  4. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  5. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  6. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  7. Strong quantum solutions in conflicting-interest Bayesian games

    Science.gov (United States)

    Rai, Ashutosh; Paul, Goutam

    2017-10-01

    Quantum entanglement has been recently demonstrated as a useful resource in conflicting-interest games of incomplete information between two players, Alice and Bob [Pappa et al., Phys. Rev. Lett. 114, 020401 (2015), 10.1103/PhysRevLett.114.020401]. The general setting for such games is that of correlated strategies where the correlation between competing players is established through a trusted common adviser; however, players need not reveal their input to the adviser. So far, the quantum advantage in such games has been revealed in a restricted sense. Given a quantum correlated equilibrium strategy, one of the players can still receive a higher than quantum average payoff with some classically correlated equilibrium strategy. In this work, by considering a class of asymmetric Bayesian games, we show the existence of games with quantum correlated equilibrium where the average payoff of both the players exceeds the respective individual maximum for each player over all classically correlated equilibriums.

  8. Interactions of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Dine, M.

    1978-01-01

    The interactions of heavy quarks in quantum chromodynamics (QCD) are analyzed in detail. The problem of extracting instantaneous interaction potentials from quantum field theory is first reviewed, in the context of simple models. How such a potential for a fermion-antifermion system may be extracted is indicated. After a review of the quantization of non-Abelian gauge theories in Coulomb gauge, the interaction of a heavy quark-antiquark (Q anti Q) pair is considered. A Ward identity relating the Coulomb-gluon-fermion vertex to the fermion self-energy is derived. This identity is used to prove the mass independence of the static potential. The potential is shown to be infrared finite through two loops, and its general structure in perturbation theory is indicated. At three loops, divergences associated with long-lived intermediate states appear. A method to resolve this problem for static sources is given, but the result cannot readily be identified as a potential appropriate to the description of a Q anti Q bound state. This problem is discussed in detail. Then the spin-dependent interactions in these systems are analyzed. It is shown that the spin-dependent potentials depend in a nontrivial way on the quark mass. The phenomenological implications of these results are considered. In conclusion, the implications of the results for nonperturbative attacks on the potential problem are discussed. The importance of source-field correlations is stressed. The limitations of schemes introduced recently to compute spin-dependent forces due to instantons are illustrated

  9. Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas

    OpenAIRE

    Akbari-Moghanjoughi, M.

    2012-01-01

    In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...

  10. Atoms and light. Matter radiation interaction. DEA in quantum physics, year 2003. 2nd year Master: Fundamental concepts in Physics, Cursus: Quantum Physics. Year 2006-2007

    International Nuclear Information System (INIS)

    Fabre, Claude

    2003-01-01

    This document contains two nearly identical courses on the interaction between matter and electromagnetic radiation. The second one addresses a few more issues in sub-paragraphs, but follows the same organisation and plan. A first part addresses tools in quantum optics. It presents phenomenological approaches (the Lorentz and Einstein models), the semi-conventional approach (isolated atom, effect of the environment with the Bloch equations, interaction with a non-monochromatic field, oscillator force), the quantum description of the free electromagnetic field (corpuscular aspect of the thermal radiation field, decomposition of the conventional electromagnetic field into modes, quantification of free radiation, radiation kinetic moment and pulse, radiation stationary states, value of the electric field in a quantum state), the interaction between atom and quantum field (interaction Hamiltonian, interaction process, photo-detection). The second part addresses some phenomena of quantum optics such as spontaneous emission, quasi-resonant interactions in two-level systems, three-level systems, fluctuations and correlations in the matter-radiation interaction. Appendices contain elements on atom structure, and on the density matrix

  11. Quantum theory of acoustoelectric interaction

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1974-01-01

    term, significant in the classical-collision-dominated regime only, the dielectric response function and the acoustic gain factor for a piezoelectrically active sound wave are obtained for the quantum and semiclassical-microscopic regimes. The manner in which the theory can be extended to the collision......-dominated regime is discussed. For a collision-free electron gas, the requirements of energy and momentum conservation in individual electron-phonon interactions lead to a cutoff in the acoustoelectric coupling when the acoustic wave number exceeds the characteristic electron wave number. The broadening...

  12. Supersymmetry and weak, electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1977-01-01

    A supersymmetric theory of particle interactions is discussed. It is based on the earlier model which involves gauge (or vector) superfields, and matter (or chiral) superfields; each of them describes a vector and a Majorana spinor in the first case, or a two-component Dirac spinor and a complex scalar in the second case. The new theory suggests the possible existence of spin - 1/2 gluons and heavy spin-0 quarks, besides spin - 1 gluons and spin - 1/2 quarks. To prevent scalar particles to be exchanged in processes such as μ or β decays a new class of leptons with its own quantum number is introduced; it includes charged leptons and a ''photonic neutrino''

  13. Evolution of the field quantum entropy and entanglement in a system of multimode light field interacting resonantly with a two-level atom through N_j-degenerate N~Σ-photon process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by de-generating the multi-photon process is studied by utilizing the Von Neumann re-duced entropy theory,and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field inter-acting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number,the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is,the weaker the entanglement between the quan-tum field and the atom will be,and when the field is strong enough,the two sub-systems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle,namely,the quantum field and the two-level atom are always in the entangled state,and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic dis-tribution angle is,the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.

  14. Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot

    Science.gov (United States)

    Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex

    Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.

  15. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.

  16. Scrambling in the quantum Lifshitz model

    Science.gov (United States)

    Plamadeala, Eugeniu; Fradkin, Eduardo

    2018-06-01

    We study signatures of chaos in the quantum Lifshitz model through out-of-time ordered correlators (OTOC) of current operators. This model is a free scalar field theory with dynamical critical exponent z  =  2. It describes the quantum phase transition in 2D systems, such as quantum dimer models, between a phase with a uniform ground state to another one with spontaneously broken translation invariance. At the lowest temperatures the chaotic dynamics are dominated by a marginally irrelevant operator which induces a temperature dependent stiffness term. The numerical computations of OTOC exhibit a non-zero Lyapunov exponent (LE) in a wide range of temperatures and interaction strengths. The LE (in units of temperature) is a weakly temperature-dependent function; it vanishes at weak interaction and saturates for strong interaction. The Butterfly velocity increases monotonically with interaction strength in the studied region while remaining smaller than the interaction-induced velocity/stiffness.

