WorldWideScience

Sample records for strong insecticidal activity

  1. Insecticidal and Nematicidal Activities of Novel Mimosine Derivatives

    Directory of Open Access Journals (Sweden)

    Binh Cao Quan Nguyen

    2015-09-01

    Full Text Available Mimosine, a non-protein amino acid, is found in several tropical and subtropical plants, which has high value for medicine and agricultural chemicals. Here, in continuation of works aimed to development of natural product-based pesticidal agents, we present the first significant findings for insecticidal and nematicidal activities of novel mimosine derivatives. Interestingly, mimosinol and deuterated mimosinol (D-mimosinol from mimosine had strong insecticidal activity which could be a result of tyrosinase inhibition (IC50 = 31.4 and 46.1 μM, respectively. Of synthesized phosphoramidothionate derivatives from two these amino alcohols, two compounds (1a and 1b showed high insecticidal activity (LD50 = 0.5 and 0.7 μg/insect, respectively with 50%–60% mortality at 50 μg/mL which may be attributed to acetylcholinesterase inhibition. Compounds 1a and 1b also had strong nematicidal activity with IC50 = 31.8 and 50.2 μM, respectively. Our results suggest that the length of the alkyl chain and the functional group at the C5-position of phosphoramidothionates derived from mimosinol and d-mimosinol are essential for the insecticidal and nematicidal activities. These results reveal an unexplored scaffold as new insecticide and nematicide.

  2. Design, Synthesis and Insecticidal Activity of Novel Phenylurea Derivatives

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.

  3. Insecticidal activity of Trichilia claussenii (Meliaceae) fruits against Spodoptera frugiperda

    International Nuclear Information System (INIS)

    Nebo, Liliane; Matos, Andrea Pereira; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da; Rodrigues, Ricardo Ribeiro

    2010-01-01

    An evaluation of the insecticidal activity of the fruits extracts of Trichilia claussenii was carried out and the methanol extract revealed to have strong insecticidal activity. The fractionation of methanol extract of T. claussenii seeds bioassay-guided against Spodoptera frugiperda has led to the identification of the ω-phenylalkyl and alkenyl fatty acids as active compounds in this extract. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. (author)

  4. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum.

    Science.gov (United States)

    Meriga, Balaji; Mopuri, Ramgopal; MuraliKrishna, T

    2012-05-01

    To evaluate the insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum (A. sativum). Dried bulbs of A. sativum were extracted with different solvents and evaluated for insecticidal, antimicrobial and antioxidant activities. Aqueous and methanol extracts showed highest insecticidal activity (mortality rate of 81% and 64% respectively) against the larvae of Spodoptera litura (S. litura) at a concentration of 1 000 ppm. With regard to antimicrobial activity, aqueous extract exhibited antibacterial activity against gram positive (Bacillus subtilis, Staphylococcus aureu,) and gram negative (Escherichia coli and Klebsiella pneumonia) strains and antifungal activity against Candida albicans. While methanol extract showed antimicrobial activity against all the tested micro organisms except two (Staphylococcus aureus and Candida albicans), the extracts of hexane, chloroform and ethyl acetate did not show any anti microbial activity. Minimum inhibitory concentration of aqueous and methanol extracts against tested bacterial and fungal strains was 100-150 μg/mL. Antioxidant activity of the bulb extracts was evaluated in terms of inhibition of free radicals by 2, 2'-diphenly-1-picrylhydrazyl. Aqueous and methanol extracts exhibited strong antioxidant activity (80%-90% of the standard). Antioxidant and antimicrobial activity of A. sativum against the tested organisms therefore, provides scientific basis for its utilization in traditional and folk medicine. Also, our results demonstrated the insecticidal efficacy of A. sativum against S. litura, a polyphagous insect. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

    Science.gov (United States)

    Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming

    2016-02-01

    Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Exploration of Novel Botanical Insecticide Leads: Synthesis and Insecticidal Activity of β-Dihydroagarofuran Derivatives.

    Science.gov (United States)

    Zhao, Ximei; Xi, Xin; Hu, Zhan; Wu, Wenjun; Zhang, Jiwen

    2016-02-24

    The discovery of novel leads and new mechanisms of action is of vital significance to the development of pesticides. To explore lead compounds for botanical insecticides, 77 β-dihydroagarofuran derivatives were designed and synthesized. Their structures were mainly confirmed by (1)H NMR, (13)C NMR, DEPT-135°, IR, MS, and HRMS. Their insecticidal activity was evaluated against the third-instar larvae of Mythimna separata Walker, and the results indicated that, of these derivatives, eight exhibited more promising insecticidal activity than the positive control, celangulin-V. Particularly, compounds 5.7, 6.6, and 6.7 showed LD50 values of 37.9, 85.1, and 21.1 μg/g, respectively, which were much lower than that of celangulin-V (327.6 μg/g). These results illustrated that β-dihydroagarofuran ketal derivatives can be promising lead compounds for developing novel mechanism-based and highly effective botanical insecticides. Moreover, some newly discovered structure-activity relationships are discussed, which may provide some important guidance for insecticide development.

  7. Molecular Descriptors Family on Structure Activity Relationships 2. Insecticidal Activity of Neonicotinoid Compounds

    Directory of Open Access Journals (Sweden)

    Sorana BOLBOACĂ

    2005-01-01

    Full Text Available The neonicotinoids are the newest major class of insecticides modeled after the basic nicotine molecule having improved insecticide activity and generally low toxicity. The insecticidal activities of neonicotinoids were previous studied using 3D and standard partial least squares regression models. The paper describes the ability of the MDF SAR methodology in prediction of insecticidal activities of neonicotinoid compounds. The best MDF SAR bi-varied model was validated on training and test sets and its ability on prediction of insecticidal activity was compared with previous reported models. Even if the MDF SAR methodology is complex and time consuming the results worth the effort because they are statistical significant better then previous reported results.

  8. Repellant and insecticidal activities of shyobunone and isoshyobunone derived from the essential oil of Acorus calamus rhizomes.

    Science.gov (United States)

    Chen, Hai-Ping; Yang, Kai; Zheng, Li-Shi; You, Chun-Xue; Cai, Qian; Wang, Cheng-Fang

    2015-01-01

    It was found that the essential oil of Acorus calamus rhizomes showed insecticidal activity. The aim of this study was to determine the chemical composition of the essential oil from A. calamus rhizomes, evaluate insecticidal and repellant activity against Lasioderma serricorne (LS) and Tribolium castaneum (TC), and to isolate any insecticidal constituents from the essential oil. Essential oil from A. calamus was obtained by hydrodistillation and analyzed by gas chromatography (GC) flame ionization detector and GC-mass spectrometry. The insecticidal and repellant activity of the essential oil and isolated compounds was tested using a variety of methods. The main components of the essential oil were identified to be isoshyobunone (15.56%), β-asarone (10.03%), bicyclo[6.1.0]non-1-ene (9.67%), shyobunone (9.60%) and methylisoeugenol (6.69%). Among them, the two active constituents were isolated and identified as shyobunone and isoshyobunone. The essential oil showed contact toxicity against LS and TC with LD50 values of 14.40 and 32.55 μg/adult, respectively. The isolated compounds, shyobunone and isoshyobunone also exhibited strong contact toxicity against LS adults with LD50 values of 20.24 and 24.19 μg/adult, respectively, while the LD50 value of isoshyobunone was 61.90 μg/adult for TC adults. The essential oil, shyobunone and isoshyobunone were strongly repellent (98%, 90% and 94%, respectively, at 78.63 nL/cm(2), after 2 h treatment) against TC. The essential oil, shyobunone and isoshyobunone possessed insecticidal and repellant activity against LS and TC.

  9. N-Substituted 5-Chloro-6-phenylpyridazin-3(2H-ones: Synthesis, Insecticidal Activity Against Plutella xylostella (L. and SAR Study

    Directory of Open Access Journals (Sweden)

    Song Yang

    2012-08-01

    Full Text Available A series of N-substituted 5-chloro-6-phenylpyridazin-3(2H-one derivatives were synthesized based on our previous work; all compounds were characterized by spectral data and tested for in vitro insecticidal activity against Plutella xylostella. The results showed that the synthesized pyridazin-3(2H-one compounds possessed good insecticidal activities, especially the compounds <strong>4bstrong>, <strong>4dstrong>, and <strong>4h strong>which showed > 90% activity at 100 mg/L. The structure-activity relationships (SAR for these compounds were also discussed.

  10. Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans and T. catigua (Meliaceae)

    International Nuclear Information System (INIS)

    Matos, Andreia Pereira; Nebo, Liliane; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da; Rodrigues, Ricardo Ribeiro

    2009-01-01

    Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda. (author)

  11. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    Science.gov (United States)

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  12. Synthesis and Insecticidal Activities of New Ester-Derivatives of Celangulin-V

    Directory of Open Access Journals (Sweden)

    Wenjun Wu

    2011-12-01

    Full Text Available In order to develop new biorational pesticides, ten new 6-substituted ester derivatives of Celangulin-V were designed and synthesized. The structures of the new derivatives were confirmed by IR, 1H-NMR, 13C-NMR and ESI-MS spectral analysis. Insecticidal activities of these compounds were tested against the third-instar larvae of Mythimna separata. Two derivatives (1.1, 1.2 showed higher insecticidal activities than Celangulin-V, with mortality of 75.0% and 83.3%, respectively. While four compounds (1.3, 1.4, 1.7, 1.8 denoted lower insecticidal activities, the others (1.5, 1.6, 1.9, 1.10 revealed no activities at a concentration of 10 mg.mL−1. The results suggest that C-6 substitutions of Celangulin-V are very important in determining the insecticidal activities of its ester-derivatives. That the acetyl (1.1 and propionyl (1.2 derivatives possessed much higher insecticidal activities than Celangulin-V itself supported the view that Celangulin-V has the potential to be a lead structure of semi-synthetic green insecticides.

  13. Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil.

    Science.gov (United States)

    Liang, Jun-Yu; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Wang, Cheng-Fang; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan; Zhang, Ji

    2016-08-01

    The insecticidal activity and chemical constituents of the essential oil from Ajania fruticulosa were investigated. Twelve constituents representing 91.0% of the essential oil were identified, and the main constituents were 1,8-cineole (41.40%), (+)-camphor (32.10%), and myrtenol (8.15%). The essential oil exhibited contact toxicity against Tribolium castaneum and Liposcelis bostrychophila adults with LD50 values of 105.67 μg/adult and 89.85 μg/cm(2) , respectively. The essential oil also showed fumigant toxicity against two species of insect with LC50 values of 11.52 and 0.65 mg/l, respectively. 1,8-Cineole exhibited excellent fumigant toxicity (LC50  = 5.47 mg/l) against T. castaneum. (+)-Camphor showed obvious fumigant toxicity (LC50  = 0.43 mg/l) against L. bostrychophila. Myrtenol showed contact toxicity (LD50  = 29.40 μg/cm(2) ) and fumigant toxicity (LC50  = 0.50 mg/l) against L. bostrychophila. 1,8-Cineole and (+)-camphor showed strong insecticidal activity to some important insects, and they are main constituents of A. fruticulosa essential oil. The two compounds may be related to insecticidal activity of A. fruticulosa essential oil against T. castaneum and L. bostrychophila. © 2016 Wiley-VHCA AG, Zürich.

  14. Insecticidal activity of Trichilia claussenii (Meliaceae) fruits against Spodoptera frugiperda; Atividade inseticida dos frutos de Trichilia claussenii (Meliaceae) sobre Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Nebo, Liliane; Matos, Andrea Pereira; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da, E-mail: paulo@dq.ufscar.b [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Rodrigues, Ricardo Ribeiro [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Ciencias Biologicas

    2010-07-01

    An evaluation of the insecticidal activity of the fruits extracts of Trichilia claussenii was carried out and the methanol extract revealed to have strong insecticidal activity. The fractionation of methanol extract of T. claussenii seeds bioassay-guided against Spodoptera frugiperda has led to the identification of the {omega}-phenylalkyl and alkenyl fatty acids as active compounds in this extract. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. (author)

  15. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal; br, picanco@ufv; br, guedes@ufv; br, mateusc3@yahoo com; br, agronomiasilva@yahoo com

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  16. Plant compounds insecticide activity against Coleoptera pests of stored products

    International Nuclear Information System (INIS)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio; julioufv@yahoo.com.br

    2007-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD 50 from 2.72 to 39.71 mg g -1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  17. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Science.gov (United States)

    Singh, Pooja

    2017-01-01

    Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. PMID:28930281

  18. The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Directory of Open Access Journals (Sweden)

    Abhay K. Pandey

    2017-09-01

    Full Text Available Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017 on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity.

  19. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  20. Design, Synthesis and Insecticidal Activities of Novel Phenyl Substituted Isoxazolecarboxamides

    Institute of Scientific and Technical Information of China (English)

    LIU Peng-fei; ZHANG Ji-feng; YAN Tao; XIONG Li-xia; LI Zheng-ming

    2012-01-01

    Thirteen novel phenyl substituted isoxazolecarboxamides were synthesized,and their structures were characterized by 1H NMR,elementary analysis and high-resolution mass spectrometry(HRMS) techniques.Their evaluated insecticidal activities against oriental armyworm(Mythimna separata) indicate that the phcnyl substituted isoxazolecarboxamides exhibited moderate insecticidal activities,among which compounds 9c and 9k showed comparatively higher activities.

  1. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  2. Antifeedant and insecticidal activity of Polygonum persicaria extracts on Nomophila indistinctalis

    Directory of Open Access Journals (Sweden)

    Luisa Quesada-Romero

    2017-05-01

    Full Text Available Context: Vegetal extracts represent an alternative to control against agricultural pests that have become resistant to pesticides. Using natural products is considered to be more friendly to the environment and safe. Aims: To determine the insecticidal and antifeedant activity of Polygonum persicaria extracts of two differents populations in Chile (Valparaiso and Curico against Nomophila indistinctalis larvae. Methods: Insecticide Resistance Action Committee (IRAC susceptibility test was used to evaluate the insecticidal activity of the extracts at concentrations of 100, 250, 500 and 1000 mg/L; against first instar larvae of Nomophila indistinctalis. The antifeedant activity was evaluated to determine the percentage of consumption in third instar larvae on treatment. Results: When comparing the control and the treatment groups in the antifeedant activity assay, significant differences (p<0.05 were observed after 90 minutes of exposure. With respect to the insecticidal activity, all extracts showed significant effects at the applied concentrations compared to the negative control. Moreover, the dichloromethane extracts of Curico and Valparaiso at concentrations greater than 500 mg/L showed a similar insecticidal activity as compared to the commercial formulation Neem. Conclusions: This work presents for the first time the results of the anti-feeding and insecticide activity of ethanol, methanol, and dichloromethane extracts from Polygonum persicaria on Nomophila indistinctalis. The results show that the extracts of this species can be used as an alternative for biological control. In addition, the results obtained allow a bioguided fractionation for the identification of secondary metabolites present in these extracts.

  3. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  4. Design, Synthesis, and Insecticidal Activity of Some Novel Diacylhydrazine and Acylhydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available In this study a series of diacylhydrazine and acylhydrazone derivatives were designed and synthesized according to the method of active group combination and the principles of aromatic group bioisosterism. The structures of the novel derivatives were determined on the basis on 1H-NMR, IR and ESI-MS spectral data. All of the compounds were evaluated for their in vivo insecticidal activity against the third instar larvae of Spodoptera exigua Hiibner, Helicoverpa armigera Hubner, Plutella xyllostella Linnaeus and Pieris rapae Linne, respectively, at a concentration of 10 mg/L. The results showed that all of the derivatives displayed high insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, metaflumizone and tolfenpyrad, and approximately identical insecticidal activity against H. armigera, P. xyllostella and P. rapae as the references metaflumizone and tolfenpyrad.

  5. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  6. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  7. Synthesis and Insecticidal Activities of Novel Analogues of Chlorantraniliprole Containing Nitro Group

    Institute of Scientific and Technical Information of China (English)

    FENG Qi; WANG Ming-zhong; XIONG Li-xia; LIU Zhi-li; LI Zheng-ming

    2011-01-01

    Twelve novel analogues of chlorantraniliprole containing nitro group were synthesized,and their structures were characterized by 1H NMR and high-resolution mass spectrometry(HRMS).Their evaluated insecticidal activities against oriental armyworm(Mythimna separata) indicate that the nitro-containing analogues showed favorable insecticidal activities,while the activity of compounds 5g at 0.25 mg/L was 40%,but still lower than chlorantraniliprole.

  8. Synthesis and Insecticidal Activities of Novel Phthalic Acid Diamides

    Institute of Scientific and Technical Information of China (English)

    闫涛; 李玉新; 李永强; 王多义; 陈伟; 刘卓; 李正名

    2012-01-01

    In order to discover novel insecticides with the new action mode on ryanodine receptor (RyR), a series of novel phthalic acid diamide derivatives were designed and synthesized. All compounds were characterized by 1H NMR spectra and HRMS. The preliminary results of biological activity assessment indicated that some title compounds exhibited excellent insecticidal activities against Mythimna separata, Spodoptera exigua, and Plutella xylostella. The title compound 3-nitro-N-cyclopropyl-N'-[2-methyl-4-(perfluoropropan-2-yl)phenyl]phthalamidte (4a) was more efficient against diamondback moths than the control (chlorantraniliprole). The effects of some title compounds on intracellular calcium of neurons from the Spodoptera exigua proved that the title compounds were RyR activators.

  9. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  10. Insecticidal activities and phytochemical screening of crude extracts and its derived fractions from three medicinal plants Nepeta leavigata, Nepeta kurramensis and Rhynchosia reniformis

    International Nuclear Information System (INIS)

    Ahmad, N.; Shinwari, Z.K.

    2016-01-01

    The extracts and its derived fractions from three medicinal plants species Nepeta leavigata, Nepeta kurramensis and Rhynchosia reniformis were tested for insecticidal activities and preliminary phytochemical evaluation with the intention of standardization and proper manage of bioactive principles in such heterogonous botanicals and to encourage drug finding work with plants. The crude extracts and fractions from Nepeta plants showed moderate to strong insecticidal activity. Among the fractions from Nepeta kurramensis the n-butanol fraction showed strongest insecticidal activity with 89% mortality rate against Tribolium castaneum followed by methanol extract with 88% mortality ratio and in case of Nepeta leavigata the potential activity was showed by methanol extracts with 93% mortality rate against the tested insect. Surprisingly none of the extract / fractions obtained from Rhynchosia reniformis plant exhibited any insecticidal activity. The phytochemicals screening results revealed that both species of Nepeta showed similar phytochemicals profile. The group of chemicals terpenes, flavonoids and glycosides were observed in all the extracts/fractions of Nepeta plants. While phenolic compounds, acidic compounds and alkaloids were found in methanolic extracts, chloroform fraction and ethyl acetate fraction. The Rhynchosia reniformis was observed to be a good source of phenolic compounds, flavonoids, terpenes, alkaloids and fats. (author)

  11. Composition of the Essential Oil of Salvia ballotiflora (Lamiaceae and Its Insecticidal Activity

    Directory of Open Access Journals (Sweden)

    Norma Cecilia Cárdenas-Ortega

    2015-05-01

    Full Text Available Essential oils can be used as an alternative to using synthetic insecticides for pest management. Therefore, the insectistatic and insecticidal activities of the essential oil of aerial parts of Salvia ballotiflora (Lamiaceae were tested against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae. The results demonstrated insecticidal and insectistatical activities against this insect pest with concentrations at 80 µg·mL−1 resulting in 20% larval viability and 10% pupal viability. The larval viability fifty (LV50 corresponded to a concentration of 128.8 µg·mL−1. This oil also increased the duration of the larval phase by 5.5 days and reduced the pupal weight by 29.2% withrespect to the control. The GC-MS analysis of the essential oil of S. ballotiflora showed its main components to be caryophyllene oxide (15.97%, and β-caryophyllene (12.74%, which showed insecticidal and insectistatical activities against S. frugiperda. The insecticidal activity of β-caryophyllene began at 80 µg·mL−1, giving a larval viability of 25% and viability pupal of 20%. The insectistatic activity also started at 80 µg·mL−1 reducing the pupal weight by 22.1% with respect to control. Caryophyllene oxide showed insecticidal activity at 80 µg·mL−1 giving a larval viability of 35% and viability pupal of 20%.The insectistatic activity started at 400 µg·mL−1 and increased the larval phase by 8.8% days with respect to control. The LV50 values for these compounds were 153.1 and 146.5 µg·mL−1, respectively.

  12. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae

    Directory of Open Access Journals (Sweden)

    Fariba H. Afshar

    2011-12-01

    Full Text Available Artemisia species (Asteraceae, widespread throughout the world, are a group of important medicinal plants. The extracts of two medicinal plants of this genus, Artemisia scoparia Waldst. & Kit. and A. spicigera C. Koch, were evaluated for potential antimalarial, free-radical-scavenging and insecticidal properties, using the heme biocrystallisation and inhibition assay, the DPPH assay and the contact toxicity bioassay using the pest Tribolium castaneum, respectively. The methanol extracts of both species showed strong free-radical-scavenging activity and the RC50 values were 0.0317 and 0.0458 mg/mL, respectively, for A. scoparia and A. spicigera. The dichloromethane extracts of both species displayed a moderate level of potential antimalarial activity providing IC50 at 0.778 and 0.999 mg/mL for A. scoparia and A. spicigera, respectively. Both species of Artemisia showed insecticidal properties. However, A. spicigera was more effective than A. scoparia.

  13. The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control.

    Science.gov (United States)

    Oxborough, Richard M; N'Guessan, Raphael; Jones, Rebecca; Kitau, Jovin; Ngufor, Corine; Malone, David; Mosha, Franklin W; Rowland, Mark W

    2015-03-24

    The rapid selection of pyrethroid resistance throughout sub-Saharan Africa is a serious threat to malaria vector control. Chlorfenapyr is a pyrrole insecticide which shows no cross resistance to insecticide classes normally used for vector control and is effective on mosquito nets under experimental hut conditions. Unlike neurotoxic insecticides, chlorfenapyr owes its toxicity to disruption of metabolic pathways in mitochondria that enable cellular respiration. A series of experiments explored whether standard World Health Organization (WHO) guidelines for evaluation of long-lasting insecticidal nets, developed through testing of pyrethroid insecticides, are suitable for evaluation of non-neurotoxic insecticides. The efficacy of WHO recommended cone, cylinder and tunnel tests was compared for pyrethroids and chlorfenapyr. To establish bioassay exposure times predictive of insecticide-treated net (ITN) efficacy in experimental hut trials, standard three-minute bioassays of pyrethroid and chlorfenapyr ITNs were compared with longer exposures. Mosquito behaviour and response to chlorfenapyr ITN in bioassays conducted at night were compared to day and across a range of temperatures representative of highland and lowland transmission. Standard three-minute bioassay of chlorfenapyr produced extremely low levels of mortality compared to pyrethroids. Thirty-minute day-time bioassay produced mortality closer to hut efficacy of chlorfenapyr ITN but still fell short of the WHO threshold. Overnight tunnel test with chlorfenapyr produced 100% mortality and exceeded the WHO threshold of 80%. The endogenous circadian activity rhythm of anophelines results in inactivity by day and raised metabolism and flight activity by night. A model which explains improved toxicity of chlorfenapyr ITN when tested at night, and during the day at higher ambient temperature, is that activation of chlorfenapyr and disruption of respiratory pathways is enhanced when the insect is more metabolically

  14. Plant compounds insecticide activity against Coleoptera pests of stored products

    OpenAIRE

    MOREIRA, M.D.; PICANÇO, M.C.; BARBOSA, L.C. de A.; GUEDES, R.N.C.; CAMPOS, M.R. de; SILVA, G.A.; MARTINS, J.C.

    2008-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed...

  15. Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus ...

    African Journals Online (AJOL)

    Purpose: To evaluate the larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foenuculum vulgare and Tagetes minuta leaf extracts against Culex quinquefasciatus mosquitoes. Methods: The leaves of the plants were extracted with distilled water, ethanol (95 %), and hexane and the extracts screened for ...

  16. Decrease of insecticide resistance over generations without exposure to insecticides in Nilaparvata lugens (Hemipteran: Delphacidae).

    Science.gov (United States)

    Yang, Yajun; Dong, Biqin; Xu, Hongxing; Zheng, Xusong; Tian, Junce; Heong, Kongleun; Lu, Zhongxian

    2014-08-01

    The brown planthopper, Nilaparvata lugens (Stål), is one of the most important insect pests on paddy rice in tropical and temperate Asia. Overuse and misuse of insecticides have resulted in the development of high resistance to many different insecticides in this pest. Studies were conducted to evaluate the change of resistance level to four insecticides over 15 generations without any exposure to insecticides in brown planthopper. After 15 generations' rearing without exposure to insecticide, brown planthopper could reverse the resistance to imidacloprid, chlorpyrifos, fipronil, and fenobucarb. The range and style of resistance reversal of brown planthopper differed when treated with four different insecticides. To monitor potential changes in insect physiological responses, we measured the activity of each of the three selected enzymes, including acetylcholinesterases (AChE), general esterases (EST), and glutathione S-transferases. After multiple generations' rearing without exposure to insecticide, AChE and EST activities of brown planthopper declined with the increased generations, suggesting that the brown planthopper population adjusted activities of EST and AChE to adapt to the non-insecticide environment. These findings suggest that the reducing, temporary stop, or rotation of insecticide application could be incorporated into the brown planthopper management.

  17. Process optimization and insecticidal activity of alkaloids from the ...

    African Journals Online (AJOL)

    Process optimization and insecticidal activity of alkaloids from the root bark of Catalpa ovata G. Don by response surface methodology. ... Tropical Journal of Pharmaceutical Research. Journal Home · ABOUT THIS JOURNAL · Advanced ...

  18. Enhanced activity of carbohydrate- and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais.

    Science.gov (United States)

    Araújo, R A; Guedes, R N C; Oliveira, M G A; Ferreira, G H

    2008-08-01

    Insecticide resistance is frequently associated with fitness disadvantages in the absence of insecticides. However, intense past selection with insecticides may allow the evolution of fitness modifier alleles that mitigate the cost of insecticide resistance and their consequent fitness disadvantages. Populations of Sitophilus zeamais with different levels of susceptibility to insecticides show differences in the accumulation and mobilization of energy reserves. These differences may allow S. zeamais to better withstand toxic compounds without reducing the beetles' reproductive fitness. Enzymatic assays with carbohydrate- and lipid-metabolizing enzymes were, therefore, carried out to test this hypothesis. Activity levels of trehalase, glycogen phosphorylase, lipase, glycosidase and amylase were determined in two insecticide-resistant populations showing (resistant cost) or not showing (resistant no-cost) associated fitness cost, and in an insecticide-susceptible population. Respirometry bioassays were also carried out with these weevil populations. The resistant no-cost population showed significantly higher body mass and respiration rate than the other two populations, which were similar. No significant differences in glycogen phosphorylase and glycosidase were observed among the populations. Among the enzymes studied, trehalase and lipase showed higher activity in the resistant cost population. The results obtained in the assays with amylase also indicate significant differences in activity among the populations, but with higher activity in the resistant no-cost population. The inverse activity trends of lipases and amylases in both resistant populations, one showing fitness disadvantage without insecticide exposure and the other not showing it, may underlay the mitigation of insecticide resistance physiological costs observed in the resistant no-cost population. The higher amylase activity observed in the resistant no-cost population may favor energy storage

  19. Isolation of strains of Bacillus thuringiensis insecticidal biological activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Hmaied, Ezzedine; Ben Mbarek, Wael

    2010-01-01

    The present work is to study the effect of toxins (δ-endotoxins) extracted from strains of Bacillus thuringiensis isolated from the mud on the fly Sabkhat Dejoumi Ceratitis capitata, a pest of citrus and fruit trees. Among 51 isolated tested, 15 showed a very significant insecticidal activity, characterized by mortality rates exceeding 80 pour cent. These mortality rates are caused by endotoxins of Bt revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by strains of Bt for large scale application.

  20. Insecticidal activity of the petroleum ether extract of Ageratum Conyzoides L

    International Nuclear Information System (INIS)

    Calle, Jairo; Rivera, Augusto

    1990-01-01

    We have determined the insecticidal activity of the petroleum ether (bp 40-60o C) extract of Ageratum Conyzoides L. Towards mosca domestica (diptera) third stage larvae and cynthia Carye (Lepidoptera) third, fourth and fifth stage larvae, being this extract also active against Acanthoscelides obtectus (Coleoptera) adults. We have isolated the known chromene precocene II from this extract, which is highly toxic to M. domestica third stage larvae under sunlight exposure, while no larvicidal effect was shown under U.V. irradiation or in dark. We have also identified two flavonoids: Eupalestin and lucidin dimethyl ether, which insecticidal role in this extract has not been determinate

  1. Variation effect on the insecticide activity of DDT analogues. A chemometric approach

    Science.gov (United States)

    Itoh, S.; Nagashima, U.

    2002-08-01

    We investigated a variation effect on the insecticide activity of DDT analogues by using the first principles electronic structure calculations and the neural network analysis. It has been found that the charge distribution at the specific atomic sites in the DDT molecule is related to their toxicity. This approach can contribute to designing a new insecticide and a new harmlessness process of the DDT analogues.

  2. GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities.

    Science.gov (United States)

    Jiang, Hao; Wang, Jin; Song, Li; Cao, Xianshuang; Yao, Xi; Tang, Feng; Yue, Yongde

    2016-03-28

    Interest in essential oils with pesticidal activity against insects and pests is growing. In this study, essential oils from different parts (leaves, twigs and seeds) of Cinnamomum camphora L. Presl were investigated for their chemical composition, and insecticidal and repellent activities against the cotton aphid. The essential oils, obtained by hydrodistillation, were analyzed by GC×GC-TOFMS. A total of 96 components were identified in the essential oils and the main constituents found in the leaves and twigs were camphor, eucalyptol, linalool and 3,7-dimethyl-1,3,7-octatriene. The major components found in the seeds were eucalyptol (20.90%), methyleugenol (19.98%), linalool (14.66%) and camphor (5.5%). In the contact toxicity assay, the three essential oils of leaves, twigs and seeds exhibited a strong insecticidal activity against cotton aphids with LC50 values of 245.79, 274.99 and 146.78 mg/L (after 48 h of treatment), respectively. In the repellent assay, the highest repellent rate (89.86%) was found in the seed essential oil at the concentration of 20 μL/mL after 24 h of treatment. Linalool was found to be a significant contributor to the insecticidal and repellent activities. The results indicate that the essential oils of C. camphora might have the potential to be developed into a natural insecticide or repellent for controlling cotton aphids.

  3. Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies.

    Science.gov (United States)

    Roubos, Craig R; Rodriguez-Saona, Cesar; Holdcraft, Robert; Mason, Keith S; Isaacs, Rufus

    2014-02-01

    A series of bioassays were conducted to determine the relative toxicities and residual activities of insecticides labeled for use in blueberry (Vaccinium corymbosum L.) on natural enemies, to identify products with low toxicity or short duration effects on biological control agents. In total, 14 insecticides were evaluated using treated petri dishes and four commercially available natural enemies (Aphidius colemani Viereck, Orius insidiosus [Say], Chrysoperla rufilabris [Burmeister], and Hippodamia convergens [Guérin-Menéville]). Dishes were aged under greenhouse conditions for 0, 3, 7, or 14 d before introducing insects to test residual activity. Acute effects (combined mortality and knockdown) varied by insecticide, residue age, and natural enemy species. Broad-spectrum insecticides caused high mortality to all biocontrol agents, whereas products approved for use in organic agriculture had little effect. The reduced-risk insecticide acetamiprid consistently caused significant acute effects, even after aging for 14 d. Methoxyfenozide, novaluron, and chlorantraniliprole, which also are classified as reduced-risk insecticides, had low toxicity, and along with the organic products could be compatible with biological control. This study provides information to guide blueberry growers in their selection of insecticides. Further research will be needed to determine whether adoption of a pest management program based on the use of more selective insecticides will result in higher levels of biological control in blueberry.

  4. Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides.

    Science.gov (United States)

    Hamby, Kelly A; Kwok, Rosanna S; Zalom, Frank G; Chiu, Joanna C

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between 'summer' and 'winter' conditions due to differences in photoperiod and temperature. In the 'summer', D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the 'winter', activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing

  5. Insecticidal Activity of Some Traditionally Used Ethiopian Medicinal Plants against Sheep Ked Melophagus ovinus

    Directory of Open Access Journals (Sweden)

    Negero Gemeda

    2014-01-01

    Full Text Available Twelve medicinal plants and a commercially used drug Ivermectin were examined for insecticidal activity against Melophagus ovinus sheep ked at different time intervals using in vitro adult immersion test. The findings show that at 3.13 µL/mL, 6.25 µL/mL and 12.5 µL/mL concentration of Cymbopogon citratus, Foeniculum vulgare and Eucalyptus globulus essential oils respectively, recorded 100% mortalities against M. ovinus within 3 hour of exposure. Significantly higher insecticidal activity of essential oils was recorded (P=0.00 when compared to 10 μg/mL Ivermectin after 3-hour exposure of M. ovinus at a concentration of ≥1.57 μL/mL, ≥3 μL/mL, and ≥12.7 μL/mL essential oils of C. citratus, F. vulgare, and E. globulus, respectively. Among essential oils, C. citratus has showed superior potency at a three-hour exposure of the parasite (P=0.00 at a concentration of ≥0.78 μL/mL. Strong antiparasitic activity was recorded by aqueous extract of Calpurnia aurea (80% mortality at a concentration of 200 mg/mL within 24 h among aqueous extracts of 9 medicinal plants. The results indicated all the four medicinal plants, particularly those tested essential oils, can be considered as potential candidates for biocontrol of M. ovinus sheep ked.

  6. Insecticidal Activity of Some Traditionally Used Ethiopian Medicinal Plants against Sheep Ked Melophagus ovinus.

    Science.gov (United States)

    Gemeda, Negero; Mokonnen, Walelegn; Lemma, Hirut; Tadele, Ashenif; Urga, Kelbessa; Addis, Getachew; Debella, Asfaw; Getachew, Mesaye; Teka, Frehiwot; Yirsaw, Kidist; Mudie, Kissi; Gebre, Solomon

    2014-01-01

    Twelve medicinal plants and a commercially used drug Ivermectin were examined for insecticidal activity against Melophagus ovinus sheep ked at different time intervals using in vitro adult immersion test. The findings show that at 3.13 µL/mL, 6.25 µL/mL and 12.5 µL/mL concentration of Cymbopogon citratus, Foeniculum vulgare and Eucalyptus globulus essential oils respectively, recorded 100% mortalities against M. ovinus within 3 hour of exposure. Significantly higher insecticidal activity of essential oils was recorded (P = 0.00) when compared to 10  μ g/mL Ivermectin after 3-hour exposure of M. ovinus at a concentration of ≥1.57  μ L/mL, ≥3  μ L/mL, and ≥12.7  μ L/mL essential oils of C. citratus, F. vulgare, and E. globulus, respectively. Among essential oils, C. citratus has showed superior potency at a three-hour exposure of the parasite (P = 0.00) at a concentration of ≥0.78  μ L/mL. Strong antiparasitic activity was recorded by aqueous extract of Calpurnia aurea (80% mortality) at a concentration of 200 mg/mL within 24 h among aqueous extracts of 9 medicinal plants. The results indicated all the four medicinal plants, particularly those tested essential oils, can be considered as potential candidates for biocontrol of M. ovinus sheep ked.

  7. Weevil x Insecticide: Does 'Personality' Matter?

    Science.gov (United States)

    Morales, Juliana A; Cardoso, Danúbia G; Della Lucia, Terezinha Maria C; Guedes, Raul Narciso C

    2013-01-01

    An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By extension, insect 'personality' (i.e., an individual's integrated set of behavioral tendencies that is inferred from multiple empirical measures) may also be an important determinant of insecticide exposure and activity. This has yet to be considered because the behavioral studies involving insects and insecticides focus on populations rather than on individuals. Even among studies of animal 'personality', the relative contributions of individual and population variation are usually neglected. Here, we assessed behavioral traits (within the categories: activity, boldness/shyness, and exploration/avoidance) of individuals from 15 populations of the maize weevil (Sitophilus zeamais), an important stored-grain pest with serious problems of insecticide resistance, and correlated the behavioral responses with the activity of the insecticide deltamethrin. This analysis was performed at both the population and individual levels. There was significant variation in weevil 'personality' among individuals and populations, but variation among individuals within populations accounted for most of the observed variation (92.57%). This result emphasizes the importance of individual variation in behavioral and 'personality' studies. When the behavioral traits assessed were correlated with median lethal time (LT50) at the population level and with the survival time under insecticide exposure, activity traits, particularly the distance walked, significantly increased survival time. Therefore, behavioral traits are important components of insecticide efficacy, and individual variation should be

  8. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    Science.gov (United States)

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  9. Insecticidal Activity of Some Traditionally Used Ethiopian Medicinal Plants against Sheep Ked Melophagus ovinus

    OpenAIRE

    Gemeda, Negero; Mokonnen, Walelegn; Lemma, Hirut; Tadele, Ashenif; Urga, Kelbessa; Addis, Getachew; Debella, Asfaw; Getachew, Mesaye; Teka, Frehiwot; Yirsaw, Kidist; Mudie, Kissi; Gebre, Solomon

    2014-01-01

    Twelve medicinal plants and a commercially used drug Ivermectin were examined for insecticidal activity against Melophagus ovinus sheep ked at different time intervals using in vitro adult immersion test. The findings show that at 3.13 µL/mL, 6.25 µL/mL and 12.5 µL/mL concentration of Cymbopogon citratus, Foeniculum vulgare and Eucalyptus globulus essential oils respectively, recorded 100% mortalities against M. ovinus within 3 hour of exposure. Significantly higher insecticidal activity of e...

  10. Antifeedant, insecticidal and growth inhibitory activities of selected plant oils on black cutworm, Agrotis ipsilon (Hufnagel (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Alagarmalai Jeyasankar

    2012-05-01

    Full Text Available Objective: To evaluate antifeedant, insecticidal and insect growth inhibitory activities of eucalyptus oil (Eucalyptus globules and gaultheria oil (Gaultheria procumbens L. against black cutworm, Agrotis ipsilon. Methods: Antifeedant, insecticidal and growth inhibitory activities of eucalyptus oil and gaultheria oil were tested against black cutworm, A. ipsilon. Results: Significant antifeedant activity was found in eucalyptus oil (96.24% where as the highest insecticidal activity was noticed in gaultheria oil (86.92%. Percentages of deformities were highest on gaultheria oil treated larvae and percentage of adult emergence was deteriorated also by gaultheria oil. Conclusions: These plants oil has potential to serve as an alternative eco-friendly control of insect pest.

  11. Sublethal Effects of Insecticide Exposure on Megacopta cribraria (Fabricius) Nymphs: Key Biological Traits and Acetylcholinesterase Activity.

    Science.gov (United States)

    Miao, Jin; Reisig, Dominic D; Li, Guoping; Wu, Yuqing

    2016-01-01

    Megacopta cribraria F. (Hemiptera: Plataspidae), the kudzu bug, is an invasive insect pest of U.S. soybean. At present, insecticide application is the primary and most effective control option for M. cribraria In this study, the potential effects of sublethal and low-lethal concentrations (LC10 and LC40) of three common insecticides on key biological traits and acetylcholinesterase (AChE) activity of the treated nymphal stage of insect were assessed. The results show that the sublethal concentration of imidacloprid significantly reduced adult emergence rate of M. cribraria A low-lethal concentration of imidacloprid significantly increased nymphal development time, but significantly decreased adult emergence rate and adult longevity. Both sublethal and low-lethal concentrations of acephate caused an increase in nymphal development time and a reduction in adult emergence rate and adult longevity. Fecundity of females was significantly reduced only by exposure to low-lethal concentrations of acephate. Sublethal and low-lethal concentrations of bifenthrin increased nymphal development time, but significantly decreased adult emergence rate. In addition, we found that the AChE activity of M. cribraria was significantly increased only by LC40 imidacloprid, but strongly inhibited by acephate. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  12. Insecticide exposure affects DNA and antioxidant enzymes activity in honey bee species Apis florea and A. dorsata: Evidence from Punjab, Pakistan.