  17. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  18. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  19. Spin properties of charged Mn-doped quantum dota)

    Science.gov (United States)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  20. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  1. Non-Hermitian interaction representation and its use in relativistic quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 385, č. 10 (2017), s. 162-179 ISSN 0003-4916 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : unitary quantum systems * non-Hermitian version of Dirac's interaction picture * complete set of time-evolution equations * application in relativistic quantum mechanics * Klein-Gordon example with space-time-dependent mass Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016

  2. Strong Bulk-Edge Coupling in the Compressible Half-Filled Quantum Hall State

    International Nuclear Information System (INIS)

    Milovanovic, M.V.; Shimshoni, E.

    1999-01-01

    We studied analytically static correlators in the compressible half-filled quantum Hall state, which characterize the nature of charged excitations in the bulk and on the edge of the system. We employ a modified version of the plasma analogy - namely, a mapping to a classical two-dimensional system of interacting particles - similarly to what has been done in studies of the incompressible (Laughlin) states. However, the 'fake plasma' corresponding to the half-filled state is found to have anomalously weak screening properties. As a consequence, the correlations along the edge do not decay algebraically as in the incompressible case, thus indicating the breakdown of Wen's edge theory. On the other hand, the bulk correlator (which parallels the Girvin-MacDonald algebraic off-diagonal long range order) decays algebraically in a similar way as in the incompressible states, signifying the presence of some kind of bosonic order even in the compressible state. The above results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions (dipoles) in the bulk, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of electrons (with an appropriate boundary condition). A possible experimental indication of a strong bulk-edge coupling at half-filling has been indeed observed in non-local resistance measurements [1]. We also suggest, that while our results contradict the validity of an effective one-dimensional description of the edge excitations on the static level, the dynamics may decouple the edge and bulk so as to recover the Laughlin-like behavior apparent in the experiment of Grayson et al

  3. Quantum chaos and thermalization in isolated systems of interacting particles

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2016-04-15

    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.

  4. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    Science.gov (United States)

    Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia

    2014-11-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.

  5. Quantum correlation approach to criticality in the XX spin chain with multiple interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, W.W., E-mail: weien.cheng@gmail.com [Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunication, Nanjing 210003 (China); Department of Physics, Hubei Normal University, Huangshi 435002 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education (China); Shan, C.J. [Department of Physics, Hubei Normal University, Huangshi 435002 (China); Sheng, Y.B.; Gong, L.Y.; Zhao, S.M. [Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunication, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education (China)

    2012-09-01

    We investigate the quantum critical behavior in the XX spin chain with a XZY-YZX type multiple interaction by means of quantum correlation (Concurrence C, quantum discord D{sub Q} and geometric discord D{sub G}). Around the critical point, the values of these quantum correlations and corresponding derivatives are investigated numerically and analytically. The results show that the non-analyticity property of the concurrence cannot signal well the quantum phase transition, but both the quantum discord and geometric discord can characterize the critical behavior in such model exactly.

  6. Strong coupling of collection of emitters on hyperbolic meta-material

    Science.gov (United States)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  7. Nonlinear effects in modulated quantum optomechanics

    Science.gov (United States)

    Yin, Tai-Shuang; Lü, Xin-You; Zheng, Li-Li; Wang, Mei; Li, Sha; Wu, Ying

    2017-05-01

    The nonlinear quantum regime is crucial for implementing interesting quantum effects, which have wide applications in modern quantum science. Here we propose an effective method to reach the nonlinear quantum regime in a modulated optomechanical system (OMS), which is originally in the weak-coupling regime. The mechanical spring constant and optomechanical interaction are modulated periodically. This leads to the result that the resonant optomechanical interaction can be effectively enhanced into the single-photon strong-coupling regime by the modulation-induced mechanical parametric amplification. Moreover, the amplified phonon noise can be suppressed completely by introducing a squeezed vacuum reservoir, which ultimately leads to the realization of photon blockade in a weakly coupled OMS. The reached nonlinear quantum regime also allows us to engineer the nonclassical states (e.g., Schrödinger cat states) of the cavity field, which are robust against the phonon noise. This work offers an alternative approach to enhance the quantum nonlinearity of an OMS, which should expand the applications of cavity optomechanics in the quantum realm.

  8. The Bekenstein bound in strongly coupled O(N) scalar field theory

    International Nuclear Information System (INIS)

    Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.

    2009-09-01

    We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)

  9. Density fluctuations due to Raman forward scattering in quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Punit, E-mail: punitkumar@hotmail.com; Singh, Shiv; Rathore, Nisha Singh, E-mail: nishasingh-rathore@yahoo.com [Department of Physics, University of Lucknow, Lucknow-226007 (India)

    2016-05-06

    Density fluctuations due Raman forward scattering (RFS) is analysed in the interaction of a high intensity laser pulse with high density quantum plasma. The interaction model is developed using the quantum hydrodynamic (QHD) model which consist of a set of equations describing the transport of charge, density, momentum and energy of a charged particle system interacting through a self-consistent electrostatic potential. The nonlinear source current has been obtained incorporating the effects of quantum Bohm potential, Fermi pressure and electron spin. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam is quit large, various quantum effects are observed which can be attributed to the variation of electron mass with laser intensity.

  10. Interaction between Electron Holes in a Strongly Magnetized Plasma

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Michelsen, Poul; Pécseli, Hans

    1980-01-01

    The interaction between electron holes in a strongly magnetized, plasma-filled waveguide is investigated by means of computer simulation. Two holes may or may not coalesce, depending on their amplitudes and velocities. The interaction between holes and Trivelpiece-Gould solitons is demonstrated...

  11. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  12. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  13. Ferromagnetic Spin Coupling as the Origin of 0.7 Anomaly in Quantum Point Contacts

    OpenAIRE

    Aryanpour, K.; Han, J. E.

    2008-01-01

    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that $0.7(2e^{2}/h)$ anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incohe...

  14. Measurement of strong interaction effects in antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Davies, J.D.; Gorringe, T.P.; Lowe, J.; Nelson, J.M.; Playfer, S.M.; Pyle, G.J.; Squier, G.T.A.