    Science.gov (United States)

    Hayat, Khizar; Afzal, Muhammad; Aqueel, Muhammad Anjum; Ali, Sajjad; Saeed, Muhammad Farhan; Khan, Qaiser M; Ashfaq, Muhammad; Damalas, Christos A

    2018-04-23

    Insecticide exposure can affect honey bees in agro-ecosystems, posing behavioral stresses that can lead to population decline. In this study, insecticide incidence, DNA damage, and antioxidant enzyme activity were studied in Apis florea and A. dorsata honey bee samples collected from insecticide-treated and insecticide-free areas of Punjab, Pakistan. Seven insecticides: chlorpyrifos, dimethoate, imidacloprid, phorate, emamectin, chlorfenapyr, and acetamiprid were detected in seven samples of A. florea and five samples of A. dorsata. In total, 12 samples (22.2%) of honey bees were found positive to insecticide presence out of 54 samples. The most frequently detected insecticide was chlorpyrifos, which was found in four samples (7.4%), with a concentration ranging from 0.01 to 0.05 μg/g and an average concentration 0.03 μg/g. The comet assay or single cell gel electrophoresis assay, a simple way to measure DNA strand breaks in eukaryotic cells, was used to microscopically find damage of DNA at the level of a single cell. Comet tail lengths of DNA in A. florea and A. dorsata samples from insecticide-treated areas were significantly higher (P honey bee samples from insecticide-treated and insecticide-free areas, while glutathione S-transferase (GST) activity showed a significant reduction in response to insecticide exposure. Significant positive correlations were detected between enzyme activity and insecticide concentration in honey bee species from insecticide-treated areas compared with control groups. Toxicity from pesticide exposure at sub-lethal levels after application or from exposure to pesticide residues should not be underestimated in honey bees, as it may induce physiological impairment that can decline honey bees' health. Copyright © 2018. Published by Elsevier B.V.

  13. Chemical Composition and Insecticidal Activity of the Essential Oil of ...

    African Journals Online (AJOL)

    Purpose: To investigate the chemical composition and insecticidal activity of the essential oil of the aerial parts of Ostericum grosseserratum against the maize weevil, Sitophilus zeamaisD. Methods: Steam distillation of the aerial parts of O. grosseserratum during the flowering stage was carried out using a Clavenger ...

  14. Effect of repeated pesticide applications on soil properties in cotton fields: II. Insecticide residues and impact on dehydrogenase and arginine deaminase activities

    International Nuclear Information System (INIS)

    Vig, K.; Singh, D.K.; Agarwal, H.C.; Dhawan, A.K.; Dureja, P.

    2001-01-01

    Insecticides were applied sequentially at recommended dosages post crop emergence in cotton fields and soil was sampled at regular intervals after each treatment. Soil was analysed for insecticide residues and activity of the enzymes dehydrogenase and arginine deaminase. Insecticide residues detected in the soil were in small quantities and they did not persist for long. Only endosulfan leached below 15 cm. Insecticides had only temporary effects on enzyme activities which disappeared either before the next insecticide treatment or by the end of the experimental period. (author)

  15. Isolation of Insecticidal Constituent from Ruta graveolens and Structure-Activity Relationship Studies against Stored-Food Pests (Coleoptera).

    Science.gov (United States)

    Jeon, Ju-Hyun; Lee, Sang-Guei; Lee, Hoi-Seon

    2015-08-01

    Isolates from essential oil extracted from the flowers and leaves of Ruta graveolens and commercial phenolic analogs were evaluated using fumigant and contact toxicity bioassays against adults of the stored-food pests Sitophilus zeamais, Sitophilus oryzae, and Lasioderma serricorne. The insecticidal activity of these compounds was then compared with that of the synthetic insecticide dichlorvos. To investigate the structure-activity relationships, the activity of 2-isopropyl-5-methylphenol and its analogs was examined against these stored-food pests. Based on the 50% lethal dose, the most toxic compound against S. zeamais was 3-isopropylephenol, followed by 2-isopropylphenol, 4-isopropylphenol, 5-isopropyl-2-methylphenol, 2-isopropyl-5-methylphenol, 3-methylphenol, and 2-methylphenol. Similar results were observed with phenolic compounds against S. oryzae. However, when 2-isopropyl-5-methylphenol isolated from R. graveolens oil and its structurally related analogs were used against L. serricorne, little or no insecticidal activity was found regardless of bioassay. These results indicate that introducing and changing the positions of functional groups in the phenol skeleton have an important effect on insecticidal activity of these compounds against stored-food pests.

  16. Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans and T. catigua (Meliaceae); Constituintes quimicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andreia Pereira; Nebo, Liliane; Vieira, Paulo Cezar; Fernandes, Joao Batista; Silva, Maria Fatima das Gracas Fernandes da [Universidade Federal de Sao Carlos (UFSCAR), Sao Carlos, SP (Brazil). Dept. de Quimica], e-mail: paulo@dq.ufscar.br; Rodrigues, Ricardo Ribeiro [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Biologicas

    2009-07-01

    Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae) has led to the identification of the limonoids 11{beta}-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone) and the steroids stigmasterol, {beta}-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda. (author)

  17. Chemical Compositions and Insecticidal Activities of Alpinia kwangsiensis Essential Oil against Lasioderma serricorne

    Directory of Open Access Journals (Sweden)

    Yan Wu

    2015-12-01

    Full Text Available The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%, eucalyptol (15.16%, β-pinene (11.15% and α-pinene (10.50%. These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 μg/adult and fumigant (LC50 = of 9.91 mg/L air toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.

  18. Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities.

    Science.gov (United States)

    Lawal, Oladipupo A; Ogunwande, Isiaka A; Salvador, Atinuke F; Sanni, Adetayo A; Opoku, Andy R

    2014-01-01

    The chemical composition of essential oil obtained by hydrodistillation of the leaves of Pachira glabra Pasq., (PgEO) has been studied by Gas Chromatography (GC) and Gas Chromatography coupled with Mass Spectrometry (GC/MS). Thirty three constituents representing 98.4% of total contents were identified from the essential oil. The major constituents of oil were limonene (23.2%), β-caryophyllene (14.5%), phtyol (8.5%) and β-bisabolene (6.3%). The antimicrobial activity of the PgEO was evaluated against a panel of ten bacteria and three fungal strain using agar diffusion and broth microdilution methods. Results have shown that the PgEO exhibited moderate to strong antimicrobial activity against the tested microorganisms except Citrobacter youagae, Micrococcus spp. and Proteus spp. The activity zones of inhibition (ZI) and minimum inhibitory concentrations (MIC) ranged between 13.7 mm-24.0 mm and 0.3 mg/mL-2.5 mg/mL, respectively. The insecticidal activity of PgEO was assayed against the adult Sitophilus zeamais. The lethal concentrations (LC50 and LC90) of the PgEO showed it to be toxic against adult S. zeamais at 32.2 and 53.7 mg/mL, respectively. This is the first report on the chemical composition and in vitro biological activities of essential oil of P. glabra growing in Nigeria.

  19. Insecticidal and Repellent Activit ies of Laurinterol from the Okinawan Red Alga Laurencia nidifica

    Directory of Open Access Journals (Sweden)

    Takahiro Ishii

    2017-01-01

    Full Text Available An ethyl acetate (EtOAc extract of Laurencia nidifica was found to have toxic effect against brine shrimp larvae (Artemia salina. Bioassay-guided fractionation of the EtOAc extract resulted in the isolation of four known halogenated sesquiterpenes, laurinterol (1, isolaurinterol (2, aplysin (3, and a -bromocuparene (4. Their structures were established on the basis of spectral analysis and comparison with literature data. Among isolated compounds, only laurinterol showed strong toxicity against A. salina. Further experiments revealed that laurinterol also exhibited repellent activity against the maize weevil Sitophilus zeamais , insecticidal activity against the termite Reticulitermes speratus, and acetylcholinesterase (AChE inhibitory effect . This is the first report of insecticidal and repellent activities of laurinterol.

  20. Effects of Different Systemic Insecticides in Carotenoid Content, Antibacterial Activity and Morphological Characteristics of Tomato (Solanum lycopersicum var Diamante

    Directory of Open Access Journals (Sweden)

    LEXTER R. NATIVIDAD

    2014-02-01

    Full Text Available This study aimed to determine the effects of different systemic insecticides in tomato (Lycopersicon esculentum var. Diamante. The study also assessed different systemic insecticides used in other plants in their effectiveness and suitability to tomato by evaluating the carotenoid content and antibacterial activity of each insecticide. Morphological characteristics such as the weight, the number and the circumference of tomato fruits and the height of the plant were also observed. Moreover, the cost effectiveness was computed. Treatments were designated as follows: Treatment 1- plants sprayed with active ingredient (a.i. cartap hydrochloride; Treatment 2 - plants sprayed with a.i. indoxacarb; Treatment 3- plants sprayed with a.i. chlorantraniliprole and thiamethoxam; Treatment 4 - plants sprayed with a.i. dinotefuran (positive control; and Treatment 5 - no insecticide applied. The experimental design used was Randomized Complete Block Design (RCBD with three replications. The first three systemic insecticides with such active ingredient were not yet registered for tomato plant. Statistical analyses show that there were no significant differences among the weight, the number and the circumference of tomato fruits and the height of the plant for each treatment. Results showed that treatments 1, 2, 3, 4 and 5 extracts have 49.74, 44.16, 48.19, 52.57 and 50.60 μg/g of total carotenoids (TC, respectively. Statistical analysis shows that there no significant differences in the TC content of each treatment. The antibacterial activity of each plant sample showed no significant differences among treatments. Thin layer chromatographic analysis revealed that there were equal numbers of spots for all the plant samples.The study concluded that systemic insecticide with a.i. cartap hydrochloride be introduced to the farmers as insecticide for tomato plant since it shows comparable effect with the registered insecticide (T4 based on the morphological

  1. Eupatorium Capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity

    Science.gov (United States)

    2010-01-01

    deionized water. One percent oil concentration was used based on commercial botanical insecticides such as Neem (Azadiractin), Ecotrol (Rosmarinus...analyses for E. capillifolium oil and two commercial insecticides (Malathion, Neem ) topically applied to adult azalea lace bugs, S. pyrioides...0.93 (0.06) . . . 262.58 < 0.0001 exposure time . 695 0.44 (0.04) . . . 135.87 < 0.0001 a Malathion and Neem used as positive baseline controls for

  2. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Insecticidal Activities of Bark, Leaf and Seed Extracts of Zanthoxylum heitzii against the African Malaria Vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hans J. Overgaard

    2014-12-01

    Full Text Available The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis], a strain homozygous for the L1014F kdr mutation (kdrKis, and a strain homozygous for the G119S Ace1R allele (AcerKis. The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female, but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides.

  4. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Science.gov (United States)

    2013-04-11

    Hedychiums have been reported to possess antibacterial, antifungal, and insecticidal activities [4,5]. Strawberry anthracnose, caused by the plant...pathogens Colletotrichum species is one of the most important diseases affecting strawberries worldwide [6]. Colletotrichum fragariae Brooks is most...often associated with anthracnose crown rot of strawberries grown in hot, humid areas such as the southeastern United States [7]. The azalea lace bug

  5. Impact of repeated insecticide application on soil microbial activity

    International Nuclear Information System (INIS)

    Xu Bujin; Zhang Yongxi; Chen Meici; Zhu Nanwen; Ming Hong

    2001-01-01

    The effects of repeated insecticide application on soil microbial activity were studied both in a cotton field and in the laboratory. The results of experiment show that there are some effects on soil microbial activities, such as the population of soil microorganisms, soil respiration, dehydrogenase activity and nitrogen fixation. The degree of effects depends on the chemical dosage. Within the range of 0.5-10.0 μg/g air-dry-soil, the higher the concentration, the stronger effect. In this experiment, the effect disappeared within 4, 8 or 16 days after treatment, depending on the dose applied. In field conditions, the situation is more complex and the data of field experiment show greater fluctuation. (author)

  6. Insecticidal activity of the essential oils from different plants against three stored-product insects.

    Science.gov (United States)

    Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet

    2010-01-01

    This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 microl/l air for P. interpunctella and E. kuehniella, respectively. LC(50) and LC(99) values of each essential oil were estimated for each insect species.

  7. Effects of Different Systemic Insecticides in Carotenoid Content, Antibacterial Activity and Morphological Characteristics of Tomato (Solanum lycopersicum var Diamante)

    OpenAIRE

    LEXTER R. NATIVIDAD; Maria Fatima T. Astrero; Lenard T. Basinga; Maria Karysa G. Calang

    2014-01-01

    This study aimed to determine the effects of different systemic insecticides in tomato (Lycopersicon esculentum var. Diamante). The study also assessed different systemic insecticides used in other plants in their effectiveness and suitability to tomato by evaluating the carotenoid content and antibacterial activity of each insecticide. Morphological characteristics such as the weight, the number and the circumference of tomato fruits and the height of the plant were also observed. Moreover, ...

  8. Insecticidal activity of compounds from ailanthus altissima against spodoptera littoralis larvae

    International Nuclear Information System (INIS)

    Pavela, R.; Zabka, M.; Tylova, T.; Kresinova, Z

    2014-01-01

    We determined the efficacy of Ailanthus altissima extracts, obtained using solvents of various polarity, in terms of acute and chronic toxicity, antifeedant efficacy and larval growth inhibition of Spodoptera littoralis. Different efficacy was found for individual fractions, in terms of both acute and chronic toxicity, as well as antifeedant efficacy and growth inhibition of S. littoralis larvae. Fractions 1 and 2, obtained at the beginning of the separation period, were the only ones to cause significant chronic toxicity accompanied by larval growth inhibition. A major proportion of tocopherol isomers were detected in these fractions. On the contrary, fractions 5 and 6 caused acute toxicity, associated with significant antifeedant efficacy and related strong growth inhibition of S. littoralis larvae. Five major quassinoids (Ailanthone, Chaparrinone, Glaucarubinone, 13(18)-Dehydroglaucarubinone and hinjulactone H) were detected in fraction 5, which showed the greatest efficacy in terms of acute toxicity and feed intake inhibition of S. littoralis. Methanol extracts or active substances obtained from A. altissima leaves can be recommended for the development of new botanical insecticides targeted against some phytophagous larval species of butterfly pests. (author)

  9. Constituintes químicos e atividade inseticida dos extratos de frutos de Trichilia elegans E T. catigua (Meliaceae Chemical constituents and insecticidal activity from fruits extracts of Trichilia elegans AND T. catigua (Meliaceae

    Directory of Open Access Journals (Sweden)

    Andréia Pereira Matos

    2009-01-01

    Full Text Available Phytochemical investigation of the fruits extracts of Trichilia elegans and Trichilia catigua (Meliaceae has led to the identification of the limonoids 11β-acetoxyobacunone, cedrelone, methylangolensate and epimeric mixture of photogedunin besides known coumarins (scoparone, scopoletin, umbeliferone and the steroids stigmasterol, β-sitosterol, sitostenone and campesterol. The structures of the compounds were proposed by spectroscopic analysis and comparison with literature data. An evaluation of the insecticidal activity of the fruits extracts of Trichilia ssp. was carried out and the extracts of T. elegans revealed to have strong insecticidal activity and the extracts of T. catigua showed moderate larval mortality on Spodoptera frugiperda.

  10. Physiological selectivity and activity reduction of insecticides by rainfall to predatory wasps of Tuta absoluta.

    Science.gov (United States)

    Barros, Emerson C; Bacci, Leandro; Picanco, Marcelo C; Martins, Júlio C; Rosado, Jander F; Silva, Gerson A

    2015-01-01

    In this study, we carried out three bioassays with nine used insecticides in tomato crops to identify their efficiency against tomato leaf miner Tuta absoluta, the physiological selectivity and the activity reduction of insecticides by three rain regimes to predatory wasps Protonectarina sylveirae and Polybia scutellaris. We assessed the mortality caused by the recommended doses of abamectin, beta-cyfluthrin, cartap, chlorfenapyr, etofenprox, methamidophos, permethrin, phenthoate and spinosad to T. absoluta and wasps at the moment of application. In addition, we evaluated the wasp mortality due to the insecticides for 30 days on plants that did not receive rain and on plants that received 4 or 125 mm of rain. Spinosad, cartap, chlorfenapyr, phenthoate, abamectin and methamidophos caused mortality higher than 90% to T. absoluta, whereas the pyrethroids beta-cyfluthrin, etofenprox and permethrin caused mortality between 8.5% and 46.25%. At the moment of application, all the insecticides were highly toxic to the wasps, causing mortality higher than 80%. In the absence of rain, all the insecticides continued to cause high mortality to the wasps for 30 days after the application. The toxicity of spinosad and methamidophos on both wasp species; beta-cyfluthrin on P. sylveirae and chlorfenapyr and abamectin on P. scutellaris, decreased when the plants received 4 mm of rain. In contrast, the other insecticides only showed reduced toxicity on the wasps when the plants received 125 mm of rain.

  11. Activity of the Antioxidant Defense System in a Typical Bioinsecticide-and Synthetic Insecticide-treated Cowpea Storage Beetle F. (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    2014-01-01

    Full Text Available The non-enzymatic and enzymatic antioxidant defense systems play a major role in detoxification of pro-oxidant endobiotics and xenobiotics. The possible involvement of beetle non-enzymatic [α-tocopherol, glutathione (GSH, and ascorbic acid] and enzymatic [catalase (CAT, superoxide dismutase (SOD, peroxidase (POX, and polyphenol oxidase (PPO] antioxidant defense system on the insecticidal activity of synthetic insecticides (cypermethrin, 2,2-dicholorovinyl dimethyl phosphate, and λ-cyhalothrin and ethanolic plant extracts of Tithonia diversifolia, Cyperus rotundus, Hyptis suaveolens leaves , and Jatropha Curcas seeds was investigated. 2,2-Dicholorovinyl dimethyl phosphate (DDVP; 200 ppm, LC 50 = 13.24 ppm and T. diversifolia (20,000 ppm resulted in 100% beetle mortality at 96-hour post-treatment. The post-treatments significantly increased the beetle α-tocopherol and GSH contents. Activities of CAT, SOD, POX, and PPO were modulated by the synthetic insecticides and bioinsecticides to diminish the adverse effect of the chemical stresses. Quantitative and qualitative allelochemical compositions of bioinsecticides and chemical structure of synthetic insecticides possibly account and for modulation of their respective enzyme activities. Altogether, oxidative stress was enormous enough to cause maladaptation in insects. This study established that oxidative imbalance created could be the molecular basis of the efficacy of both insecticides and bio-insecticides. Two, there was development of functional but inadequate antioxidant defense mechanism in the beetle.

  12. Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds

    Directory of Open Access Journals (Sweden)

    Joel R. Coats

    2000-04-01

    Full Text Available The insecticidal activities of several cyanohydrins, cyanohydrin esters and monoterpenoid esters (including three monoterpenoid esters of a cyanohydrin were evaluated. Topical toxicity to Musca domestica L. adults was examined, and testing of many compounds at 100 mg/fly resulted in 100% mortality. Topical LD50 values of four compounds for M. domestica were calculated. Testing of many of the reported compounds to brine shrimp (Artemia franciscana Kellog resulted in 100% mortality at 10 ppm, and two compounds caused 100% mortality at 1 ppm. Aquatic LC50 values were calculated for five compounds for larvae of the yellow fever mosquito (Aedes aegypti (L.. Monoterpenoid esters were among the most toxic compounds tested in topical and aquatic bioassays.

  13. Toxicity and Residual Activity of Insecticides Against Tamarixia triozae (Hymenoptera: Eulophidae), a Parasitoid of Bactericera cockerelli (Hemiptera: Triozidae).

    Science.gov (United States)

    Luna-Cruz, Alfonso; Rodríguez-Leyva, Esteban; Lomeli-Flores, J Refugio; Ortega-Arenas, Laura D; Bautista-Martínez, Néstor; Pineda, Samuel

    2015-10-01

    Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is one of the most economically important pests of potato, tomato, and peppers in Central America, Mexico, the United States, and New Zealand. Its control is based on the use of insecticides; however, recently, the potential of the eulophid parasitoid Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) for population regulation has been studied. Because T. triozae is likely to be exposed to insecticides on crops, the objective of this study was to explore the compatibility of eight insecticides with this parasitoid. The toxicity and residual activity (persistence) of spirotetramat, spiromesifen, beta-cyfluthrin, pymetrozine, azadirachtin, imidacloprid, abamectin, and spinosad against T. triozae adults were assessed using a method based on the residual contact activity of each insecticide on tomato leaf discs collected from treated plants growing under greenhouse conditions. All eight insecticides were toxic to T. triozae. Following the classification of the International Organization of Biological Control, the most toxic were abamectin and spinosad, which could be placed in toxicity categories 3 and 4, respectively. The least toxic were azadirachtin, pymetrozine, spirotetramat, spiromesifen, imidacloprid, and beta-cyfluthrin, which could be placed in toxicity category 2. In terms of persistence, by day 5, 6, 9, 11, 13, 24, and 41 after application, spirotetramat, azadirachtin, spiromesifen, pymetrozine, imidacloprid, beta-cyfluthrin, abamectin, and spinosad could be considered harmless, that is, placed in toxicity category 1 (<25% mortality of adults). The toxicity and residual activity of some of these insecticides allow them to be considered within integrated pest management programs that include T. triozae. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.

    Science.gov (United States)

    Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm

    2010-08-01

    To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.

  15. Investigating the Structure-Activity Relationship of the Insecticidal Natural Product Rocaglamide.

    Science.gov (United States)

    Hall, Roger G; Bruce, Ian; Cooke, Nigel G; Diorazio, Louis J; Cederbaum, Fredrik; Dobler, Markus R; Irving, Ed

    2017-12-01

    The natural product Rocaglamide (1), isolated from the tree Aglaia elliptifolia, is a compelling but also challenging lead structure for crop protection. In laboratory assays, the natural product shows highly interesting insecticidal activity against chewing pests and beetles, but also phytotoxicity on some crop plants. Multi-step syntheses with control of stereochemistry were required to probe the structure-activity relationship (SAR), and seek simplified analogues. After a significant research effort, just two areas of the molecule were identified which allow modification whilst maintaining activity, as will be highlighted in this paper.

  16. Chemical characterization and insecticidal activity of Calotropis gigantea L. flower extract against Tribolium castaneum (Herbst

    Directory of Open Access Journals (Sweden)

    Muhammad Rowshanul Habib

    2016-12-01

    Full Text Available Objective: To test the insecticidal activity of ethyl acetate extract of Calotropis gigantea L. flower (designated as EECF against stored grain pest Tribolium castaneum (Herbst of different larval and adult stages. Methods: Residual film method was used here to study the toxicity of EECF against Tribolium castaneum and gas chromatography-mass spectrometer analysis was also performed to characterize the chemicals of EECF. Results: In residual film bioassay, EECF showed lowest LD50 (0.134 mg/cm2 against 1st instar larvae of Tribolium castaneum and this finding ultimately revealed that the insect of initial stage was more susceptible than other stages. From the results of this study, it was found that with the increasing of age, Tribolium castaneum showed some extent of resistance against the toxicity of EECF. Moreover, chemical profiles of EECF identified by gas chromatography-mass spectrometer analysis were also found to consistent with its insecticidal activity. Conclusions: So, the overall results suggested that extracts of Calotropis gigantea L. flower have potential insecticidal effect which might be used in pest control.

  17. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides.

    Science.gov (United States)

    Gong, Y-H; Ai, G-M; Li, M; Shi, X-Y; Diao, Q-Y; Gao, X-W

    2017-12-01

    Carboxylesterases (CarEs) play an important role in detoxifying insecticides in insects. Over-expression and structural modification of CarEs have been implicated in the development of organophosphate (OP) insecticide resistance in insects. A previous study identified four nonsynonymous mutations (resulting in four amino acid residue substitutions) in the open reading frame of the carboxylesterase gene of resistant cotton aphids compared to the omethoate susceptible strain, which has possibly influenced the development of resistance to omethoate (a systemic OP insecticide). The current study further characterized the function of these mutations, both alone and in combination, in the hydrolysis of OP insecticides. The metabolism results suggest that the combination of four mutations, mainly existing in the laboratory-selected OP-resistant cotton aphid population, increased the OP hydrolase activity (approximately twofold) at the cost of detectable carboxylesterase activity. The functional studies of single or multiple mutations suggest the positive effect of H104R, A128V and T333P on the acquisition of OP hydrolase activity, especially the combination of H104R with A128V or T333P. K484R substitution decreased both the OP hydrolase activity and the CarE activity, indicating that this mutation primarily drives the negative effect on the acquisition of OP hydrolase activity amongst these four mutations in the resistant strain. The modelling and docking results are basically consistent with the metabolic results, which strongly suggest that the structural gene modification is the molecular basis for the OP resistance in this laboratory-selected cotton aphid strain. © 2017 The Royal Entomological Society.

  18. Low hybrid onion seed yields relate to honey bee visits and insecticide use

    Directory of Open Access Journals (Sweden)

    Rachael Long

    2011-07-01

    Full Text Available Onion thrips, previously considered of minor importance to hybrid onion seed production in California, vector the newly introduced iris yellow spot virus, a serious pathogen of onions that can cause significant yield losses. Insecticide use to control onion thrips has increased in onion seed fields, coincident with a steep decrease in yields, especially in Colusa County. We examined a number of possible contributing factors and found a strong positive correlation between honey bee activity and onion seed set, indicating that a lack of pollination may be contributing to the reduced yields. In addition, honey bee visits to onion flowers were negatively correlated with the number of insecticides applied per field and field size. Reduced onion seed yields in recent years could be associated with the increase in insecticide use, which may be repelling or killing honey bees, important pollinators of this crop.

  19. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  20. Synthesis and Insecticidal Activity of an Oxabicyclolactone and Novel Pyrethroids

    Directory of Open Access Journals (Sweden)

    Elson S. de Alvarenga

    2012-11-01

    Full Text Available Deltamethrin, a member of the pyrethroids, one of the safest classes of pesticides, is among some of the most popular and widely used insecticides in the World. Our objective was to synthesize an oxabicyclolactone 6 and five novel pyrethroids 8–12 from readily available furfural and D-mannitol, respectively, and evaluate their biological activity against four insect species of economic importance namely A. obtectus, S. zeamais, A. monuste orseis, and P. americana. A concise and novel synthesis of 6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one (6 from furfural is described. Photochemical addition of isopropyl alcohol to furan-2(5H-one afforded 4-(1'-hydroxy-1'-methylethyltetrahydro-furan-2-one (3. The alcohol 3 was directly converted into 4-(1'-bromo-1'-methylethyl-tetrahydrofuran-2-one (5 in 50% yield by reaction with PBr3 and SiO2. The final step was performed by cyclization of 5 with potassium tert-butoxide in 40% yield. The novel pyrethroids 8–12 were prepared from methyl (1S,3S-3-formyl-2,2-dimethylcyclopropane-1-carboxylate (7a by reaction with five different aromatic phosphorous ylides. Compounds 6–12 presented high insecticidal activity, with 6 and 11 being the most active. Compound 6 killed 90% of S. zeamais and 100% of all the other insects evaluated. Compound 11 killed 100% of all insects tested.

  1. Radioligand Recognition of Insecticide Targets.

    Science.gov (United States)

    Casida, John E

    2018-04-04

    Insecticide radioligands allow the direct recognition and analysis of the targets and mechanisms of toxic action critical to effective and safe pest control. These radioligands are either the insecticides themselves or analogs that bind at the same or coupled sites. Preferred radioligands and their targets, often in both insects and mammals, are trioxabicyclooctanes for the γ-aminobutyric acid (GABA) receptor, avermectin for the glutamate receptor, imidacloprid for the nicotinic receptor, ryanodine and chlorantraniliprole for the ryanodine receptor, and rotenone or pyridaben for NADH + ubiquinone oxidoreductase. Pyrethroids and other Na + channel modulator insecticides are generally poor radioligands due to lipophilicity and high nonspecific binding. For target site validation, the structure-activity relationships competing with the radioligand in the binding assays should be the same as that for insecticidal activity or toxicity except for rapidly detoxified or proinsecticide analogs. Once the radioligand assay is validated for relevance, it will often help define target site modifications on selection of resistant pest strains, selectivity between insects and mammals, and interaction with antidotes and other chemicals at modulator sites. Binding assays also serve for receptor isolation and photoaffinity labeling to characterize the interactions involved.

  2. Sorption and desorption of insecticides in Brazilian soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Lord, K.A.; Ruegg, E.F.

    1980-01-01

    The sorption from aqueous solution of ten Brazilian soil types of four organochlorine, two organophosphorus and one carbamate insecticide was determined in the laboratory using gas chromatographic and radiometric techniques. Measurements showed that soils richest in organic matter, sorbed all substances except aldrin more strongly than the other soils. DDT was the most and aldrin the least sorbed organochlorine pesticide, being dieldrin sorbed two to four times more strongly than aldrin. Sorption of lindane varied in different soils. The organophosphate insecticides malathion and parathion were strongly sorbed in the soils richest in organic matter and weakly sorbed in the poorest soils heing moderately sorbed by the other soils. Sorption of carbaryl by all soils is small. Lindane was desorbed from the soil richest in organic matter and the extent of desorption was dependent on the sorption time. (Author) [pt

  3. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans.

  4. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum).

    Science.gov (United States)

    Tedeschi, Paola; Leis, Marilena; Pezzi, Marco; Civolani, Stefano; Maietti, Annalisa; Brandolini, Vincenzo

    2011-01-01

    To avoid environmental pollution and health problems caused by the use of traditional synthetic pesticides, there is a trend to search for naturally occurring toxicants from plants. Among the compounds discussed for anti-fungal and insecticidal activity, the natural extracts from garlic and horseradish have attracted considerable attention. The objective of this study is to determine the insecticidal and anti-fungal activity of Armoracia rusticana and Allium sativum L. extracts against larvae of Aedes albopictus (Skuse) and some pathogenic fungi. For the insecticidal test, horseradish and garlic extracts were prepared from fresh plants (cultivated in Emilia Romagna region) in a solution of ethanol 80 % and the two different solutions were used at different concentrations (for the determination of the lethal dose) against the fourth instar mosquito's larvae. The fungicidal test was carried out by the agar plates technique using garlic and horseradish extracts in a 10 % ethanol solution against the following organisms: Sclerotium rolfsii Sacc., Trichoderma longibrachiatum, Botrytis cinerea Pers., Fusarium oxysporum Schlecht. and Fusarium culmorum (Wm. G. Sm.) Sacc. The first results demonstrated that the horseradish ethanol extracts present only a fungistatic activity against Sclerotium rolfsii Sacc., Fusarium oxysporum Schlecht. and F. culmorum (Wm.G. Sm) Sacc. while garlic extracts at the same concentration provided a good fungicidal activity above all against Botrytis cinerea Pers. and S. rolfsii. A. rusticana and A. sativum preparations showed also an interesting and significant insecticidal activity against larvae of A. albopictus, even if horseradish presented a higher efficacy (LC₅₀ value of 2.34 g/L), approximately two times higher than garlic one (LC₅₀ value of 4.48 g/L).

  5. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1,3,4-thiadiazol-2-yl)amides.

    Science.gov (United States)

    Eckelbarger, Joseph D; Parker, Marshall H; Yap, Maurice Ch; Buysse, Ann M; Babcock, Jonathan M; Hunter, Ricky; Adelfinskaya, Yelena; Samaritoni, Jack G; Garizi, Negar; Trullinger, Tony K

    2017-04-01

    Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides. Several methods for 2-amino-1,3,4-thiadiazole synthesis were used for the preparation of key synthetic intermediates. Subsequent coupling to variously substituted carboxylic acid building blocks furnished the final targets, which were tested for insecticidal activity against susceptible strains of Aphis gossypii (Glover) (cotton aphid), Myzus persicae (Sulzer) (green peach aphid) and Bemisia tabaci (Gennadius) (sweetpotato whitefly). Structure-activity relationship (SAR) studies on both the amide tail and the aryl A-ring of novel N-(5-aryl-1,3,4-thiadiazol-2-yl)amides led to a new class of insecticidal molecules active against sap-feeding insect pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Emamectin benzoate: new insecticide against Helicoverpa armigera.

    Science.gov (United States)

    Fanigliulo, A; Sacchetti, M

    2008-01-01

    Emamectin benzoate is a new insecticide of Syngenta Crop Protection, with a new mechanism of action and a strong activity against Lepidoptera as well as with and a high selectivity on useful organisms. This molecule acts if swallowed and has some contact action. It penetrates leaf tissues (translaminar activity) and forms a reservoir within the leaf. The mechanism of action is unique in the panorama of insecticides. In facts, it inhibits muscle contraction, causing a continuous flow of chlorine ions in the GABA and H-Glutamate receptor sites. During 2006 and 2007, experimentation was performed by the Bioagritest test facility, according to EPPO guidelines and Principles of Good Experimental Practice (GEP), aiming at establishing the biological efficacy and the selectivity of Emamectin benzoate on industry tomato against Helicoverpa armigera (Lepidoptera: Noctuidoe). The study was performed in Tursi-Policoro (Matera), southern Italy. Experimental design consisted in random blocks, in 4 repetitions. A dosage of 1.5 Kg/ha of the formulate was compared with two commercial formulates: Spinosad 0.2 kg/ha (Laser, Dow Agrosciences Italia) and Indoxacarb 0.125 kg/ha (Steward EC insecticide, Dupont). Three foliage applications were applied every 8 days. The severity of damage induced by H. armigera was evaluated on fruits. Eventual phytotoxic effects were also evaluated. Climatic conditions were optimal for Lepidoptera development, so that the percentage of fruits attacked in 2007 at the first scouting was 68.28%. Emamectin benzoate has shown, in two years of testing, a high control of H. armigera if compared with the standards Indoxacarb and Spinosad. No effect of phytotoxicity was noticed on fruits.

  7. PirAB protein from Xenorhabdus nematophila HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in Galleria mellonella.

    Science.gov (United States)

    Yang, Qing; Zhang, Jie; Li, Tianhui; Liu, Shen; Song, Ping; Nangong, Ziyan; Wang, Qinying

    2017-09-01

    PirAB (Photorhabdus insect-related proteins, PirAB) toxin was initially found in the Photorhabdus luminescens TT01 strain and has been shown to be a binary toxin with high insecticidal activity. Based on GenBank data, this gene was also found in the Xenorhabdus nematophila genome sequence. The predicted amino acid sequence of pirA and pirB in the genome of X. nematophila showed 51% and 50% identity with those gene sequences from P. luminescens. The purpose of this experiment is to identify the relevant information for this toxin gene in X. nematophila. The pirA, pirB and pirAB genes of X. nematophila HB310 were cloned and expressed in Escherichia coli BL21 (DE3) using the pET-28a vector. A PirAB-fusion protein (PirAB-F) was constructed by linking the pirA and pirB genes with the flexible linker (Gly) 4 DNA encoding sequence and then efficiently expressed in E. coli. The hemocoel and oral insecticidal activities of the recombinant proteins were analyzed against the larvae of Galleria mellonella. The results show that PirA/B alone, PirA/B mixture, co-expressed PirAB protein, and PirAB-F all had no oral insecticidal activity against the second-instar larvae of G. mellonella. Only PirA/B mixture and co-expressed PirAB protein had hemocoel insecticidal activity against G. mellonella fifth-instar larvae, with an LD 50 of 2.718μg/larva or 1.566μg/larva, respectively. Therefore, we confirmed that PirAB protein of X. nematophila HB310 is a binary insecticidal toxin. The successful expression and purification of PirAB laid a foundation for further studies on the function, insecticidal mechanism and expression regulation of the binary toxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Decaleside: a new class of natural insecticide targeting tarsal gustatory sites

    Science.gov (United States)

    Rajashekar, Yallappa; Rao, Lingamallu J. M.; Shivanandappa, Thimmappa

    2012-10-01

    Natural sources for novel insecticide molecules hold promise in view of their eco-friendly nature, selectivity, and mammalian safety. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. We have isolated two natural insecticidal molecules from edible roots of Decalepis hamiltonii named Decalesides I and II, which are novel trisaccharides, highly toxic to household insect pests and stored-product insects. We have experimentally shown that insecticidal activity requires contact with tarsi on the legs but is not toxic orally. The insecticidal activity of molecules is lost by hydrolysis, and various sugars modify toxic response, showing that the insecticidal activity is via gustatory sites on the tarsi. Selective toxicity to insects by virtue of their gustatory site of action and the mammalian safety of the new insecticides is inherent in their chemical structure with 1-4 or 1-1 α linkage that is easily hydrolyzed by digestive enzymes of mammals. Decalesides represent a new chemical class of natural insecticides with a unique mode of action targeting tarsal chemosensory/gustatory system of insects.

  9. Organophosphorus insecticides: Toxic effects and bioanalytical tests for evaluating toxicity during degradation processes

    Directory of Open Access Journals (Sweden)

    Čolović Mirjana B.

    2013-01-01

    Full Text Available Organophosphorus insecticides have been the most applied group of insecticides for the last two decades. Their main toxic effects are related to irreversible inactivation of acetylcholinesterase (AChE. Actually, they covalently bind to serine OH group in the enzyme active site forming phosphorylated enzyme that cannot hydrolyze acetylcholine. Organophosphorus insecticides in the environment undergo the natural degradation pathway including mainly homogeneous and heterogeneous hydrolysis (especially at high pH generating non-inhibiting products. Additionally, thio organophosphates are easily oxidized by naturally present oxidants and UV light, forming more toxic and stable oxons. Thus, oxidative degradation procedures, generally referred as advanced oxidation processes (AOP, have been applied for their efficient removal from contaminated waters. The most applied bioassays to monitor the organophosphate toxicity i.e. the detoxification degree during AOP are Vibrio fischeri and AChE bioassays. Vibrio fischeri toxicity test exploits bioluminescence as the measure of luciferase activity of this marine bacterium, whereas AChE bioassay is based on AChE activity inhibition. Both bioanalytical techniques are rapid (several minutes, simple, sensitive and reproducible. Vibrio fischeri test seems to be a versatile indicator of toxic compounds generated in AOP for organophosphorus insecticides degradation. However, detection of neurotoxic AChE inhibitors, which can be formed in AOP of some organophosphates, requires AChE bioassays. Therefore, AChE toxicity test is more appropriate for monitoring the degradation processes of thio organophosphates, because more toxic oxo organophosphates might be formed and overlooked by Vibrio fischeri bioluminescence inhibition. In addition, during organophosphates removal by AOP, compounds with strong genotoxic potential may be formed, which cannot be detected by standard toxicity tests. For this reason, determination of

  10. Trifluoromethylphenyl amides as novel insecticides and fungicides

    Science.gov (United States)

    Because of increased resistance to insecticides in arthropods, it is necessary to identify new chemicals that may have novel modes of action. Following an extensive literature search for compounds with insecticidal and mosquito repellent activity, we have designed and synthesized a set of 20 trifluo...

  11. Limonoids from Cipadessa fruticosa and Cedrela fissilis and their insecticidal activity

    International Nuclear Information System (INIS)

    Leite, Ana C.; Fernandes, Joao B.; Vieira, Paulo C.; Silva, M. Fatima das G. Fernandes da; Bueno, Fabiana C.; Oliveira, Cintia G.; Bueno, Odair C.; Pagnocca, Fernando C.; Hebling, M. Jose A.; Bacci Junior, Mauricio

    2005-01-01

    The chemical investigation of the fruits of Cipadessa fruticosa (Meliaceae) afforded the new limonoid cipadesin B and the known swietemahonolide. From the roots of Cedrela fissilis (Meliaceae) were isolated the limonoid 3β-acetoxycarapin, new as natural product, along with the triterpenes oleanolic and oleanonic acid. These compounds and other six mexicanolide limonoids previously isolated from C. fruticosa showed insecticidal activity against the leaf-cutting ants Atta sexdens rubropilosa. (author)

  12. Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity

    Directory of Open Access Journals (Sweden)

    Ambrozin Alessandra R. P.

    2006-01-01

    Full Text Available Nine limonoids were isolated from Carapa guianensis and Cedrela fissilis. Among them, 1,2-dihydro-3beta-hydroxy-7-deacetoxy-7-oxogedunin is a new compound. Moreover, the assignments of some chemical shifts of xyloccensin k have been corrected and ¹H NMR data of 7-deacetylgedunin have been assigned for the first time. These isolated limonoids were assayed on Atta sexdens rubropilosa workers showing moderate insecticidal activities.