    1984-01-01

    The strong interaction shift and width for the 2 p level and the width for the 3d level have been measured for antiprotonic helium atoms. The results are compared with optical model calculations. The possible existence of strongly bound antiproton states in nuclei is discussed. (orig.)

  15. The interactions between CdTe quantum dots and proteins: understanding nano-bio interface

    Directory of Open Access Journals (Sweden)

    Shreeram S. Joglekar

    2017-01-01

    Full Text Available Despite remarkable developments in the nanoscience, relatively little is known about the physical (electrostatic interactions of nanoparticles with bio macromolecules. These interactions can influence the properties of both nanoparticles and the bio-macromolecules. Understanding this bio-interface is a prerequisite to utilize both nanoparticles and biomolecules for bioengineering. In this study, luminescent, water soluble CdTe quantum dots (QDs capped with mercaptopropionic acid (MPA were synthesized by organometallic method and then interaction between nanoparticles (QDs and three different types of proteins (BSA, Lysozyme and Hemoglobin were investigated by fluorescence spectroscopy at pH= 7.4. Based on fluorescence quenching results, Stern-Volmer quenching constant (Ksv, binding constant (Kq and binding sites (n for proteins were calculated. The results show that protein structure (e.g.,globular, metalloprotein, etc. has a significant role in Protein-Quantum dots interactions and each type of protein influence physicochemical properties of Quantum dots differently.

  16. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

    Science.gov (United States)

    Finster, Felix

    2011-08-01

    In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

  17. Quantum Butterfly Effect in Weakly Interacting Diffusive Metals

    Directory of Open Access Journals (Sweden)

    Aavishkar A. Patel

    2017-09-01

    Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.

  18. Hyperspherical Treatment of Strongly-Interacting Few-Fermion Systems in One Dimension

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using...

  19. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  20. Strongly-interacting mirror fermions at the LHC

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2017-01-01

    Full Text Available The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. “mirror mesons”, with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  1. Peculiarities of the momentum distribution functions of strongly correlated charged fermions

    Science.gov (United States)

    Larkin, A. S.; Filinov, V. S.; Fortov, V. E.

    2018-01-01

    New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.

  2. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  3. Probing quantum and thermal noise in an interacting many-body system

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Schumm, Thorsten

    2008-01-01

    of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian......The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis....... Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system....

  4. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  5. On the strong crack-microcrack interaction problem

    Science.gov (United States)

    Gorelik, M.; Chudnovsky, A.

    1992-07-01

    The problem of the crack-microcrack interaction is examined with special attention given to the iterative procedure described by Chudnovsky and Kachanov (1983), Chudnovsky et al. (1984), and Horii and Nemat-Nasser (1983), which yields erroneous results as the crack tips become closer (i.e., for strong crack interaction). To understand the source of error, the traction distributions along the microcrack line on the n-th step of iteration representing the exact and asymptotic stress fields are compared. It is shown that the asymptotic solution gives a gross overestimation of the actual traction.

  6. Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms

    Science.gov (United States)

    Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman

    2018-04-01

    We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.

  7. Exploiting Non-Markovianity for Quantum Control.

    Science.gov (United States)

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  8. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  9. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  10. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    International Nuclear Information System (INIS)

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-01-01

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH 3 + moiety of doxorubicin and the −COO − moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum

  11. QuVis interactive simulations: tools to support quantum mechanics instruction

    Science.gov (United States)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  12. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  13. Gravitational leptogenesis, C, CP and strong equivalence

    International Nuclear Information System (INIS)

    McDonald, Jamie I.; Shore, Graham M.

    2015-01-01

    The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.

  14. Gravitational leptogenesis, C, CP and strong equivalence

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)

    2015-02-12

    The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.

  15. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  16. Quantum states with topological properties via dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Peter, David

    2015-06-25

    This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.

  17. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<quantum number characterizing the energy levels of the electron in the magnetic field. There is one special case for which the Thomson cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  18. Ruling out a strongly interacting standard Higgs model

    International Nuclear Information System (INIS)

    Riesselmann, K.; Willenbrock, S.

    1997-01-01

    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society

  19. Four-wave mixing in InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Birkedal, Dan; Hvam, Jørn Märcher

    2001-01-01

    broadening strongly reduce the interaction with the electromagnetic field. Until now, four-wave mixing (FWM) in III-V quantum dots has only been reported in optical amplifiers at room temperature, where the interaction length is increased by waveguiding in the quantum dot plane. We have carried out...... degenerate FWM experiments in a slab geometry on a sample containing 10 layers of MBE-grown In0.5Al0.04Ga0.46As quantum dots (QDs) with 50-nm Al0.08Ga0.92As barriers. Ground state photoluminescence emission was measured....

  20. New Type of Quantum Criticality in the Pyrochlore Iridates

    Directory of Open Access Journals (Sweden)

    Lucile Savary

    2014-11-01

    Full Text Available Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons and antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.

  1. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    Science.gov (United States)

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  2. Coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires

    International Nuclear Information System (INIS)

    Petrosyan, Lyudvig S

    2016-01-01

    We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)

  3. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...... computer....

  4. Electrical control of single hole spins in nanowire quantum dots.

    Science.gov (United States)

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  5. High-Density Quantum Sensing with Dissipative First Order Transitions

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  6. High-Density Quantum Sensing with Dissipative First Order Transitions.

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-13

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  7. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  8. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  9. Long-range interactions in antiferromagnetic quantum spin chains

    Science.gov (United States)

    Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.

    2017-08-01

    We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.

  10. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  11. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    OpenAIRE

    Moro, F.; Turyanska, L.; Granwehr, J.; Patane, A.

    2014-01-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM, is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (H1) on the QD capping ligands with Mn ions in their proximity (

  12. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  13. Quantum chromodynamics

    CERN Document Server

    Neubert, Matthias

    1996-01-01

    Quantum chromodynamics (QCD) is the fundamental theory of the strong interactions. It is local, non-abelian gauge theory descripting the interactions between quarks and gluons, the constituents of hadrons. In these lectures, the basic concepts and ph will be introduced in a pedagogical way. Topics will include : asymptotically free partons, colour and confinement ; non-abelian gauge invariance and quantization ; the running coupling constant ; deep-inelastic scattering and scaling violations ; th chiral and heavy-quark symmetries. Some elementary knowledge of field theory, abelian gauge invariance and Feynman diagrams will be helpful in following the course.

  14. Elementary particles and physics interaction unification

    International Nuclear Information System (INIS)

    Leite-Lopes, J.

    1985-01-01

    Quantum theory and relativity theory are fundamental of relativistic quantum mechanics, quantum field theory, which is the base of elementary particle physics, gauge field theory and basic force unification models. After a short introduction of relativistic equations of the main fields, the free scalar field, the free vector field, the free electromagnetic field and the free spinor field, and of elementary particles and basic interactions, gauge invariance and electromagnetic gauge field are detailed. Then the presentation of internal degrees of freedom, especially isospin, introduces gauge field theory of Yang-Mills. At last weak interactions and strong interactions are presented and lead to grand unification theory in conclusion [fr

  15. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... than three particles. The states can be probed using the same techniques that have recently been used for fermionic few-body systems in quasi-1D.......We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... extended regions of coordinate space. This is demonstrated in an analytically solvable model for three equal mass particles, two of which are identical bosons, which is exact in the strongly-interacting limit. We numerically verify our results by presenting the first application of the stochastic...

  16. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  17. Influence of quasibound states on the carrier capture in quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.V.; Ferreira, R.

    2002-01-01

    The interaction of carriers in quantum-dot quasibound states with longitudinal optical phonons is investigated. For a level separation between the quasibound state and a discrete quantum-dot state in the vicinity of the phonon energy, a strong electron-phonon coupling occurs. A mixed electron...

  18. Free-space quantum electrodynamics with a single Rydberg superatom

    DEFF Research Database (Denmark)

    Paris-Mandoki, Asaf; Braun, Christoph; Kumlin, Jan

    2017-01-01

    The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system has so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling...

  19. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    International Nuclear Information System (INIS)

    Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A

    2007-01-01

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions

  20. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  1. Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons

    Energy Technology Data Exchange (ETDEWEB)

    Wallraff, Andreas [ETH Zurich (Switzerland)

    2013-07-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.

  2. Gauge unification of basic forces particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    Corresponding to the two known types of gauge theories, Yang-Mills with spin-one mediating particles and Einstein Weyl with spin-two mediating particles, it is speculated that two distinct gauge unifications of the basic forces appear to be taking place. One is the familiar Yang-Mills unification of weak and electromagnetic forces with the strong. The second is the less familiar gauge unification of gravitation with spin-two tensor-dominated aspects of strong interactions. It is proposed that there are strongly interacting spin-two strong gravitons obeying Einstein's equations, and their existence gives a clue to an understanding of the (partial) confinement of quarks, as well as of the concept of hadronic temperature, through the use of Schwarzschild de-Sitter-like partially confining solitonic solutions of the strong gravity Einstein equation

  3. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    Science.gov (United States)

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  4. CP1 model with Hopf interaction: the quantum theory

    International Nuclear Information System (INIS)

    Chakraborty, B.; Ghosh, Subir; Malik, R.P.

    2001-01-01

    The CP 1 model with Hopf interaction is quantised following the Batalin-Tyutin (BT) prescription. In this scheme, extra BT fields are introduced which allow for the existence of only commuting first-class constraints. Explicit expression for the quantum correction to the expectation value of the energy density and angular momentum in the physical sector of this model is derived. The result shows, in the particular operator ordering prescription we have chosen to work with, that the quantum effect has the usual divergent contribution of O(ℎ 2 ) in the energy expectation value. But, interestingly the Hopf term, though topological in nature, can have a finite O(ℎ) contribution to energy density in the homotopically nontrivial topological sector. The angular momentum operator, however, is found to have no quantum correction at O(ℎ), indicating the absence of any fractional spin even at this quantum level. Finally, the extended Lagrangian incorporating the BT auxiliary fields is computed in the conventional framework of BRST formalism exploiting Faddeev-Popov technique of path integral method

  5. Quantum Glass of Interacting Bosons with Off-Diagonal Disorder

    Science.gov (United States)

    Piekarska, A. M.; Kopeć, T. K.

    2018-04-01

    We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.

  6. The colours of strong interaction; L`interaction forte sous toutes ses couleurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

  7. The colours of strong interaction; L`interaction forte sous toutes ses couleurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

  8. Canyon of current suppression in an interacting two-level quantum dot

    DEFF Research Database (Denmark)

    Karlström, O; Pedersen, Jonas Nyvold; Samuelsson, P

    2011-01-01

    Motivated by the recent discovery of a canyon of conductance suppression in a two-level equal-spin quantum dot system [Phys. Rev. Lett. 104, 186804 (2010)], the transport through this system is studied in detail. At low bias and low temperature a strong current suppression is found around...... the electron-hole symmetry point independent of the couplings, in agreement with previous results. By means of a Schrieffer–Wolff transformation we are able to give an intuitive explanation to this suppression in the low-energy regime. In the general situation, numerical simulations are carried out using...... for the current suppression. It is also shown how broadening, interference, and a finite interaction energy cause a shift of the current minimum away from degeneracy. Finally we see how an increased population of the upper level leads to current peaks on each side of the suppression line. At sufficiently high...

  9. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter

    2010-01-15

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  10. Interplay of Anderson localization and strong interaction in disordered systems

    International Nuclear Information System (INIS)

    Henseler, Peter

    2010-01-01

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  11. Energetic Analysis of Conjugated Hydrocarbons Using the Interacting Quantum Atoms Method.

    Science.gov (United States)

    Jara-Cortés, Jesús; Hernández-Trujillo, Jesús

    2018-07-05

    A number of aromatic, antiaromatic, and nonaromatic organic molecules was analyzed in terms of the contributions to the electronic energy defined in the quantum theory of atoms in molecules and the interacting quantum atoms method. Regularities were found in the exchange and electrostatic interatomic energies showing trends that are closely related to those of the delocalization indices defined in the theory. In particular, the CC interaction energies between bonded atoms allow to rationalize the energetic stabilization associated with the bond length alternation in conjugated polyenes. This approach also provides support to Clar's sextet rules devised for aromatic systems. In addition, the H⋯H bonding found in some of the aromatic molecules studied was of an attractive nature, according to the stabilizing exchange interaction between the bonded H atoms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    Science.gov (United States)

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Interaction and dephasing of center-of-mass quantized excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Maier, R.