  13. Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Ambrozin, Alessandra R.P.; Leite, Ana C.; Vieira, Paulo C.; Fernandes, Joao B.; Silva, M. Fatima das G. Fernandes da [Sao Carlos Univ., SP (Brazil). Dept. de Quimica]. E-mail: paulo@dq.ufscar.br; Bueno, Fabiana C.; Bueno, Odair C.; Pagnocca, Fernando C.; Hebling, Jose A.; Bacci Junior, Mauricio [UNESP, Rio Claro, SP (Brazil). Centro de Estudos de Insetos Sociais

    2006-05-15

    Nine limonoids were isolated from Carapa guianensis and Cedrela fissilis. Among them, 1,2-dihydro-3{beta}-hydroxy-7-deacetoxy-7-oxogedunin is a new compound. Moreover, the assignments of some chemical shifts of xyloccensin k have been corrected and {sup 1}H NMR data of 7-deacetylgedunin have been assigned for the first time. These isolated limonoids were assayed on Atta sexdens rubropilosa workers showing moderate insecticidal activities. (author)

  14. Insecticides promote viral outbreaks by altering herbivore competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Chu, Dong; Wang, Shaoli; Wu, Qingjun; Carriére, Yves; Zhou, Xuguo; Zhang, Youjun

    2015-09-01

    While the management of biological invasions is often characterized by a series of single-specieg decisions, invasive species exist within larger food webs. These biotic interactions can alter the impact of control/eradication programs and may cause suppression efforts to inadvertently facilitate invasion spread and impact. We document the rapid replacement of the invasive Bemisia Middle East-Asia Minor I (MEAM1) cryptic biotype by the cryptic Mediterranean (MED) biotype throughout China and demonstrate that MED is more tolerant of insecticides and a better vector of tomato yellow leaf curl virus (TYLCV) than MEAMJ. While MEAM1 usually excludes MED under natural conditions, insecticide application reverses the MEAM1-MED competitive hierarchy and allows MED to exclude MEAMI. The insecticide-mediated success of MED has led to TYLCV outbreaks throughout China. Our work strongly supports the hypothesis that insecticide use in China reverses the MEAMl-MED competitive hierarchy and allows MED to displace MEAM1 in managed landscapes. By promoting the dominance of a Bemisia species that is a competent viral vector, insecticides thus increase the spread and impact of TYLCV in heterogeneous agroecosystems.

  15. Nitenpyram analogues with 1,4-dihydropyridine fixed cis-configuration:synthesis,insecticidal activities and molecular docking studies

    Directory of Open Access Journals (Sweden)

    XUE Sijia

    2013-08-01

    Full Text Available A novel series of Nitenpyram analogues(Ia-Ij with 1,4-dihydropyridine fixed cis-configuration were designed and synthesized.Preliminary bioassays showed that most of them exhibited good insecticidal activities against Aphis medicagini and Brown rice planthopper at 500 mg/L and 100 mg/L.The analogue Ij afforded the best activity in vitro,that had 100% mortality at 4 mg/L against Brown rice planthopper and Aphis medicagin.In addition,the molecular docking simulations revealed that the structural uniqueness of these analogues may lead to a unique molecular recognition and binding mode,and the results explained the SARs observed in vitro, which shed light on the novel insecticidal mechanism of these novel nitenpyam analogues.

  16. Effect of Separation Method on Chemical Composition and Insecticidal Activity of Lamiaceae Isolates

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena; Karban, Jindřich; Rochová, Kristina; Pavela, R.; Barnet, M.

    2013-01-01

    Roč. 47, MAY (2013), s. 69-77 ISSN 0926-6690 R&D Projects: GA MŠk 2B06049; GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * iInsecticidal activity * lamiaceae Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.208, year: 2013

  17. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  18. Evaluation of the Susceptibility of the Pea Aphid, Acyrthosiphon pisum, to a Selection of Novel Biorational Insecticides using an Artificial Diet

    Science.gov (United States)

    Sadeghi, Amin; Van Damme, Els J.M.; Smagghe, Guy

    2009-01-01

    An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC50 of 20.4 μg/ml after 24 h, and of 0.24 µg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7–9 µg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. PMID:20053120

  19. Eco-Friendly Insecticide Discovery via Peptidomimetics: Design, Synthesis, and Aphicidal Activity of Novel Insect Kinin Analogues.

    Science.gov (United States)

    Zhang, Chuanliang; Qu, Yanyan; Wu, Xiaoqing; Song, Dunlun; Ling, Yun; Yang, Xinling

    2015-05-13

    Insect kinin neuropeptides are pleiotropic peptides that are involved in the regulation of hindgut contraction, diuresis, and digestive enzyme release. They share a common C-terminal pentapeptide sequence of Phe(1)-Xaa(2)-Yaa(3)-Trp(4)-Gly(5)-NH2 (where Xaa(2) = His, Asn, Phe, Ser, or Tyr; Yaa(3) = Pro, Ser, or Ala). Recently, the aphicidal activity of insect kinin analogues has attracted the attention of researchers. Our previous work demonstrated that the sequence-simplified insect kinin pentapeptide analogue Phe-Phe-[Aib]-Trp-Gly-NH2 could retain good aphicidal activity and be the lead compound for the further discovery of eco-friendly insecticides which encompassed a broad array of biochemicals derived from micro-organisms and other natural sources. Using the peptidomimetics strategy, we chose Phe-Phe-[Aib]-Trp-Gly-NH2 as the lead compound, and we designed and synthesized three series, including 31 novel insect kinin analogues. The aphicidal activity of the new analogues against soybean aphid was determined. The results showed that all of the analogues exhibited aphicidal activity. Of particular interest was the analogue II-1, which exhibited improved aphicidal activity with an LC50 of 0.019 mmol/L compared with the lead compound (LC50 = 0.045 mmol/L) or the commercial insecticide pymetrozine (LC50 = 0.034 mmol/L). This suggests that the analogue II-1 could be used as a new lead for the discovery of potential eco-friendly insecticides.

  20. Patterns of phenoloxidase activity in insecticide resistant and susceptible mosquitoes differ between laboratory-selected and wild-caught individuals

    OpenAIRE

    Cornet, St?phane; Gandon, Sylvain; Rivero, Ana

    2013-01-01

    Background Insecticide resistance has the potential to alter vector immune competence and consequently affect the transmission of diseases. Methods Using both laboratory isogenic strains and field-caught Culex pipiens mosquitoes, we investigated the effects of insecticide resistance on an important component of the mosquito immune system: the phenoloxidase (PO) activity. As infection risk varies dramatically with the age and sex of mosquitoes, allocation to PO immunity was quantified across d...

  1. Evaluation of the Insecticidal Efficacy of Wild Type and Recombinant Baculoviruses.

    Science.gov (United States)

    Popham, Holly J R; Ellersieck, Mark R; Li, Huarong; Bonning, Bryony C

    2016-01-01

    A considerable amount of work has been undertaken to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50 % of infected larvae (LC50 or LD50), median survival of larvae infected (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and the corresponding data analyses for assessment of the insecticidal activity of baculovirus insecticides.

  2. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density

    NARCIS (Netherlands)

    Leistra, M.; Zweers, A.J.; Warinton, J.S.; Crum, S.J.H.; Hand, L.H.; Beltman, W.H.J.; Maund, S.J.

    2004-01-01

    Use of the insecticide lambda-cyhalothrin in agriculture may result in the contamination of water bodies, for example by spray drift. Therefore, the possible exposure of aquatic organisms to this insecticide needs to be evaluated. The exposure of the organisms may be reduced by the strong sorption

  3. Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia.

    Science.gov (United States)

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2015-09-01

    The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62%) and chlorpyrifos-ethyl (98%) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (-33%) whereas chlorpyrifos-ethyl affected CbE activity preferentially (-59%). Spinosad (20% of controls), acetamiprid (28%), and chlorpyrifos-ethyl (66%) also significantly decreased the predation behavior of adult male but not female (5 to 40%) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67% of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.

  4. Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations.

    Science.gov (United States)

    Yang, X-Q; Zhang, Y-L

    2015-06-01

    The codling moth Cydia pomonella (L.) is an economically important fruit pest and it has been directly targeted by insecticides worldwide. Serious resistance to insecticides has been reported in many countries. As one of the most serious invasive pest, the codling moth has populated several areas in China. However, resistance to insecticides has not been reported in China. We investigated the insecticide-resistance status of four field populations from Northwestern China by applying bioassays, enzyme activities, and mutation detections. Diagnostic concentrations of lambda-cyhalothrin, chlorpyrifos-ethyl, carbaryl, and imidacloprid were determined and used in bioassays. Field populations were less susceptible to chlorpyrifos-ethyl and carbaryl than laboratory strain. Insensitive populations displayed an elevated glutathione S-transferases (GSTs) activity. Reduced carboxylesterase (CarE) activity was observed in some insecticide insensitive populations and reduced acetylcholinesterase activity was observed only in the Wuw population. The cytochrome P450 polysubstrate monooxygenases activities in four field populations were not found to be different from susceptible strains. Neither the known-resistance mutation F399V in the acetylcholinesterase (AChE) gene, ace1, nor mutations in CarE gene CpCE-1 were found in adult individuals from our field populations. Native-PAGE revealed that various CarE isozymes and AChE insensitivity were occurring among Chinese populations. Our results indicate that codling moth populations from Northwestern China were insensitivity to chlorpyrifos-ethyl and carbaryl. Increased GST activity was responsible for insecticides insensitivity. Decreased CarE activity, as well as the presence of CarE and AChE polymorphisms might also be involved in insecticides insensitivity. New management strategies for managing this pest are discussed.

  5. Chemical Composition and Insecticidal Activity of the Essential Oil of Illicium pachyphyllum Fruits against Two Grain Storage Insects

    OpenAIRE

    Liu, Peng; Liu, Xin-Chao; Dong, Hui-Wen; Liu, Zhi-Long; Du, Shu-Shan; Deng, Zhi-Wei

    2012-01-01

    The aim of this research was to determine chemical composition and insecticidal activity of the essential oil of Illicium pachyphyllum fruits against two grain storage insects, Sitophilus zeamais and Tribolium castaneum, and to isolate any insecticidal constituents from the essential oil. The essential oil of I. pachyphyllum fruits was obtained by hydrodistillation and analyzed by GC-MS. A total of 36 components of the essential oil were identified, with the principal compounds in the essenti...

  6. Insecticidal Constituents of Essential Oil Derived from Zanthoxylum armatum against Two Stored-Product Insects.

    Science.gov (United States)

    Wang, Cheng-Fang; Zhang, Wen-Juan; You, Chun-Xue; Guo, Shan-Shan; Geng, Zhu-Feng; Fan, Li; Du, Shu-Shan; Deng, Zhi-Wei; Wang, Yong-Yan

    2015-01-01

    In the course of our search for natural bioactive chemicals and investigations on their insecticidal activities from some medicinal plants growing in China, the essential oil derived from the twigs of Zanthoxylum armatum (Rutaceae) was found to possess strong insecticidal activities against two stored-product insects, Lasioderma serricorne and Tribolium castaneum. A total of 32 constituents of the essential oil were identified by GC and GC-MS analysis, and it revealed (E)-anethole (20.5%), 1,8-cineole (14.0%), 2-tridecanone (12.5%), limonene (9.0%) and piperitone (8.0%) as major components, followed by β-phellandrene (6.3%), β-pinene (5.1%) and 4-terpineol (4.4%). From the essential oil, five compounds were isolated and identified as (E)-anethole, 1,8-cineole, 2-tridecanone, limonene and piperitone. The results of insecticidal bioassays showed that the essential oil of Z. armatum exhibited strong fumigant toxicity towards L. serricorne and T. castaneum with LC50 values of 13.83 and 4.28 mg/L air, respectively, and also possessed contact toxicity against two insect species with LD50 values of 18.74 and 32.16 μg/adult, respectively. Among the active compounds, piperitone performed the strongest fumigant toxicity against L. serricorne (LC50 = 1.21 mg/L air) and contact toxicity against T. castaneum (LD50 = 3.16 μg/adult). 1,8-Cineole, limonene and piperitone showed similar fumigant toxicity against T. castaneum with LC50 values of 5.47, 6.21 and 7.12 mg/L air, respectively. Meanwhile, L. serricorne was the most sensitive to 2-tridecanone (LD50 = 5.74 μg/adult) in the progress of contact toxicity assay.

  7. Concentration-Response and Residual Activity of Insecticides to Control Herpetogramma phaeopteralis (Lepidoptera: Crambidae) in St. Augustinegrass.

    Science.gov (United States)

    Tofangsazi, Nastaran; Cherry, Ron H; Beeson, Richard C; Arthurs, Steven P

    2015-04-01

    Tropical sod webworm, Herpetogramma phaeopteralis Guenée, is an important pest of warm-season turfgrass in the Gulf Coast states of the United States, the Caribbean Islands, and Central America. Current control recommendations rely on topical application of insecticides against caterpillars. The objective of this study was to generate resistance baseline data of H. phaeopteralis to six insecticide classes. Residual activity of clothianidin, chlorantraniliprole, and bifenthrin was also compared under field conditions in Central Florida. Chlorantraniliprole was the most toxic compound tested (LC50 value of 4.5 ppm), followed by acephate (8.6 ppm), spinosad (31.1 ppm), clothianidin (46.6 ppm), bifenthrin (283 ppm) and Bacillus thuringiensis kurstaki, (342 ppm). In field tests, all compounds at label rates were effective (≥94% mortality of larvae exposed to fresh residues). However, a more rapid decline in activity of clothianidin and bifenthrin was observed compared with chlorantraniliprole. Clothianidin had no statistically detectable activity after 4 wk post-application in spring and the fall, and bifenthrin had no detectable activity after 3 wk in the spring and the fall. However, chlorantraniliprole maintained significant activity (≥84% mortality) compared with other treatments throughout the 5-wk study period. This study provides new information regarding the relative toxicities and persistence of current insecticides used for H. phaeopteralis and other turfgrass caterpillars. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Insecticide control of vector-borne diseases: when is insecticide resistance a problem?

    Directory of Open Access Journals (Sweden)

    Ana Rivero

    Full Text Available Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way-and there may be no simple generality-the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention.

  9. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA [γ-aminobutyric acid] antagonists bicycloorthocarboxylates and endosulfan

    International Nuclear Information System (INIS)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie; Matsumura, Fumio

    1990-01-01

    To study structural requirements for picrotoxinin-type GABA (γ-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo[7.2.1.0 2,8 ]dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing [ 35 S]tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C 3 -C 5 straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist [ 35 S]TBPS to housefly head membranes by 29-53% at 10 μM. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent

  10. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides.

    Science.gov (United States)

    Evidente, Antonio; Cimmino, Alessio; Andolfi, Anna

    2013-02-01

    Phytotoxins are secondary microbial metabolites that play an essential role in the development of disease symptoms induced by fungi on host plants. Although phytotoxins can cause extensive-and in some cases devastating-damage to agricultural crops, they can also represent an important tool to develop natural herbicides when produced by fungi and plants to inhibit the growth and spread of weeds. An alternative strategy to biologically control parasitic plants is based on the use of plant and fungal metabolites, which stimulate seed germination in the absence of the host plant. Nontoxigenic fungi also produce bioactive metabolites with potential fungicide and insecticide activity, and could be applied for crop protection. All these metabolites represent important tools to develop eco-friendly pesticides. This review deals with the relationships between the biological activity of some phytotoxins, seed germination stimulants, fungicides and insecticides, and their stereochemistry. Copyright © 2012 Wiley Periodicals, Inc.

  11. Chemical Constituents and Insecticidal Activities of the Essential Oil of Cinnamomum camphora Leaves against Lasioderma serricorne

    Directory of Open Access Journals (Sweden)

    Hai Ping Chen

    2014-01-01

    Full Text Available During our screening program for agrochemicals from Chinese medicinal herbs and wild plants, the essential oil of Cinnamomum camphora leaves was found to possess strong fumigant and contact toxicity against Lasioderma serricorne adults with LC50/LD50 values of 2.5 mg/L air and 21.25 μg/adult, respectively. The essential oil obtained by hydrodistillation was investigated by GC and GC-MS. The main components of the essential oil were identified to be D-camphor (40.54%, linalool (22.92%, cineole (11.26%, and 3,7,11-trimethyl-3-hydroxy-6,10-dodecadien-1-yl acetate (4.50%. Bioactivity-directed chromatographic separation on repeated silica gel columns led to the isolation of D-camphor and linalool. D-camphor and linalool showed strong fumigant toxicity (LC50 = 2.36 and 18.04 mg/L air, resp. and contact toxicity (LD50 = 13.44 and 12.74 μg/adult, resp. against L. serricorne. The results indicate that the essential oil of C. camphora and its active compounds had the potential to be developed as natural fumigants and insecticides for control of L. serricorne.

  12. Components and Insecticidal Activity against the Maize Weevils of Zanthoxylum schinifolium Fruits and Leaves

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2011-04-01

    Full Text Available In our screening program for new agrochemicals from Chinese medicinal herbs and wild plants, Zanthoxylum schinifolium essential oils were found to possess strong insecticidal activity against the maize weevil Sitophilus zeamais. The essential oils of Z. schinifolium fruits and leaves were extracted via hydrodistillation and investigated by GC and GC-MS. Estragole (69.52% was the major compound of the essential oil of fresh fruits, followed by linalool (8.63% and limonene (4.34% and 94.33% of the total components were monoterpenoids. The main components of the essential oil of fresh leaves were linalool (12.94%, ar-tumerone (8.95%, limonene (6.45% and elixene (5.43% and only 50.62% were monoterpenoids. However, the essential oil from purchased fruits contained linalool (33.42%, limonene (13.66% and sabinene (5.72%, followed by estragole (4.67%, nerol (4.56% and 4-terpineol (4.27%. Estragole, linalool and sabinene were separated and purified by silica gel column chromatography and preparative thin layer chromatography, and further identified by means of physicochemical and spectrometric analysis. The essential oil from the fresh fruits (LD50 = 15.93 μg/adult possessed two times more toxicity to the insects compared with that of fresh leaves (LD50 = 35.31 μg/adult. Estragole, linalool and sabinene exhibited contact activity against S. zeamais with LD50 values of 17.63, 13.90 and 23.98 μg/adult, respectively. The essential oils of Z. schinifolium possessed strong fumigant toxicity against S. zeamais adults with LC50 values of 13.19 mg/L (fresh fruits, 24.04 mg/L (fresh leaves and 17.63 mg/L (purchased fruits. Estragole, linalool and sabinene also exhibited strong fumigant toxicity against the maize weevils with LC50 values of 14.10, 10.46 and 9.12 mg/L, respectively.

  13. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  14. Comparison of Fractionation Techniques of CO2 Extracts from Eucalyptus Globulus - Composition and Insecticidal Activity

    Czech Academy of Sciences Publication Activity Database

    Topiař, Martin; Sajfrtová, Marie; Pavela, R.; Machalová, Zdeňka

    2015-01-01

    Roč. 97, FEB 2015 (2015), s. 202-210 ISSN 0896-8446 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fractinacion * eucalyptus globulus * insecticidal activity Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 2.579, year: 2015

  15. [ACTIVITY OF Ca2+,Mg(2+)-ATPase OF SARCOPLASMIC RETICULUM AND CONTRACTION STRENGTH OF THE FROG SKELETAL MUSCLES UNDER THE EFFECT OF ORGANOPHOSPHORUS INSECTICIDES].

    Science.gov (United States)

    Nozdrenko, D M; Korchinska, L V; Soroca, V M

    2015-01-01

    The results of an experimental study of organophosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+, Mg(2+)-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+, Mg(2+)-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  16. Estimation of insecticide persistence, biological activity and mosquito resistance to PermaNet® 2 long-lasting insecticidal nets over three to 32 months of use in Ethiopia.

    Science.gov (United States)

    Anshebo, Gedeon Yohannes; Graves, Patricia M; Smith, Stephen C; Wills, Aprielle B; Damte, Mesele; Endeshaw, Tekola; Shargie, Estifanos Biru; Gebre, Teshome; Mosher, Aryc W; Patterson, Amy E; Emerson, Paul M

    2014-03-06

    Information is needed on the expected durability of insecticidal nets under operational conditions. The persistence of insecticidal efficacy is important to estimate the median serviceable life of nets under field conditions and to plan for net replacement. Deltamethrin residue levels were evaluated by the proxy method of X-ray fluorescence spectrometry on 189 nets used for three to six months from nine sites, 220 nets used for 14-20 months from 11 sites, and 200 nets used for 26-32 months from ten sites in Ethiopia. A random sample of 16.5-20% of nets from each time period (total 112 of 609 nets) were tested by bioassay with susceptible mosquitoes, and nets used for 14-20 months and 26-32 months were also tested with wild caught mosquitoes. Mean insecticide levels estimated by X-ray fluorescence declined by 25.9% from baseline of 66.2 (SD 14.6) mg/m2 at three to six months to 44.1 (SD 21.2) mg/m2 at 14-20 months and by 30.8% to 41.1 (SD 18.9) mg/m2 at 26-32 months. More than 95% of nets retained greater than 10 mg/m2 of deltamethrin and over 79% had at least 25 mg/m2 at all time periods. By bioassay with susceptible Anopheles, mortality averaged 89.0% on 28 nets tested at three to six months, 93.3% on 44 nets at 14-20 months and 94.1% on 40 nets at 26-32 months. With wild caught mosquitoes, mortality averaged 85.4% (range 79.1 to 91.7%) at 14-20 months but had dropped significantly to 47.2% (39.8 to 54.7%) at 26-32 months. Insecticide residue level, as estimated by X-ray fluorescence, declined by about one third between three and six months and 14-20 months, but remained relatively stable and above minimum requirements thereafter up to 26-32 months. The insecticidal activity of PermaNet® 2.0 long-lasting insecticidal nets in the specified study area may be considered effective to susceptible mosquitoes at least for the duration indicated in this study (32 months). However, results indicated that resistance in the wild population is already rendering nets with

  17. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Fournier-Level, A; Neumann-Mondlak, A; Good, R T; Green, L M; Schmidt, J M; Robin, C

    2016-05-01

    Insecticide resistance evolves extremely rapidly, providing an illuminating model for the study of adaptation. With climate change reshaping species distribution, pest and disease vector control needs rethinking to include the effects of environmental variation and insect stress physiology. Here, we assessed how both long-term adaptation of populations to temperature and immediate temperature variation affect the genetic architecture of DDT insecticide response in Drosophila melanogaster. Mortality assays and behavioural assays based on continuous activity monitoring were used to assess the interaction between DDT and temperature on three field-derived populations from climate extremes (Raleigh for warm temperate, Tasmania for cold oceanic and Queensland for hot tropical). The Raleigh population showed the highest mortality to DDT, whereas the Queensland population, epicentre for derived alleles of the resistance gene Cyp6g1, showed the lowest. Interaction between insecticide and temperature strongly affected mortality, particularly for the Tasmanian population. Activity profiles analysed using self-organizing maps show that the insecticide promoted an early response, whereas elevated temperature promoted a later response. These distinctive early or later activity phases revealed similar responses to temperature and DDT dose alone but with more or less genetic variance depending on the population. This change in genetic variance among populations suggests that selection particularly depleted genetic variance for DDT response in the Queensland population. Finally, despite similar (co)variation between traits in benign conditions, the genetic responses across population differed under stressful conditions. This showed how stress-responsive genetic variation only reveals itself in specific conditions and thereby escapes potential trade-offs in benign environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European

  19. Low hybrid onion seed yields relate to honey bee visits and insecticide use

    OpenAIRE

    Long, Rachael Freeman; Morandin, Lora

    2011-01-01

    Onion thrips, previously considered of minor importance to hybrid onion seed production in California, vector the newly introduced iris yellow spot virus, a serious pathogen of onions that can cause significant yield losses. Insecticide use to control onion thrips has increased in onion seed fields, coincident with a steep decrease in yields, especially in Colusa County. We examined a number of possible contributing factors and found a strong positive correlation between honey bee activity an...

  20. Chemical composition, in vitro antioxidant, antimicrobial and insecticidal activities of essential oil from Cladanthus arabicus

    Science.gov (United States)

    The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...

  1. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors

    OpenAIRE

    Reid, Molly C.; McKenzie, F. Ellis

    2016-01-01

    The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malari...

  2. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA (. gamma. -aminobutyric acid) antagonists bicycloorthocarboxylates and endosulfan

    Energy Technology Data Exchange (ETDEWEB)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie (Shimane Univ. (Japan)); Matsumura, Fumio (Univ. of California, Davis (USA))

    1990-05-01

    To study structural requirements for picrotoxinin-type GABA ({gamma}-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo(7.2.1.0{sup 2,8})dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing ({sup 35}S)tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C{sub 3}-C{sub 5} straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist ({sup 35}S)TBPS to housefly head membranes by 29-53% at 10 {mu}M. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent.

  3. Anticholinesterase insecticide retrospective.

    Science.gov (United States)

    Casida, John E; Durkin, Kathleen A

    2013-03-25

    The anticholinesterase (antiChE) organophosphorus (OP) and methylcarbamate (MC) insecticides have been used very effectively as contact and systemic plant protectants for seven decades. About 90 of these compounds are still in use - the largest number for any insecticide chemotype or mode of action. In both insects and mammals, AChE inhibition and acetylcholine accumulation leads to excitation and death. The cholinergic system of insects is located centrally (where it is protected from ionized OPs and MCs) but not at the neuromuscular junction. Structural differences between insect and mammalian AChE are also evident in their genomics, amino acid sequences and active site conformations. Species selectivity is determined in part by inhibitor and target site specificity. Pest population selection with OPs and MCs has resulted in a multitude of modified AChEs of altered inhibitor specificity some conferring insecticide resistance and others enhancing sensitivity. Much of the success of antiChE insecticides results from a suitable balance of bioactivation and detoxification by families of CYP450 oxidases, hydrolases, glutathione S-transferases and others. Known inhibitors for these enzymes block detoxification and enhance potency which is particularly important in resistant strains. The current market for OPs and MCs of 19% of worldwide insecticide sales is only half of that of 10 years ago for several reasons: there have been no major new compounds for 30 years; resistance has eroded their effectiveness; human toxicity problems are still encountered; the patents have expired reducing the incentive to update registration packages; alternative chemotypes or control methods have been developed. Despite this decline, they still play a major role in pest control and the increasing knowledge on their target sites and metabolism may make it possible to redesign the inhibitors for insensitive AChEs and to target new sites in the cholinergic system. The OPs and MCs are down

  4. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy.

    Science.gov (United States)

    Wu, Hua; Zhang, Guo-An; Zeng, Shuiyun; Lin, Kai-chun

    2009-09-01

    Isothiocyanates (ITCs) extracted from Armoracia rusticana Gaertn., May & Scherb. have been shown previously to have insecticidal activity. Allyl isothiocyanate (AITC), a major component of ITCs with high volatility, was therefore extracted using different methods and tested as a fumigant against four major pest species of stored products, maize weevil Sitophilus zeamais (Motsch.), lesser grain borer Rhizopertha dominica (F.), Tribolium ferrugineum (F.) and book louse Liposcelis entomophila (Enderlein). Whereas there was no significant difference between hydrodistillation and supercritical carbon dioxide fluid extraction in extraction rate for AITC from A. rusticana, both methods resulted in higher extraction efficiency than water extraction. AITC fumigation showed strong toxicity to the four species of stored-product pests. Adult mortality of 100% of all four pest species, recorded after 72 h exposure to AITC fumes at an atmospheric concentration of 3 microg mL(-1), showed no significant difference from that of insects exposed to phosphine at 5 microg mL(-1), the recommended dose for phosphine. The results suggest good insecticidal efficacy of AITC against the four stored-product pests, with non-gaseous residuals on stored products. AITC obtained from A. rusticana may be an alternative to phosphine and methyl bromide against the four pest species. Copyright 2009 Society of Chemical Industry.

  5. Insights from agriculture for the management of insecticide resistance in disease vectors.

    Science.gov (United States)

    Sternberg, Eleanore D; Thomas, Matthew B

    2018-04-01

    Key to contemporary management of diseases such as malaria, dengue, and filariasis is control of the insect vectors responsible for transmission. Insecticide-based interventions have contributed to declines in disease burdens in many areas, but this progress could be threatened by the emergence of insecticide resistance in vector populations. Insecticide resistance is likewise a major concern in agriculture, where insect pests can cause substantial yield losses. Here, we explore overlaps between understanding and managing insecticide resistance in agriculture and in public health. We have used the Global Plan for Insecticide Resistance Management in malaria vectors, developed under the auspices of the World Health Organization Global Malaria Program, as a framework for this exploration because it serves as one of the few cohesive documents for managing a global insecticide resistance crisis. Generally, this comparison highlights some fundamental differences between insect control in agriculture and in public health. Moreover, we emphasize that the success of insecticide resistance management strategies is strongly dependent on the biological specifics of each system. We suggest that the biological, operational, and regulatory differences between agriculture and public health limit the wholesale transfer of knowledge and practices from one system to the other. Nonetheless, there are some valuable insights from agriculture that could assist in advancing the existing Global Plan for Insecticide Resistance Management framework.

  6. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    Science.gov (United States)

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils.

    Science.gov (United States)

    Ulukanli, Zeynep; Karabörklü, Salih; Bozok, Fuat; Ates, Burhan; Erdogan, Selim; Cenet, Menderes; Karaaslan, Merve Göksin

    2014-12-01

    Essential oils of the resins of Pinus brutia and Pinus pinea were evaluated for their biological potential. Essential oils were characterized using GC-MS and GC/FID. in vitro antimicrobial, phytotoxic, antioxidant, and insecticidal activities were carried out using the direct contact and the fumigant assays, respectively. The chemical profile of the essential oils of the resins of P. pinea and P. brutia included mainly α-pinene (21.39% and 25.40%), β-pinene (9.68% and 9.69%), and caryophyllene (9.12% and 4.81%). The essential oils of P. pinea and P. brutia exerted notable antimicrobial activities on Micrococcus luteus and Bacillus subtilis, insecticidal activities on Ephestia kuehniella eggs, phytotoxic activities on Lactuca sativa, Lepidium sativum, and Portulaca oleracea, as well as antioxidant potential. Indications of the biological activities of the essential oils suggest their use in the formulation of ecofriendly and biocompatible pharmaceuticals. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  8. Activity of Ca(2+,Mg(2+-ATPase of sarcoplasmic reticulum and contraction strength of the frog skeletal muscles under the effect of organophosphorus insecticides

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-08-01

    Full Text Available The results of an experimental study of organo­phosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+,Mg2+-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+,Mg2+-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  9. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment.

    Science.gov (United States)

    Owusu, Henry F; Chitnis, Nakul; Müller, Pie

    2017-06-16

    Insecticide resistance threatens the success achieved through vector control in reducing the burden of malaria. An understanding of insecticide resistance mechanisms would help to develop novel tools and strategies to restore the efficacy of insecticides. Although we have substantially improved our understanding of the genetic basis of insecticide resistance over the last decade, we still know little of how environmental variations influence the mosquito phenotype. Here, we measured how variations in larval rearing conditions change the insecticide susceptibility phenotype of adult Anopheles mosquitoes. Anopheles gambiae and A. stephensi larvae were bred under different combinations of temperature, population density and nutrition, and the emerging adults were exposed to permethrin. Mosquitoes bred under different conditions showed considerable changes in mortality rates and body weight, with nutrition being the major factor. Weight is a strong predictor of insecticide susceptibility and bigger mosquitoes are more likely to survive insecticide treatment. The changes can be substantial, such that the same mosquito colony may be considered fully susceptible or highly resistant when judged by World Health Organization discriminatory concentrations. The results shown here emphasise the importance of the environmental background in developing insecticide resistance phenotypes, and caution for the interpretation of data generated by insecticide susceptibility assays.

  10. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors.

    Science.gov (United States)

    Reid, Molly C; McKenzie, F Ellis

    2016-02-19

    The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malaria vectors were identified. In 23 of the 25 relevant recent publications from across Africa, higher resistance in mosquito populations was associated with agricultural insecticide use. This association appears to be affected by crop type, farm pest management strategy and urban development.

  11. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator.

    Science.gov (United States)

    Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera

    2016-04-15

    Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  12. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator

    Directory of Open Access Journals (Sweden)

    Cesar Rodriguez-Saona

    2016-04-01

    Full Text Available Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae, and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae. The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1–7 days larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  13. Repellent Effect and Insecticidal Activities of Bridelia ferruginea, Blighia sapida, and Khaya senegalensis Leaves Powders and Extracts against Dinoderus porcellus in Infested Dried Yam Chips

    Directory of Open Access Journals (Sweden)

    Laura Yêyinou Loko

    2017-01-01

    Full Text Available Dinoderus porcellus is considered as the most important pest of stored yam chips and compounds extracted from plants can be used for its control. The present study aimed to test the insecticidal and repellent activities of powders and extracts of leaves of Bridelia ferruginea, Blighia sapida, and Khaya senegalensis against D. porcellus. The efficacy of plant powders was compared with the synthetic pesticide Antouka (Permethrin 3 g/kg + pirimiphos 16 g/kg. The results of the experiment revealed that all plant powders were effective as repellents. Antouka was more effective as insecticidal than the plant powders and minimal weight loss was observed with B. sapida at 2%. Among treatments, propanol extract of K. senegalensis at 5% was found to elicit the highest repellent effect on D. porcellus. The LC50 results revealed that the acetone extract of K. senegalensis is the most toxic (0.29 μL/insect to the pest, while the propanol extract of B. ferruginea at 5% exhibited strong fumigant toxicity against D. porcellus, with 88.89% of pest mortality at 160 μL/L air. The findings from the current work proved that plant powders and extracts of the three plants are sources of botanical insecticides which may be used in the integrated management of D. porcellus.

  14. Insecticidal Activity and Chemical Composition of the Morinda lucida Essential Oil against Pulse Beetle Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    Moses S. Owolabi

    2014-01-01

    Full Text Available Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL and Primo-ban-20 (LC90 = 0.726 μg/mL, at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%, and α-terpinyl acetate (14.5%, and the monoterpene hydrocarbons, mostly sabinene (8.2% and β-pinene (4.0%. Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.

  15. A short history of insecticides

    Directory of Open Access Journals (Sweden)

    Oberemok Volodymyr Volodymyrovych

    2015-07-01

    Full Text Available This review contains a brief history of the use of insecticides. The peculiarities, main advantages, and disadvantages of some modern insecticides are described. The names of the discoverers of some of the most popular insecticide preparations on the world market, are listed. The tendencies to find new insecticides to control the quantity of phytophagous insects are discussed. Special attention is paid to the perspective of creating preparations based on nucleic acids, in particular DNA insecticides. The use of insect-specific, short single-stranded DNA fragments as DNA insecticides, is paving the way in the field of “intellectual” insecticides that “think” before they act. It is worth noting, though, that in the near future, the quantity of produced insecticides will increase due to the challenges associated with food production for a rapidly growing population. It is concluded, that an agreeable interaction of scientists and manufacturers of insecticides should lead to the selection of the most optimal solutions for insect pest control, which would be safe, affordable, and effective at the same time.

  16. The impact of insecticides to local honey bee colony Apis cerana indica in laboratory condition

    Science.gov (United States)

    Putra, Ramadhani E.; Permana, Agus D.; Nuriyah, Syayidah

    2014-03-01

    Heavy use of insecticides considered as one of common practice at local farming systems. Even though many Indonesian researchers had stated the possible detrimental effect of insecticide on agriculture environment and biodiversity, researches on this subject had been neglected. Therefore, our purpose in this research is observing the impact of insecticides usage by farmer to non target organisme like local honey bee (Apis cerana indica), which commonly kept in area near agriculture system. This research consisted of field observations out at Ciburial, Dago Pakar, Bandung and laboratory tests at School of Life Sciences and Technology, Institut Teknologi Bandung. The field observations recorded visited agriculture corps and types of pollen carried by bees to the nest while laboratory test recorderd the effect of common insecticide to mortality and behavior of honey bees. Three types of insecticides used in this research were insecticides A with active agent Chlorantraniliprol 50 g/l, insecticide B with active agent Profenofos 500 g/l, and insecticides C with active agent Chlorantraniliprol 100 g/l and λ-cyhalotrin 50g/l. The results show that during one week visit, wild flower, Wedelia montana, visited by most honey bees with average visit 60 honey bees followed by corn, Zea mays, with 21 honey bees. The most pollen carried by foragers was Wedelia montana, Calliandra callothyrsus, and Zea mays. Preference test show that honeybees tend move to flowers without insecticides as the preference to insecticides A was 12.5%, insecticides B was 0%, and insecticides was C 4.2%. Mortality test showed that insecticides A has LD50 value 0.01 μg/μl, insecticide B 0.31 μg/μl, and insecticides C 0.09 μg/μl which much lower than suggested dosage recommended by insecticides producer. This research conclude that the use of insecticide could lower the pollination service provide by honey bee due to low visitation rate to flowers and mortality of foraging bees.

  17. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    Science.gov (United States)

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Identification and cloning of two insecticidal protein genes from ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Bt) is the most widely applied type of microbial pesticide due to its high specificity and environmental safety. The activity of Bt is largely attributed to the insecticidal crystal protein encoded by the cry genes. Different insecticidal crystal proteins of Bt have different bioactivity against distinct agricultural ...

  19. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments.

    Science.gov (United States)

    Cloyd, Raymond A; Bethke, James A

    2011-01-01

    The neonicotinoid insecticides imidacloprid, acetamiprid, dinotefuran, thiamethoxam and clothianidin are commonly used in greenhouses and/or interiorscapes (plant interiorscapes and conservatories) to manage a wide range of plant-feeding insects such as aphids, mealybugs and whiteflies. However, these systemic insecticides may also be harmful to natural enemies, including predators and parasitoids. Predatory insects and mites may be adversely affected by neonicotinoid systemic insecticides when they: (1) feed on pollen, nectar or plant tissue contaminated with the active ingredient; (2) consume the active ingredient of neonicotinoid insecticides while ingesting plant fluids; (3) feed on hosts (prey) that have consumed leaves contaminated with the active ingredient. Parasitoids may be affected negatively by neonicotinoid insecticides because foliar, drench or granular applications may decrease host population levels so that there are not enough hosts to attack and thus sustain parasitoid populations. Furthermore, host quality may be unacceptable for egg laying by parasitoid females. In addition, female parasitoids that host feed may inadvertently ingest a lethal concentration of the active ingredient or a sublethal dose that inhibits foraging or egg laying. There are, however, issues that require further consideration, such as: the types of plant and flower that accumulate active ingredients, and the concentrations in which they are accumulated; the influence of flower age on the level of exposure of natural enemies to the active ingredient; the effect of neonicotinoid metabolites produced within the plant. As such, the application of neonicotinoid insecticides in conjunction with natural enemies in protected culture and interiorscape environments needs further investigation. Copyright © 2010 Society of Chemical Industry.

  20. Insecticidal Activity of Isolated Bacteria from Hyphantria cunea (Drury (Lepidoptera: Arctiidae

    Directory of Open Access Journals (Sweden)

    Nurcan Albayrak İskender

    2017-04-01

    Full Text Available The fall webworm (Hyphantria cunea is a polyphagous pest with numerous host plants. In the present study, the bacterial flora of H.cunea was investigated to identify new organisms that can be used as microbial control agent against the pest. Six bacteria were isolated and cultured from H. cunea. Some morphological, biochemical and other phenotypic characteristics (with API 20E, API 50 CH, API Staph and API Coryne kits of bacterial isolates were determined. In addition, 16S rRNA gene region was sequenced. As a result of the studies conducted, bacterial isolates were identified as Lysinibacillus sphaericus (Abk1, Bacillus amyloliquefaciens (Abk2, Staphylococcus sciuri (Abk4, Kocuria palustris (Abk6, Arthrobacter arilaitensis (Abk7 and Microbacterium oxydans (Abk8. All bacterial isolates were tested for 12 days against third-fourth instar larvae of H. cunea. The highest insecticidal activity was obtained from L. sphaericus (Abk1 with 30% after application (p<0.05. These results indicate that L. sphaericus (Abk1 can be taken into account in the microbial pest control of H. cunea. In the future, further studies will be conducted by using pathogenicity enrichment strategies of L. sphaericus (Abk1 (ex. combining with other entomopathogens or insecticides in order to increase the effectiveness on H. cunea.