    1998-01-01

    We investigate the interaction and dephasing of the excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells by spectrally resolved, femtosecond four-wave mixing (FWM). Polarization-dependent measurements indicate that excitation-induced dephasing is the dominant FWM process. The biexcitons of the center...... repulsion for coherent excitons. The exciton interaction rates with acoustic and optical phonons are deduced by their temperature dependencies. The acoustic-phonon scattering is found to be strongly reduced in the investigated wide wells due to the reduced accessible phonon wave vector....

  14. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  15. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    International Nuclear Information System (INIS)

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-01-01

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  16. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Science.gov (United States)

    Sone, Akira; Cappellaro, Paola

    2017-12-01

    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.

  17. Strongly interacting Higgs sector without technicolor

    International Nuclear Information System (INIS)

    Liu Chuan; Kuti, J.

    1994-12-01

    Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)

  18. Search for strongly interacting massive particles using semiconductor detectors on the ground

    International Nuclear Information System (INIS)

    Derbin, A.V.; Egorov, A.I.; Bakhlanov, S.V.; Muratova, V.N.

    1999-01-01

    Using signals from recoil nucleus in semiconductor detectors, search for strongly interacting massive particles, as a possible candidate for dark matter, is continued. Experimental installation and the experimental results are given. New limits on the possible masses and cross sections of strongly interacting massive particles are presented [ru

  19. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  20. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  1. A strong astrophysical constraint on the violation of special relativity by quantum gravity.

    Science.gov (United States)

    Jacobson, T; Liberati, S; Mattingly, D

    2003-08-28

    Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.

  2. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  3. Effects of Luttinger leads on the AC conductance of a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai-Hua, E-mail: khy@bjut.edu.cn [College of Applied Sciences, Beijing University of Technology, Beijing 100122 (China); Qin, Chang-Dong [College of Applied Sciences, Beijing University of Technology, Beijing 100122 (China); Wang, Huai-Yu [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu, Kai-Di [College of Applied Sciences, Beijing University of Technology, Beijing 100122 (China)

    2017-04-18

    Highlights: • The system exhibits photon-assisted single- and two-channel Kondo physics, depending on the intralead interaction. • The 1CK and 2CK mechanisms can coexist within a region of the intralead interaction parameter. • In the limit of strong interaction, the differential conductance scales as a power law both in bias voltage and in temperature. - Abstract: We investigate the joint effects of the intralead electron interaction and an external alternating gate voltage on the transport of a quantum dot coupled to two Luttinger liquid leads in the Kondo regime. We find the transferring between two Kondo physics mechanics by investigation of differential conductance. For very weak intralead interaction, the satellite and main Kondo resonant peaks appear in the differential conductance. For moderately strong intralead interaction, all the peaks disappear and evolve into dips, which signifies that a photon-assisted single-channel Kondo (1CK) physics turns into two-channel Kondo (2CK) physics. The 1CK and 2CK mechanisms can coexist within a region of the intralead interaction parameter. The 1CK physics transits to the 2CK one gradually, not suddenly. In the limit of strong interaction, all dips disappear. When the bias voltage is small, there is no photon exchange between the quantum dot and alternative field, and the differential conductance scales as a power law both in bias voltage and in temperature. As the field becomes stronger, the quantum dot will emit and absorb photons.

  4. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  5. Phase-sensitive atomic dynamics in quantum light

    Science.gov (United States)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  6. Conductance of a quantum ring with spin-orbit interaction in the presence of an impurity

    International Nuclear Information System (INIS)

    Kovalev, V. M.; Chaplik, A. V.

    2006-01-01

    The conductance of a quantum ring has been calculated on the basis of the tunneling Hamiltonian in the quasiballistic regime of the motion of electrons with allowance for the spin-orbit interaction. The effect of the scattering of electrons by a single short-range interacting impurity in the quantum ring on the tunneling electron current is analyzed. Two types of impurities, spinless and paramagnetic, are considered. The conductance symmetry is discussed for various electron-spin orientations with respect to change in the sign of the magnetic flux through the quantum ring

  7. Cavity QED experiments, entanglement and quantum measurement

    International Nuclear Information System (INIS)

    Brune, M.

    2001-01-01

    This course is devoted to the physics of entanglement in microwave CQED (cavity quantum electrodynamics) experiments. The heart of this system is a microwave photon trap, made of superconducting mirrors, which stores a few-photon field in a small volume of space for times as long as milliseconds. This field interacts with circular Rydberg atoms injected one by one into the cavity. Section 2 is devoted to the description of the strong coupling regime in Rydberg atom CQED. The tools of the experiment are briefly presented at the beginning of this section as well as the main characteristics of the strong coupling regime. We then show in section 3 how to use the strong interaction with a single photon to perform a non-destructive detection of a single photon with a single atom as a meter. In section 4, we show that the achieved QND (quantum non-demolition) measurement process corresponds to the operation of a quantum phase gate. It allows, in principle, to prepare arbitrary atom + field entangled states. Various methods will be presented for preparing entangled states such as a two atom EPR (Einstein Podolsky Rosen) pair as well as a GHZ triplet. Entanglement involving more and more complex systems will then be investigated in section 5 where the preparation of a ''Schroedinger cat state'' of the cavity field is presented. We especially address in this last section the problem of entanglement between the system and the meter which occurs during any quantum measurement process

  8. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  9. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  10. A sol-gel method for preparing ZnO quantum dots with strong blue emission

    International Nuclear Information System (INIS)

    Chen Zhong; Li Xiaoxia; Du Guoping; Chen Nan; Suen, Andy Y.M.

    2011-01-01

    ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 deg. C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 deg. C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed. - Highlights: → ZnO quantum dots (QDs) with strong blue emission were prepared by sol-gel method. → ZnO QDs had a pure spectral blue with the chromaticity coordinates (0.166, 0.215). → Optimal reaction time and temperature were 7 h and 60 deg. C, respectively.

  11. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  12. A non-linear theory of strong interactions

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs

  13. H. David Politzer, Asymptotic Freedom, and Strong Interaction

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom

  14. Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation

    Science.gov (United States)

    Temirov, Ruslan; Green, Matthew F. B.; Friedrich, Niklas; Leinen, Philipp; Esat, Taner; Chmielniak, Pawel; Sarwar, Sidra; Rawson, Jeff; Kögerler, Paul; Wagner, Christian; Rohlfing, Michael; Tautz, F. Stefan

    2018-05-01

    We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

  15. Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts.

    Science.gov (United States)

    Aryanpour, K; Han, J E

    2009-02-06

    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of the 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that 0.7(2e;{2}/h) anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incoherent scattering at high temperature when the electron traversal time matches the time scale of dynamic ferromagnetic excitations.

  16. Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

    Directory of Open Access Journals (Sweden)

    Olalla A. Castro-Alvaredo

    2016-12-01

    Full Text Available Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

  17. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  18. Electron-nuclear interaction in 13C nanotube double quantum dots

    DEFF Research Database (Denmark)

    Churchill, H O H; Bestwick, A J; Harlow, J W

    2009-01-01

    For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear...... environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe...... strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information...

  19. The features of ballistic electron transport in a suspended quantum point contact

    International Nuclear Information System (INIS)

    Shevyrin, A. A.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.

    2014-01-01

    A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction

  20. Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji

    2014-06-01

    We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

  1. Quantum Dynamics in the HMF Model

    Science.gov (United States)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  2. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail: Christoph.Reich@tu-berlin.de; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  3. Strong converse theorems using Rényi entropies

    Energy Technology Data Exchange (ETDEWEB)

    Leditzky, Felix; Datta, Nilanjana [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WB (United Kingdom); Wilde, Mark M. [Department of Physics and Astronomy, Center for Computation and Technology, Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-08-15

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint http://arxiv.org/abs/1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.

  4. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  5. Dipolar oscillations in a quantum degenerate Fermi-Bose atomic mixture

    International Nuclear Information System (INIS)

    Ferlaino, F; Brecha, R J; Hannaford, P; Riboli, F; Roati, G; Modugno, G; Inguscio, M

    2003-01-01

    We study the dynamics of coupled dipolar oscillations in a Fermi-Bose mixture of 40 K and 87 Rb atoms. This low-energy collective mode is strongly affected by the interspecies interactions. Measurements are performed in the classical and quantum degenerate regimes and reveal the crucial role of the statistical properties of the mixture. At the onset of quantum degeneracy, we investigate the role of Pauli blocking and superfluidity for K and Rb atoms, respectively, resulting in a change in the collisional interactions

  6. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs

  7. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  8. Epidemic Dynamics in Open Quantum Spin Systems

    Science.gov (United States)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  9. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence...... for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...

  10. Quantum versus semiclassical description of selftrapping: anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1998-09-01

    Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. (author)

  11. Numerical Investigation of Ultrafast interaction between THz Fields and Crystalline Materials

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Clark, Stewart J.; Jepsen, Peter Uhd

    2014-01-01

    We present a quantum - mechanical molecular dynamics investigation of the interaction between strong single - cyc le THz pulses and ionic crystals . We find nonlinearities in the response of the CsI crystals at field strengths higher than 10 MV/cm.......We present a quantum - mechanical molecular dynamics investigation of the interaction between strong single - cyc le THz pulses and ionic crystals . We find nonlinearities in the response of the CsI crystals at field strengths higher than 10 MV/cm....

  12. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  13. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  14. Optimising stochastic trajectories in exact quantum jump approaches of interacting systems

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-11-01

    The standard methods used to substitute the quantum dynamics of two interacting systems by a quantum jump approach based on the Stochastic Schroedinger Equation (SSE) are described. It turns out that for a given situation, there exists an infinite number of SSE reformulation. This fact is used to propose general strategies to optimise the stochastic paths in order to reduce the statistical fluctuations. In this procedure, called the 'adaptative noise method', a specific SSE is obtained for which the noise depends explicitly on both the initial state and on the properties of the interaction Hamiltonian. It is also shown that this method can be further improved by the introduction of a mean-field dynamics. The different optimisation procedures are illustrated quantitatively in the case of interacting spins. A significant reduction of the statistical fluctuations is obtained. Consequently, a much smaller number of trajectories is needed to accurately reproduce the exact dynamics as compared to the standard SSE method. (author)

  15. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  16. Spin-orbit-enhanced Wigner localization in quantum dots

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Malet, F.; Cremon, J. C.

    2011-01-01

    We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum...... dots. Recurring shapes in the pair distribution functions of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported....

  17. Electrodynamics of quantum spin liquids

    Science.gov (United States)

    Dressel, Martin; Pustogow, Andrej

    2018-05-01

    Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.

  18. New strong interactions above the electroweak scale

    International Nuclear Information System (INIS)

    White, A.R.

    1994-01-01

    Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed

  19. Quantum information. Teleportation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Koenneker, Carsten

    2012-01-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  20. Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells

    International Nuclear Information System (INIS)

    Jarosz, D.; Suchocki, A.; Kozanecki, A.; Teisseyre, H.; Kamińska, A.

    2016-01-01

    It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.

  1. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  2. Strongly interacting W's and Z's

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1984-01-01

    The study focussed primarily on the dynamics of a strongly interacting W, Z(SIW) sector, with the aim of sharpening predictions for total W, Z yield and W, Z multiplicities expected from WW fusion for various scenarios. Specific issues raised in the context of the general problem of modeling SIW included the specificity of the technicolor (or, equivalently, QCD) model, whether or not a composite scalar model can be evaded, and whether the standard model necessarily implies an I = J = O state (≅ Higgs particle) that is relatively ''light'' (M ≤ hundreds of TeV). The consensus on the last issue was that existing arguments are inconclusive. While the author shall briefly address compositeness and alternatives to the technicolor model, quantitative estimates will be of necessity based on technicolor or an extrapolation of pion data

  3. Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy

    Science.gov (United States)

    Schneebeli, L.; Kira, M.; Koch, S. W.

    2008-08-01

    It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.