  1. Yaequinolones, new insecticidal antibiotics produced by Penicillium sp. FKI-2140. I. Taxonomy, fermentation, isolation and biological activity.

    Science.gov (United States)

    Uchida, Ryuji; Imasato, Rie; Yamaguchi, Yuichi; Masuma, Rokuro; Shiomi, Kazuro; Tomoda, Hiroshi; Omura, Satoshi

    2006-10-01

    New nine insecticidal antibiotics designated yaequinolones were isolated from the culture broth of the fungal strain Penicillium sp. FKI-2140 by solvent extraction, centrifugal partition chromatography and HPLC. Yaequinolones showed growth inhibitory activity against brine shrimp (Artemia salina). Among them, yaequinolone F has the most potent activity with MIC value of 0.19 microg/ml.

  2. Enzymatic, Antioxidant, Antimicrobial, and Insecticidal Activities of Pleurotus pulmonarius and Pycnoporus cinnabarinus Grown Separately in an Airlift Reactor

    Directory of Open Access Journals (Sweden)

    Maura Téllez-Téllez

    2016-03-01

    Full Text Available Crude extract samples of Pleurotus pulmonarius and Pycnoporus cinnabarinus were taken during growth in liquid broth in an airlift reactor. Growth was monitored indirectly by sugar consumption and pH profile. During growth Pleurotus pulmonarius consumed glucose more slowly than Pycnoporus cinnabarinus, reaching a final pH of 8.0. In contrast, Pycnoporus cinnabarinus started consuming glucose faster from the beginning to the end with a pH of 3.6, suggesting the production of different metabolites while they grow in the same culture broth. Additionally, antioxidant activity, polyphenol and flavonoid contents, as well as laccase and hydrolase activities were quantified in the culture extracts during the fermentation. Pleurotus pulmonarius showed higher antioxidant activity than Pycnoporus cinnabarinus. Both fungi have a very low polyphenol and flavonoid content. Values of amylase and pectinase activities were similar in crude extracts of both fungi; however, cellulase, xylanase, invertase, and laccase activities showed higher levels in crude extract of Pleurotus pulmonarius. Antimicrobial and insecticidal activities were also evaluated in each crude extract. In fact, Pycnoporus cinnabarinus presented a very strong bacteriostatic and bactericidal effect against Escherichia coli and Staphylococcus aureus and reliably killed Diatraea magnifactella larvae, while Pleurotus pulmonarius did not showed any negative effect on the growth of these bacteria or larvae.

  3. Effect of spray drying processing parameters on the insecticidal activity of two encapsulated formulations of baculovirus

    Science.gov (United States)

    The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....

  4. of Several Organophosphorus Insecticide Metabolites

    Directory of Open Access Journals (Sweden)

    Russell L. Carr

    2015-01-01

    Full Text Available Paraoxonase (PON1 is a calcium dependent enzyme that is capable of hydrolyzing organophosphate anticholinesterases. PON1 activity is present in most mammals and previous research established that PON1 activity differs depending on the species. These studies mainly used the organophosphate substrate paraoxon, the active metabolite of the insecticide parathion. Using serum PON1 from different mammalian species, we compared the hydrolysis of paraoxon with the hydrolysis of the active metabolites (oxons of two additional organophosphorus insecticides, methyl parathion and chlorpyrifos. Paraoxon hydrolysis was greater than that of methyl paraoxon, but the level of activity between species displayed a similar pattern. Regardless of the species tested, the hydrolysis of chlorpyrifos-oxon was significantly greater than that of paraoxon or methyl paraoxon. These data indicate that chlorpyrifos-oxon is a better substrate for PON1 regardless of the species. The pattern of species differences in PON1 activity varied with the change in substrate to chlorpyrifos-oxon from paraoxon or methyl paraoxon. For example, the sex difference observed here and reported elsewhere in the literature for rat PON1 hydrolysis of paraoxon was not present when chlorpyrifos-oxon was the substrate.

  5. Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum.

    Science.gov (United States)

    Abdel-Sattar, Essam; Zaitoun, Ahmed A; Farag, Mohamed A; Gayed, Sabah H El; Harraz, Fathalla M H

    2010-02-01

    Fruit and leaf essential oils of Schinus molle showed insect repellent and insecticidal activity against Trogoderma granarium and Tribolium castaneum. In these oils, 65 components were identified by GC-MS analysis. Hydrocarbons dominated the oil composition with monoterpenes occurring in the largest amounts in fruits and leaves, 80.43 and 74.84%, respectively. p-Cymene was identified as a major component in both oils. The high yield and efficacy of S. molle essential oil against T. granarium and T. castaneum suggest that it may provide leads for active insecticidal agents.

  6. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

    Science.gov (United States)

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra

    2017-07-01

    Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

  7. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae from Argentina

    Directory of Open Access Journals (Sweden)

    Cristina Mónica Montagna

    2012-06-01

    Full Text Available Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold and deltamethrin (162-fold and a small increase in resistance to the organophosphate azinphos methyl (2-fold were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  8. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.

    Science.gov (United States)

    Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana

    2012-06-01

    Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  9. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Mohammad Vatanparast

    Full Text Available Double-stranded RNA (dsRNA has been applied to control insect pests due to its induction of RNA interference (RNAi of a specific target gene expression. However, developing dsRNA-based insecticidal agent has been a great challenge especially against lepidopteran insect pests due to variations in RNAi efficiency. The objective of this study was to screen genes of chymotrypsins (SeCHYs essential for the survival of the beet armyworm, Spodoptera exigua, to construct insecticidal dsRNA. In addition, an optimal oral delivery method was developed using recombinant bacteria. At least 7 SeCHY genes were predicted from S. exigua transcriptomes. Subsequent analyses indicated that SeCHY2 was widely expressed in different developmental stages and larval tissues by RT-PCR and its expression knockdown by RNAi caused high mortality along with immunosuppression. However, a large amount of dsRNA was required to efficiently kill late instars of S. exigua because of high RNase activity in their midgut lumen. To minimize dsRNA degradation, bacterial expression and formulation of dsRNA were performed in HT115 Escherichia coli using L4440 expression vector. dsRNA (300 bp specific to SeCHY2 overexpressed in E. coli was toxic to S. exigua larvae after oral administration. To enhance dsRNA release from E. coli, bacterial cells were sonicated before oral administration. RNAi efficiency of sonicated bacteria was significantly increased, causing higher larval mortality at oral administration. Moreover, targeting young larvae possessing weak RNase activity in the midgut lumen significantly enhanced RNAi efficiency and subsequent insecticidal activity against S. exigua.

  10. Study on Soil Mobility of Two Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Mária Mörtl

    2016-01-01

    Full Text Available Movement of two neonicotinoid insecticide active ingredients, clothianidin (CLO and thiamethoxam (TMX, was investigated in different soil types (sand, clay, or loam and in pumice. Elution profiles were determined to explore differences in binding capacity. Soil characterized by high organic matter content retained the ingredients, whereas high clay content resulted in long release of compounds. Decrease in concentration was strongly influenced by soil types: both CLO and TMX were retained in loam and clay soils and showed ready elution through sandy soil and pumice. Elution capability of the active ingredients in sandy soil correlated with their water solubility, indicating approximately 30% higher rapidity for TMX than for CLO. Soil organic carbon-water partitioning coefficients (Koc determined were in good agreement with literature values with somewhat lower value for CLO in sandy soil and substantially higher values for TMX in clay soil. High mobility of these neonicotinoid active ingredients in given soil types urges stronger precautionary approach taken during their application.

  11. Diurnal Activity of Drosophila suzukii (Diptera: Drosophilidae) in Highbush Blueberry and Behavioral Response to Irrigation and Application of Insecticides.

    Science.gov (United States)

    Van Timmeren, Steven; Horejsi, Logan; Larson, Shadi; Spink, Katherine; Fanning, Philip; Isaacs, Rufus

    2017-10-01

    Spotted wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive vinegar fly that has become a primary direct pest of berry crops worldwide. We conducted 2 yr of behavioral studies in blueberry plantings to determine how fly activity varied throughout the day. Observations of diurnal activity of adult D. suzukii found the greatest activity in the morning hours between 0600 and 0800 hours, when the majority of flies were on the berries. Flies were also active in the evening mainly between 1800 and 2000 hours; however, this trend was more prominent in 2015, which had cooler and more humid evenings. Experiments examining the effect of irrigation on D. suzukii behavior showed that flies remained active during and after irrigation. The effect of insecticide treatments alone and in combination with irrigation revealed that treatment with spinosad had limited effects on the number of flies per bush, whereas spinetoram reduced the number flying and on the bushes in some cases. Zeta-cypermethrin caused longer and more consistent reduction in D. suzukii flying and on bushes. In all treatments, we observed surviving flies flying near and on treated bushes, indicating that these insecticides do not completely deter fly activity. Irrigation did not influence the effects of zeta-cypermethrin on fly behavior during daily observations up to 3 d after application. Our results highlight that the diurnal patterns of activity of D. suzukii on host plants are flexible and are relatively unaffected by irrigation or insecticide applications. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides.

    Science.gov (United States)

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-04-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.

  13. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.

    Science.gov (United States)

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an "odor world" and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an "info-disruptor" by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  14. Pest insect olfaction in an insecticide-contaminated environment : info-disruption or hormesis effect

    Directory of Open Access Journals (Sweden)

    Hélène eTricoire-Leignel

    2012-03-01

    Full Text Available Most animals, including pest insects, live in an odour world and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an info-disruptor by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favouring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests.

  15. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  16. Insecticidal and repellant activities of plants oil against stored grain pest, Tribolium castaneum (Herbst (Coleoptera:Tenebrionidae

    Directory of Open Access Journals (Sweden)

    S.R.Pugazhvendan

    2012-05-01

    Full Text Available Objective: The present investigation was aimed to assess the impact of five plants oil for their insecticidal and repellent activity against Tribolium castaneum (Herbst, a stored grain pest and they were tested in the laboratory. Method: Five plants oil Citrus autantium, Cinnamomum zeylanicum, Gaultheria fragrantissima, Lavandula officinalis, and Ocimum sanctum were evaluated for their insecticidal and repellent activities against T. castaneum by adapting the standard protocol in vitro. Results: In Tulsi oil showed powerful repellent against T. castaneum beetles at both the concentration and this property can be clearly seen from the values at 5毺 1 (-0.60 and -0.73 in 1h and 6hr respectively and 10毺 1 (-0.56 and -0.81 in 1h and 6h respectively. Tulsi oil had more repelling property than other oil tested here against T. castaneum. Maximum percentage of mortality (76 and 92% at 48h and 72 hours after treatment respectively in Tulsi oil. Wintergreen oil showed 86% mortality at 72 hours after treatment. Conclusions: The present work for botanical products to control the insect pest of stored grain T. castaneum .These results suggest the presence of actives principles in the plant oils. Further exploration of active principles and their structural elucidations are underway.

  17. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    Science.gov (United States)

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  18. Insecticide resistance and cytochrome-P450 activation in unfed and blood-fed laboratory and field populations of Culex pipiens pallens.

    Science.gov (United States)

    Chang, Kyu-Sik; Kim, Heung-Chul; Klein, Terry A; Ju, Young Ran

    2017-01-01

    Understanding the mechanisms of insecticide resistance to vector mosquitoes is critical for the implementation of effective control measures. A nulliparous susceptible Culex pipiens pallens (KSCP) laboratory colony and two field strains from Paju (PAJ) and Jeonju (JEO) Korea were evaluated for susceptibility to five pesticides by microapplication techniques. Unfed PAJ and JEO females demonstrated increased resistance compared to unfed KSCP females, respectively. While blood-fed KSCP females demonstrated resistance compared to unfed PAJ and JEO females, respectively. Unfed and blood-fed groups were assayed for α- and β-esterase, glutathione S -transferases, and cytochrome P-450 (P450) enzyme activity assays. P450 activity was 58.8- and 72.8-fold higher for unfed PAJ and JEO females, respectively, than unfed KSCP females. P450 enzyme activity of KSCP females assayed 1 and 7 days after a blood meal increased by 14.5- and 11.8-fold, respectively, compared to unfed KSCP females, while PAJ and JEO females demonstrated 164.9- and 148.5- and 170.7- and 160.4-fold increased activity, respectively, compared to unfed females of each population. However, other three resistance-related metabolic enzymes showed low activation at P450 acts on elevated insecticide resistance after blood meals in resistant field populations. Our findings might reveal that suppressing of the P450 protein by artificial gene mutation increases insecticidal susceptibility of Cx . pipiens and will promise effective vector mosquito control.

  19. Quantitative Structure-Activity Relationship of Insecticidal Activity of Benzyl Ether Diamidine Derivatives

    Science.gov (United States)

    Zhai, Mengting; Chen, Yan; Li, Jing; Zhou, Jun

    2017-12-01

    The molecular electrongativity distance vector (MEDV-13) was used to describe the molecular structure of benzyl ether diamidine derivatives in this paper, Based on MEDV-13, The three-parameter (M 3, M 15, M 47) QSAR model of insecticidal activity (pIC 50) for 60 benzyl ether diamidine derivatives was constructed by leaps-and-bounds regression (LBR) . The traditional correlation coefficient (R) and the cross-validation correlation coefficient (R CV ) were 0.975 and 0.971, respectively. The robustness of the regression model was validated by Jackknife method, the correlation coefficient R were between 0.971 and 0.983. Meanwhile, the independent variables in the model were tested to be no autocorrelation. The regression results indicate that the model has good robust and predictive capabilities. The research would provide theoretical guidance for the development of new generation of anti African trypanosomiasis drugs with efficiency and low toxicity.

  20. Activity of Liquid Smoke of Tobacco Stem Waste as An Insecticide on Spodoptera litura Fabricius Larvae

    Directory of Open Access Journals (Sweden)

    Heri Prabowo

    2016-07-01

    Full Text Available The use of chemical insecticide in crop protection around the world has resulted in disturbances of the environment. Therefore, it is necessary to develop for environmentally friendly insect pest management techniques such as the activity of liquid smoke made from tobacco stem waste as an insecticide to Spodoptera litura. Activity of liquid smoke of tobacco stem waste was carried out at the laboratory condition. The results showed that the application of liquid smoke by using the spraying method (direct method showed better results compared to the results of feeding method (indirect method. Lethal concentration (LC at 5 days after treatment, LC50 and LC75 values the direct method of 2.9% and 8.87%, while the indirect method of 6,99% and 21.03%. The sub lethal concentration did not cause mortality of S. litura larvae, but inhibited the growth such as indicated by lower weight of larval and pupal in treated larvae than in control. Liquid smoke of tobacco stem waste has activity as an insecticide to S. litura.   INTISARI Penggunaan pestisida kimia dalam pengendalian hama di dunia telah menimbulkan gangguan terhadap lingkungan. Maka teknik pengendalian hama yang ramah lingkungan perlu dikembangkan, misalnya aktivitas asap cair limbah batang tembakau sebagai insektisida pada Spodoptera litura. Aktivitas asap cair limbah batang tembakau dilakukan pada kondisi laboratorium. Hasil penelitian menunjukkan bahwa aplikasi asap cair secara langsung (metode semprot lebih efektif daripada tidak langsung (metode celup pakan. Lethal concentration (LC pada 5 hari setelah perlakuan, LC50 dan LC75 pada aplikasi langsung sebesar 2,9% dan 8,87%, sedangkan pada aplikasi tidak langsung 6,99% dan 21,03%. Konsentrasi subletal tidak menyebabkan kematian S. litura tetapi mampu menghambat pertumbuhan yang diindikasikan dengan rendahnya bobot larva dan pupa S. litura. Asap cair limbah batang tembakau bersifat insektisida terhadap larva S. litura.

  1. Botanical Insecticides in Plant Protection

    OpenAIRE

    Grdiša, Martina; Gršić, Kristina

    2013-01-01

    Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems....

  2. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    Science.gov (United States)

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  3. Insecticidal Activity of Extracts of Aglaia spp. (Meliaceae Against Cabbage Cluster Caterpillar Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Djoko Prijono

    2001-12-01

    Full Text Available Insecticidal potential of eleven species of Aglaia (Meliaceae was evaluated in the laboratory against the cabbage cluster caterpillar, Crocidolomia binotalis. The feeding treatment of second-instar larvae C. binotalis for 48 hours with ethanol twig extract of A. odorata at 0.5% caused 98.7% larval mortality; leaf and twig extracts of A. elaeagnoidea caused 17.3% and 6.7% mortality, respectively; twig extracts of A. argentea, A. formosana, and A. latifolia caused only 1.3% mortality each; whereas extracts of the other six Aglaia species were inactive (0% mortality. Further tests with A. odorata showed that twigs gave the most active extract compared to other plant parts (leaves, flowers, and roots, and air-drying of plant materials for 2 weeks markedly decreased the activity of the derived extracts. The active extracts also delayed the development of surviving larvae in similar degree to the level of their lethal effect. LC50 of ethyl acetate fraction of A. odorata twig extract and its main active compound, rocaglamide, against C. binotalis larvae were 310.2 and 31.4 ppm, respectively. This active compound was about 8.7 times less potent than azadirachtin (LC50 3.6 ppm. Key words: Aglaia, botanical insecticides, Crocidolomia binotalis

  4. Teenage organophosphate insecticide poisoning: An ugly trend in ...

    African Journals Online (AJOL)

    UNIBEN

    is worsened by uncontrolled sale of organophosphorus insecticides on the streets and in open markets. We report ..... Nicotinic activity results in autonomic nervous system .... optimize outcome.23 Oximes are cholinesterase re-activators used ...

  5. Chemical composition and insecticidal property of Myrsine stolonifera (Koidz.) walker (Family: Myrsinaceae) on Musca domestica (Diptera: Muscidae).

    Science.gov (United States)

    Wang, Xue Gui; Li, Qian; Jiang, Su Rong; Li, Pei; Yang, Ji Zhi

    2017-06-01

    Musca domestica is one of the most important pests of human health, and has developed strong resistance to many chemicals used for its control. One important approach for creating new pesticides is the exploration of novel compounds from plants. During a wide screening of plants with insecticidal properties that grow in southern China, we found that the methanolic extracts of Myrsine stolonifera had insecticidal activity against the adults of M. domestica. However, the insecticidal constituents and mechanisms of the M. stolonifera extracts remain unclear. The insecticidal components of the methanolic extracts of M. stolonifera were isolated with activity-guided fractionation. From the spectra of nuclear magnetic resonance (NMR) and mass spectrometry (MS), the compounds were identified as syringing (1), 2,6-dimethoxy-4-hydroxyphenol-1-O-β-d-glu (2), kaempferol-3-O-glu-rha-glu (3), and quercetin-3-O-glu-rha-glu (4). This study is the first to report the spectral data for compounds 3 and 4, and their LC 50 values were 0.52mg/g sugar and 0.36mg/g sugar 24h after treatment of the adults of M. domestica, respectively. Compounds 3 and 4 (LC 25 ) also inhibited the activities of the enzymes carboxylesterase, glutathione S-transferase, mixed function oxidase, and acetylcholine esterase of adult M. domestica, particularly mixed function oxidase and acetylcholine esterase. The cytotoxic effects of compounds 3 and 4 on cell proliferation, mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) were demonstrated on SL-1 cells. From the extracts of M. stolonifera, quercetin-3-O-glu-rha-glu and kaempferol-3-O-glu-rha-glu have displayed comparable toxicities to rotenone on M. domestica and also exhibited cytotoxic effects on SL-1 cells; therefore, the extracts of M. stolonifera and their compounds have potential as botanical insecticides to control M. domestica. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae).

    Science.gov (United States)

    Dang, Kai; Doggett, Stephen L; Veera Singham, G; Lee, Chow-Yang

    2017-06-29

    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

  7. Screening and Validation of Highly-Efficient Insecticidal Conotoxins from a Transcriptome-Based Dataset of Chinese Tubular Cone Snail

    Directory of Open Access Journals (Sweden)

    Bingmiao Gao

    2017-07-01

    Full Text Available Most previous studies have focused on analgesic and anti-cancer activities for the conotoxins identified from piscivorous and molluscivorous cone snails, but little attention has been devoted to insecticidal activity of conotoxins from the dominant vermivorous species. As a representative vermivorous cone snail, the Chinese tubular cone snail (Conus betulinus is the dominant Conus species inhabiting the South China Sea. We sequenced related venom transcriptomes from C. betulinus using both the next-generation sequencing and traditional Sanger sequencing technologies, and a comprehensive library of 215 conotoxin transcripts was constructed. In our current study, six conotoxins with potential insecticidal activity were screened out from our conotoxin library by homologous search with a reported positive control (alpha-conotoxin ImI from C. imperialis as the query. Subsequently, these conotoxins were synthesized by chemical solid-phase and oxidative folding for further insecticidal activity validation, such as MTT assay, insect bioassay and homology modeling. The final results proved insecticidal activities of our achieved six conotoxins from the transcriptome-based dataset. Interestingly, two of them presented a lot of high insecticidal activity, which supports their usefulness for a trial as insecticides in field investigations. In summary, our present work provides a good example for high throughput development of biological insecticides on basis of the accumulated genomic resources.

  8. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses

    Science.gov (United States)

    2010-01-01

    Background Baculovirus comprise the largest group of insect viruses most studied worldwide, mainly because they efficiently kill agricutural insect pests. In this study, two recombinant baculoviruses containing the ScathL gene from Sarcophaga peregrina (vSynScathL), and the Keratinase gene from the fungus Aspergillus fumigatus (vSynKerat), were constructed. and their insecticidal properties analysed against Spodoptera frugiperda larvae. Results Bioassays of third-instar and neonate S. frugiperda larvae with vSynScathL and vSynKerat showed a decrease in the time needed to kill the infected insects when compared to the wild type virus. We have also shown that both recombinants were able to increase phenoloxidase activity in the hemolymph of S. frugiperda larvae. The expression of proteases in infected larvae resulted in destruction of internal tissues late in infection, which could be the reason for the increased viral speed of kill. Conclusions Baculoviruses and their recombinant forms constitute viable alternatives to chemical insecticides. Recombinant baculoviruses containing protease genes can be added to the list of engineered baculoviruses with great potential to be used in integrated pest management programs. PMID:20587066

  9. Activity of Selected Formulated Biorational and Synthetic Insecticides Against Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Vivan, L M; Torres, J B; Fernandes, P L S

    2017-02-01

    This work studied 17 insecticides belonging to nucleopolyhedrovirus (NPV), Bacillus thuringiensis (Bt kurstaki and Bt aizawai), benzoylureas (insect growth regulators [IGRs]), carbamates, organophosphates, spinosyns, and diamides against larvae of Helicoverpa armigera (Hübner), invasive species in the South American continent. Larvae of different instars were fed for 7 d with untreated or insecticide-treated diets. Mortality was recorded daily for 7 d, and surviving larvae were individually weighed on the seventh day. The NPV and Bt insecticides caused 100% mortality of first-instar larvae and first-instar and second-instar larvae, respectively. However, both NPV and Bt-based products caused low mortality of third-instar larvae and did not kill older larvae. The IGR lufenuron was highly effective against all three ages of larvae tested, whereas teflubenzuron and triflumuron produced maximum 60% mortality of second-instar larvae and lower than 50% to older larvae. Thiodicarb, chlorantraniliprole, indoxacarb, chlorpyrifos, and chlorfenapyr, irrespective of tested age, caused 100% mortality of larvae, with the last two insecticides reaching 100% mortality within 2 d of feeding on the treated diet. Flubendiamide caused lower mortality but significantly affected the weight of surviving larvae, whereas neither spinosad nor methomyl produced significant mortality or affected the weight of larvae. Based on the results, the age of H. armigera larvae plays an important role in the recommendation of NPV and Bt insecticides. Furthermore, there are potential options between biological and synthetic insecticides tested against H. armigera, and recording larval size during monitoring, in addition to the infestation level, should be considered when recommending biological-based insecticides to control this pest. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    Science.gov (United States)

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    Science.gov (United States)

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Determination of insecticidal activity of Heliopsis longipes A. Gray Blake, an endemic plant of Guanajuato state

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández Morales

    2012-09-01

    Full Text Available Mosquitoes are involved in transmission of infectious diseases like malaria which affect human health, causing economic losses due to expensive treatments and job incapacity of patients. Strategies to minimize transmission of this disease are the employ of chemical insecticides that are excellent methods to reduce insect populations; however it causes deleterious effects on human health and environmental damage. Therefore is necessary to explore harmless alternatives, such as plant extracts which are potential source of natural insecticides. In this work we evaluated insecticidal properties of Heliopsis longipes A. Gray Blake against third instar larvae of Anopheles albimanus, malaria vector. Results showed that H.longipes A. Gray Blake has insecticide properties to control insect involved in malaria transmission.

  13. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis

    Science.gov (United States)

    Leah S. Bauer

    1995-01-01

    Insecticidal crystal proteins (also known as d-endotoxins) synthesized by the bacterium Bacillus thuringiensis Berliner (Bt) are the active ingredient of various environmentally friendly insecticides that are 1) highly compatible with natural enemies and other nontarget organisms due to narrow host specificity, 2) harmless to vertebrates, 3) biodegradable in the...

  14. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    Science.gov (United States)

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  15. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking

    Directory of Open Access Journals (Sweden)

    Aftab eAhmad

    2015-12-01

    Full Text Available Study and research of Bt (Bacillus thuringiensis transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac insecticidal protein and vegetative insecticidal protein (Vip3Aa have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua and Spodoptera litura revealed that the Ser290, Ser293, Leu337, Thr340 and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  16. Synergistic Combinations of a Pyrethroid Insecticide and an Emulsifiable Oil Formulation of Beauveria bassiana to Overcome Insecticide Resistance in Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M

    2017-08-01

    The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Insecticide resistance status of Aedes aegypti (L.) from Colombia.

    Science.gov (United States)

    Fonseca-González, Idalyd; Quiñones, Martha L; Lenhart, Audrey; Brogdon, William G

    2011-04-01

    To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT-PCR. All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda-cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non-specific esterases (NSE) in some of the fenitrothion- and pyrethroid-resistant populations. All populations showed high levels of glutathione-S-transferase (GST) activity. GSTe2 gene was found overexpressed in DDT-resistant populations compared with Rockefeller susceptible strain. Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry.

  18. Insecticidal and fungicidal compounds from Isatis tinctoria.

    Science.gov (United States)

    Seifert, K; Unger, W

    1994-01-01

    Tryptanthrin (1), indole-3-acetonitrile (2) and p-coumaric acid methylester (3) were isolated from the aerial parts of Isatis tinctoria L. The compounds show insecticidal and anti-feedant activity against termites (Reticulitermis santonensis), insect preventive and control activity against larvae of the house longhorn beetle (Hylotrupes bajulus) and fungicidal activity against the brown-rot fungus (Coniophora puteana).

  19. Qualitative evaluation of same insecticides sold in Kinshasa and users behavior survey

    International Nuclear Information System (INIS)

    Basilua, K.; Essassi El, M.; Himmi, O.; Said Gmouh; Watsenga, T.

    2009-01-01

    Malaria is a serious public health problem in the tropical countries and particularly into Kinshasa. Anopheles gambiae sl. is the mean vector of this illness. The use of impregnated bednets is the national strategy; the chemical insecticides are used too in figthing the malaria vectors. The survey carried out on 144 households randomly selected in Kinshasa have showed that 61,1% are favourable with using bednets insecticide impregnated and 96,5% of these households use too chemical insecticides, meanly the pyrethroids one (90,5%) and the organophosphates (9,5%). Mass spectrometer analysis revealed that 87,5% of identified insecticides, essentially pyrethroinids have tetramethrine as active substance; the dichlorvos is the only one to be detected as organophosphate and that in some insecticides, the detected molecules are not avowed or different from those avowed or different from those avowed by the manufacturer.

  20. Establishing a system with Drosophila melanogaster (Diptera: Drosophilidae) to assess the non-target effects of gut-active insecticidal compounds.

    Science.gov (United States)

    Haller, Simone; Meissle, Michael; Romeis, Jörg

    2016-12-01

    Potentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments. We developed two assays to assess the toxicity of gut-active insecticidal compounds to D. melanogaster. One assay uses groups of fly larvae, and the other uses individuals. Cryolite, a mineral pesticide, proved to be an adequate positive control. The effects of cryolite on D. melanogaster larvae were comparable between the two assays. Statistical power analyses were used to define the number of replications required to identify different effect sizes between control and treatment groups. Finally, avidin, E-64, GNA, and SBTI were used as test compounds to validate the individual-based assay; only avidin adversely affected D. melanogaster. These results indicate that both D. melanogaster assays will be useful for early tier risk assessment concerning the effects of orally active compounds on non-target dipterans.

  1. Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies.

    Science.gov (United States)

    Bacci, Leandro; Crespo, André L B; Galvan, Tederson L; Pereira, Eliseu J G; Picanço, Marcelo C; Silva, Gerson A; Chediak, Mateus

    2007-07-01

    Efficient chemical control is achieved when insecticides are active against insect pests and safe to natural enemies. In this study, the toxicity of 17 insecticides to the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the selectivity of seven insecticides to natural enemies of this insect pest were evaluated. To determine the insecticide toxicity, B. tabaci adults were exposed to abamectin, acephate, acetamiprid, cartap, imidacloprid, malathion, methamidophos, bifenthrin, cypermethrin, deltamethrin, esfenvalerate, fenitrothion, fenpropathrin, fenthion, phenthoate, permethrin and trichlorphon at 50 and 100% of the field rate (FR), and to water (untreated control). To determine the insecticide selectivity, adults of Encarsia sp., Acanthinus sp., Discodon sp. and Lasiochilus sp. were exposed to abamectin, acephate, acetamiprid, cartap, imidacloprid, malathion and methamidophos at 50 and 100% FR, and to water. Groups of each insect species were exposed to kale leaves preimmersed in each treatment under laboratory conditions. Mortality of exposed individuals was recorded 24 h after treatment. Cartap and imidacloprid at 50 and 100% FR and abamectin and acetamiprid at 100% FR showed insecticidal activity to B. tabaci adults. Abamectin at 50 and 100% FR was the least insecticidal compound to the natural enemies Acanthinus sp., Discodon sp. and Lasiochilus sp. The present results suggest that abamectin at 100% FR may decrease B. tabaci field populations but can still be harmless to predators. Implications of these results within an integrated pest management context are discussed. Copyright (c) 2007 Society of Chemical Industry.

  2. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan.

    Science.gov (United States)

    Hassan, Mo'awia Mukhtar; Widaa, Sally Osman; Osman, Osman Mohieldin; Numiary, Mona Siddig Mohammed; Ibrahim, Mihad Abdelaal; Abushama, Hind Mohammed

    2012-03-07

    Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years.

  3. Insecticide susceptibility status and major detoxifying enzymes' activity in Aedes albopictus (Skuse), vector of dengue and chikungunya in Northern part of West Bengal, India.

    Science.gov (United States)

    Bharati, Minu; Saha, Dhiraj

    2017-06-01

    Mosquitoes belonging to Aedes genus, Aedes aegypti and Aedes albopictus transmit many globally important arboviruses including Dengue (DENV) and Chikungunya (CHIKV). Vector control with the use of insecticide remains the suitable method of choice to stop the transmission of these diseases. However, vector control throughout the world is failing to achieve its target results because of the worldwide development of insecticide resistance in mosquitoes. To assess the insecticide susceptibility status of Aedes albopictus from northern part of West Bengal, the susceptibility of eight different Aedes albopictus populations were tested against a commonly used larvicide (temephos) and some adulticides (malathion, deltamethrin and lambda cyhalothrin) along with the major insecticide detoxifying enzymes' activity in them. Through this study, it was revealed that most of the populations were found susceptible to temephos except Nagrakata (NGK) and Siliguri (SLG), which showed both a higher resistance ratio (RR 99 ) and a lower susceptibility, thereby reflecting the development of resistance against temephos in them. However, all tested adulticides caused 100% mortality in all the population implying their potency in control of this mosquito in this region of India. Through the study of carboxylesterase activity, it was revealed that the NGK population showed a 9.6 fold higher level of activity than susceptible population. The same population also showed a lower level of susceptibility and a higher resistance ratio (RR 99 ), indicating a clear correlation between susceptibility to temephos and carboxylesterase enzymes' activity in this population. This preliminary data reflects that the NGK population is showing a trend towards resistance development and with time, there is possibility that this resistance phenomenon will spread to other populations. With the recurrence of dengue and chikungunya, this data on insecticide susceptibility status of Aedes albopictus could help the

  4. Metabolic control of the insecticides safety use

    Directory of Open Access Journals (Sweden)

    L.I. Solomenko

    2016-06-01

    Full Text Available The results of the conducted research affirm that the phosphororganic insecticides utilization can lead to the break in the nitrogen metabolism, breaking the protein formation, reducing the protein molecules renewal, causing the amino acid and amides accumulation in the active state. It has been revealed that the translocation and transformation of the insecticides under consideration are more closely connected with the changes of insoluble protein fraction. The stagnation point of the Phosphamide and Kaunter impact on the plant has been determined. And only the use of the preparation in optimal norms can influence stimulatingly the course of the process under consideration.

  5. Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans.

    Science.gov (United States)

    El-Sheikh, El-Sayed A; Kamita, Shizuo G; Hammock, Bruce D

    2016-03-01

    Juvenile hormone analog (JHA) insecticides are biological and structural mimics of JH, a key insect developmental hormone. Toxic and anti-developmental effects of the JHA insecticides methoprene, fenoxycarb, and pyriproxyfen were investigated on the larval and pupal stages of Spodoptera littoralis and Spodoptera frugiperda. Bioassays showed that fenoxycarb has the highest toxicity and fastest speed of kill in 2nd instar S. littoralis. All three JHAs affected the development of 6th instar (i.e., final instar) and pupal S. frugiperda. JH esterase (JHE) is a critical enzyme that helps to regulate JH levels during insect development. JHE activity in the last instar S. littoralis and S. frugiperda was 11 and 23 nmol min(-1) ml(-1) hemolymph, respectively. Methoprene and pyriproxyfen showed poor inhibition of JHE activity from these insects, whereas fenoxycarb showed stronger inhibition. The inhibitory activity of fenoxycarb, however, was more than 1000-fold lower than that of OTFP, a highly potent inhibitor of JHEs. Surprisingly, topical application of methoprene, fenoxycarb or pyriproxyfen on 6th instars of S. littoralis and S. frugiperda prevented the dramatic reduction in JHE activity that was found in control insects. Our findings suggest that JHAs may function as JH agonists that play a disruptive role or a hormonal replacement role in S. littoralis and S. frugiperda. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Identification of Insecticidal Constituents of the Essential Oil of Curcuma wenyujin Rhizomes Active against Liposcelis bostrychophila Badonnel

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-10-01

    Full Text Available The aim of this research was to determine the chemical composition and insecticidal activity of the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling rhizomes against the booklouse Liposcelis bostrychophila Badonnel and to isolate any insecticidal constituents from the essential oil. The essential oil of C. wenyujin rhizomes was obtained by hydrodistillation and analyzed by GC-MS. A total of 43 components of the essential oil were identified and the principal compounds in the essential oil were 1,8-cineole (15.26%, camphor (10.12%, germacrone (6.86%, β-elemene (6.33%, curzerene (6.70%, and β-elemenone (5.23%. followed by curzerenone (4.52%, curdione (4.45% and linalool (4.43%. Based on bioactivity-guided fractionation, the two main active constituents were isolated from the essential oil and identified as 1,8-cineole and camphor. The essential oil of C. wenyujin rhizomes exhibited contact toxicity against L. bostrychophila with an LD50 value of 208.85 µg/cm2. Camphor (LD50 = 207.26 µg/cm2 exhibited stronger contact toxicity than 1,8-cineole (LD50 = 1048.75 µg/cm2 against booklouse. The essential oil of C. wenyujin (LC50 = 2.76 mg/L air also possessed fumigant toxicity against L. bostrychophila, while the two constituents, camphor and 1,8-cineole had LC50 values of 1.03 mg/L air and 1.13 mg/L air, respectively. The results indicate that the essential oil of C. wenyujin rhizomes and its constituent compounds have potential for development as natural insecticides or fumigants for control of insects in stored grains.

  7. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the

  8. Isolation and identification of some Bacillus thuringiensis strains with insecticidal activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Majdoub, Nihed

    2010-01-01

    The aims of the present work is to study the effect of toxins (delta-endotoxins), extracted from different strains of Bacillus thuringiensis on Ceratitis capitata, a devastating of citrus and fruit trees. Strains of B. thuringiensis were isolated from the mud of Sebket Sejoumi. Among 70 isolates tested, 15 showed a significant identicalness activity in which 5 isolates led to mortality rates ≥ 90 pour cent . These mortality rates are caused by endotoxins of B. thuringiensis. Analysis of proteins profiles of different isolates of B. thuringiensis revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by B. thuringiensis strains for large scale application.

  9. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects.

    Science.gov (United States)

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, Branimir K; Kodrík, Dalibor

    2015-04-01

    Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effects of the amphibian chytrid fungus and four insecticides on Pacific treefrogs (Pseudacris regilla)

    Science.gov (United States)

    Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary

    2012-01-01

    Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.

  11. Development of Environment-Friendly Insecticides Based on Enantioselectivity: Bifenthrin as a Case.

    Science.gov (United States)

    Qian, Yi; Zhou, Peixue; Zhang, Quan

    2017-01-01

    Chiral insecticides significantly contribute to the environmental pollutions recently. As the development of industry and agriculture, increasing number of chiral insecticides are to be introduced into the market. However, their enantioselective toxicology to ecosystem still remains uncertain. In this review, we embarked on a structured search of bibliographic databases for peer-reviewed articles regarding the enantioselective effects of bifenthrin, a typical chiral insecticide, on both target and non-target species. With this enantioselective property of chiral insecticides, they often exhibit adverse effects on non-target species enantioselectively. Specifically, the enantioselective effects of bifenthrin on target and non-target organisms were discussed. In target species, R-bifenthrin exerts more significant activities in deinsectization, compared with S-bifenthrin. On the other hand, Sbifenthrin is more toxic to non-target species than R-bifenthrin, which suggests that the application of sole enantiomer is more efficient and environment-friendly than that of racemate. This review confirms the choice of environment-friendly insecticides from the perspective of the enantioselectivity of chiral insecticides. To make insecticides more efficient to target species and less toxic to non-target species, further research should be done to investigated the potential effects of targetactive enantiomers on non-target organisms as well as the enantioselective fate of enantiomers in multiple environmental matrix.

  12. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yang Fu

    2018-02-01

    Full Text Available C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs and c-di-GMP-degrading enzyme phosphodiesterases (PDEs in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium.

  13. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan

    Directory of Open Access Journals (Sweden)

    Hassan Mo'awia

    2012-03-01

    Full Text Available Abstract Background Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Methods Sand flies were collected from Surogia village, (Khartoum State, Rahad Game Reserve (eastern Sudan and White Nile area (Central Sudan using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1 of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE, non-specific carboxylesterases (EST, glutathione-S-transferases (GSTs and cytochrome p450 monooxygenases (Cyt p450. Results Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT, permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. Conclusions The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years.

  14. Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon

    International Nuclear Information System (INIS)

    Salman, J.M.; Hameed, B.H.

    2010-01-01

    In this work, activated carbon was prepared from banana stalks (BSAC) waste to remove the insecticide carbofuran from aqueous solutions. The effects of contact time, initial carbofuran concentration, solution pH and temperature (30, 40 and 50 deg. C) were investigated. Adsorption isotherm, kinetics and thermodynamics of carbofuran on BSAC were studied. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models and the data best represented by the Langmuir isotherm. Thermodynamic parameters such as standard enthalpy (ΔH o ), standard entropy (ΔS o ) and standard free energy (ΔG o ) were evaluated. Regeneration efficiency of spent BSAC was studied using ethanol as a solvent. The efficiency was found to be in the range of 96.97-97.35%. The results indicated that the BSAC has good regeneration and reusability characteristics and can be used as alternative to present commercial activated carbon.

  15. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus.

    Science.gov (United States)

    Miah, Mohammad Asaduzzaman; Elzaki, Mohammed Esmail Abdalla; Han, Zhaojun

    2017-07-01

    Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p -nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min -1  mg protein -1 , respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

  16. Insecticide-induced hormesis and arthropod pest management.

    Science.gov (United States)

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  17. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Information from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive sampler, based

  18. Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: a malaria vector.