  4. Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots

    Science.gov (United States)

    Ngo, Thi Tuyen; Suarez, Isaac; Sanchez, Rafael S.; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-07-01

    Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and electroluminescence experiments. The radiative exciplex relaxation is centered in the near infrared region (NIR), ~1200 nm, which corresponds to lower energies than the corresponding band gap of both perovskite (PS) and QDs. Our approach allows the fabrication of multi-wavelength light emitting diodes (LEDs) based on a PS matrix with embedded QDs, which show considerably low turn-on potentials. The presence of the exciplex state of PS and QDs opens up a broad range of possibilities with important implications in both LEDs and solar cells.Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and

  5. Advanced quantum theory and its applications through Feynman diagrams

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1979-01-01

    The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table

  6. Chiral fermions in asymptotically safe quantum gravity.

    Science.gov (United States)

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  7. Quantum fields and Poisson processes: Interaction of a cut-off boson field with a quantum particle

    International Nuclear Information System (INIS)

    Bertrand, J.; Rideau, G.; Gaveau, B.

    1985-01-01

    The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful. (orig.)

  8. Quantum computer based on activated dielectric nanoparticles selectively interacting with short optical pulses

    International Nuclear Information System (INIS)

    Gadomskii, Oleg N; Kharitonov, Yu Ya

    2004-01-01

    The operation principle of a quantum computer is proposed based on a system of dielectric nanoparticles activated with two-level atoms - cubits, in which electric dipole transitions are excited by short intense optical pulses. It is proved that the logical operation (logical operator) CNOT (controlled NOT) is performed by means of time-dependent transfer of quantum information over 'long' (of the order of 10 4 nm) distances between spherical nanoparticles owing to the delayed interaction between them in the optical radiation field. It is shown that one-cubit and two-cubit logical operators required for quantum calculations can be realised by selectively exciting dielectric particles with short optical pulses. (quantum calculations)

  9. Quantum-electrodynamics corrections in pionic hydrogen

    NARCIS (Netherlands)

    Schlesser, S.; Le Bigot, E. -O.; Indelicato, P.; Pachucki, K.

    2011-01-01

    We investigate all pure quantum-electrodynamics corrections to the np --> 1s, n = 2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order alpha 5. These values are needed to extract an accurate strong interaction

  10. Computational applications of the many-interacting-worlds interpretation of quantum mechanics.

    Science.gov (United States)

    Sturniolo, Simone

    2018-05-01

    While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics. This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied in different potentials and numbers of dimensions and compared both to the original approach and to exact Schrödinger equation solutions whenever possible.

  11. Coulomb Interaction between InAs/GaAs Quantum Dots and Adjacent Impurities

    International Nuclear Information System (INIS)

    Engstroem, O.; Kaniewska, M.; Kaczmarczyk, M.

    2011-01-01

    Defects positioned close to a plane of quantum dots (QDs) are shown to be influenced by coulomb interaction effect when the quantum dots are charged by electrons. Signals from deep level transient spectroscopy (DLTS) measurement give rise to a mirror effect in the spectrum depending on movement of the defect energy level in relation to the Fermi-level as a result of the electron traffic at the QDs.

  12. Prospects for strong interaction physics at ISABELLE. [Seven papers

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, D P; Trueman, T L

    1977-01-01

    Seven papers are presented resulting from a conference intended to stimulate thinking about how ISABELLE could be used for studying strong interactions. A separate abstract was prepared for each paper for inclusion in DOE Energy Research Abstracts (ERA). (PMA)

  13. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  14. Noether charges for self-interacting quantum field theories in curved spacetimes with a Killing-vector

    International Nuclear Information System (INIS)

    Hollands, S.

    2001-01-01

    We consider a self-interacting, perturbative Klein-Gordon quantum field in a curved spacetime admitting a Killing vector field. We show that the action of this spacetime symmetry on interacting field operators can be implemented by a Noether charge which arises, in a certain sense, as a surface integral over the time-component of some interacting Noether current-density associated with the Killing field. The proof of this involves the demonstration of a corresponding set of Ward identities. Our work is based on the perturbative construction by Brunetti and Fredenhagen (Commun. Math. Phys. 208 (2000) 623-661) of self-interacting quantum field theories in general globally hyperbolic spacetimes. (orig.)

  15. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    Science.gov (United States)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  16. Few-particle quantum magnetism with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Murmann, Simon

    2015-11-25

    This thesis reports on the deterministic preparation of magnetically ordered states in systems of few fermionic atoms. We follow the concept of quantum simulation and use {sup 6}Li atoms in two different hyperfine states to mimic the behavior of electrons in a solidstate system. In a first experiment, we simulate the two-site Hubbard model by using two atoms in an isolated double-well potential. We prepare the two-particle ground state of this model with a fidelity exceeding 90%. By introducing strong repulsive interactions, we are able to realize a pure spin model and describe the energy spectrum with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg spin chains of up to four atoms in a single strongly-elongated trapping potential. Here, the atoms self-align along the potential axis due to strong repulsive interactions. We introduce two novel measurement techniques to identify the state of the spin chains and thereby confirm that we can deterministically prepare antiferromagnetic ground-state systems. This constitutes the first observation of quantum magnetism with fermionic atoms that exceeds nearest-neighbor correlations. Both the double-well system and the spin chains can be seen as building blocks of larger ground-state spin systems. Their deterministic preparation therefore opens up a new bottom-up approach to the experimental realization of quantum many-body systems with ultracold atoms.

  17. Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

    Science.gov (United States)

    Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.

    2018-02-01

    For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.

  18. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  19. Two-particle quantum walks applied to the graph isomorphism problem

    International Nuclear Information System (INIS)

    Gamble, John King; Friesen, Mark; Zhou Dong; Joynt, Robert; Coppersmith, S. N.

    2010-01-01

    We show that the quantum dynamics of interacting and noninteracting quantum particles are fundamentally different in the context of solving a particular computational problem. Specifically, we consider the graph isomorphism problem, in which one wishes to determine whether two graphs are isomorphic (related to each other by a relabeling of the graph vertices), and focus on a class of graphs with particularly high symmetry called strongly regular graphs (SRGs). We study the Green's functions that characterize the dynamical evolution single-particle and two-particle quantum walks on pairs of nonisomorphic SRGs and show that interacting particles can distinguish nonisomorphic graphs that noninteracting particles cannot. We obtain the following specific results. (1) We prove that quantum walks of two noninteracting particles, fermions or bosons, cannot distinguish certain pairs of nonisomorphic SRGs. (2) We demonstrate numerically that two interacting bosons are more powerful than single particles and two noninteracting particles, in that quantum walks of interacting bosons distinguish all nonisomorphic pairs of SRGs that we examined. By utilizing high-throughput computing to perform over 500 million direct comparisons between evolution operators, we checked all tabulated pairs of nonisomorphic SRGs, including graphs with up to 64 vertices. (3) By performing a short-time expansion of the evolution operator, we derive distinguishing operators that provide analytic insight into the power of the interacting two-particle quantum walk.