    Science.gov (United States)

    Sanil, D; Shetty, V; Shetty, N J

    2014-06-01

    Interest in insect glutathione s-transferases (GSTs) has primarily focused on their role in insecticide resistance. These play an important role in biotransformation and detoxification of many different xenobiotic and endogenous substances including insecticides. The GST activity among 10 laboratory selected insecticide resistant and susceptible/control strains of Anopheles stephensi was compared using the substrates 1-chloro-2,4-dinitrobenzene (CDNB). The difference in the GST activities of different life stages of diverse insecticide resistant strains was compared and presented. About 100 larvae, pupae, adult males, adult females and eggs (100 μg in total weight) were collected and used for the experiment. The extracts were prepared from each of the insecticide-resistant strains and control. Protein contents of the enzyme homogenate and GST activities were determined. Deltamethrin and cyfluthrin-resistant strains of An. stephensi showed significantly higher GST activity. Larvae and pupae of DDT-resistant strain showed peak GST activity followed by the propoxur-resistant strain. On contrary, the GST activity was found in reduced quantity in alphamethrin, bifenthrin, carbofuran and chloropyrifos resistant strains. Adults of either sexes showed higher GST activity in mosquito strain resistant to organophosphate group of insecticides namely, temephos and chloropyrifos. The GST activity was closely associated with almost all of the insecticides used in the study, strengthening the fact that one of the mechanisms associated with resistance includes an increase of GST activity. This comparative data on GST activity in An. stephensi can be useful database to identify possible underlying mechanisms governing insecticide-resistance by GSTs.

  19. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  20. The Effectiveness of Lemongrass, Garlic, and Tree Marigold as Botanical Insecticides in Controlling of Cocoa Mirid,Helopeltis antonii

    Directory of Open Access Journals (Sweden)

    Endang Sulistyowati

    2014-05-01

    Full Text Available Control of cocoa mirid, Helopeltis antoniiso far uses chemicalinsecticides as the main alternative. Therefore, it is necessary to find out the environment friendly control techniques. Lemongrass, garlic, and tree marigold have been known as an efectiveness botanical insecticides for horticulture. A research with aim to study the effectiveness of lemongrass (Cymbopogon nardus, garlic (Allium sativum and tree marigold (Tithonia diversifoliafor controlling H. antoniihave been carried out in cocoa plantation at Kaliwining experimental garden of Indonesian Coffee and Cocoa Research Institute. The research was arranged in split plot design in three replication, with the main plot infestation time of H. antoniiand sub-plot kind of botanical insecticides. Concentration of botanical insecticides used in this study was 5% and applied on 12 cm cocoa pod in length by using knapsack sprayer. Infestation of H. antonii nymphes were conducted before and after insecticide applications. Observation was conducted on the mortality and the lesion of H. antonii. The results of orthogonal contrast test on feeding activity based on the number of lesion and percentage of mortality of H. antoniishowed that there were significantly different between insecticide treatment and control, between chemical insecticide and botanical insecticides, but there was no significant different on kind of botanical insecticides. The lowest number of lesion due to H. antonii was shown by chemical insecticide with an average 34.0, followed by garlic and lemongrass botanical insecticide with number of lesion were 51.2 and 64.7 respectively, whereas the number of lesion in the control reached 84.2. The highest percentage mortality of H. antoniiwas shown by chemical insecticide with active ingredient teta-cypermethrin at 84.3%, followed by garlic, lemon grass and tree marigold botanical insecticide were 65.8%; 65.0%; and 63.8% respectively and significantly different with control by 8

  1. Flupyradifurone: a brief profile of a new butenolide insecticide

    Science.gov (United States)

    Nauen, Ralf; Jeschke, Peter; Velten, Robert; Beck, Michael E; Ebbinghaus-Kintscher, Ulrich; Thielert, Wolfgang; Wölfel, Katharina; Haas, Matthias; Kunz, Klaus; Raupach, Georg

    2015-01-01

    BACKGROUND The development and commercialisation of new chemical classes of insecticides for efficient crop protection measures against destructive invertebrate pests is of utmost importance to overcome resistance issues and to secure sustainable crop yields. Flupyradifurone introduced here is the first representative of the novel butenolide class of insecticides active against various sucking pests and showing an excellent safety profile. RESULTS The discovery of flupyradifurone was inspired by the butenolide scaffold in naturally occurring stemofoline. Flupyradifurone acts reversibly as an agonist on insect nicotinic acetylcholine receptors but is structurally different from known agonists, as shown by chemical similarity analysis. It shows a fast action on a broad range of sucking pests, as demonstrated in laboratory bioassays, and exhibits excellent field efficacy on a number of crops with different application methods, including foliar, soil, seed treatment and drip irrigation. It is readily taken up by plants and translocated in the xylem, as demonstrated by phosphor imaging analysis. Flupyradifurone is active on resistant pests, including cotton whiteflies, and is not metabolised by recombinantly expressed CYP6CM1, a cytochrome P450 conferring metabolic resistance to neonicotinoids and pymetrozine. CONCLUSION The novel butenolide insecticide flupyradifurone shows unique properties and will become a new tool for integrated pest management around the globe, as demonstrated by its insecticidal, ecotoxicological and safety profile. © 2014 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25351824

  2. New skeletal sesquiterpenoids, caprariolides A-D, from Capraria biflora and their insecticidal activity.

    Science.gov (United States)

    Collins, D O; Gallimore, W A; Reynolds, W F; Williams, L A; Reese, P B

    2000-11-01

    Four structurally novel isomeric sesquiterpenes have been isolated from the aerial parts of Capraria biflora. Caprariolides A (1), B (2), C (3), and D (4) have been determined by NMR spectroscopy experiments to be the (3S,5S,9R), (3R,5S,9R), (3R,5R,9R), and (3S,5R, 9R) isomers of 7-(furan-3'-yl)-3,9-dimethyl-1-oxaspiro[4. 5]dec-6-en-2-one, respectively. Both 1 and 2 were found to exhibit insecticidal activity against adult Cylas formicarius elegantulus, one of the most destructive insect pests of the sweet potato, Ipomoea sp.

  3. Pollution Of Insecticide Residues In PPTN Pasar Jumat Area

    International Nuclear Information System (INIS)

    Syahrir, Ulfa T.; Chairul, Sofnie M.

    2000-01-01

    Measurement of insecticide residue pollution from some organochlorin and organo-phosphat in soil and water samples were carried out 1999-2000 periode. The aim of the measurement was to get information about impact of laboratorium activity on insecticide contents in PPTN PASAR JUMAT. Gas chromatograph with electron capture and flame ionization detector were used to measure the pesticide content. Result of the measurement in PPTN area showed that organo-chlorin were alpha BHC, endosulfan band DDT and organo-phosphat were klorphyriphos and malation and were lower than tolerance level

  4. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes

    International Nuclear Information System (INIS)

    Choi, J.-S.; Soderlund, David M.

    2006-01-01

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1

  5. A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Simplification of agricultural landscapes is expected to have positive effects on many crop pests and negative effects on their natural enemies, potentially leading to increased pest pressure, decreased crop yield, and increased insecticide use. While many intermediate links in this causal chain have empirical support, there is mixed evidence for ultimate relationships between landscape simplification, crop yield, and insecticide use, especially at large spatial and temporal scales. We explored relationships between landscape simplification (proportion of a county in harvested cropland and insecticide use (proportion of harvested cropland treated with insecticides, using county-level data from the US Census of Agriculture and a variety of standard and spatiotemporal regression techniques. The best model indicated that insecticide use across the US has increased between 1997 and 2012, was strongly dependent on the crops grown in a county, increased with average farm income and size, and increased with annual growing degree days. After accounting for those variables, and other unidentified spatial and temporal structure in the data, there remained a statistically significant, moderate, positive relationship between insecticide use and landscape simplification. These results lend general support to the causal chain outlined above, and to the notion that a landscape perspective is useful for managing ecosystem services that are provided by mobile organisms and valuable to agriculture.

  6. The spinosyn family of insecticides: realizing the potential of natural products research.

    Science.gov (United States)

    Kirst, Herbert A

    2010-03-01

    The spinosyns are a large family of unprecedented compounds produced from fermentation of two species of Saccharopolyspora. Their core structure is a polyketide-derived tetracyclic macrolide appended with two saccharides. They show potent insecticidal activities against many commercially significant species that cause extensive damage to crops and other plants. They also show activity against important external parasites of livestock, companion animals and humans. Spinosad is a defined combination of the two principal fermentation factors, spinosyns A and D. Structure-activity relationships (SARs) have been extensively studied, leading to development of a semisynthetic second-generation derivative, spinetoram. The spinosyns have a unique mechanism of action (MOA) involving disruption of nicotinic acetylcholine receptors. When compared with many other insecticides, the spinosyns generally show greater selectivity toward target insects and lesser activity against many beneficial predators as well as mammals and other aquatic and avian animals. Their insecticidal spectrum, unique MOA and lower environmental effect make them useful new agents for modern integrated pest management programs. As a result, this work has received U S Presidential Green Chemistry Challenge Awards.

  7. Assessment of Adiantum incisum, Alternanthera pungens and Trichodesma indicum as bio-insecticides against stored grain pests

    International Nuclear Information System (INIS)

    Safdar, N.; Yasmin, A.

    2017-01-01

    This study investigated the insecticidal potential of Adiantum incisum Forssk (Pteridaceae), Alternanthera pungens Kunth (Amaranthaceae) and Trichodesma indicum L. (Boraginaceae). Aqueous, methanolic and n-hexane extracts of whole plants (roots, stem and leaves) were prepared using maceration technique. Insecticidal activities of aqueous, methanolic and n-hexane extracts of three plants (10, 20 and 30 mg/mL) were evaluated by impregnated filter paper insecticidal assay. Methanol and hexane extracts of Adiantum incisum gave effective LD 50 (15.3 mg/mL) against Callosobruchus chinensis and Sitophilus oryzae (LD5022 mg/mL) after 24 hours respectively. Present research elucidates the important phytochemicals (alkaloids, saponins and tannins) in three plants by FTIR and good insecticidal activity (LD50 < 25 mg/mL in 24 hours) against Callosobruchus chinensis and Sitophilus oryzae. Current study promotes further investigations for using these plant extracts as anti-feedants, repellents, fumigants and formulation of non-toxic bio-insecticides. (author)

  8. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  9. Green Chemistry: Strategy in Essential Oils Sustainability by Development of Insecticide Using Docking Method

    Science.gov (United States)

    Warsito; Utomo, EP; Ulfa, SM; Kholila, BN; Nindyasiwi, P.

    2018-01-01

    Sustainable agricultural applications in green chemistry was associated with the development of insecticide production based on secondary metabolites, such as essential oils. This research used In Silico modeling for insecticide formulation based on essential oils. The insecticidal formula was made on the basis of the Ki value of multiple docking results between the major components of essential oils as ligand with Spodotera litura receptor (2DJC) studied using Autodock Tools software. Insecticide formula activity test was done by contact method of toxic and leaf contact with essential oils concentration at level 0% - 1%. The results of the in silico study showed that the inhibition constants (Ki) of citronellal and anethol ligands combination were 1.6 mM however of citronellal and eugenol as ligands were 1.75 mM and formulated rasio (v/v), respectively 5 : 1 and 4 : 1. In addition, in vitro activity of insecticide formula with the ratio of 5: 1 possess LC50 value 0.10% (toxic contact) and 0.35% (leaf contact). While the formula with a ratio of 4: 1 possess LC50 value 0.05% (toxic contacts) and 0.31% (leaf contact).

  10. Malaria Vector Control Still Matters despite Insecticide Resistance.

    Science.gov (United States)

    Alout, Haoues; Labbé, Pierrick; Chandre, Fabrice; Cohuet, Anna

    2017-08-01

    Mosquito vectors' resistance to insecticides is usually considered a major threat to the recent progresses in malaria control. However, studies measuring the impact of interventions and insecticide resistance reveal inconsistencies when using entomological versus epidemiological indices. First, evaluation tests that do not reflect the susceptibility of mosquitoes when they are infectious may underestimate insecticide efficacy. Moreover, interactions between insecticide resistance and vectorial capacity reveal nonintuitive outcomes of interventions. Therefore, considering ecological interactions between vector, parasite, and environment highlights that the impact of insecticide resistance on the malaria burden is not straightforward and we suggest that vector control still matters despite insecticide resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A renaissance for botanical insecticides?

    Science.gov (United States)

    Isman, Murray B

    2015-12-01

    Botanical insecticides continue to be a subject of keen interest among the international research community, reflected in the steady growth in scientific publications devoted to the subject. Until very recently though, the translation of that theory to practice, i.e. the commercialisation and adoption of new botanical insecticides in the marketplace, has seriously lagged behind. Strict regulatory regimes, long the bane of small pesticide producers, are beginning to relax some of the data requirements for 'low-risk' pesticide products, facilitating movement of more botanicals into the commercial arena. In this paper I discuss some of the jurisdictions where botanicals are increasingly finding favour, some of the newer botanical insecticides in the plant and animal health arsenal and some of the specific sectors where botanicals are most likely to compete effectively with other types of insecticidal product. © 2015 Society of Chemical Industry.

  12. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense.

    Directory of Open Access Journals (Sweden)

    Guoxia Liu

    Full Text Available Chemosensory proteins (CSPs are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1 was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde. This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.

  13. Country-level operational implementation of the Global Plan for Insecticide Resistance Management.

    Science.gov (United States)

    Hemingway, Janet; Vontas, John; Poupardin, Rodolphe; Raman, Jaishree; Lines, Jo; Schwabe, Chris; Matias, Abrahan; Kleinschmidt, Immo

    2013-06-04

    Malaria control is reliant on the use of long-lasting pyrethroid-impregnated nets and/or indoor residual spraying (IRS) of insecticide. The rapid selection and spread of operationally significant pyrethroid resistance in African malaria vectors threatens our ability to sustain malaria control. Establishing whether resistance is operationally significant is technically challenging. Routine monitoring by bioassay is inadequate, and there are limited data linking resistance selection with changes in disease transmission. The default is to switch insecticides when resistance is detected, but limited insecticide options and resistance to multiple insecticides in numerous locations make this approach unsustainable. Detailed analysis of the resistance situation in Anopheles gambiae on Bioko Island after pyrethroid resistance was detected in this species in 2004, and the IRS program switched to carbamate bendiocarb, has now been undertaken. The pyrethroid resistance selected is a target-site knock-down resistance kdr-form, on a background of generally elevated metabolic activity, compared with insecticide-susceptible A. gambiae, but the major cytochrome P450-based metabolic pyrethroid resistance mechanisms are not present. The available evidence from bioassays and infection data suggests that the pyrethroid resistance mechanisms in Bioko malaria vectors are not operationally significant, and on this basis, a different, long-lasting pyrethroid formulation is now being reintroduced for IRS in a rotational insecticide resistance management program. This will allow control efforts to be sustained in a cost-effective manner while reducing the selection pressure for resistance to nonpyrethroid insecticides. The methods used provide a template for evidence-based insecticide resistance management by malaria control programs.

  14. Insecticidal and Repellant Activities of Four indigenous medicinal Plants Against Stored Grain Pest, Tribolium castaneum (Herbst (Coleoptera:Tenebrionidae

    Directory of Open Access Journals (Sweden)

    S.R.Pugazhvendan

    2012-05-01

    Full Text Available Objective: The present investigation was aimed to assess the impact of four indigenous plants for their insecticidal and repellent activity against Tribolium castaneum (Herbst, a stored grain pest and they were tested in the laboratory. Methods: Four widely distributed plants (Artemisia vulgaris, Sphaeranthus indicus, Tephrosia purpurea, and Prosopis juliflora were sequentially extracted with increasing polarity of organic solvents such as, hexane, chloroform and ethyl acetate were evaluated for their insecticidal and repellent activities against Tribolium castaneum by adapting the standard protocol in in vitro. Results: Data pertaining to the present investigation clearly revealed that the percentage of mortality was maximum in(72 hr 58% hexane extract of A. vulgaris, chloroform extract (72 hr 34% of S. indicus, and ethyl acetate extract (72 hr 52% of T. purpurea. Repellant activities of plant extracts were tested against T. castaneum, repellent activity was maximum in hexane extract of P. fuliflora, ( EPI value for P. fuliflora in 2.5% was – 0.11 and – 0.33 at 1hr and 6 hr respectively chloroform extract of T. purpurea (2.5% was -0.17 at 6 hr and ethyl acetate extract of S. indicus (2.5% was -0.65 at 6 hr against T. castaneum. Conclusions: The present work for botanical products to control the insect pest of stored grain Tribolium castaneum (Herbst.These results suggest the presence of actives toxic substances acting after consumption or topical application.

  15. Characterizing the insecticide resistance of Anopheles gambiae in Mali.

    Science.gov (United States)

    Cisse, Moussa B M; Keita, Chitan; Dicko, Abdourhamane; Dengela, Dereje; Coleman, Jane; Lucas, Bradford; Mihigo, Jules; Sadou, Aboubacar; Belemvire, Allison; George, Kristen; Fornadel, Christen; Beach, Raymond

    2015-08-22

    The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase

  16. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  17. Discovery of the aryl heterocyclic amine insecticides: synthesis, insecticidal activity, field results, mode of action and bioavailability of a leading field candidate.

    Science.gov (United States)

    Dent, William H; Pobanz, Mark A; Geng, Chaoxian; Sparks, Thomas C; Watson, Gerald B; Letherer, Theodore J; Beavers, Kenneth W; Young, Cathy D; Adelfinskaya, Yelena A; Ross, Ronald R; Whiteker, Greg; Renga, James

    2017-04-01

    γ-Amino butyric acid (GABA) antagonists are proven targets for control of lepidopteran and other pests. New heterocyclic compounds with high insecticidal activity were discovered using a competitive-intelligence-inspired scaffold-hopping approach to generate analogs of fipronil, a known GABA antagonist. These novel aryl heterocyclic amines (AHAs) displayed broad-spectrum activity on a number of chewing insect pests. Through >370 modifications of the core AHA structure, a 7-pyrazolopyridine lead molecule was found to exhibit much improved activity on a number of insect pests. In field trial studies, its performance was 2-4 times lower than commercial standards and also appeared to be species dependent, with good activity seen for larvae of Spodoptera exigua, but inactivity on larvae of Trichoplusia ni. An extensive investigational biology effort demonstrated that these AHA analogs appear to have multiple modes of action, including GABA receptor antagonism and mitopotential or uncoupler activity. The limited capability in larvae of T. ni to convert the lead molecule to its associated open form correlates with the low toxicity of the lead molecule in this species. This work has provided information that could aid investigations of novel GABA antagonists. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Evaluation of toxicity of biorational insecticides against larvae of the alfalfa weevil

    Directory of Open Access Journals (Sweden)

    Gadi V.P. Reddy

    Full Text Available The alfalfa weevil, Hypera postica (Coleoptera: Curculionidae, is a major pest of alfalfa Medicago sativa L. (Fabaceae. While H. postica usually causes the most damage before the first cutting, in summer of 2015 damaging levels of the pest persisted in Montana well after the first harvest of alfalfa. Although conventional insecticides can control H. postica, these chemicals have adverse effects on non-target organisms including pollinators and natural enemy insects. In this context, use of biorational insecticides would be the best alternative options, as they are known to pose less risk to non-target organisms. We therefore examined the six commercially available biorational insecticides against H. postica under laboratory condition: Mycotrol® ESO (Beauveria bassiana GHA, Aza-Direct® (Azadirachtin, Met52® EC (Metarhizium brunneum F52, Xpectro OD® (B. bassiana GHA + pyrethrins, Xpulse OD® (B. bassiana GHA + Azadirachtin and Entrust WP® (spinosad 80%. Concentrations of 0.1, 0.5, 1.0, and 2.0 times the lowest labelled rates were tested for all products. However, in the case of Entrust WP, additional concentrations of 0.001 and 0.01 times the lowest label rate were also assessed. Mortality rates were determined at 1–9 days post treatment. Based on lethal concentrations and relative potencies, this study clearly showed that Entrust was the most effective, causing 100% mortality within 3 days after treatment among all the tested materials. With regard to other biorational, Xpectro was the second most effective insecticide followed by Xpulse, Aza-Direct, Met52, and Mycotrol. Our results strongly suggested that these biorational insecticides could potentially be applied for H. postica control. Keywords: Low risk insecticides, Insect pathogenic fungi, Efficacy, Lethal concentration, Mortality rate

  19. A critical review of neonicotinoid insecticides for developmental neurotoxicity

    Science.gov (United States)

    Sheets, Larry P.; Li, Abby A.; Minnema, Daniel J.; Collier, Richard H.; Creek, Moire R.; Peffer, Richard C.

    2016-01-01

    Abstract A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  20. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    Science.gov (United States)

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.

  1. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Chlorfenapyr, a Potent Alternative Insecticide of Phoxim To Control Bradysia odoriphaga (Diptera: Sciaridae).

    Science.gov (United States)

    Zhao, Yunhe; Wang, Qiuhong; Wang, Yao; Zhang, Zhengqun; Wei, Yan; Liu, Feng; Zhou, Chenggang; Mu, Wei

    2017-07-26

    Bradysia odoriphaga is the major pest affecting Chinese chive production, and in China, it has developed widespread resistance to organophosphorus insecticides. Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action that does not confer cross-resistance to neurotoxic insecticides. However, the effect of chlorfenapyr on organophosphate-resistant B. odoriphaga is not well understood. The present study evaluated the potential of chlorfenapyr for the control of phoxim-resistant B. odoriphaga. The results showed that chlorfenapyr had significant insecticidal activity to B. odoriphaga in multiple developmental stages, and there were no significant differences in susceptibility between the field (phoxim-resistant) and laboratory (phoxim-susceptible) populations. The pot experiment and field trials confirmed the results of our laboratory bioassays. In the field trial, chlorfenapyr applied at 3.0, 6.0, or 12.0 kg of active ingredient (a.i.)/ha significantly decreased the number of B. odoriphaga and improved the yield compared to phoxim at 6.0 kg of a.i./ha and the control conditions. Moreover, the final residues of chlorfenapyr on plants were below the maximum residue limits (MRLs) as a result of its non-systemic activity. These results demonstrate that chlorfenapyr has potential as a potent alternative to phoxim for controlling B. odoriphaga.

  3. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii.

    Science.gov (United States)

    Main, Bradley J; Everitt, Amanda; Cornel, Anthony J; Hormozdiari, Fereydoun; Lanzaro, Gregory C

    2018-04-04

    Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase

  4. Insecticidal activity of bio-oils and biochar as pyrolysis products and their combination with microbial agents against Agrotis ipsilon (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Pyrolysis technology for producing biochar and bio-oils can be used as a potential alternative to make biopesticides, which are urgently needed in integrated pest management (IPM). Insecticidal activity of three components of bio-oils: aqueous, organic and their mixture, was evaluated individually a...

  5. Neurotoxicological effects and the mode of action of pyrethroid insecticides

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Bercken, Joep van den

    1990-01-01

    Neuroexcitatory symptoms of acute poisoning of vertebrates by pyrethroids are related to the ability of these insecticides to modify electrical activity in various parts of the nervous system. Repetitive nerve activity, particularly in the sensory nervous system, membrane depolarization, and

  6. Calcium uptake by sarcoplasmic reticulum in the presence of organophosphorus insecticide methyl-parathion

    International Nuclear Information System (INIS)

    Blasiak, J.

    1995-01-01

    Using an isotope labelling technique it has been shown that an organophosphorus insecticide methyl parathion (0,0-diethyl 0-4-nitrophenyl phosphorothionate) depressed calcium uptake by sarcoplasmic reticulum isolated from rabbit hind leg muscle. The effect was significant for insecticide concentrations of 50 and 100 μM and was dose-dependent. The insecticide exerted a more pronounced effect on calcium uptake in the presence of ATP in the reticulum environment than in the absence of ATP. The inhibitory action of methyl parathion on Ca 2+ accumulation by sarcoplasmic reticulum can cause a rise in myoplasmic free Ca 2+ , the essential prerequisite for contracture activation. Because methyl parathion, as well as other organophosphorus insecticides, is primarily neurotoxic, evidence of non-specific effect could be important for assessing its environmental safety. (author). 20 refs, 2 figs

  7. Insecticidal activity of Jatropha curcas extracts against housefly, Musca domestica.

    Science.gov (United States)

    Chauhan, Nitin; Kumar, Peeyush; Mishra, Sapna; Verma, Sharad; Malik, Anushree; Sharma, Satyawati

    2015-10-01

    The hexane and ether extracts of leaves, bark and roots of Jatropha curcas were screened for their toxicity against different developmental stages of housefly. The larvicidal, pupicidal and adulticidal activities were analysed at various concentrations (0.78-7.86 mg/cm(2)) of hexane and ether extracts. The lethal concentration values (LC50) of hexane extract of J. curcas leaves were 3.0 and 0.27 mg/cm(2) for adult and larval stages of housefly, respectively, after 48 h. Similarly, the ether extract of leaf showed the LC50 of 2.20 and 4.53 mg/cm(2) for adult and larval stages of housefly. Least toxicity was observed with hexane root extract of J. curcas with LC50 values of 14.18 and 14.26 mg/cm(2) for adult and larvae of housefly, respectively, after 48 h. The variation in LC50 against housefly pupae was found to be 8.88-13.10 mg/cm(2) at various J. curcas extract concentrations. The GC-MS analysis of J. curcas leaf extract revealed the presence of trans-phytol (60.81 %), squalene (28.58 %), phytol (2.52 %) and nonadecanone (1.06 %) as major components that could be attributed for insecticidal activity of J. curcas extracts.

  8. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  9. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing.

    Science.gov (United States)

    David, Jean-Philippe; Faucon, Frédéric; Chandor-Proust, Alexia; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Navratil, Vincent; Reynaud, Stéphane

    2014-03-05

    selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides.

  10. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation

    Science.gov (United States)

    de Almeida, Luis Gustavo; de Moraes, Luiz Alberto Beraldo; Trigo, José Roberto; Omoto, Celso

    2017-01-01

    The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects. PMID:28358907

  11. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation.

    Directory of Open Access Journals (Sweden)

    Luis Gustavo de Almeida

    Full Text Available The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects.

  12. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  13. Neonicotinoid insecticides negatively affect performance measures of non‐target terrestrial arthropods: a meta‐analysis

    Science.gov (United States)

    Main, Anson; Webb, Elisabeth B.; Goyne, Keith W.; Mengel, Doreen C.

    2018-01-01

    Neonicotinoid insecticides are currently the fastest‐growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non‐target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta‐analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.

  14. Assessing joint toxicity of four organophosphate and carbamate insecticides in common carp (Cyprinus carpio) using acetylcholinesterase activity as an endpoint.

    Science.gov (United States)

    Wang, Yanhua; Chen, Chen; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong

    2015-07-01

    Mixtures of organophosphate (OP) and carbamate (CB) pesticides are commonly detected in freshwater ecosystems. These pesticides inhibit the activity of acetylcholinesterase (AChE) and have potential to interfere with behaviors that may be essential for the survival of species. Although the effects of individual anticholinesterase insecticides on aquatic species have been studied for decades, the neurotoxicity of mixtures is still poorly understood. In the present study, brain AChE inhibition in carp (Cyprinus carpio) exposed to a series of concentrations of the organophosphates (malathion and triazophos) as well as the carbamates (fenobucarb and carbosulfan) was measured. In equitoxic mixtures, the observed AChE activity inhibition of the malathion plus triazophos, and triazophos plus carbosulfan mixtures, was synergism. In equivalent concentration mixtures, the combination of malathion plus fenobucarb mixture conformed to synergism, while the observed AChE activity inhibition of the remaining pairings was less than additive. Single pesticide risk assessments are likely to underestimate the impacts of these insecticides on carps in aquatic environment where mixtures occur. Moreover, mixtures of pesticides that have been commonly reported in aquatic ecosystems may pose a more important challenge than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Diagnostic Doses of Insecticides for Adult Aedes aegypti to Assess Insecticide Resistance in Cuba.

    Science.gov (United States)

    Rodríguez, María Magdalena; Crespo, Ariel; Hurtado, Daymi; Fuentes, Ilario; Rey, Jorge; Bisset, Juan Andrés

    2017-06-01

    The objective of this study was to determine diagnostic doses (DDs) of 5 insecticides for the Rockefeller susceptible strain of Aedes aegypti , using the Centers for Disease Control and Prevention (CDC) bottle bioassay as a tool for monitoring insecticide resistance in the Cuban vector control program. The 30-min DD values determined in this study were 13.5 μg/ml, 6.5 μg/ml, 6 μg/ml, 90.0 μg/ml, and 15.0 μg/ml for cypermethrin, deltamethrin, lambda-cyhalothrin, chlorpyrifos, and propoxur, respectively. To compare the reliability of CDC bottle bioassay with the World Health Organization susceptible test, 3 insecticide-resistant strains were evaluated for deltamethrin and lambda-cyhalothrin. Results showed that the bottles can be used effectively from 21 to 25 days after treatment and reused up to 4 times, depending on the storage time. The CDC bottle bioassay is an effective tool to assess insecticide resistance in field populations of Ae. aegypti in Cuba and can be incorporated into vector management programs using the diagnostic doses determined in this study.

  16. Lethal and Sub-lethal Effects of Four Insecticides on the Aphidophagous Coccinellid Adalia bipunctata (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Depalo, Laura; Lanzoni, Alberto; Masetti, Antonio; Pasqualini, Edison; Burgio, Giovanni

    2017-12-05

    Conventional insecticide assays, which measure the effects of insecticide exposure on short-term mortality, overlook important traits, including persistence of toxicity or sub-lethal effects. Therefore, such approaches are especially inadequate for prediction of the overall impact of insecticides on beneficial arthropods. In this study, the side effects of four modern insecticides (chlorantraniliprole, emamectin benzoate, spinosad, and spirotetramat) on Adalia bipunctata (L.) (Coleoptera: Coccinellidae) were evaluated under laboratory conditions by exposition on treated potted plants. In addition to investigation of acute toxicity and persistence of harmful activity in both larvae and adults of A. bipunctata, demographic parameters were evaluated, to provide a comprehensive picture of the nontarget effects of these products. Field doses of the four insecticides caused detrimental effects to A. bipunctata; but in different ways. Overall, spinosad showed the best toxicological profile among the products tested. Emamectin benzoate could be considered a low-risk insecticide, but had high persistence. Chlorantraniliprole exhibited lethal effects on early instar larvae and adults, along with a long-lasting activity, instead spirotetramat showed a low impact on larval and adult mortality and can be considered a short-lived insecticide. However, demographic analysis demonstrated that chlorantraniliprole and spirotetramat caused sub-lethal effects. Our findings highlight that sole assessment of mortality can lead to underestimation of the full impact of pesticides on nontarget insects. Demographic analysis was demonstrated to be a sensitive method for detection of the sub-lethal effects of insecticides on A. bipunctata, and this approach should be considered for evaluation of insecticide selectivity. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi

    Directory of Open Access Journals (Sweden)

    Lijian Xu

    2016-08-01

    Full Text Available Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008. With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis.

  18. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017.

    Science.gov (United States)

    Antonio-Nkondjio, Christophe; Sonhafouo-Chiana, N; Ngadjeu, C S; Doumbe-Belisse, P; Talipouo, A; Djamouko-Djonkam, L; Kopya, E; Bamou, R; Awono-Ambene, P; Wondji, Charles S

    2017-10-10

    Malaria remains a major public health threat in Cameroon and disease prevention is facing strong challenges due to the rapid expansion of insecticide resistance in vector populations. The present review presents an overview of published data on insecticide resistance in the main malaria vectors in Cameroon to assist in the elaboration of future and sustainable resistance management strategies. A systematic search on mosquito susceptibility to insecticides and insecticide resistance in malaria vectors in Cameroon was conducted using online bibliographic databases including PubMed, Google and Google Scholar. From each peer-reviewed paper, information on the year of the study, mosquito species, susceptibility levels, location, insecticides, data source and resistance mechanisms were extracted and inserted in a Microsoft Excel datasheet. The data collected were then analysed for assessing insecticide resistance evolution. Thirty-three scientific publications were selected for the analysis. The rapid evolution of insecticide resistance across the country was reported from 2000 onward. Insecticide resistance was highly prevalent in both An. gambiae (s.l.) and An. funestus. DDT, permethrin, deltamethrin and bendiocarb appeared as the most affected compounds by resistance. From 2000 to 2017 a steady increase in the prevalence of kdr allele frequency was noted in almost all sites in An. gambiae (s.l.), with the L1014F kdr allele being the most prevalent. Several detoxification genes (particularly P450 monooxygenase) were associated with DDT, pyrethroids and bendiocarb resistance. In An. funestus, resistance to DDT and pyrethroids was mainly attributed to the 119F-GSTe2 metabolic resistance marker and over-expression of P450 genes whereas the 296S-RDL mutation was detected in dieldrin-resistant An. funestus. The review provides an update of insecticide resistance status in malaria vector populations in Cameroon and stresses the need for further actions to reinforce malaria

  19. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises.

    Science.gov (United States)

    de Oliveira, Jhones Luiz; Campos, Estefânia Vangelie Ramos; Bakshi, Mansi; Abhilash, P C; Fraceto, Leonardo Fernandes

    2014-12-01

    This review article discusses the use of nanotechnology in combination with botanical insecticides in order to develop systems for pest control in agriculture. The main types of botanical insecticides are described, together with different carrier systems and their potential uses. The botanical insecticides include those based on active principles isolated from plant extracts, as well as essential oils derived from certain plants. The advantages offered by the systems are highlighted, together with the main technological challenges that must be resolved prior to future implementation of the systems for agricultural pest control. The use of botanical insecticides associated with nanotechnology offers considerable potential for increasing agricultural productivity, while at the same time reducing impacts on the environment and human health.

  20. Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production.

    Science.gov (United States)

    Leach, Heather; Wise, John C; Isaacs, Rufus

    2017-12-01

    High tunnels are large protective structures used for season extension of many crops, including raspberries. These structures are often covered in plastic films to reduce and diffuse ultraviolet light transmission for pest and disease control, but this may also affect the photodegradation and efficacy of pesticides applied under these tunnels. We compared the residue levels of ten insecticides under three tunnel plastics with varying levels of UV transmission and open field conditions. Raspberry plants placed in research-scale tunnels were treated with insecticides and residues on fruit and foliage were monitored for one or two weeks in early 2015 and early and late 2016. Plastics that reduce UV transmission resulted in 50% greater residues of some insecticides compared to transparent plastics, and 60% compared to uncovered tunnels. This increased persistence of residues was evident within 1 day and remained consistently higher for up to 14 days. This pattern was demonstrated for multiple insecticides, including bifenthrin, esfenvalerate, imidacloprid, thiamethoxam, and spinosad. In contrast, the insecticide malathion degraded rapidly regardless of the plastic treatment, indicating less sensitivity to photodegradation. Bioassays using insecticide-treated leaves that were under UV-blocking plastic revealed higher mortality of the invasive fruit pest, Drosophila suzukii, compared to leaves that were uncovered. This indicates that the activity of pesticides under high tunnels covered in UV-reducing plastics may be prolonged, allowing for fewer insecticide applications and longer intervals between sprays. This information can be used to help optimize pest control in protected culture berry production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Preparation of durable insecticide cotton fabrics through sol–gel treatment with permethrin

    OpenAIRE

    Ardanuy Raso, Mònica; Faccini, Mirko; Amantia, David; Aubouy, Laurent; Borja, Guadalupe

    2014-01-01

    This paper presents the development of an industrially viable procedure for the fabrication of durable insecticide textiles based on the sol–gel technique. Permethrin was incorporated on cotton fabrics by a silicon oxide nanocoating applied by conventional padding followed by curing. The effect of the sol–gel process parameters, such as silica solid content and the permethrin/tetraethyl orthosilicate (TEOS) ratio on the insecticide activity and on the textile properties of the resulting fabri...

  2. Plant compounds insecticide activity against Coleoptera pests of stored products Compostos de plantas com atividade inseticida a coleópteros-praga de produtos armazenados

    Directory of Open Access Journals (Sweden)

    Márcio Dionizio Moreira

    2007-07-01

    Full Text Available The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae, Rhyzopertha dominica F. (Bostrichidae and Sitophilus zeamais Mots. (Curculionidae. The plant species used were: basil (Ocimum selloi Benth., rue (Ruta graveolens L., lion's ear (Leonotis nepetifolia (L. R.Br., jimson weed (Datura stramonium L., baleeira herb (Cordia verbenacea L., mint (Mentha piperita L., wild balsam apple (Mormodica charantia L., and billy goat weed or mentrasto (Ageratum conyzoides L.. The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD50 from 2.72 to 39.71 mg g-1 a.i.. The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis.O objetivo deste trabalho foi selecionar plantas com atividade inseticida, para isolar, identificar e avaliar a bioatividade de compostos inseticidas presentes nessas plantas, contra as seguintes pragas de produtos armazenados da ordem Coleoptera: Sitophilus zeamais Mots. (Curculionidae, Rhyzopertha dominica F. (Bostrichidae e Oryzaephilus surinamensis L. (Silvanidae. As espécies de plantas usadas foram: anis (Ocimum selloi Benth, arruda (Ruta graveolens L., cordão-de-frade (Leonotis nepetifolia L., datura (Datura stramonium L., erva baleeira (Cordia verbenacea L., hortelã (Mentha piperita L., mel

  3. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  4. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  5. CADDIS Volume 2. Sources, Stressors and Responses: Insecticides - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the insecticides module, when to list insecticides as a candidate cause, ways to measure insecticides, simple and detailed conceptual diagrams for insecticides, insecticides module references and literature reviews.

  6. Insecticidal effect of furanocoumarins from fruits of Angelica archangelica L. against larvae Spodoptera littoralis Boisd

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Vrchotová, Naděžda

    2013-01-01

    Roč. 43, MAY 2013 (2013), s. 33-39 ISSN 0926-6690 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Keywords : Angelica archangelica * furanocoumarins * essential oils * plant extracts * spodoptera littoralis * botanical insecticides * insecticidal activity Subject RIV: EH - Ecology, Behaviour Impact factor: 3.208, year: 2013

  7. Alleloppathic effects and insecticidal activity of the aqueous extract of Satureja montana L.

    Directory of Open Access Journals (Sweden)

    Šućur Jovana

    2015-01-01

    Full Text Available Extensive use of synthetic insecticides, herbicides and other pesticides has negative effects on the environment and on human and animal health. Therefore scientists are turning towards natural pesticides such as active components of plant extracts. Effect of two concentrations (0.1% and 0.2% of Satureja montana L. aqueous extract on lipid peroxidation process, as well as the activity of the antioxidant enzymes (SOD, GPX, PPX and CAT in leaves and roots of pepper and black nightshade seedlings were examined 24, 72 and 120h after the treatment. Our results showed that higher concentration of S. montana aqueous extract induced lipid peroxidation in black nightshade roots. Furthermore, significant increases of pyrogallol and guaiacol peroxidase were detected in black nightshade leaves treated with 0.2% S. montana aqueous extract. The second aim was to evaluate effectiveness of aqueous extract as contact toxicant against whitefly. It was observed that aqueous extract with concentration of 0.2% showed toxic effect with 68.33% mortality after 96h.

  8. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.

    Science.gov (United States)

    Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie

    2018-02-01

    Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests

  9. Pheromone-assisted techniques to improve the efficacy of insecticide sprays against Linepithema humile (Hymenoptera: Formicidae).

    Science.gov (United States)

    Choe, Dong-Hwan; Tsai, Kasumi; Lopez, Carlos M; Campbell, Kathleen

    2014-02-01

    Outdoor residual sprays are among the most common methods for targeting pestiferous ants in urban pest management programs. If impervious surfaces such as concrete are treated with these insecticides, the active ingredients can be washed from the surface by rain or irrigation. As a result, residual sprays with fipronil and pyrethroids are found in urban waterways and aquatic sediments. Given the amount of insecticides applied to urban settings for ant control and their possible impact on urban waterways, the development of alternative strategies is critical to decrease the overall amounts of insecticides applied, while still achieving effective control of target ant species. Herein we report a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the Argentine ant. By applying insecticide sprays supplemented with an attractive pheromone compound, (Z)-9-hexadecenal, Argentine ants were diverted from nearby trails and nest entrances and subsequently exposed to insecticide residues. Laboratory experiments with fipronil and bifenthrin sprays indicated that the overall kill of the insecticides on Argentine ant colonies was significantly improved (57-142% increase) by incorporating (Z)-9-hexadecenal in the insecticide sprays. This technique, once it is successfully implemented in practical pest management programs, has the potential of providing maximum control efficacy with reduced amount of insecticides applied in the environment.

  10. An Operational Framework for Insecticide Resistance Management Planning.

    Science.gov (United States)

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.

  11. Insecticide susceptibility status of human biting mosquitoes in ...

    African Journals Online (AJOL)

    Background: There has been a rapid emergence in insecticide resistance among mosquito population to commonly used public health insecticides. This situation presents a challenge to chemicals that are currently used to control mosquitoes in sub-Saharan African. Furthermore, there is limited information on insecticide ...

  12. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania.

    Science.gov (United States)

    Nkya, Theresia E; Akhouayri, Idir; Poupardin, Rodolphe; Batengana, Bernard; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-01-25

    Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact

  13. Is Apis mellifera more sensitive to insecticides than other insects?

    Science.gov (United States)

    Hardstone, Melissa C; Scott, Jeffrey G

    2010-11-01

    Honey bees (Apis mellifera L.) are among the most important pollinators in natural and agricultural settings. They commonly encounter insecticides, and the effects of insecticides on honey bees have been frequently noted. It has been suggested that honey bees may be (as a species) uniquely sensitive to insecticides, although no comparative toxicology study has been undertaken to examine this claim. An extensive literature review was conducted, using data in which adult insects were topically treated with insecticides. The goal of this review was to summarize insecticide toxicity data between A. mellifera and other insects to determine the relative sensitivity of honey bees to insecticides. It was found that, in general, honey bees were no more sensitive than other insect species across the 62 insecticides examined. In addition, honey bees were not more sensitive to any of the six classes of insecticides (carbamates, nicotinoids, organochlorines, organophosphates, pyrethroids and miscellaneous) examined. While honey bees can be sensitive to individual insecticides, they are not a highly sensitive species to insecticides overall, or even to specific classes of insecticides. However, all pesticides should be used in a way that minimizes honey bee exposure, so as to minimize possible declines in the number of bees and/or honey contamination. Copyright © 2010 Society of Chemical Industry.

  14. Interactions of pyrethroid insecticides with GABAA and peripheral-type benzodiazepine receptors

    International Nuclear Information System (INIS)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1RαS, cis cypermethrin having an ED 50 value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of [ 3 H]Ro5-4864 to rat brain membranes with a significant correlation between the log EC 50 values for their activities as proconvulsants and the log IC 50 values for their inhibition of [ 3 H]Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific [ 35 S]TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of [ 35 S]TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated 36 Chloride influx. Moreover, the Type II pyrethroids elicited an increase in 36 chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin

  15. Investigation of the enzyme system of detoxification of insecticides in the Colorado beetle

    International Nuclear Information System (INIS)

    Leonova, I.N.; Nedel'kina, S.V.; Salganik, R.I.

    1986-01-01

    The activity of three enzymes systems of xenobiotic metabolism - cytochrome P-450-dependent monooxygenases, nonspecific esterases, and glutathione S-transferases - was investigated at various stages of the development of the Colorado beetle Leptinotarsa decemlineata. Substantial sex and ontogenetic differences in the content of cytochrome P-450, the position of the maxima of the CO-differential spectra of its reduced form, and the substrate specificity of cytochrome P-450 were demonstrated. An increase in the activity of nonspecific esterases with increasing age of Colorado beetle larvae was observed. The insecticide 1-naphtholenol methylcarbamate, which is metabolized by the system of cytochrome P-450-dependent monooxygenases, is more toxic at the larval stage of development in comparison with the imaginal stage, which is in good agreement with the activity of this system at different stages of development. The inhibitor of microsomal monooxygenases piperonyl butoxide more than doubles the toxicity of the insecticide in the Colorado beetle imago. The data presented are evidence of a different contribution of the systems of detoxification to the sensitivity of the Colorado beetle to insecticides at different stages of metamorphosis

  16. Effect of an insecticide on growth and metabolism of some non-target soil micro-organisms

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Nilakantan, Gita

    1975-01-01

    Aldicarb, a systemic insecticide, enhanced the growth of Rhizobium japonicum in vitro at 1 ppm concentration but inhibited it at 5 ppm level. The cell yields of Azotobacter chroococcum and Pseudomonas solanacearum were reduced by both the concentrations of the chemical. 1 and 5 ppm levels of the insecticide the incorporation of 14 C-glucose by R. japonicum, but it was stimulated in the case of R. chroococcum. In the case of P. solanacearum, however, 1 ppm level of the insecticide enhanced the incorporation of the label. Uptake of 32 P-di-potassium hydrogen phosphate by the cells was also significantly reduced indicating that the metabolic activities of these non-target soil micro-organisms are altered by the insecticide treatment. (author)

  17. Insecticide Mixtures Could Enhance the Toxicity of Insecticides in a Resistant Dairy Population of Musca domestica L

    Science.gov (United States)

    Khan, Hafiz Azhar Ali; Akram, Waseem; Shad, Sarfraz Ali; Lee, Jong-Jin

    2013-01-01

    House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-“A” and LC50: LC50-“B”) significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies. PMID:23613758

  18. Digestive enzyme as benchmark for insecticide resistance development in Culex pipiens larvae to chemical and bacteriologic insecticides.

    Science.gov (United States)

    Kamel, Nashwa H; Bahgat, Iman M; El Kady, Gamal A

    2013-04-01

    This work monitored changes in some digestive enzymes (trypsin and aminopeptidase) associated with the building up of resistance in Cx. pipiens larvae to two chemical insecticides (methomyl and/or malathion) and one biological insecticide (Bacillus thuringiensis-H14 or B.t H 14). The LC50 value of methomyl for both field- and the 12th generation (F12) of the selected strain was 1.789 ppm and 8.925 ppm respectively. The LC50 value of malathion for both field and the F12 of the selected strain was 0.082 ppm and 0.156 ppm respectively, and those of B.t H14 of field strain and the F12 was 2.550ppm & 2.395ppm respectively. The specific activity of trypsin enzyme in control susceptible colony was 20.806 +/- 0.452micromol/min/mg protein; but at F4 and F8 for malathion and methomyl treated larvae were 10.810 +/- 0.860 & 15.616+/-0.408 micromol/min/mg protein, respectively. Trypsin activity of F12 in treated larvae with B.t.H14 was 2.097 +/- 0.587 microiol/min/mg protein. Aminopeptidase specific activity for susceptible control larvae was 173.05 +/- 1.3111 micromol/min/mg protein. This activity decreased to 145.15 +/- 4.12, 152.497 +/- 6.775 & 102.04 +/- 3.58a micromol/min/mg protein after larval (F 12) treatment with methomyl, malathion and B.t H 14 respectively.

  19. Synthesis of the Insecticide Prothrin and Its Analogues from Biomass-Derived 5-(Cloromethyl)furfural

    Science.gov (United States)

    2013-12-19

    Synthesis of the Insecticide Prothrin and Its Analogues from Biomass-Derived 5‑(Chloromethyl) furfural Fei Chang,† Saikat Dutta,† James J. Becnel...derived platform chemical 5- (chloromethyl) furfural in six steps and overall 65% yield. Two structural analogues of prothrin were also prepared following...insecticidal activities. KEYWORDS: biomass, furans, pyrethroids, synthesis, 5-(chloromethyl) furfural ■ INTRODUCTION Previously, we have described the

  20. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  1. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.

    Science.gov (United States)

    Martinez, Ana Flávia Canovas; de Almeida, Luís Gustavo; Moraes, Luiz Alberto Beraldo; Cônsoli, Fernando Luís

    2017-06-27

    The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD 50  = 37.7 μg.cm -2 ). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring

  2. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    Science.gov (United States)

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

  3. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    International Nuclear Information System (INIS)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-01-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of [ 3 H]batrachotoxinin A 20α-benzoate ([ 3 H]BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of [ 3 H]BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited [ 3 H]BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents

  4. Role of neonicotinyl insecticides in Washington apple integrated pest management. Part I. Control of lepidopteran pests

    Science.gov (United States)

    Brunner, J. F.; Beers, E. H.; Dunley, J. E.; Doerr, M.; Granger, K.

    2005-01-01

    Three neonicotinyl insecticides, acetamiprid, thiacloprid and clothianidin, were evaluated for their impact on four species of lepidopteran pests of apple in Washington, the codling moth, Cydia pomonella (L.), the Pandemis leafroller, Pandemis pyrusana Kearfott, and the obliquebanded leafroller, Choristoneura rosaceana (Harris), and Lacanobia subjuncta (Grote & Robinson). None of the neonicotinyl insecticides demonstrated sufficient activity against P. pyrusana, C. rosaceana, or L. subjuncta to warrant field trials. Conversely, all had some activity against one or more stages of C. pomonella. Acetamiprid was highly toxic to larvae in laboratory bioassays, and had relatively long activity of field-aged residues (21 days). It also showed some toxicity to C. pomonella eggs (via topical exposure) and adults. Acetamiprid provided the highest level of fruit protection from C. pomonella attack in field trials conducted over five years in experimental orchards with extremely high codling moth pressure. Thiacloprid performed similarly in bioassays, but fruit protection in field trials was slightly lower than acetamiprid. Clothianidin showed moderate to high toxicity in bioassays, depending on the C. pomonella stage tested, but poor fruit protection from attack in field trials. None of the neonicotinyl insecticides were as toxic to larvae or effective in protecting fruit as the current standard organophosphate insecticide used for C. pomonella control, azinphosmethyl. However, both acetamiprid and thiacloprid should provide acceptable levels of C. pomonella control in commercial orchards where densities are much lower than in the experimental orchards used for our trials. The advantages and disadvantages of the neonicotinyl insecticides as replacements for the organophosphate insecticides and their role in a pest management system for Washington apple orchards are discussed. Abbreviation: MFR Maximum field rate PMID:16341246

  5. Mixture for Controlling Insecticide-Resistant Malaria Vectors

    OpenAIRE

    Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabire, R. K.; Lapied, B.; Chandre, Fabrice; Hougard, Jean-Marc

    2008-01-01

    The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area ne...

  6. Thionation of Essential Oils from Algerian Artemisia Herba-alba L. and Ruta Montana L.: Impact on their Antimicrobial and Insecticidal Activities

    Directory of Open Access Journals (Sweden)

    Nassiba Fekhar

    2017-12-01

    Full Text Available Essential oils were extracted from Artemisia herba-alba L. and Ruta montana L. by means of steam distillation and thionated with a reagent combination of phosphorus pentasulfide and sodium bicarbonate. Both parent essential oils and their modified ones were screened for their biological and insecticidal activities. The results showed that essential oils were composed mainly of ketones; essential oils from Artemisia herba-alba L. and those from Ruta montana L. consisted of bicyclic monoterpenes and acyclic aliphatic ketones (thujone, camphor and 2-undecanone, respectively. The antimicrobial activity of essential oils was substantially improved upon thionation (from 10 to 34 mm and from 11 to 32 mm. The insecticidal effect of the thionated essential oil from Ruta montana L. was observed to be very significant, but that of the essential oil from Artemisia herba-alba L. was observed to decrease (from 100% to 70% after 24 hrs. The extracted essential oils as well as their thionated forms were characterized by GC-MS, FT-IR, and UV-visible.

  7. Effects of Soil Water Deficit on Insecticidal Protein Expression in Boll Shells of Transgenic Bt Cotton and the Mechanism

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-12-01

    Full Text Available This study was conducted to investigate the effects of soil water deficit on insecticidal protein expression in boll shells of cotton transgenic for a Bt gene. In 2014, Bt cotton cultivars Sikang 1 (a conventional cultivar and Sikang 3 (a hybrid cultivar were planted in pots and five soil water content treatments were imposed at peak boll stage: 15% (G1, 35% (G2, 40% (G3, 60% (G4, and 75% field capacity (CK, respectively. Four treatments (G2, G3, G4, and CK were repeated in 2015 in the field. Results showed that the insecticidal protein content of boll shells decreased with increasing water deficit. Compared with CK, boll shell insecticidal protein content decreased significantly when soil water content was below 60% of maximum water holding capacity for Sikang 1 and Sikang 3. However, increased Bt gene expression was observed when boll shell insecticidal protein content was significantly reduced. Activity assays of key enzymes in nitrogen metabolism showed that boll shell protease and peptidase increased but nitrogen reductase and glutamic-pyruvic transaminase (GPT decreased. Insecticidal protein content exhibited significant positive correlation with nitrogen reductase and GPT activities; and significant negative correlation with protease and peptidase activities. These findings suggest that the decrease of insecticidal protein content associated with increasing water deficit was a net result of decreased synthesis and increased decomposition.

  8. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Science.gov (United States)

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Efficacy of insecticide residues on adult Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) mortality and injury in apple and peach orchards.

    Science.gov (United States)

    Leskey, Tracy C; Short, Brent D; Lee, Doo-Hyung

    2014-07-01

    The primary threat from Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) originates from populations continuously dispersing from and among wild and cultivated hosts, so many individuals may not be directly sprayed with insecticides. Limited information exists regarding field-based residual activity of insecticides for management of H. halys in tree fruit. Thus, we conducted field-based bioassays in apple and peach orchards to evaluate residual activity of insecticides commonly applied against H. halys. Adults used in these trials were collected from wild and cultivated hosts less than one week prior to testing to more accurately reflect the susceptibility of wild H. halys populations in the field throughout the season. Significantly higher mortality rates of Halyomorpha halys were observed early in the growing season, when overwintered adults were prevalent, compared with populations present later in the growing season that included new generation adults. Significantly higher mortality was recorded for adults exposed to fresh insecticide applications compared with three- and seven-day old residues. Typically, the addition of an adjuvant did not enhance efficacy or residual activity of insecticides. Significantly fewer injury sites were recorded on apples treated with dinotefuran and fenpropathrin compared with the untreated apples for all residue ages. Overwintered Halyomorpha halys populations are easier to kill with insecticide applications than the first and second generation which are present in the field during the mid- to late-season. Residual activity of nearly all insecticides decreased significantly three days after application and adjuvants generally did not increase residual activity. These factors should be considered in developing season-long programs for management of this invasive species in tree fruit. © 2013 Society of Chemical Industry.

  10. Degradation of Insecticides in Poultry Manure: Determining the Insecticidal Treatment Interval for Managing House Fly (Diptera: Muscidae) Populations in Poultry Farms.

    Science.gov (United States)

    Ong, Song-Quan; Ab Majid, Abdul Hafiz; Ahmad, Hamdan

    2016-04-01

    It is crucial to understand the degradation pattern of insecticides when designing a sustainable control program for the house fly, Musca domestica (L.), on poultry farms. The aim of this study was to determine the half-life and degradation rates of cyromazine, chlorpyrifos, and cypermethrin by spiking these insecticides into poultry manure, and then quantitatively analyzing the insecticide residue using ultra-performance liquid chromatography. The insecticides were later tested in the field in order to study the appropriate insecticidal treatment intervals. Bio-assays on manure samples were later tested at 3, 7, 10, and 15 d for bio-efficacy on susceptible house fly larvae. Degradation analysis demonstrated that cyromazine has the shortest half-life (3.01 d) compared with chlorpyrifos (4.36 d) and cypermethrin (3.75 d). Cyromazine also had a significantly greater degradation rate compared with chlorpyrifos and cypermethrin. For the field insecticidal treatment interval study, 10 d was the interval that had been determined for cyromazine due to its significantly lower residue; for ChCy (a mixture of chlorpyrifos and cypermethrin), the suggested interval was 7 d. Future work should focus on the effects of insecticide metabolites on targeted pests and the poultry manure environment.

  11. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    Science.gov (United States)

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50 = 193, 102, and 48 ng/ml, after 24, 48, and 72 h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72 h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72 h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Volatile aldehydes are promising broad-spectrum postharvest insecticides.

    Science.gov (United States)

    Hammond, D G; Rangel, S; Kubo, I

    2000-09-01

    A variety of naturally occurring aldehydes common in plants have been evaluated for their insecticidal activity and for phytotoxicity to postharvest fruits, vegetables, and grains. Twenty-nine compounds were initially screened for their activity against aphids on fava bean leaf disks. Application under reduced pressure (partial vacuum) for the first quarter of fumigation increased insecticidal activity severalfold. The 11 best aldehydes were assayed against aphids placed under the third leaf of whole heads of iceberg lettuce using the same two-tier reduced-pressure regime, which caused no additional detriment to the commodity over fumigation at atmospheric pressure. Phytotoxicity to naked and wrapped iceburg lettuce, green and red table grapes, lemon, grapefruit, orange, broccoli, avocado, cabbage, pinto bean, and rice at doses that killed 100% of aphids was recorded for three promising fumigants: propanal, (E)-2-pentenal, and 2-methyl-(E)-2-butenal. These three compounds have excellent potential as affordable postharvest insect control agents, killing 100% of the aphids with little or no detectable harm to a majority of the commodities tested. Preliminary assays indicate that similar doses are also effective against mealybugs, thrips, and whitefly.

  13. Environmental risk assessment of registered insecticides in Iran using Environmental Impact Quotient (EIQ index

    Directory of Open Access Journals (Sweden)

    S. Moinoddini

    2016-05-01

    Full Text Available In the last decades, pesticides have been used extensively, in order to control pests and plant diseases, but negative impacts of pesticides caused several environmental problems and put human health in danger. In order to decrease environmental hazards of pesticide, risk of pesticide application should be measured briefly and precisely. In this study environmental impacts of registered insecticides in Iran which applied in 2001-2002, 2003-2004, 2004-2005, are considered using environmental impact quotient (EIQ index. Results showed that among considered insecticides, Imidacloprid, Fipronil and Tiodicarb, potentially (EIQ were the most hazardous insecticides, respectively. Taking rate of application and active ingredient of insecticide in to account, environmental impact (practical toxicity per cultivated hectare (EIQ Field of each provinces were investigated. In this regard, among different province of Iran, Kerman, Mazandaran and Golestan were in danger more than the others, respectively. Besides, considering the amount of agricultural production in provinces, environmental impact per ton of production were calculated for each provinces which three northern provinces of Mazandaran, Golestan and Guilan, respectively endure the most environmental impact per ton of production. Eventually based on environmental impact quotient, results demonstrated that majority of environmental impacts of insecticide in Iran were due to inadequate knowledge and also overuse of a few number of insecticides. Therefore, by improving knowledge about environmental impact of pesticides and also developing environmental friendly and ecological based methods, negative environmental impacts of insecticides will be reduced significantly.

  14. Mesoionic Pyrido[1,2-a]pyrimidinone Insecticides: From Discovery to Triflumezopyrim and Dicloromezotiaz.

    Science.gov (United States)

    Zhang, Wenming

    2017-09-19

    One of the greatest global challenges is to feed the ever-increasing world population. The agrochemical tools growers currently utilize are also under continuous pressure, due to a number of factors that contribute to the loss of existing products. Mesoionic pyrido[1,2-a]pyrimidinones are an unusual yet very intriguing class of compounds. Known for several decades, this class of compounds had not been systemically studied until we started our insecticide discovery program. This Account provides an overview of the efforts on mesoionic pyrido[1,2-a]pyridinone insecticide discovery, beginning from the initial high throughput screen (HTS) discovery to ultimate identification of triflumezopyrim (4, DuPont Pyraxalt) and dicloromezotiaz (5) for commercialization as novel insecticides. Mesoionic pyrido[1,2-a]pyrimidinones with a n-propyl group at the 1-position, such as compound 1, were initially isolated as undesired byproducts from reactions for a fungicide discovery program at DuPont Crop Protection. Such compounds showed interesting insecticidal activity in a follow-up screen and against an expanded insect species list. The area became an insecticide hit for exploration and then a lead area for optimization. At the lead optimization stage, variations at three regions of compound 1, i.e., side-chain (n-propyl group), substituents on the 3-phenyl group, and substitutions on the pyrido- moiety, were explored with many analogues prepared and evaluated. Breakthrough discoveries included replacing the n-propyl group with a 2,2,2-trifluoroethyl group to generate compound 2, and then with a 2-chlorothiazol-5-ylmethyl group to form compound 3. 3 possesses potent insecticidal activity not only against a group of hopper species, including corn planthopper (Peregrinus maidis (Ashmead), CPH) and potato leafhopper (Empoasca fabae (Harris), PLH), as well as two key rice hopper species, namely, brown planthopper (Nilaparvata lugens (Stål), BPH) and rice green leafhopper (Nephotettix

  15. Combined Non-Target Effects of Insecticide and High Temperature on the Parasitoid Bracon nigricans.

    Directory of Open Access Journals (Sweden)

    Khaled Abbes

    Full Text Available We studied the acute toxicity and the sublethal effects, on reproduction and host-killing activity, of four widely used insecticides on the generalist parasitoid Bracon nigricans (Hymenoptera: Braconidae, a natural enemy of the invasive tomato pest, Tuta absoluta (Lepidoptera: Gelechiidae. Laboratory bioassays were conducted applying maximum insecticide label rates at three constant temperatures, 25, 35 and 40°C, considered as regular, high and very high, respectively. Data on female survival and offspring production were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinetoram caused 80% mortality at 25°C and 100% at higher temperatures, while spinosad caused 100% mortality under all temperature regimes. Cyantraniliprole was slightly toxic to B. nigricans adults in terms of acute toxicity at the three temperatures, while it did not cause any sublethal effects in egg-laying and host-killing activities. The interaction between the two tested factors (insecticide and temperature significantly influenced the number of eggs laid by the parasitoid, which was the lowest in the case of females exposed to chlorantraniliprole at 35°C. Furthermore, significantly lower B. nigricans demographic growth indexes were estimated for all the insecticides under all temperature conditions, with the exception of chlorantraniliprole at 25°C. Our findings highlight an interaction between high temperatures and insecticide exposure, which suggests a need for including natural stressors, such as temperature, in pesticide risk assessments procedures.

  16. Differences between organophosphorus insecticides in human self-poisoning: a prospective cohort study.

    Science.gov (United States)

    Eddleston, Michael; Eyer, Peter; Worek, Franz; Mohamed, Fahim; Senarathna, Lalith; von Meyer, Ludwig; Juszczak, Edmund; Hittarage, Ariyasena; Azhar, Shifa; Dissanayake, Wasantha; Sheriff, M H Rezvi; Szinicz, Ladislaus; Dawson, Andrew H; Buckley, Nick A

    Although more than 100 organophosphorus insecticides exist, organophosphorus poisoning is usually regarded as a single entity, distinguished only by the compound's lethal dose in animals. We aimed to determine whether the three most common organophosphorus insecticides used for self-poisoning in Sri Lanka differ in the clinical features and severity of poisoning they cause. We prospectively studied 802 patients with chlorpyrifos, dimethoate, or fenthion self-poisoning admitted to three hospitals. Blood cholinesterase activity and insecticide concentration were measured to determine the compound and the patients' response to insecticide and therapy. We recorded clinical outcomes for each patient. Compared with chlorpyrifos (35 of 439, 8.0%), the proportion dying was significantly higher with dimethoate (61 of 264, 23.1%, odds ratio [OR] 3.5, 95% CI 2.2-5.4) or fenthion (16 of 99, 16.2%, OR 2.2, 1.2-4.2), as was the proportion requiring endotracheal intubation (66 of 439 for chlorpyrifos, 15.0%; 93 of 264 for dimethoate, 35.2%, OR 3.1, 2.1-4.4; 31 of 99 for fenthion, 31.3%, 2.6, 1.6-4.2). Dimethoate-poisoned patients died sooner than those ingesting other pesticides and often from hypotensive shock. Fenthion poisoning initially caused few symptoms but many patients subsequently required intubation. Acetylcholinesterase inhibited by fenthion or dimethoate responded poorly to pralidoxime treatment compared with chlorpyrifos-inhibited acetylcholinesterase. Organophosphorus insecticide poisoning is not a single entity, with substantial variability in clinical course, response to oximes, and outcome. Animal toxicity does not predict human toxicity since, although chlorpyrifos is generally the most toxic in rats, it is least toxic in people. Each organophosphorus insecticide should be considered as an individual poison and, consequently, patients might benefit from management protocols developed for particular organophosphorus insecticides.

  17. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L [corrected].

    Directory of Open Access Journals (Sweden)

    Hafiz Azhar Ali Khan

    Full Text Available House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-"A" and LC50: LC50-"B" significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies.

  18. Purification of waters and elimination of organochloric insecticides by means of active coal

    Directory of Open Access Journals (Sweden)

    DRAGAN MARINOVIĆ

    2010-04-01

    Full Text Available Pollution of water and the determination of the degree of its pollution with numerous physical, chemical and biological polluters have become general, ever increasing social and health related problems. Within this study, the concentrations of some most frequently used organochloric insecticides (OCI: a-hexachlorocyclohexane (a-HCH, γ-hexachlorocyclohexane (lindane, heptachlor, aldrin, dieldrin, endrin, dichlorodiphenyl trichlorethane (DDT were investigated. OCI are highly toxic substances for the human population and their effective elimination from the environment is of paramount interest. To determine the OCI concentration in water samples, the EPA–608 method and the liquid–liquid extraction principle were applied. A procedure for OCI elimination was realized by passing the water over four columns filled with various active coals: KRF, K-81/B, NORIT ROW-0.8 and AQUA SORB CS. These active coals are carbonized coconut shells activated by different procedures. The obtained results indicated that best purification of potable and waste water achieved using a column with Norit Row-0.8 filling. Research proved that small quantities of OCI can also be effectively removed using a Norit Row-0.8 active coal filled column, without altering the organoleptic properties of the water, which meets the requirements of water purification processes.

  19. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Larvicidal activities of chinaberry, neem and Bacillus thuringiensis israelensis (Bti to an insecticide resistant population of Anopheles arabiensis from Tolay, Southwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Assalif Demissew

    2016-07-01

    Conclusions: Neem, chinaberry and Bti showed potent larvicidal and pupicidal activities. However, in the area, high level of mosquito resistance to pyrethroids and dichloro-diphenyl-tricgloroethane was seen which will pose serious challenge to vector control in the future. Therefore, using integrated approach including these botanical larvicides is warranted to manage insecticide resistance.

  1. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis.

    Science.gov (United States)

    Velmurugan, Ganesan; Ramprasath, Tharmarajan; Swaminathan, Krishnan; Mithieux, Gilles; Rajendhran, Jeyaprakash; Dhivakar, Mani; Parthasarathy, Ayothi; Babu, D D Venkatesh; Thumburaj, Leishman John; Freddy, Allen J; Dinakaran, Vasudevan; Puhari, Shanavas Syed Mohamed; Rekha, Balakrishnan; Christy, Yacob Jenifer; Anusha, Sivakumar; Divya, Ganesan; Suganya, Kannan; Meganathan, Boominathan; Kalyanaraman, Narayanan; Vasudevan, Varadaraj; Kamaraj, Raju; Karthik, Maruthan; Jeyakumar, Balakrishnan; Abhishek, Albert; Paul, Eldho; Pushpanathan, Muthuirulan; Rajmohan, Rajamani Koushick; Velayutham, Kumaravel; Lyon, Alexander R; Ramasamy, Subbiah

    2017-01-24

    Organophosphates are the most frequently and largely applied insecticide in the world due to their biodegradable nature. Gut microbes were shown to degrade organophosphates and cause intestinal dysfunction. The diabetogenic nature of organophosphates was recently reported but the underlying molecular mechanism is unclear. We aimed to understand the role of gut microbiota in organophosphate-induced hyperglycemia and to unravel the molecular mechanism behind this process. Here we demonstrate a high prevalence of diabetes among people directly exposed to organophosphates in rural India (n = 3080). Correlation and linear regression analysis reveal a strong association between plasma organophosphate residues and HbA1c but no association with acetylcholine esterase was noticed. Chronic treatment of mice with organophosphate for 180 days confirms the induction of glucose intolerance with no significant change in acetylcholine esterase. Further fecal transplantation and culture transplantation experiments confirm the involvement of gut microbiota in organophosphate-induced glucose intolerance. Intestinal metatranscriptomic and host metabolomic analyses reveal that gut microbial organophosphate degradation produces short chain fatty acids like acetic acid, which induces gluconeogenesis and thereby accounts for glucose intolerance. Plasma organophosphate residues are positively correlated with fecal esterase activity and acetate level of human diabetes. Collectively, our results implicate gluconeogenesis as the key mechanism behind organophosphate-induced hyperglycemia, mediated by the organophosphate-degrading potential of gut microbiota. This study reveals the gut microbiome-mediated diabetogenic nature of organophosphates and hence that the usage of these insecticides should be reconsidered.

  2. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  3. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Christof W Schneider

    Full Text Available The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee and clothianidin (0.05-2 ng/bee under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin and ≥1.5 ng/bee (imidacloprid during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further

  4. A potential target for organophosphate insecticides leading to spermatotoxicity.

    Science.gov (United States)

    Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro

    2013-10-16

    Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.

  5. Seven-Year Evaluation of Insecticide Tools for Emerald Ash Borer in Fraxinus pennsylvanica (Lamiales: Oleaceae) Trees.

    Science.gov (United States)

    Bick, Emily N; Forbes, Nora J; Haugen, Christopher; Jones, Grant; Bernick, Shawn; Miller, Fredric

    2018-04-02

    Emerald ash borer (EAB), Agrilus planipennis (Fairmaire; Coleoptera: Buprestidae), is decimating ash trees (Fraxinus spp.) in North America. Combatting EAB includes the use of insecticides; however, reported insecticide efficacy varies among published studies. This study assessed the effects of season of application, insecticide active ingredient, and insecticide application rate on green ash (Fraxinus pennsylvanica Marsh.) (Lamiales: Oleaceae) canopy decline caused by EAB over a 5- to 7-yr interval. Data suggested that spring treatments were generally more effective in reducing canopy decline than fall treatments, but this difference was not statistically significant. Lowest rates of decline (<5% over 5 yr) were observed in trees treated with imidacloprid injected annually in the soil during spring (at the higher of two tested application rates; 1.12 g/cm diameter at 1.3 m height) and emamectin benzoate injected biennially into the stem. All tested insecticides (dinotefuran, emamectin benzoate, and imidacloprid) under all tested conditions significantly reduced the rate of increase of dieback.

  6. RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China.

    Science.gov (United States)

    Yang, Chan; Huang, Zushi; Li, Mei; Feng, Xiangyang; Qiu, Xinghui

    2017-11-28

    , in all the nine tested An. sinensis populations in Guangxi, strongly indicate a risk of multiple insecticide resistance. The haplotype diversity plus genetic heterogeneities in the geographical distribution, and multiple origins of AsRDL alleles call for a location-customized strategy for monitoring and management of insecticide resistance.

  7. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    Science.gov (United States)

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  8. Microbes as interesting source of novel insecticides: A review ...

    African Journals Online (AJOL)

    ... strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management. Keywords: Microbes, insecticides, metabolites, pest management. African Journal of Biotechnology, Vol 13(26) 2582- ...

  9. Mechanistic modeling of insecticide risks to breeding birds in ...

    Science.gov (United States)

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. At the present time, current USEPA risk assessments do not include population-level endpoints. In this paper, we present a new mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to use agricultural fields during their breeding season. The new model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model has been applied to assess the relative risk of 12 insecticides used to control corn pests on a suite of 31 avian species known to use cornfields in midwestern agroecosystems. The 12 insecticides that were assessed in this study are all used to treat major pests of corn (corn root worm borer, cutworm, and armyworm). After running the integrated TIM/MCnest model, we found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and ë-cyhalothrin (

  10. Ecdysone Agonist: New Insecticides with Novel Mode of Action

    Directory of Open Access Journals (Sweden)

    Y. Andi Trisyono

    2002-12-01

    Full Text Available Development of insect resistance to insecticide has been the major driving force for the development of new insecticides. Awareness and demand from public for more environmentally friendly insecticides have contributed in shifting the trend from using broad spectrum to selective insecticides. As a result, scientists have looked for new target sites beyond the nervous system. Insect growth regulators (IGRs are more selective insecticides than conventional insecticides, and ecdysone agonists are the newest IGRs being commercialized, e.g. tebufenozide, methoxyfenozide, and halofenozide. Ecdysone agonists bind to the ecdysteroid receptors, and they act similarly to the molting hormone 20-hydroxyecdysone. The binding provides larvae or nymphs with a signal to enter a premature and lethal molting cycle. In addition, the ecdysone agonists cause a reduction in the number of eggs laid by female insects. The ecdysone agonists are being developed as selective biorational insecticides. Tebufenozide and methoxyfenozide are used to control lepidopteran insect pests, whereas halofenozide is being used to control coleopteran insect pests. Their selectivity is due to differences in the binding affinity between these compounds to the receptors in insects from different orders. The selectivity of these compounds makes them candidates to be used in combinations with other control strategies to develop integrated pest management programs in agricultural ecosystems. Key words: new insecticides, selectivity, ecdysone agonists

  11. Environmental insecticide residues from tsetse fly control measures in Uganda

    International Nuclear Information System (INIS)

    Sserunjoji-Sebalija, J.

    1976-01-01

    Up to June 1974 areas in Uganda totalling 8600km 2 have been successfully reclaimed from tsetse fly infestation by ground spray of 3% dieldrin water emulsions. A search for equally effective but less persistent and toxic compounds against tsetse flies has been unsuccessful. Fourteen insecticide formulations have been tested for their persistence on tree bark surfaces and, therefore, their availability and toxicity to the target tsetse flies. Only those compounds with a high immediate insecticidal activity (some higher than dieldrin) like endosulfan, Chlorfenvinphos and propoxur could merit further consideration in tsetse control. While some were toxic to tsetse as fresh deposits, they lacked sufficient persistence. A study of the environmental implication from the continued use of the highly persistent and toxic dieldrin has provided useful data on residues likely to be found both in terrestrial and aquatic fauna and flora. These are generally low. Moreover, there is evidence of degradation in some fish species (Protopterus aethiopicus and Clarias). Also, dilution factors and adsorption involving the muddy nature of water run-off, etc., and controlled burning of grasses after tsetse eradication would tend to inactivate the residual insecticide and protect aquatic systems. The general findings have indicated less risk than anticipated of the environmental contamination from tsetse control by application of persistent and toxic insecticides. (author)

  12. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination.

    Science.gov (United States)

    Christen, Verena; Fent, Karl

    2017-07-01

    Pesticides are implicated in the decline of honey bee populations. Many insecticides are neurotoxic and act by different modes of actions. Although a link between insecticide exposure and changed behaviour has been made, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic concentrations of two organophosphates, chlorpyrifos and malathion, the pyrethroid cypermethrin, and the ryanodine receptor activator, chlorantraniliprole. We assessed transcriptional alterations of selected genes at three exposure times (24 h, 48 h, 72 h) in caged honey bees exposed to different concentrations of these compounds. Our targeted gene expression concept focused on several transcripts, including nicotinic acetylcholine receptor α 1 and α 2 (nAChRα1, nAChRα2) subunits, the multifunctional gene vitellogenin, immune system related genes of three immune system pathways, genes belonging to the detoxification system and ER stress genes. Our data indicate a dynamic pattern of expressional changes at different exposure times. All four insecticides induced strong alterations in the expression of immune system related genes suggesting negative implications for honey bee health, as well as cytochrome P450 enzyme transcripts suggesting an interference with metabolism. Exposure to neurotoxic chlorpyrifos, malathion and cypermethrin resulted in up-regulation of nAChRα1 and nAChRα2. Moreover, alterations in the expression of vitellogenin occurred, which suggests implications on foraging activity. Chlorantraniliprole induced ER stress which may be related to toxicity. The comparison of all transcriptional changes indicated that the expression pattern is rather compound-specific and related to its mode of action, but clusters of common transcriptional changes between different compounds occurred. As transcriptional alterations occurred at environmental concentrations our data provide a molecular basis for observed

  13. Susceptibility to chemical insecticides of two Brazilian populations of the visceral leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Alexander, B; Barros, V C; de Souza, S F; Barros, S S; Teodoro, L P; Soares, Z R; Gontijo, N F; Reithinger, R

    2009-10-01

    To investigate the insecticide susceptibility of two geographically separated Lutzomyia longipalpis populations (Lapinha and Montes Claros) with different histories of insecticide exposure (i.e. no exposure and repeated exposure, respectively). (i) Bioassay monitoring of sand fly survival over time when exposed to a range of insecticides; and (ii) analysis of the level of insecticide detoxification enzymes in individual sand flies caught at both study sites. Insecticides tested were the organophosphates malathion and fenitrothion and the pyrethroids lambda-cyhalothrin, permethrin and deltamethrin. Survival analyses showed that whilst there was no overall significant difference in susceptibility of both populations to organophosphates, Lapinha sand flies were significantly more susceptible to pyrethroids than those from Montes Claros. Multiple regression analyses also showed that insecticide susceptibility in both locations varied with sand fly sex. The relative susceptibilities of the two sand fly populations to tested insecticides were also compared. Thus, Montes Claros sand flies were most susceptible to malathion, followed by fenitrothion, deltamethrin and permethrin. Those from Lapinha were most susceptible to lambda-cyhalothrin, followed by malathion, permethrin, deltamethrin and fenitrothion. Biochemical analyses demonstrated that Montes Claros sand flies had significantly lower insecticide detoxification enzyme activity than Lapinha sand flies. Our results are the first record of significantly reduced susceptibility to the insecticides used in control of wild populations of Lu. longipalpis. They demonstrate the importance of evaluating chemicals against this species by conventional bioassay and microplate assays before and during spraying programmes.

  14. The sublethal effects of endosulfan on the circadian rhythms and locomotor activity of two sympatric parasitoid species.

    Science.gov (United States)

    Delpuech, Jean-Marie; Bussod, Sophie; Amar, Aurelien

    2015-08-01

    The organochlorine insecticide endosulfan is dispersed worldwide and significantly contributes to environmental pollution. It is an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), which is also indirectly involved in photoperiodic time measurement. In this study, we show that endosulfan at a dose as low as LC 0.1 modified the rhythm of locomotor activity of two sympatric parasitoid species, Leptopilina boulardi and Leptopilina heterotoma. The insecticide strongly increased the nocturnal activity of both species and synchronized their diurnal activity; these activities were not synchronized under control conditions. Parasitoids are important species in ecosystems because they control the populations of other insects. In this paper, we discuss the possible consequences of these sublethal effects and highlight the importance of such effects in evaluating the consequences of environmental pollution due to insecticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.

  16. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity

    International Nuclear Information System (INIS)

    De Coninck, Dieter I.M.; De Schamphelaere, Karel A.C.; Jansen, Mieke; De Meester, Luc; Janssen, Colin R.

    2013-01-01

    Highlights: ► Interactive effects between a bacterial parasite and an insecticide in Daphnia magna. ► Two D. magna clones differing strongly in their sensitivity to the insecticide. ► Effects studied on various life-history and physiological endpoints. ► Genetic differences in strength and direction of interaction effects. -- Abstract: Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl × parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone. Our

  17. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, Dieter I.M., E-mail: Dieter.DeConinck@UGent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Jansen, Mieke; De Meester, Luc [Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven (Belgium); Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2013-04-15

    Highlights: ► Interactive effects between a bacterial parasite and an insecticide in Daphnia magna. ► Two D. magna clones differing strongly in their sensitivity to the insecticide. ► Effects studied on various life-history and physiological endpoints. ► Genetic differences in strength and direction of interaction effects. -- Abstract: Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl × parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone. Our

  18. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, Dieter I.M., E-mail: Dieter.DeConinck@UGent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Jansen, Mieke; De Meester, Luc [Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven (Belgium); Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2013-04-15

    Highlights: ► Interactive effects between a bacterial parasite and an insecticide in Daphnia magna. ► Two D. magna clones differing strongly in their sensitivity to the insecticide. ► Effects studied on various life-history and physiological endpoints. ► Genetic differences in strength and direction of interaction effects. -- Abstract: Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl × parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone

  19. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique.