  20. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  1. Influence of many-particle interactions on slow light phenomena in quantum dots

    DEFF Research Database (Denmark)

    Houmark-Nielsen, Jakob; Jauho, Antti-Pekka; Nielsen, Torben Roland

    2008-01-01

    We investigate the impact of many-particle interactions on group-velocity slowdown achieved via Electromagnetically Induced Transparency (EIT) in quantum dots. Using a ladder scheme we find in the steady-state an increase in maximum slow-down as compared to the non-interacting case, which can...... be attributed to Coulomb interaction effects. The necessary pump power at which maximum slow down is obtained EIT remains, however....

  2. Perspective: Quantum Hamiltonians for optical interactions

    Science.gov (United States)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  3. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    Directory of Open Access Journals (Sweden)

    Yokoyama Tomohiro

    2011-01-01

    Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

  4. arXiv Recent results from the strong interactions program of NA61/SHINE

    CERN Document Server

    Pulawski, Szymon

    2017-01-01

    The NA61/SHINE experiment studies hadron production in hadron+hadron, hadron+nucleus and nucleus+nucleus collisions. The strong interactions program has two main purposes: study the properties of the onset of deconfinement and search for the signatures of the critical point of strongly interacting matter. This aim is pursued by performing a two-dimensional scan of the phase diagram by varying the energy/momentum (13A-158A GeV/c) and the system size (p+p, Be+Be, Ar+Sc, Xe+La) of the collisions. This publication reviews recent results from p+p, Be+Be and Ar+Sc interactions. Measured particle spectra are discussed and compared to NA49 results from Pb+Pb collisions. The results illustrate the progress towards scanning the phase diagram of strongly interacting matter.

  5. Fingerprints of bosonic symmetry protected topological state in a quantum point contact

    Science.gov (United States)

    Zhang, Rui-Xing; Liu, Chao-Xing

    In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify ``smoking gun'' transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. In the strong interaction limit, shot noise measurement for the BSPT state is expect to reveal charge-2e instanton tunneling, in comparison with the charge-e tunneling in the two-channel QSH phase.

  6. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED

    Directory of Open Access Journals (Sweden)

    Varun D. Vaidya

    2018-01-01

    Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.

  7. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    DEFF Research Database (Denmark)

    Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-01-01

    the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...

  8. Strong excitonic interactions in the oxygen K-edge of perovskite oxides.

    Science.gov (United States)

    Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu

    2017-07-01

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO 3 , SrTiO 3 , and BaTiO 3 , together with reference oxides, MgO, CaO, SrO, BaO, and TiO 2 , were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The surface chemistry determines the spatio-temporal interaction dynamics of quantum dots in atherosclerotic lesions.

    Science.gov (United States)

    Uhl, Bernd; Hirn, Stephanie; Mildner, Karina; Coletti, Raffaele; Massberg, Steffen; Reichel, Christoph A; Rehberg, Markus; Zeuschner, Dagmar; Krombach, Fritz

    2018-03-01

    To optimize the design of nanoparticles for diagnosis or therapy of vascular diseases, it is mandatory to characterize the determinants of nano-bio interactions in vascular lesions. Using ex vivo and in vivo microscopy, we analyzed the interactive behavior of quantum dots with different surface functionalizations in atherosclerotic lesions of ApoE-deficient mice. We demonstrate that quantum dots with different surface functionalizations exhibit specific interactive behaviors with distinct molecular and cellular components of the injured vessel wall. Moreover, we show a role for fibrinogen in the regulation of the spatio-temporal interaction dynamics in atherosclerotic lesions. Our findings emphasize the relevance of surface chemistry-driven nano-bio interactions on the differential in vivo behavior of nanoparticles in diseased tissue.

  10. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  11. Gravitational self-interactions of a degenerate quantum scalar field

    Science.gov (United States)

    Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.

    2018-02-01

    We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.

  12. Quantum capacity of quantum black holes

    Science.gov (United States)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  13. Quasi-particles and effective mean field in strongly interacting matter

    International Nuclear Information System (INIS)

    Levai, P.; Ko, C.M.

    2010-01-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  14. Dynamical equilibration in strongly-interacting parton-hadron matter

    Directory of Open Access Journals (Sweden)

    Gorenstein M.

    2011-04-01

    Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.

  15. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  16. Quasi-superradiant soliton state of matter in quantum metamaterials

    Science.gov (United States)

    Asai, Hidehiro; Kawabata, Shiro; Savel'ev, Sergey E.; Zagoskin, Alexandre M.

    2018-02-01

    Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic field induces specific correlations in the system accompanied by a drastic increase of emitted radiation (superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was subject to a vigorous experimental and theoretical research, there remain open question, in particular, concerning the possibility of a first order phase transition to the superradiant state from the vacuum state. In systems of natural and charge-based artificial atom this transition is prohibited by "no-go" theorems. Here we demonstrate numerically and confirm analytically a similar transition in a one-dimensional quantum metamaterial - a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic fields in a transmission line. The system switches from vacuum state to the quasi-superradiant (QS) phase with one or several magnetic solitons and finite average occupation of qubit excited states along the transmission line. A quantum metamaterial in the QS phase circumvents the "no-go" restrictions by considerably decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons.

  17. On some solvable models in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Shabani, J.; Shayo, L.K.

    1985-11-01

    The theory of self-adjoint extensions is employed to generalize some previous results in non-relativistic quantum interactions. In particular, the Hamiltonian H=-Δ+V, where Δ is the Laplacian and the potential V consists of a strongly singular interaction, a Coulomb and a delta-shell interaction is studied. The spectral properties are discussed and phase shifts as well as low energy parameters are obtained. (author)

  18. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  19. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  20. Sideband cooling of micromechanical motion to the quantum ground state.

    Science.gov (United States)

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.