    Science.gov (United States)

    Kloke, R Graham; Nhamahanga, Eduardo; Hunt, Richard H; Coetzee, Maureen

    2011-02-09

    The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS) programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475) of the total collections. Of the specimens identified to species by PCR (n = 167), 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53) and of those identified (n = 33) 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality) and lambda-cyhalothrin (14.6% mortality), less so to bendiocarb (71.5% mortality) and fully susceptible to both malathion and DDT (100%). Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo), strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166). One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of bendiocarb within the estate for seven years and the

  20. Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique

    Directory of Open Access Journals (Sweden)

    Nhamahanga Eduardo

    2011-02-01

    Full Text Available Abstract Background The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. Results No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475 of the total collections. Of the specimens identified to species by PCR (n = 167, 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53 and of those identified (n = 33 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality and lambda-cyhalothrin (14.6% mortality, less so to bendiocarb (71.5% mortality and fully susceptible to both malathion and DDT (100%. Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo, strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166. One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Conclusion Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of

  1. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    Science.gov (United States)

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  2. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae): a review.

    Science.gov (United States)

    Dinesh, Diwakar Singh; Kumari, Seema; Kumar, Vijay; Das, Pradeep

    2014-03-01

    Use of chemical pesticides is the current method for controlling sandflies. However, resistance is being developed in sandflies against the insecticide of choice that is DDT (dichlorodiphenyl trichloroethane). Botanicals have potential to act as an alternative to chemical insecticides as the crude extracts and active molecules of some plants show insecticidal effect to sandflies. This will lead to safe, easy and environment friendly method for control of sandflies. Therefore, information regarding botanicals acting as alternative to chemical insecticide against sandflies assumes importance in the context of development of resistance to insecticides as well as to prevent environment from contamination. This review deals with some plants and their products having repellent and insecticidal effect to sandflies in India and abroad. Different methods of extraction and their bioassay on sandflies have been emphasized in the text. Various extracts of some plants like Ricinus communis (Euphorbiaceae), Solanum jasminoides (Solanaceae), Bougainvillea glabra (Nyctaginaceae), Capparis spinosa (Capparidaceae), Acalypha fruticosa (Euphorbiaceae) and Tagetes minuta (Asteraceae) had shown repellent/insecticidal effect on sandflies. This review will be useful in conducting the research work to find out botanicals of Indian context having insecticidal effect on sandflies.

  3. Biochemical activity of the insecticide (diflubenzuron) residues on male albino rats

    International Nuclear Information System (INIS)

    Abdel- Naser, H.F.O.

    1997-01-01

    The toxicological studies of the insecticide. Diflubenzuron were investigated in experimental animals during 45th days feeding study. The studies carried out included treatment of wheat grains with 100 and 300 ppm DFB, this was accomplished by feeding male rats for 45 days (sub chronic toxicity study) on DFB incorporated in grains to monitor any possible change that might have been altered in the animal during that period. 6 tabs., 17 figs., 109 refs

  4. Effect of selected insecticides on SF9 insect cell line

    International Nuclear Information System (INIS)

    Saleh, M.; Rahmo, A.; Hajjar, J.

    2013-01-01

    The toxic effect of three insecticides: dimethoate (organophosphate insecticide), acetamiprid (neonicotinoid insecticide) and deltamethrin (pyrethroid insecticide) were evaluated in vitro on cultured Sf9 cell line. Cell growth inhibition was measured by the 3- (4,5- dimethylthiazol - 2-yl) - 2,5 - diphenyl tetrazolium bromide (MTT) assay. Regression Analysis was used to estimate the 20% inhibition of cells growth (IC 20). The IC 20 values obtained for deltamethrin, acetamipridand dimethoate were: 46.8, 61.6 and 68.9 μM, respectively. The proportion of phagocytic cells was positively correlated with the applied concentrations of the insecticides. (author)

  5. Insecticidal Potential of an Orally Administered Metabolic Extract of ...

    African Journals Online (AJOL)

    The insecticidal activity of Aspergillus niger IHCS-4 metabolic extract against Chrysomya chloropyga larvae was examined in vitro. The toxicity test revealed that 0.04 mg/g and 0.08 mg/g extract concentration significantly (P>0.05) affected the insect larvae, inducing 20% and 65% mortality respectively, within 24 hours.

  6. Activités insecticides de Striga hermonthica (Del. Benth (Scrophulariaceae sur Callosobrichus maculatus (Fab. (Coleoptera : Bruchidae

    Directory of Open Access Journals (Sweden)

    Nacoulma OG.

    2006-01-01

    Full Text Available Insecticidal activities of Striga hermonthica (Del. Benth (Scrophulariacecae on Callobruchus maculatus (Fab. (Coleptera Bruchidae. This paper deals with insecticidal potentialities of Striga hermonthica (Del. (Scrophulariaceae in protection of cowpea Vigna unguculata (L. Walp against Callosobruchus maculatus (Fab. (Coleoptera: Bruchidae during storage. Crude acetone extract at 0,5% w/w (100 mg of extract for 20 g of grain exhibits 48% of ovicidal effect and then reduces by half emergence rate of adult beetles at the first generation. This extract shows a weak insecticide activity against adults of C. maculatus. Petroleum ether fraction (0,4% w/w of the crude extract reveals ovicidal (51% and larvicidal (72% effects which reduce the emergence rate of adults to only 9%. LD50 and LD90 are monitored during crude extract fractionation to follow ovicidal and larvicidal compounds and to evaluate their efficacy during the isolation procedure. One fraction, mainly composed of two triterpenoid compounds has been identified as responsible of the ovicidal activity of S. hermonthica while the origin of the larvicidal activity hasn’t been identified.

  7. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    Science.gov (United States)

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  8. Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils.

    Science.gov (United States)

    Avicor, Silas W; Wajidi, Mustafa F F; El-Garj, Fatma M A; Jaal, Zairi; Yahaya, Zary S

    2014-10-01

    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

  9. Tri-trophic insecticidal effects of African plants against cabbage pests.

    Directory of Open Access Journals (Sweden)

    Blankson W Amoabeng

    Full Text Available Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae, Siam weed, Chromolaena odorata (Asteraceae, Cinderella weed, Synedrella nodiflora (Asteraceae, chili pepper, Capsicum frutescens (Solanaceae, tobacco, Nicotiana tabacum (Solanaceae cassia, Cassia sophera (Leguminosae, physic nut, Jatropha curcas (Euphorbiaceae, castor oil plant, Ricinus communis (Euphorbiaceae and basil, Ocimum gratissimum (Lamiaceae. In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis, all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from

  10. Tri-trophic insecticidal effects of African plants against cabbage pests.

    Science.gov (United States)

    Amoabeng, Blankson W; Gurr, Geoff M; Gitau, Catherine W; Nicol, Helen I; Munyakazi, Louis; Stevenson, Phil C

    2013-01-01

    Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily

  11. Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests

    Science.gov (United States)

    Amoabeng, Blankson W.; Gurr, Geoff M.; Gitau, Catherine W.; Nicol, Helen I.; Stevenson, Phil C.

    2013-01-01

    Botanical insecticides are increasingly attracting research attention as they offer novel modes of action that may provide effective control of pests that have already developed resistance to conventional insecticides. They potentially offer cost-effective pest control to smallholder farmers in developing countries if highly active extracts can be prepared simply from readily available plants. Field cage and open field experiments were conducted to evaluate the insecticidal potential of nine common Ghanaian plants: goat weed, Ageratum conyzoides (Asteraceae), Siam weed, Chromolaena odorata (Asteraceae), Cinderella weed, Synedrella nodiflora (Asteraceae), chili pepper, Capsicum frutescens (Solanaceae), tobacco, Nicotiana tabacum (Solanaceae) cassia, Cassia sophera (Leguminosae), physic nut, Jatropha curcas (Euphorbiaceae), castor oil plant, Ricinus communis (Euphorbiaceae) and basil, Ocimum gratissimum (Lamiaceae). In field cage experiments, simple detergent and water extracts of all botanical treatments gave control of cabbage aphid, Brevicoryne brassicae and diamondback moth, Plutella xylostella, equivalent to the synthetic insecticide Attack® (emamectin benzoate) and superior to water or detergent solution. In open field experiments in the major and minor rainy seasons using a sub-set of plant extracts (A. conyzoides, C. odorata, S. nodiflora, N. tabacum and R. communis), all controlled B. brassicae and P. xylostella more effectively than water control and comparably with or better than Attack®. Botanical and water control treatments were more benign to third trophic level predators than Attack®. Effects cascaded to the first trophic level with all botanical treatments giving cabbage head weights, comparable to Attack® in the minor season. In the major season, R. communis and A conyzoides treatment gave lower head yields than Attack® but the remaining botanicals were equivalent or superior to this synthetic insecticide. Simply-prepared extracts from readily

  12. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand

    Science.gov (United States)

    2013-01-01

    Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938

  13. Insecticidal defenses of Piperaceae from the neotropics.

    Science.gov (United States)

    Bernard, C B; Krishanmurty, H G; Chauret, D; Durst, T; Philogène, B J; Sánchez-Vindas, P; Hasbun, C; Poveda, L; San Román, L; Arnason, J T

    1995-06-01

    Insecticidal and growth-reducing properties of extracts of 14 species of American neotropical Piperaceae were investigated by inclusion in diets of a polyphagous lepidopteran, the European corn borer,Ostrinia nubilalis. Nutritional indices suggested most extracts acted by postdigestive toxicity.Piper aduncum, P. tuberculatum, andP. decurrens were among the most active species and were subjected to bioassay-guided isolation of the active components. Dillapiol was isolated from the active fraction ofP. aduncum, piperlonguminine was isolated fromP. tuberculatum, and a novel neolignan fromP. decurrens. The results support other studies on Asian and AfricanPiper species, which suggest that lignans and isobutyl amides are the active defence compounds in this family.

  14. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    Science.gov (United States)

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  15. Evaluation of Liquid and Bait Insecticides against the Dark Rover Ant (Brachymyrmex patagonicus

    Directory of Open Access Journals (Sweden)

    Javier G. Miguelena

    2014-11-01

    Full Text Available Dark rover ants (Brachymyrmex patagonicus, Mayr are an exotic ant species native to South America that has recently spread through the southern US. We evaluated the residual activity of three liquid insecticides (indoxacarb, fipronil and lambda-cyhalothrin as potential barrier treatments against these ants. The factors we considered include the use of a porous or non-porous surface, a short or long exposure time and the changes in insecticide activity after treatment during a 90 day period. We also tested the effect of baits containing three different active ingredients (imidacloprid, sodium tetraborate and indoxacarb on colony fragments of this species for a 15 day period. Both lambda-cyhalothrin® and indoxacarb® resulted in high levels of ant mortality up to 90 days after application. The results of exposure to fipronil® resembled those from the control treatment. Application of insecticides on a porous surface and the shorter exposure time generally resulted in greater ant survival. Of the baits tested, only the imidacloprid based one decreased ant survival significantly during the evaluation period. Within three days, the imidacloprid bait produced over 50% mortality which increased to over 95% by the end of the experiment. Results from the other two bait treatments were not significantly different from the control.

  16. The importance of considering community-level effects when selecting insecticidal malaria vector products

    Directory of Open Access Journals (Sweden)

    Coosemans Marc

    2011-08-01

    Full Text Available Abstract Background Insecticide treatment of nets, curtains or walls and ceilings of houses represent the primary means for malaria prevention worldwide. Direct personal protection of individuals and households arises from deterrent and insecticidal activities which divert or kill mosquitoes before they can feed. However, at high coverage, community-level reductions of mosquito density and survival prevent more transmission exposure than the personal protection acquired by using a net or living in a sprayed house. Methods A process-explicit simulation of malaria transmission was applied to results of 4 recent Phase II experimental hut trials comparing a new mosaic long-lasting insecticidal net (LLIN which combines deltamethrin and piperonyl butoxide with another LLIN product by the same manufacturer relying on deltamethrin alone. Results Direct estimates of mean personal protection against insecticide-resistant vectors in Vietnam, Cameroon, Burkina Faso and Benin revealed no clear advantage for combination LLINs over deltamethrin-only LLINs (P = 0.973 unless both types of nets were extensively washed (Relative mean entomologic inoculation rate (EIR ± standard error of the mean (SEM for users of combination nets compared to users of deltamethrin only nets = 0.853 ± 0.056, P = 0.008. However, simulations of impact at high coverage (80% use predicted consistently better impact for the combination net across all four sites (Relative mean EIR ± SEM in communities with combination nets, compared with those using deltamethrin only nets = 0.613 ± 0.076, P Conclusion Process-explicit simulations of community-level protection, parameterized using locally-relevant experimental hut studies, should be explicitly considered when choosing vector control products for large-scale epidemiological trials or public health programme procurement, particularly as growing insecticide resistance necessitates the use of multiple active ingredients.

  17. An insecticidal toxin from Nephila clavata spider venom.

    Science.gov (United States)

    Jin, Lin; Fang, Mingqian; Chen, Mengrou; Zhou, Chunling; Ombati, Rose; Hakim, Md Abdul; Mo, Guoxiang; Lai, Ren; Yan, Xiuwen; Wang, Yumin; Yang, Shilong

    2017-07-01

    Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on Na V and K V channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

  18. Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain-specific t-butylbicyclophosphorothionate receptor

    International Nuclear Information System (INIS)

    Casida, J.E.; Lawrence, L.J.

    1985-01-01

    [ 35 S]t-Butylbicyclophosphorothionate or [ 35 S]TBPS is an improved radioligand for the picrotoxinin binding site in rat brain synaptic membranes. The toxic isomers of the hexachlorocyclohexanes, polychlorobornanes, and chlorinated cyclodienes displace [ 35 S]TBPS with a stereospecificity and potency generally correlated with their mammalian toxicity. In a few cases this correlation is improved by correction for metabolic activation or detoxification on using a coupled brain receptor/liver microsomal oxidase system. The alpha-cyano-3-phenoxybenzyl pyrethroids, although less potent, inhibit [ 35 S]TBPS binding in a stereospecific manner correlated with their toxicity. Scatchard analyses indicate that these three classes of polychlorocycloalkane insecticides act at the TBPS binding site within the gamma-aminobutyric acid (GABA) receptor-ionophore complex whereas the alpha-cyano pyrethroids interact with a closely associated site. These insecticides and TBPS analogs may serve as useful probes further to elucidate the topography of the TBPS binding site and its relationship to the chloride channel. 46 references

  19. Sensitivity of Bemisia Tabaci (Hemiptera: Aleyrodidae) to Several New Insecticides in China: Effects of Insecticide Type and Whitefly Species, Strain, and Stage

    Science.gov (United States)

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Abstract Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC 50 values were higher for Lab-Q than for Lab-B; avermectin LC 50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China. PMID:25434040

  20. Insecticides suppress natural enemies and increase pest damage in cabbage.

    Science.gov (United States)

    Bommarco, Riccardo; Miranda, Freddy; Bylund, Helena; Björkman, Christer

    2011-06-01

    Intensive use of pesticides is common and increasing despite a growing and historically well documented awareness of the costs and hazards. The benefits from pesticides of increased yields from sufficient pest control may be outweighed by developed resistance in pests and killing of beneficial natural enemies. Other negative effects are human health problems and lower prices because of consumers' desire to buy organic products. Few studies have examined these trade-offs in the field. Here, we demonstrate that Nicaraguan cabbage (Brassica spp.) farmers may suffer economically by using insecticides as they get more damage by the main pest diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), at the same time as they spend economic resources on insecticides. Replicated similarly sized cabbage fields cultivated in a standardized manner were either treated with insecticides according common practice or not treated with insecticides over two seasons. Fields treated with insecticides suffered, compared with nontreated fields, equal or, at least in some periods of the seasons, higher diamondback moth pest attacks. These fields also had increased leaf damage on the harvested cabbage heads. Weight and size of the heads were not affected. The farmers received the same price on the local market irrespective of insecticide use. Rates of parasitized diamondback moth were consistently lower in the treated fields. Negative effects of using insecticides against diamondback moth were found for the density of parasitoids and generalist predatory wasps, and tended to affect spiders negatively. The observed increased leaf damages in insecticide-treated fields may be a combined consequence of insecticide resistance in the pest, and of lower predation and parasitization rates from naturally occurring predators that are suppressed by the insecticide applications. The results indicate biological control as a viable and economic alternative pest management strategy

  1. Chemical Composition and Insecticidal Activity of the Essential Oil of Illicium pachyphyllum Fruits against Two Grain Storage Insects

    Directory of Open Access Journals (Sweden)

    Hui-Wen Dong

    2012-12-01

    Full Text Available The aim of this research was to determine chemical composition and insecticidal activity of the essential oil of Illicium pachyphyllum fruits against two grain storage insects, Sitophilus zeamais and Tribolium castaneum, and to isolate any insecticidal constituents from the essential oil. The essential oil of I. pachyphyllum fruits was obtained by hydrodistillation and analyzed by GC-MS. A total of 36 components of the essential oil were identified, with the principal compounds in the essential oil being trans-ρ-mentha-1(7,8-dien-2-ol (24.56%, D-limonene (9.79%, caryophyllene oxide (9.32%, and cis-carveol (5.26% followed by β-caryophyllene (4.63% and bornyl acetate. Based on bioactivity-guided fractionation, the three active constituents were isolated and identified as trans-ρ-mentha-1(7,8-dien-2-ol, D-limonene and caryophyllene oxide. The essential oil of I. pachyphyllum fruits exhibited contact toxicity against S. zeamais and T. castaneum adults, with LD50 values of 17.33 μg/adult and 28.94 μg/adult, respectively. trans-p-Mentha-1(7,8-dien-2-ol (LD50 = 8.66 μg/adult and 13.66 μg/adult, respectively exhibited stronger acute toxicity against S. zeamais and T. castaneum adults than either caryophyllene oxide (LD50 = 34.09 μg/adult and 45.56 μg/adult and D-limonene (LD50 = 29.86 μg/adult and 20.14 μg/adult. The essential oil of I. pachyphyllum possessed fumigant toxicity against S. zeamais and T. castaneum adults with LC50 values of 11.49 mg/L and 15.08 mg/L, respectively. trans-p-Mentha-1(7,8-dien-2-ol exhibited stronger fumigant toxicity against S. zeamais and T. castaneum adults, respectively, with LC50 values of 6.01 mg/L and 8.14 mg/L, than caryophyllene oxide (LC50 = 17.02 mg/L and 15.98 mg/L and D-limonene (LC50 = 33.71 mg/L and 21.24 mg/L. The results indicate that the essential oil of I. pachyphyllum fruits and its constituent compounds have potential for development into natural insecticides or fumigants for the control of

  2. Protective effect and economic impact of insecticide application methods on barley

    Directory of Open Access Journals (Sweden)

    Alfred Stoetzer

    2014-03-01

    Full Text Available The objective of this work was to evaluate the protective effect of different forms of insecticide application on the transmission of yellow dwarf disease in barley cultivars, as well as to determine the production costs and the net profit of these managements. The experiments were carried out during 2011 and 2012 growing seasons, using the following managements at main plots: T1, seed treatment with insecticide (ST + insecticide on shoots at 15-day interval; T2, just ST; T3, insecticide applied on shoots, when aphid control level (CL was reached; T4, without insecticide; and T5, ST + insecticide on shoots when CL was reached. Different barley cultivars - BRS Cauê, BRS Brau and MN 6021 - were arranged in the subplots. Insecticides lambda cyhalothrin (pyrethroid and thiamethoxam (neonicotinoid were used. There were differences on yellow dwarf disease index in both seasons for the different treatments, while damage to grain yield was influenced by year and aphid population. Production costs and net profit were different among treatments. Seed treatment with insecticide is sufficient to reduce the transmission of yellow dwarf disease in years with low aphid population pressure, while in years with larger populations, the application of insecticide on shoots is also required.

  3. Chemical composition and toxic activity of essential oil of ...

    African Journals Online (AJOL)

    During our screening program for new agrochemicals from Chinese medicinal herbs, essential oil of Caryopteris incana aerial parts was found to possess strong insecticidal activities against the maize weevil, Sitophilus zeamais. A total of 37 components of the essential oil were identified by GC and GC/MS. Estragole ...

  4. Improvement of Some Biochemical Activities of Rats Treated with The Organophosphorus Insecticide Cytrolane Using Soyabean

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.M.; Elmahdy, A.A.

    2005-01-01

    This Study aims to evaluate the role of soyabean diet in improvement of some biochemical activities of female rats received daily oral dose 0.89 mg/kg (1/10 LD 50 )of cytrolane as organophosphorus insecticide on some biochemical activities in female rats for ten consecutive days. Prior pesticide administration, female rats received soyabean at dose 58 g/kg body weight for 2 and 4 weeks. Under the effect of cytrolane administration, the results showed significant increase in serum triglycerides, total cholesterol, HDL-cholesterol and CPK mean levels. Total serum protein and progesterone levels were significantly decreased compared to the control. On the other hand, by the administration of soyabean prior cytrolane, it reduced considerably the changes produced by cytrolane on levels of serum cholesterol, triglyceride, HDL-cholesterol which decreased more or less compared to control, total protein level was within normal value. Also, serum progesterone concentration increased. Therefore, soyabean administration accelerated the normalization and improvement processes of the altered lipid profiles, protein and progesterone hormone

  5. Plant volatile aldehydes as natural insecticides against stored-product beetles.

    Science.gov (United States)

    Hubert, Jan; Münzbergová, Zuzana; Santino, Angelo

    2008-01-01

    Infestation by stored-product pests causes serious losses in food and feed commodities. Among possible strategies against these pests, which aim to reduce the use of synthetic insecticides, including fumigants, natural insecticides produced by plants represent one of the most promising approaches for their ecochemical control. Three six-carbon and nine-carbon aldehydes, natural plant volatiles produced by the plant lipoxygenase pathway, were tested for their insecticidal activity against five species of stored-product beetles in feeding, fumigation and combined bioassays. The compounds (2E,6Z)-nonadienal, (2E)-nonenal and (2E)-hexenal were incorporated into feeding discs in feeding bioassays or evaporated from filter paper in closed glass chambers in fumigation tests. Beetle sensitivity to aldehydes differed according to the different treatments. The highest activity was obtained by (2E)-hexenal in fumigation tests, with the LC(50) ranging from 4 to 26 mg L(-1), while (2E, 6Z)-nonadienal was the most effective in feeding tests, giving LD(50)s ranging from 0.44 to 2.76 mg g(-1) when applied to feeding discs. Fumigation tests in the presence of wheat grains confirmed that (2E)-hexenal was the most effective compound, with a calculated LC(99) ranging from 33 to 166 mg L(-1). The results of both feeding and fumigation tests indicated that natural plant aldehydes are potential candidates to control stored-product beetles.

  6. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  7. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  8. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage.

    Science.gov (United States)

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC50 values were higher for Lab-Q than for Lab-B; avermectin LC50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Active insecticides for Diaphania hyalinata selective for the natural enemy Solenopsis saevissima.

    Science.gov (United States)

    Aguiar, Alex R; Alvarenga, Elson S; Lopes, Mayara C; Santos, Izailda B Dos; Galdino, Tarcisio V; Picanço, Marcelo C

    2016-09-01

    The objective of this study was to determine the toxicity of the nine synthetic dienamides against the insect pest Diaphania hyalinata (melonworm) and the selectivity of these substances for the predator Solenopsis saevissima (fire ant). Four bioassays were conducted. To begin with, the dienamides that caused high mortality of D. hyalinata have been selected. In the second bioassay the dose-mortality curves of the selected dienamides have been constructed. In the third bioassay, the survival curves for D. hyalinata and the elapsed time to kill 50% of their population have been determined. In the fourth biological test, the selectivity of the substances to the predator S. saevissima has been evaluated. The most active (2E,4E)-N-butylhexa-2,4-dienamide 3d has killed 95% of the melonworm, D. hyalinata, and less than 10% of the natural enemy S. saevissima. The results presented by this compound are superior to the outcome displayed by the commercial insecticide Malathion®. Three of the dienamides prepared in this manuscript have proven to be selective in killing the pest, but not the beneficial insect.

  10. Monoclonal Antibody Analysis and Insecticidal Spectrum of Three Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus thuringiensis

    Science.gov (United States)

    Höfte, Herman; Van Rie, Jeroen; Jansens, Stefan; Van Houtven, Annemie; Vanderbruggen, Hilde; Vaeck, Mark

    1988-01-01

    We have investigated the protein composition and the insecticidal spectrum of crystals of 29 Bacillus thuringiensis strains active against lepidopteran larvae. All crystals contained proteins of 130 to 140 kilodaltons (kDa) which could be grouped into three types by the molecular weight of the protoxin and the trypsin-activated core fragment. Proteins of the three types showed a characteristic insecticidal spectrum when tested against five lepidopteran species. Type A crystal proteins were protoxins of 130 or 133 kDa, which were processed into 60-kDa toxins by trypsin. Several genes encoding crystal proteins of this type have been cloned and sequenced earlier. They are highly conserved in the N-terminal half of the toxic fragment and were previously classified in three subtypes (the 4.5-, 5.3-, and 6.6-kilobase subtypes) based on the restriction map of their genes. The present study shows that different proteins of these three subtypes were equally toxic against Manduca sexta and Pieris brassicae and had no detectable activity against Spodoptera littoralis. However, the 4.5-, 5.3-, and 6.6-kilobase subtypes differed in their toxicity against Heliothis virescens and Mamestra brassicae. Type B crystal proteins consisted of 140-kDa protoxins with a 55-kDa tryptic core fragment. These were only active against one of the five insect species tested (P. brassicae). The protoxin and the trypsin-activated toxin of type C were 135- and 63-kDa proteins, respectively. Proteins of this type were associated with high toxicity against S. littoralis and M. brassicae. A panel of 35 monoclonal antibodies was used to compare the structural characteristics of crystal proteins of the three different types and subtypes. Each type of protein could be associated with a typical epitope structure, indicating an unambiguous correlation between antigenic structure and insect specificity. Images PMID:16347711

  11. 2 Assessmen of the Efficiency of Insecticide

    African Journals Online (AJOL)

    Administrator

    malaria vectors and nuisance in West Africa – a-part. 2. Field evaluation. Malar J. 9: 341. Mosqueira B., Duchon S., Chandre F., Hougard, J. M., Carnevale P. and Mas-Coma S. (2010). Efficacy of an insecticide paint against insecticide- susceptible and resistant mosquitoes – b- Part 1: Laboratory evaluation. Malar J. 9: 340.

  12. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    2007-01-24

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.  Created: 1/24/2007 by Emerging Infectious Diseases.   Date Released: 3/13/2007.

  13. Insect Ryanodine Receptor: Distinct But Coupled Insecticide Binding Sites for [N-C3H3]Chlorantraniliprole, Flubendiamide, and [3H]Ryanodine

    OpenAIRE

    Isaacs, André K.; Qi, Suzhen; Sarpong, Richmond; Casida, John E.

    2012-01-01

    Radiolabeled anthranilic diamide insecticide [N-C3H3]chlorantraniliprole was synthesized at high specific activity and compared with phthalic diamide insecticide flubendiamide and [3H]ryanodine in radioligand binding studies with house fly muscle membranes to provide the first direct evidence with a native insect ryanodine receptor that the major anthranilic and phthalic diamide insecticides bind at different allosterically coupled sites, i.e. there are three distinct Ca2+-release channel tar...

  14. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment

    Directory of Open Access Journals (Sweden)

    Samantha A. Radford

    2018-02-01

    Full Text Available Since urinary insecticide metabolites are commonly used as biomarkers of exposure, it is important that we quantify whether insecticides degrade in food and beverages in order to better perform risk assessment. This study was designed to quantify degradation of organophosphorus and pyrethroid insecticides in beverages. Purified water, white grape juice, orange juice, and red wine were fortified with 500 ng/mL diazinon, malathion, chlorpyrifos, permethrin, cyfluthrin, cypermethrin, and deltamethrin, and aliquots were extracted several times over a 15-day storage period at 2.5 °C. Overall, statistically significant loss of at least one insecticide was observed in each matrix, and at least five out of seven insecticides demonstrated a statistically significant loss in all matrices except orange juice. An investigation of an alternative mechanism of insecticide loss—adsorption onto the glass surface of the storage jars—was carried out, which indicated that this mechanism of loss is insignificant. Results of this work suggest that insecticides degrade in these beverages, and this degradation may lead to pre-existing insecticide degradates in the beverages, suggesting that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  15. Biological efficacy of the ecotoxically favourable insecticides and ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... different, studies done in natural conditions should be favored. Key words: Insecticides ... insecticide was applied on synthetic or natural food of the target insect ..... Pozsgay M, Fast P, Kaplan H, Carey PR (1987). The effect of ...

  16. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change.

    Science.gov (United States)

    Cui, Feng; Li, Mei-Xia; Chang, Hai-Jing; Mao, Yun; Zhang, Han-Ying; Lu, Li-Xia; Yan, Shuai-Guo; Lang, Ming-Lin; Liu, Li; Qiao, Chuan-Ling

    2015-06-01

    Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Molecular Insights into the Potential Insecticidal Interaction of β-Dihydroagarofuran Derivatives with the H Subunit of V-ATPase

    Directory of Open Access Journals (Sweden)

    Jielu Wei

    2017-10-01

    Full Text Available Celangulin V (CV, one of dihydroagarofuran sesquiterpene polyesters isolated from Chinese bittersweet (Celastrus angulatus Maxim, is famous natural botanical insecticide. Decades of research suggests that is displays excellent insecticidal activity against some insects, such as Mythimna separata Walker. Recently, it has been validated that the H subunit of V-ATPase is one of the target proteins of the insecticidal dihydroagarofuran sesquiterpene polyesters. As a continuation of the development of new pesticides from these natural products, a series of β-dihydroagarofuran derivatives have been designed and synthesized. The compound JW-3, an insecticidal derivative of CV with a p-fluorobenzyl group, exhibits higher insecticidal activity than CV. In this study, the potential inhibitory effect aused by the interaction of JW-3 with the H subunit of V-ATPase c was verified by confirmatory experiments at the molecular level. Both spectroscopic techniques and isothermal titration calorimetry measurements showed the binding of JW-3 to the subunit H of V-ATPase was specific and spontaneous. In addition, the possible mechanism of action of the compound was discussed. Docking results indicated compound JW-3 could bind well in ‘the interdomain cleft’ of the V-ATPase subunit H by the hydrogen bonding and make conformation of the ligand–protein complex become more stable. All results are the further validations of the hypothesis, that the target protein of insecticidal dihydroagarofuran sesquiterpene polyesters and their β-dihydroagarofuran derivatives is the subunit H of V-ATPase. The results also provide new ideas for developing pesticides acting on V-ATPase of insects.

  18. Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management.

    Science.gov (United States)

    Pocquet, Nicolas; Darriet, Frédéric; Zumbo, Betty; Milesi, Pascal; Thiria, Julien; Bernard, Vincent; Toty, Céline; Labbé, Pierrick; Chandre, Fabrice

    2014-07-01

    Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. The low resistance observed in Mayotte's main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control

  19. Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocera).

    Science.gov (United States)

    Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François

    2016-11-01

    The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.

  20. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    Science.gov (United States)

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  1. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.

  2. Effectiveness and profitability of insecticide formulations used for ...

    African Journals Online (AJOL)

    To identify optimal pest control with lower economic risks to farmers, we investigated the effectiveness and profitability of different insecticides and insecticide formulations against bean fly (Ophiomyia spp.) and bean flower thrips (Megalurothrips sjostedtii). Two separate experiments were conducted during 2009 to 2012.

  3. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin.

  4. Minireview: Mode of action of meta-diamide insecticides.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinichi

    2015-06-01

    Meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor noncompetitive antagonists showing high insecticidal activity against Spodoptera litura. The mode of action of the meta-diamides was demonstrated to be distinct from that of conventional noncompetitive antagonists (NCAs) such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. It was suggested that meta-diamides act at or near G336 in the M3 region of the Drosophila RDL GABA receptor. Although the site of action of the meta-diamides appears to overlap with that of macrocyclic lactones including avermectins and milbemycins, differential effects of mutations on the actions of the meta-diamides and the macrocyclic lactones were observed. Molecular modeling studies revealed that the meta-diamides may bind to an inter-subunit pocket near G336 in the Drosophila RDL GABA receptor better when in the closed state, which is distinct from the NCA-binding site, which is in a channel formed by M2s. In contrast, the macrocyclic lactones were suggested to bind to an inter-subunit pocket near G336 in the Drosophila RDL GABA receptor when in the open state. Furthermore, mechanisms underlying the high selectivity of meta-diamides are discussed. This minireview highlights the unique features of novel meta-diamide insecticides and demonstrates why meta-diamides are anticipated to become prominent insecticides that are effective against pests resistant to cyclodienes and fipronil. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density.

    Science.gov (United States)

    Leistra, Minze; Zweers, Anton J; Warinton, Jacqui S; Crum, Steven J H; Hand, Laurence H; Beltman, Wim H J; Maund, Stephen J

    2004-01-01

    Use of the insecticide lambda-cyhalothrin in agriculture may result in the contamination of water bodies, for example by spray drift. Therefore, the possible exposure of aquatic organisms to this insecticide needs to be evaluated. The exposure of the organisms may be reduced by the strong sorption of the insecticide to organic materials and its susceptibility to hydrolysis at the high pH values in the natural range. In experiments done in May and August, formulated lambda-cyhalothrin was mixed with the water body of enclosures in experimental ditches containing a bottom layer and macrophytes (at different densities) or phytoplankton. Concentrations of lambda-cyhalothrin in the water body and in the sediment layer, and contents in the plant compartment, were measured by gas-liquid chromatography at various times up to 1 week after application. Various water quality parameters were also measured. Concentrations of lambda-cyhalothrin decreased rapidly in the water column: 1 day after application, 24-40% of the dose remained in the water, and by 3 days it had declined to 1.8-6.5%. At the highest plant density, lambda-cyhalothrin residue in the plant compartment reached a maximum of 50% of the dose after 1 day; at intermediate and low plant densities, this maximum was only 3-11% of the dose (after 1-2 days). The percentage of the insecticide in the ditch sediment was 12% or less of the dose and tended to be lower at higher plant densities. Alkaline hydrolysis in the water near the surface of macrophytes and phytoplankton is considered to be the main dissipation process for lambda-cyhalothrin.

  6. Mapping insecticide resistance in Anopheles gambiae (s.l.) from Côte d'Ivoire.

    Science.gov (United States)

    Camara, Soromane; Koffi, Alphonsine A; Ahoua Alou, Ludovic P; Koffi, Kouakou; Kabran, Jean-Paul K; Koné, Aboubacar; Koffi, Mathieu F; N'Guessan, Raphaël; Pennetier, Cédric

    2018-01-08

    Insecticide resistance in malaria vectors is an increasing threat to vector control tools currently deployed in endemic countries. Resistance management must be an integral part of National Malaria Control Programmes' (NMCPs) next strategic plans to alleviate the risk of control failure. This obviously will require a clear database on insecticide resistance to support the development of such a plan. The present work gathers original data on insecticide resistance between 2009 and 2015 across Côte d'Ivoire in West Africa. Two approaches were adopted to build or update the resistance data in the country. Resistance monitoring was conducted between 2013 and 2015 in 35 sentinel sites across the country using the WHO standard procedure of susceptibility test on adult mosquitoes. Four insecticide families (pyrethroids, organochlorides, carbamates and organophosphates) were tested. In addition to this survey, we also reviewed the literature to assemble existing data on resistance between 2009 and 2015. High resistance levels to pyrethroids, organochlorides and carbamates were widespread in all study sites whereas some Anopheles populations remained susceptible to organophosphates. Three resistance mechanisms were identified, involving high allelic frequencies of kdr L1014F mutation (range = 0.46-1), relatively low frequencies of ace-1 R (below 0.5) and elevated activity of insecticide detoxifying enzymes, mainly mixed function oxidases (MFO), esterase and glutathione S-transferase (GST) in almost all study sites. This detailed map of resistance highlights the urgent need to develop new vector control tools to complement current long-lasting insecticidal nets (LLINs) although it is yet unclear whether these resistance mechanisms will impact malaria transmission control. Researchers, industry, WHO and stakeholders must urgently join forces to develop alternative tools. By then, NMCPs must strive to develop effective tactics or plans to manage resistance keeping in mind

  7. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    Science.gov (United States)

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains. © 2012 The Royal Entomological Society.

  8. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    OpenAIRE

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementat...

  9. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2002-01-01

    Behavioral, neurochemical, and immunocytochemical studies characterized the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and permethrin (PM...

  10. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2001-01-01

    Behavioral, neurochemical, and immunocytochemical studies characterized the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and permethrin (PM...

  11. Chemical constituents and insecticidal activities of the essential oil from Amomum tsaoko against two stored-product insects.

    Science.gov (United States)

    Wang, Ying; You, Chun-Xue; Wang, Cheng-Fang; Yang, Kai; Chen, Ran; Zhang, Wen-Juan; Du, Shu-Shan; Geng, Zhu-Feng; Deng, Zhi-Wei

    2014-01-01

    The aim of this research was to determine the chemical constituents and toxicities of the essential oil derived from Amomum tsaoko Crevost et Lemarie fruits against Tribolium castaneum (Herbst) and Lasioderma serricorne (Fabricius). Essential oil of A. tsaoko was obtained from hydrodistillation and was investigated by gas chromatography-mass spectrometry (GC-MS). GC-MS analysis of the essential oil resulted in the identification of 43 components, of which eucalyptol (23.87%), limonene (22.77%), 2-isopropyltoluene (6.66%) and undecane (5.74%) were the major components. With a further isolation, two active constituents were obtained from the essential oil and identified as eucalyptol and limonene. The essential oil and the two isolated compounds exhibited potential insecticidal activities against two storedproduct insects. Limonene showed pronounced contact toxicity against both insect species (LD50 = 14.97 μg/adult for T. castaneum; 13.66 μg/adult for L. serricorne) and was more toxic than eucalyptol (LD50 = 18.83 μg/adult for T. castaneum; 15.58 μg/adult for L. serricorne). The essential oil acting against the two species of insects showed LD50 values of 16.52 and 6.14 μg/adult, respectively. Eucalyptol also possessed strong fumigant toxicity against both insect species (LC50 = 5.47 mg/L air for T. castaneum; 5.18 mg/L air for L. serricorne) and was more toxic than limonene (LC50 = 6.21 mg/L air for T. castaneum; 14.07 mg/L air for L. serricorne), while the crude essential oil acting against the two species of insects showed LC50 values of 5.85 and 8.70 mg/L air, respectively. These results suggested that the essential oil of A. tsaoko and the two compounds may be used in grain storage to combat insect pests.

  12. Antifeeding Activity of Several Plant Extracts Against Lymantria dispar L. (Lepidoptera: Lymantriidae Larvae

    Directory of Open Access Journals (Sweden)

    Sonja Gvozdenac

    2012-01-01

    Full Text Available Lymantria dispar L. is the most devastating polyphagous pest of deciduous forests, orchardsand urban greenery. To prevent damages that L. dispar larvae cause in forestry, agriculture andhorticulture, mechanical measures and the use of biological insecticides are the most frequentlyapplied practices. However, the use of conventional insecticides is inevitable in crop protectionand forest management on smaller areas, especially in gradation years. However, inadequateuse of these chemicals has led to disturbance of biocoenotic balance, outbreaks of somepreviously less harmful organisms and pesticide residues in soil and watercourses in someregions. To mitigate these consequences it is necessary to harmonize L. dispar control withintegrated management principles by applying selective and less toxic insecticides. Therefore,the potential of botanical insecticides and antifeeding substances is gaining in importance.The aim of this study was to assess the influence of ethanol extracts (1, 2 and 5% of Ambrosiaartemisiifolia L., Erigeron canadensis L., Daucus carota L., Morus alba L. and Aesculus hippocastanumL. on the feeding intensity of L. dispar larvae, i.e. to evaluate their antifeeding activity underthe conditions of “no-choice” test. Ten larvae per repetition were placed in Petri dishes andoffered oak leaf slices (2 x 9 cm2/repetition previously dipped in plant extract or ethanol (1, 2,and 5% for the control. Feeding intensity, expressed as a percentage of consumed leaf area (%,was measured after 48 h. For assessing the antifeeding activity of plant extracts AFI was calculatedand the extracts were classified according to scale: no antifeeding activity, slight antifeedingactivity, moderate antifeeding activity and strong antifeeding activity. Data were analyzedusing a two-way ANOVA and Duncan`s multiple range test. The results indicate that plantspecies, i.e. the origin of extracts, had a significant influence on the feeding intensity of L

  13. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012-2014.

    Science.gov (United States)

    Zhang, Xiaolei; Liao, Xun; Mao, Kaikai; Zhang, Kaixiong; Wan, Hu; Li, Jianhong

    2016-09-01

    The brown planthopper is a serious rice pest in China. Chemical insecticides have been considered a satisfactory means of controlling the brown planthopper. In the present study, we determined the susceptibility of twenty-one populations of Nilaparvata lugens to eleven insecticides by a rice-stem dipping method from 2012 to 2014 in eight provinces of China. These field-collected populations of N. lugens had developed high levels of resistance to imidacloprid (resistant ratio, RR=233.3-2029-fold) and buprofezin (RR=147.0-1222). Furthermore, N. lugens showed moderate to high levels of resistance to thiamethoxam (RR=25.9-159.2) and low to moderate levels of resistance to dinotefuran (RR=6.4-29.1), clothianidin (RR=6.1-33.6), ethiprole (RR=11.5-71.8), isoprocarb (RR=17.1-70.2), and chlorpyrifos (RR=7.4-30.7). In contrast, the susceptibility of N. lugens to etofenprox (RR=1.1-4.9), thiacloprid (RR=2.9-8.2) and acetamiprid (RR=2.7-26.2) remained susceptible to moderate levels of resistance. Significant correlations were detected between the LC50 values of imidacloprid and thiamethoxam, dinotefuran, buprofezin, and etofenprox, as well as between clothianidin and thiamethoxam, dinotefuran, ethiprole, acetamiprid, and thiacloprid. Similarly, significant correlations were observed between chlorpyrifos and etofenprox, acetamiprid and thiacloprid. Additionally, the activity of the detoxification enzymes of N. lugens showed a significant correlation with the log LC50 values of imidacloprid, dinotefuran and ethiprole. These results will be beneficial for effective insecticide resistance management strategies to prevent or delay the development of insecticide resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  15. Insecticide mixtures for mosquito net impregnation against malaria vectors

    Directory of Open Access Journals (Sweden)

    Corbel V.

    2002-09-01

    Full Text Available Insecticides belonging to the pyrethroid family are the only compounds currently available for the treatment of mosquito nets. Unfortunately, some malaria vector species have developed resistance to pyrethroids and the lack of alternative chemical categories is a great concern. One strategy for resistance management would be to treat mosquito nets with a mixture associating two insecticides having different modes of action. This study presents the results obtained with insecticide mixtures containing several proportions of bifenthrin (a pyrethroid insecticide and carbosulfan (a carbamate insecticide. The mixtures were sprayed on mosquito net samples and their efficacy were tested against a susceptible strain of Anopheles gambiae, the major malaria vector in Africa. A significant synergism was observed with a mixture containing 25 mg/m2 of bifenthrin (half the recommended dosage for treated nets and 6.25 mg/m2 of carbosulfan (about 2 % of the recommended dosage. The observed mortality was significantly more than expected in the absence of any interaction (80 % vs 41 % and the knock-down effect was maintained, providing an effective barrier against susceptible mosquitoes.

  16. GC-MS Analysis of Insecticidal Essential Oil of Flowering Aerial Parts of Saussurea Nivea Turcz

    Directory of Open Access Journals (Sweden)

    Zhi Long Liu

    2012-08-01

    Full Text Available Background:Several species from Saussurea have been used in the traditional medicine, such as S. lappa, S. involucrate, and S. obvallata. There is no report on medicinal use of S. nivea. The aim of this research was to determine chemical composition and insecticidal activity of the essential oil of S. nivea Turcz (Asteraceae aerial parts against maize weevils (Sitophilus zeamais Motschulsky for the first time.Results:Essential oil of S. nivea flowering aerial parts was obtained by hydrodistillation and analyzed by gas chromatography--mass spectrometry (GC-MS. A total of 43 components of the essential oil of S. nivea were identified. The principal compounds in the essential oil were (+-limonene (15.46%, caryophyllene oxide (7.62%, linalool (7.20%, alpha-pinene (6.43%, beta-pinene (5.66% and spathulenol (5.02% followed by beta-eudesmoll (4.64% and eudesma-4,11-dien-2-ol (3.76%. The essential oil of S. nivea exhibited strong contact toxicity against S. zeamais with an LD50 value of 10.56 mug/adult. The essential oil also possessed fumigant toxicity against S. zeamais with an LC50 value of 8.89 mg/L.Conclusion: The study indicates that the essential oil of S. nivea flowering aerial parts has a potential for development into a natural insecticide/fumigant for control of insects in stored grains.

  17. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Science.gov (United States)

    Oliver, Shüné V; Brooke, Basil D

    2016-01-01

    Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance

  18. Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Xiaofeng; Sun, Botong; Gurr, Geoff M; Vasseur, Liette; Xue, Minqian; You, Minsheng

    2018-01-01

    The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L.), a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes), Enterobacter sp. (Proteobacteria), and Serratia sp. (Proteobacteria) from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella , while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species.

  19. Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xia

    2018-01-01

    Full Text Available The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L., a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes, Enterobacter sp. (Proteobacteria, and Serratia sp. (Proteobacteria from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella, while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species.

  20. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin.

    Directory of Open Access Journals (Sweden)

    Corine Ngufor

    Full Text Available There is an urgent need for new insecticides for indoor residual spraying (IRS which can provide improved and prolonged control of malaria vectors that have developed resistance to existing insecticides. The neonicotinoid, clothianidin represents a class of chemistry new to public health. Clothianidin acts as an agonist on nicotinic acetyl choline receptors. IRS with a mixture of Clothianidin and another WHO approved insecticide such as deltamethrin could provide improved control of insecticide resistant malaria vector populations and serve as a tool for insecticide resistance management.The efficacy and residual activity of a novel IRS mixture of deltamethrin and clothianidin was evaluated against wild pyrethroid resistant An. gambiae sl in experimental huts in Cove, Benin. Two application rates of the mixture were tested and comparison was made with clothianidin and deltamethrin applied alone. To assess the residual efficacy of the treatments on different local wall substrates, the inner walls of the experimental huts were covered with either cement, mud or plywood.Clothianidin demonstrated a clear delayed expression in mortality of wild pyrethroid resistant An. gambiae sl in the experimental huts which reached its full effect 120 hours after exposure. Overall mortality over the 12-month hut trial was 15% in the control hut and 24-29% in the deltamethrin-treated huts. The mixture of clothianidin 200mg/m2 and deltamethrin 25mg/m2 induced high overall hut mortality rates (87% on mud walls, 82% on cement walls and 61% on wooden walls largely due to the clothianidin component and high hut exiting rates (67-76% mostly due to the deltamethrin component. Mortality rates remained >80% for 8-9 months on mud and cement walls. The residual activity trend was confirmed by results from monthly in situ cone bioassays with laboratory susceptible An. gambiae Kisumu strain.IRS campaigns with the mixture of clothianidin plus deltamethrin have the potential to

  1. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin.

    Science.gov (United States)

    Ngufor, Corine; Fongnikin, Augustin; Rowland, Mark; N'Guessan, Raphael

    2017-01-01

    There is an urgent need for new insecticides for indoor residual spraying (IRS) which can provide improved and prolonged control of malaria vectors that have developed resistance to existing insecticides. The neonicotinoid, clothianidin represents a class of chemistry new to public health. Clothianidin acts as an agonist on nicotinic acetyl choline receptors. IRS with a mixture of Clothianidin and another WHO approved insecticide such as deltamethrin could provide improved control of insecticide resistant malaria vector populations and serve as a tool for insecticide resistance management. The efficacy and residual activity of a novel IRS mixture of deltamethrin and clothianidin was evaluated against wild pyrethroid resistant An. gambiae sl in experimental huts in Cove, Benin. Two application rates of the mixture were tested and comparison was made with clothianidin and deltamethrin applied alone. To assess the residual efficacy of the treatments on different local wall substrates, the inner walls of the experimental huts were covered with either cement, mud or plywood. Clothianidin demonstrated a clear delayed expression in mortality of wild pyrethroid resistant An. gambiae sl in the experimental huts which reached its full effect 120 hours after exposure. Overall mortality over the 12-month hut trial was 15% in the control hut and 24-29% in the deltamethrin-treated huts. The mixture of clothianidin 200mg/m2 and deltamethrin 25mg/m2 induced high overall hut mortality rates (87% on mud walls, 82% on cement walls and 61% on wooden walls) largely due to the clothianidin component and high hut exiting rates (67-76%) mostly due to the deltamethrin component. Mortality rates remained >80% for 8-9 months on mud and cement walls. The residual activity trend was confirmed by results from monthly in situ cone bioassays with laboratory susceptible An. gambiae Kisumu strain. IRS campaigns with the mixture of clothianidin plus deltamethrin have the potential to provide

  2. Expression of melanin and insecticidal protein from Rhodotorula ...

    African Journals Online (AJOL)

    Both the salmon/red melanin and the insecticidal producing genes of Rhodotorula glutinis was successfully expressed in Escherichia coli using plasmid pZErO-1. This work suggests that in Rhodotorula species melanin and insecticidal toxin are co-expressed and therefore possibly co-evolved. Keywords: Rhodotorula ...

  3. Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

    Science.gov (United States)

    This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...

  4. Monitoring the operational impact of insecticide usage for malaria control on Anopheles funestus from Mozambique

    Directory of Open Access Journals (Sweden)

    Sharp Brian L

    2007-10-01

    Full Text Available Abstract Background Indoor residual spraying (IRS has again become popular for malaria control in Africa. This combined with the affirmation by WHO that DDT is appropriate for use in the absence of longer lasting insecticide formulations in some malaria endemic settings, has resulted in an increase in IRS with DDT as a major malaria vector control intervention in Africa. DDT was re-introduced into Mozambique's IRS programme in 2005 and is increasingly becoming the main insecticide used for malaria vector control in Mozambique. The selection of DDT as the insecticide of choice in Mozambique is evidence-based, taking account of the susceptibility of Anopheles funestus to all available insecticide choices, as well as operational costs of spraying. Previously lambda cyhalothrin had replaced DDT in Mozambique in 1993. However, resistance appeared quickly to this insecticide and, in 2000, the pyrethroid was phased out and the carbamate bendiocarb introduced. Low level resistance was detected by biochemical assay to bendiocarb in 1999 in both An. funestus and Anopheles arabiensis, although this was not evident in WHO bioassays of the same population. Methods Sentinel sites were established and monitored for insecticide resistance using WHO bioassays. These assays were conducted on 1–3 day old F1 offspring of field collected adult caught An. funestus females to determine levels of insecticide resistance in the malaria vector population. WHO biochemical assays were carried out to determine the frequency of insecticide resistance genes within the same population. Results In surveys conducted between 2002 and 2006, low levels of bendiocarb resistance were detected in An. funestus, populations using WHO bioassays. This is probably due to significantly elevated levels of Acetylcholinesterase levels found in the same populations. Pyrethroid resistance was also detected in populations and linked to elevated levels of p450 monooxygenase activity. One site had

  5. Insecticide Exposure in Parkinsonism

    National Research Council Canada - National Science Library

    Bloomquist, Jeffrey

    2003-01-01

    Behavioral, neurochemical, and immunocytochemical studies are characterizing the possible role of insecticide exposure in the etiology of Parkinson's disease as it may relate to Gulf War Syndrome. Chlorpyrifos (CP) and/or permethrin (PM...

  6. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  7. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    Science.gov (United States)

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.

  8. Identification of Repellent and Insecticidal Constituents of the Essential Oil of Artemisia rupestris L. Aerial Parts against Liposcelis bostrychophila Badonnel

    Directory of Open Access Journals (Sweden)

    Zhi Long Liu

    2013-09-01

    Full Text Available The aim of this research was to determine the chemical composition and insecticidal and repellent activity of the essential oil of Artemisia rupestris L. aerial parts against the booklice Liposcelis bostrychophila Badonnel and isolation of insecticidal and repellent constituents from the essential oil. The essential oil of A. rupestris was obtained by hydrodistillation and analyzed by GC-MS. A total of 30 components of the essential oil of A. rupestris was identified and the principal compounds in the essential oil were α-terpinyl acetate (37.18%, spathulenol (10.65%, α-terpineol (10.09%, and linalool (7.56%, followed by 4-terpineol (3.92% and patchoulol (3.05%. Based on bioactivity-guided fractionation, the four active constituents were isolated from the essential oil and identified as α-terpineol, α-terpinyl acetate, 4-terpineol and linalool. The essential oil of A. rupestris exhibited contact toxicity against L. bostrychophila with LD50 value of 414.48 µg/cm2. α-Terpinyl acetate (LD50 = 92.59 µg/cm2 exhibited stronger contact toxicity against booklice than α-terpineol (LD50 = 140.30 µg/cm2, 4-terpineol (LD50 = 211.35 µg/cm2, and linalool (LD50 = 393.16 µg/cm2. The essential oil of A. rupestris (LC50 = 6.67 mg/L air also possessed fumigant toxicity against L. bostrychophila while the four constituents, 4-terpineol, α-terpineol, α-terpinyl acetate and linalool had LC50 values of 0.34, 1.12, 1.26 and 1.96 mg/L air, respectively. α-Terpinol and α-terpinyl acetate showed strong repellency against L. bostrychophila, while linalool and 4-terpinol exhibited weak repellency. The results indicate that the essential oil of A. rupestris aerial parts and its constituent compounds have potential for development into natural insecticides or fumigants as well as repellents for control of insects in stored grains.

  9. Ecotoxicity of binary mixtures of Microcystis aeruginosa and insecticides to Daphnia pulex

    International Nuclear Information System (INIS)

    Asselman, J.; Janssen, C.R.; Smagghe, G.; De Schamphelaere, K.A.C.

    2014-01-01

    In aquatic ecosystems, mixtures of chemical and natural stressors can occur which may significantly complicate risk assessment approaches. Here, we show that effects of binary combinations of four different insecticides and Microcystis aeruginosa, a toxic cyanobacteria, on Daphnia pulex exhibited distinct interaction patterns. Combinations with chlorpyrifos and tetradifon caused non-interactive effects, tebufenpyrad caused an antagonistic interaction and fenoyxcarb yielded patterns that depended on the reference model used (i.e. synergistic with independent action, additive with concentration addition). Our results demonstrate that interactive effects cannot be generalised across different insecticides, not even for those targeting the same biological pathway (i.e. tebufenpyrad and tetradifon both target oxidative phosphorylation). Also, the concentration addition reference model provided conservative predictions of effects in all investigated combinations for risk assessment. These predictions could, in absence of a full mechanistic understanding, provide a meaningful solution for managing water quality in systems impacted by both insecticides and cyanobacterial blooms. - Highlights:: • 2 of 4 insecticide-Microcystis combinations showed no interactive effect on Daphnia. • One insecticide showed antagonistic deviation patterns. • For one other insecticide the results depended on the reference model used. • Interactive effects between insecticides and Microcystis cannot be generalized. • The concentration addition model provides conservative estimates of mixture effects. - Interactive effects between insecticides and cyanobacterial stressors cannot be generalized, not even for insecticides with closely related known modes of action

  10. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity.

    Science.gov (United States)

    Lee, Seung Ah; Jang, Seong Han; Kim, Byung Hyun; Shibata, Toshio; Yoo, Jinwook; Jung, Yunjin; Kawabata, Shun-Ichiro; Lee, Bok Luel

    2018-04-01

    The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Insecticidal Activities of Tunisian Halophytic Plant Extracts against Larvae and Adults of Tribolium confusum

    Directory of Open Access Journals (Sweden)

    Mighri, Z.

    2007-01-01

    Full Text Available Salt marsh plants were tested for their insecticidal activities against adults and larvae of Tribolium confusum. Sixteen aerial part extracts of Frankenia laevis, Statice echioides, Suaeda fructicosa and Tamarix boveana were obtained using organic solvents of increasing polarity and tested for their insect growth, antifeedant and toxicity effects. Responses varied with plant material, extract type, insect stage and exposition time. Larval growth inhibition was significantly induced by chloroformic, ethyl acetate extracts of F. laevis, S. echioides and T. boveana, and petroleum ether extract of F. laevis. On the other hand, all extracts of S. fructicosa and the methanolic ones of the four plants tested didn't show any significant activity. In addition, ethyl acetate extracts of F. laevis, S. echioides and T. boveana and petroleum ether extract of F. laevis presented antifeedant property. S. fructicosa seemed to be, however, slightly attractive to the flour beetle. For all extracts, mortality was higher for larvae than adults. By using ethyl acetate extracts of F. laevis, S. echioides and T. boveana, and petroleum ether extract of F. laevis, mortality reached respectively 97, 87, 97 and 80%, when applied at a dose of 1%, mixed with the insect diet.

  12. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible and SENN DDT (insecticide resistant, were reared in maximum acceptable toxicity concentrations, (MATC-the highest legally accepted concentration of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing

  13. Organophosphorus pentavalent compounds: history, synthetic methods of preparation and application as insecticides and antitumor agents

    International Nuclear Information System (INIS)

    Santos, Viviane Martins Rebello dos; Donnici, Claudio Luis; DaCosta, Joao Batista Neves; Caixeiro, Janaina Marques Rodrigues

    2007-01-01

    This paper is a review of the history, synthesis and application of organophosphorus compounds, especially of those of pentavalent phosphorus, such as phosphoramidates, phosphorothioates, phosphonates and phosphonic acids with insecticide and anticancer activities. The organophosphorus compounds with agrochemical applications show great structural variety, They include not only insecticides, but also fungicides, herbicides, and others. The large variety of commercially available organophosphorus pesticides is remarkable. Even more interesting is the high efficiency of some organophosphorus compounds as anticancer agents such as cyclophosphamide and its derivatives. (author)

  14. Field and Laboratory Evaluations of Insecticides for Southern Pine Beetle Control

    Science.gov (United States)

    Felton L. Hastings; Jack E. Coster; [Editors

    1981-01-01

    Reports results of laboratory screenings and field studies of insecticides for use against the southern pine beetle. Preventive as webas remedial efficacywere observed, along with phytotoxicity to pine and understory hardwood species, effects of insecticides on soil microbial and mesofaunal populations, and degradation of insecticides by selected soil microbes.

  15. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae).

    Science.gov (United States)

    Oliver, Shüné V; Brooke, Basil D

    2014-08-23

    Anopheles arabiensis is a major malaria vector in Africa. Adult females are likely to imbibe multiple blood meals during their lifetime. This results in regular exposure to potential toxins and blood-meal induced oxidative stress. Defence responses to these stressors may affect other factors of epidemiological significance, such as insecticide resistance and longevity. The aims of this study were to examine the effect of multiple blood-feeding on insecticide tolerance/resistance with increasing age, to assess the underlying biochemical mechanisms for the responses recorded, and to assess the effect of multiple blood-feeding on the life histories of adult females drawn from insecticide resistant and susceptible laboratory reared An. arabiensis. Laboratory reared An. arabiensis females from an insecticide resistant and an insecticide susceptible colony were offered either a single blood meal or multiple blood meals at 3-day intervals. Their tolerance or resistance to insecticide was then monitored by WHO bioassay four hours post blood-feeding. The biochemical basis of the phenotypic response was assessed by examining the effect of blood on detoxification enzyme activity and the effect of blood-meals on detoxification enzyme activity in ageing mosquitoes. Control cohorts that were not offered any blood meals showed steadily decreasing levels of insecticide tolerance/resistance with age, whereas a single blood meal significantly increased tolerance/resistance primarily at the age of three days. The expression of resistance/tolerance in those cohorts fed multiple blood meals generally showed the least variation with age. These results were consistent following exposure to DDT and pyrethroids but not to malathion. Multiple blood-meals also maintained the DDT and permethrin resistant phenotype, even after treatment females had stopped taking blood-meals. Biochemical analysis suggests that this phenotypic effect in resistant females may be mediated by the maintenance of

  16. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 3 Insecticide Use Practice

    African Journals Online (AJOL)

    Administrator

    500,000 metric tonnes in the 1964/1965 season. Problems ... insecticides on the open market. ... effective in the management of insect pests of cocoa. .... Effectiveness and profitability of pest ... Youth in Agriculture; Programme Policy, Strategy.

  18. Biological alterations and self-reported symptoms among insecticides-exposed workers in Burkina Faso.

    Science.gov (United States)

    Toe, Adama M; Ilboudo, Sylvain; Ouedraogo, Moustapha; Guissou, Pierre I

    2012-03-01

    Occupationally exposed workers, farm workers and plant protection agents in the Sahel region of Burkina Faso were interviewed to assess adverse health effects of insecticides. The subjects were also examined for changes in both hematological and biochemical parameters. The prevalence of liver and kidney dysfunction was found to be quite high among insecticide applicators, especially among plant protection agents. The prevalence of biochemical alterations seems to be correlated to the frequency of insecticide use. However, no significant differences were found between the hematological parameters among farm workers and plant protection agents. The hematological parameters of all the insecticide applicators were normal. The great majority of insecticide applicators (85%) reported symptoms related to insecticide exposure. The use of insecticides in the agriculture of Burkina Faso is threatening to human health.

  19. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba.

    Directory of Open Access Journals (Sweden)

    Dennis Pérez

    2018-01-01

    Full Text Available Within the context of a field trial conducted by the Cuban vector control program (AaCP, we assessed acceptability of insecticide-treated curtains (ITCs and residual insecticide treatment (RIT with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity.We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38 were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT.Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.

  20. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba.

    Science.gov (United States)

    Pérez, Dennis; Van der Stuyft, Patrick; Toledo, María Eugenia; Ceballos, Enrique; Fabré, Francisco; Lefèvre, Pierre

    2018-01-01

    Within the context of a field trial conducted by the Cuban vector control program (AaCP), we assessed acceptability of insecticide-treated curtains (ITCs) and residual insecticide treatment (RIT) with deltamethrin by the community. We also assessed the potential influence of interviewees' risk perceptions for getting dengue and disease severity. We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT) testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38) were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT. Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement.

  1. Insecticidal activity of neem oil against Gyropsylla spegazziniana (Hemiptera: Psyllidae nymphs on Paraguay tea seedlings

    Directory of Open Access Journals (Sweden)

    M. A. Formentini

    Full Text Available Abstract Gyropsylla spegazziniana (Paraguay tea ampul is one of the most important pests of Paraguay tea plants, and prohibition of synthetic insecticide use for control of this pest has led to the search for alternative methods. This laboratory study aimed to compare different control strategies for G. spegazziniana, utilizing a commercial neem seed oil product. Paraguay tea seedlings were treated with neem oil solution both pre- and post-infestation with 5th instar nymphs. The systemic action of neem oil was also evaluated by treating plant soil with the neem oil solution, followed by transfer of the insects to plants 24 h post-treatment. Spray treatments were effective against the pest, especially post-infestation (80% mortality, demonstrating the potential of neem oil for control of the Paraguay tea ampul. No significant effects were observed with respect to systemic activity.

  2. GC-MS Analysis of Insecticidal Essential Oil of Aerial Parts of ...

    African Journals Online (AJOL)

    Methods: Steam distillation of the aerial parts of P. scandens was carried out using Clavenger apparatus in order to obtain the volatile oils. Gas chromatography/mass spectrometric (GC/MS) analyses (HP-5MS column) of the essential oil were performed and its composition determined. Insecticidal activity of the essential oil ...

  3. Insecticidal activity of Piper essential oils from the Amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae).

    Science.gov (United States)

    Souto, R N P; Harada, A Y; Andrade, E H A; Maia, J G S

    2012-12-01

    Pepper plants in the genus Piper (Piperales: Piperaceae) are common in the Brazilian Amazon and many produce compounds with biological activity against insect pests. We evaluated the insecticidal effect of essential oils from Piper aduncum, Piper marginatum (chemotypes A and B), Piper divaricatum and Piper callosum against workers of the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae), as well as their chemical composition by gas chromatography and gas chromatography-mass spectrometry. The lowest median lethal concentration (LC50) in 48 h was obtained with the oil of P. aduncum (58.4 mg/L), followed by the oils of P. marginatum types A (122.4 mg/L) and B (167.0 mg/L), P. divaricatum (301.7 mg/L), and P. callosum (312.6 mg/L). The major chemical constituents were dillapiole (64.4%) in the oil of P. aduncum; p-mentha-1(7),8-diene (39.0%), 3,4-methylenedioxypropiophenone (19.0%), and (E)-β-ocimene (9.8%) in P. marginatum chemotype A and (E)-isoosmorhizole (32.2%), (E)-anethole (26.4%), isoosmorhizole (11.2%), and (Z)-anethole (6.0%) in P. marginatum chemotype B; methyleugenol (69.2%) and eugenol (16.2%) in P. divaricatum; and safrole (69.2%), methyleugenol (8.6%), and β-pinene (6.2%) in P. callosum. These chemical constituents have been previously known to possess insecticidal properties.

  4. An Insecticidal Compound Produced by an Insect-Pathogenic Bacterium Suppresses Host Defenses through Phenoloxidase Inhibition

    Directory of Open Access Journals (Sweden)

    Ihsan Ullah

    2014-12-01

    Full Text Available A bioassay-guided column chromatographic strategy was adopted in the present study to fractionate the culture extract of Photorhabdus temperata M1021 to identify potential insecticidal and antimicrobial compounds. An ethyl acetate (EtOAc culture extract of P. temperata was assayed against Galleria mellonella larvae through intra-hemocoel injection and exhibited 100% insect mortality within 60 h. The EtOAc fraction and an isolated compound exhibited phenoloxidase (PO inhibition of up to 60% and 63%, respectively. The compound was identified as 1,2-benzenedicarboxylic acid (phthalic acid, PA by gas chromatography-mass spectrometry and nuclear magnetic resonance. PA exhibited insecticidal activity against G. mellonella in a dose-dependent manner, and 100% insect mortality was observed at 108 h after injection of 1 M PA. In a PO inhibition assay, 0.5 and 1 M concentrations of PA were found to inhibit PO activity by 74% and 82%, respectively; and in a melanotic nodule formation assay, nodule formation was significantly inhibited (27 and 10 nodules by PA (0.5 and 1 M, respectively. PA was furthermore found to have substantial antioxidant activity and maximum antioxidant activity was 64.7% for 0.5 M PA as compare to control. Antibacterial activity was assessed by The MIC values ranged from 0.1 M to 0.5 M of PA. This study reports a multifunctional PA, a potential insecticidal agent, could a factor of insect mortality along with other toxins produced by P. temperata M1021.

  5. Ecotoxicological study of insecticide effects on arthropods in common bean.

    Science.gov (United States)

    de Barros, Emerson Cristi; Ventura, Hudson Vaner; Gontijo, Pablo Costa; Pereira, Renata Ramos; Picanço, Marcelo Coutinho

    2015-01-01

    Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa.

    Science.gov (United States)

    Nwane, Philippe; Etang, Josiane; Chouaїbou, Mouhamadou; Toto, Jean Claude; Koffi, Alphonsine; Mimpfoundi, Rémy; Simard, Frédéric

    2013-02-22

    Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates>98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in heterogeneous resistance profiles, whereas in

  7. Guide to testing insecticides on coniferous forest defoliators

    Science.gov (United States)

    Carroll B Jr. Williams; David A. Sharpnack; Liz Maxwell; Patrick J. Shea; Mark D. McGregor

    1985-01-01

    This report provides a guide to techniques for designing field tests of candidate insecticides, and for carrying out pilot tests and control projects. It describes experimental designs for testing hypotheses, and for sampling trees to estimate insect population densities and percent reduction after treatments. Directions for applying insecticides by aircraft and for...

  8. Evaluation of the insecticidal activity of the extracts from Piper grande Vahl (Piperaceae) using the biological model Drosophila melanogaster

    International Nuclear Information System (INIS)

    Granados N, Hillmer; Saez V, Jairo; Robles, Carolina; Vasquez, Luis F; Moreno, Maria E; Acevedo, Jose M; Pelaez, Carlos A; Callejas, Ricardo

    2002-01-01

    In this study, using the life cycle interruption test with the Drosophila melanogaster model, under (in-vitro conditions), the n-Hexane (roots and stems) and the EtOAc (roots and leaves) extracts were evaluated as insecticides and the results were promising. The larvae instars showed a significant activity reflected in the reduction of pupae population with respect to the control. The step from Pupae to adult did no show inhibition because in all cases the average of the relation pupae adult is found in values very near 1. The n-Hexane and the EtOAc extracts from roots were the most active with LC50 of 698.2 ppm and 1210.7 ppm. The n-Hexane (stems) and EtOAc (leaves) extracts showed a moderate activity with LC50 of 1654.1 ppm and 2376.0 ppm

  9. Insecticide resistance, control failure likelihood and the First Law of Geography.

    Science.gov (United States)

    Guedes, Raul Narciso C

    2017-03-01

    Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well-recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right - the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision-making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling - aiming to use spatial analysis in area-wide surveys - to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Insect P450 inhibitors and insecticides: challenges and opportunities.

    Science.gov (United States)

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing. © 2014 Society of Chemical Industry.

  11. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  12. The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and

  13. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean.

    Science.gov (United States)

    Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick

    2013-01-01

    Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations

  14. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Nicolas Pocquet

    Full Text Available Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC, Organophosphates (OP and pyrethroids (PYR families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation. In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to

  15. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study.

    Science.gov (United States)

    Kleinschmidt, Immo; Bradley, John; Knox, Tessa Bellamy; Mnzava, Abraham Peter; Kafy, Hmooda Toto; Mbogo, Charles; Ismail, Bashir Adam; Bigoga, Jude D; Adechoubou, Alioun; Raghavendra, Kamaraju; Cook, Jackie; Malik, Elfatih M; Nkuni, Zinga José; Macdonald, Michael; Bayoh, Nabie; Ochomo, Eric; Fondjo, Etienne; Awono-Ambene, Herman Parfait; Etang, Josiane; Akogbeto, Martin; Bhatt, Rajendra M; Chourasia, Mehul Kumar; Swain, Dipak K; Kinyari, Teresa; Subramaniam, Krishanthi; Massougbodji, Achille; Okê-Sopoh, Mariam; Ogouyemi-Hounto, Aurore; Kouambeng, Celestin; Abdin, Mujahid Sheikhedin; West, Philippa; Elmardi, Khalid; Cornelie, Sylvie; Corbel, Vincent; Valecha, Neena; Mathenge, Evan; Kamau, Luna; Lines, Jonathan; Donnelly, Martin James

    2018-04-09

    Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person

  16. Osmoregulatory function in ducks following ingestion of the organophosphorus insecticide fenthion

    Science.gov (United States)

    Rattner, B.A.; Fleming, W.J.; Murray, H.C.

    1983-01-01

    Salt gland function and osmoregulation in aquatic birds drinking hyperosmotic water has been suggested to be impaired by organophosphorus insecticides. To test this hypothesis, adult black ducks (Anas rubripes) were provided various regimens of fresh or salt (1.5% NaCl) water before, during, and after ingestion of mash containing 21 ppm fenthion. Ducks were bled by jugular venipuncture after I, 7. and 12 days of treatment, and were then killed. Brain and salt gland acetylcholinesterase activities were substantially inhibited (44-61% and 14-36%) by fenthion. However, salt gland weight and Na + -K + -ATPase activity, and plasma Na + , CI- , and osmolality, were uniformly elevated in all groups receiving salt water including those ingesting fenthion. In a second study, salt gland Na + -K + -ATPase activity in mallards (A. platyrhynchos) was not affected after in vitro incubation with either fenthion or fenthion oxon at concentrations ranging from 0.04 to 400 ?M, but was reduced in the presence of 40 and 400 ?M DDE (positive control). These findings suggest that environmentally realistic concentrations of organophosphorus insecticides do not markedly affect osmoregulatory function in adult black ducks.

  17. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  18. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius)

    Science.gov (United States)

    Ali, Shaukat; Zhang, Can; Wang, Zeqing; Wang, Xing-Min; Wu, Jian-Hui; Cuthbertson, Andrew G. S.; Shao, Zhenfang; Qiu, Bao-Li

    2017-04-01

    The sweetpotato whitefly Bemisia tabaci (Gennadius) was challenged with different combinations of matrine (insecticide) and Lecanicillium muscarium (entomopathogenic fungus). Our results revealed a synergistic relationship between matrine and L. muscarium on mortality and enzyme activities of B. tabaci. To illustrate the biochemical mechanisms involved in detoxification and immune responses of B. tabaci against both control agents, activities of different detoxifying and antioxidant enzymes were quantified. After combined application of matrine and L. muscarium, activities of carboxylestrease (CarE), glutathione-s-transferase (GSTs) and chitinase (CHI) decreased during the initial infection period. Acetylcholinestrase (AChE) activities increased during the entire experimental period, whereas those of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) decreased during the later infection period. The increased mortality and suppression of enzymatic response of B. tabaci following matrine and L. muscarium application suggests a strong synergistic effect between both agents. The strong synergistic effect is possibly related to the disturbance of acetylcholine balance and changes in AchE activities of the whitefly as both matrine and L. muscarium target insect acetylcholine (Ach) receptors which in turn effects AchE production. Therefore, our results have revealed the complex biochemical processes involved in the synergistic action of matrine and L. muscarium against B. tabaci.

  19. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal.

    Science.gov (United States)

    Stehle, Sebastian; Knäbel, Anja; Schulz, Ralf

    2013-08-01

    Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

  20. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators.

    Science.gov (United States)

    Papanikolaou, Nikos E; Kalaitzaki, Argyro; Karamaouna, Filitsa; Michaelakis, Antonios; Papadimitriou, Vassiliki; Dourtoglou, Vassilis; Papachristos, Dimitrios P

    2018-04-01

    The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

  1. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    Science.gov (United States)

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.

  2. Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella.

    Science.gov (United States)

    Zhang, Lin Jie; Wu, Zhao Li; Wang, Kuan Fu; Liu, Qun; Zhuang, Hua Mei; Wu, Gang

    2015-01-01

    Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos-resistant homozygote (RR) and chlorpyrifos-susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide-resistant and insecticide-susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20,hsp90,Apaf-1, and caspase-7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf-1,caspase-9, and caspase-7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.

  3. Biological activities of Suaeda heterophylla and Bergenia stracheyi

    Directory of Open Access Journals (Sweden)

    Iftikhar Ali

    2014-09-01

    Full Text Available Objective: To evaluate the antioxidant, phytotoxic, antimicrobial, insecticidal, cytotoxic, antiglycative, and xanthine oxidase activities of different extracts of Suaeda heterophylla (S. heterophylla and Bergenia stracheyi (B. stracheyi. Methods: The extracts of S. heterophylla and B. stracheyi were evaluated for antioxidant, phytotoxic, antimicrobial, insecticidal, cytotoxic, antiglycative, and xanthine oxidase activities using standard experimental methods. Results: The overall antioxidant potential of ethyl acetate extract of S. heterophylla was the strongest, followed by chloroform extract, methanolic extract and n-hexane extract. It is interesting to note that ethyl acetate fraction showed 94.98% inhibition at concentration of 60 µg/mL while standard ascorbic acid showed 98.49% inhibition at same concentration. The crude methanol extracts of S. heterophylla and B. stracheyi showed significant phytotoxic activity at the highest dose. Moreover, methanol extract of B. stracheyi possessed strong activity in xanthine oxidase enzyme inhibition. Conclusions: Antioxidant, phytotoxic, and xanthine oxidase activities of different fractions of S. heterophylla and B. stracheyi clearly demonstrate that these fractions possess great potential for the food, cosmetic and pharmaceutical industries.

  4. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. GC-MS Analysis of Insecticidal Essential Oil of Aerial Parts of Echinops latifolius Tausch

    Directory of Open Access Journals (Sweden)

    Xin Chao Liu

    2013-01-01

    Full Text Available The roots of Echinops latifolius Tausch (Asteraceae have been used in the traditional medicine. However, no report on chemical composition and insecticidal activities of the essential oil of this plant exists. The aim of this research was to determine chemical composition and insecticidal activities of the essential oil of E. latifolius aerial parts against maize weevils (Sitophilus zeamais Motschulsky for the first time. Essential oil of E. latifolius aerial parts at flowering stage was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS. A total of 35 components of the essential oil of E. latifolius aerial parts were identified. The major compounds in the essential oil were 1,8-cineole (19.63%, (Z-β-ocimene (18.44%, and β-pinene (15.56% followed by β-myrcene (4.75% and carvone (4.39%. The essential oil of E. latifolius possessed contact toxicity against S. zeamais with an LD50 value of 36.40 µg/adult. The essential oil also exhibited fumigant toxicity against S. zeamais with an LC50 value of 9.98 mg/L. The study indicates that the essential oil of E. latifolius aerial parts has a potential for development into a natural insecticide/fumigant for control of insects in stored grains.

  6. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein.

    Science.gov (United States)

    Chakroun, Maissa; Bel, Yolanda; Caccia, Silvia; Abdelkefi-Mesrati, Lobna; Escriche, Baltasar; Ferré, Juan

    2012-07-01

    The Vip3Aa protein is an insecticidal protein secreted by Bacillus thuringiensis during the vegetative stage of growth. The activity of this protein has been tested after different steps/protocols of purification using Spodoptera frugiperda as a control insect. The results showed that the Vip3Aa protoxin was stable and retained full toxicity after being subjected to common biochemical steps used in protein purification. Bioassays with the protoxin in S. frugiperda and S. exigua showed pronounced differences in LC(50) values when mortality was measured at 7 vs. 10d. At 7d most live larvae were arrested in their development. LC(50) values of "functional mortality" (dead larvae plus larvae remaining in the first instar), measured at 7d, were similar or even lower than the LC(50) values of mortality at 10d. This strong growth inhibition was not observed when testing the trypsin-activated protein (62 kDa) in either species. S. exigua was less susceptible than S. frugiperda to the protoxin form, with LC(50) values around 10-fold higher. However, both species were equally susceptible to the trypsin-activated form. Processing of Vip3Aa protoxin to the activated form was faster with S. frugiperda midgut juice than with S. exigua midgut juice. The results strongly suggest that the differences in the rate of activation of the Vip3Aa protoxin between both species are the basis for the differences in susceptibility towards the protoxin form. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    Science.gov (United States)

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  8. Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae).

    Science.gov (United States)

    Tooming, Ene; Merivee, Enno; Must, Anne; Sibul, Ivar; Williams, Ingrid

    2014-06-01

    Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field. © 2013 Society of Chemical Industry.

  9. Posttreatment Feeding Affects Mortality of Bed Bugs (Hemiptera: Cimicidae) Exposed to Insecticides.

    Science.gov (United States)

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2016-02-01

    Insecticide sprays and dusts are used for controlling bed bugs, Cimex lectularius L. In natural environments, bed bugs have daily access to hosts after they are exposed to insecticides. The established laboratory insecticide bioassay protocols do not provide feeding after insecticide treatments, which can result in inflated mortality compared with what would be encountered in the field. We evaluated the effect of posttreatment feeding on mortality of bed bugs treated with different insecticides. None of the insecticides tested had a significant effect on the amount of blood consumed and percent feeding. The effect of posttreatment feeding on bed bug mortality varied among different insecticides. Feeding significantly reduced mortality in bed bugs exposed to deltamethrin spray, an essential oil mixture (Bed Bug Fix) spray, and diatomaceous earth dust. Feeding increased the mean survival time for bed bugs treated with chlorfenapyr spray and a spray containing an essential oil mixture (Ecoraider), but did not affect the final mortality. First instars hatched from eggs treated with chlorfenapyr liquid spray had reduced feeding compared with nymphs hatched from nontreated eggs. Those nymphs hatched from eggs treated with chlorfenapyr liquid spray and successfully fed had reduced mortality and a higher mean survival time than those without feeding. We conclude that the availability of a bloodmeal after insecticide exposure has a significant effect on bed bug mortality. Protocols for insecticide efficacy testing should consider offering a bloodmeal to the treated bed bugs within 1 to 3 d after treatment. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) of insects play a key role in fast excitatory neurotransmission. Several classes of insecticides target insect nAChRs, which are composed of subunit members of a family of multiple subunit encoding genes. Alternative splicing and RNA A-to-I editing can add further to receptor diversity. Native and recombinant receptors have been explored as sites of insecticide action using radioligands, electrophysiology and site-directed mutagenesis. We have reviewed the properties of native and recombinant insect nAChRs, the challenges of functional recombinant insect nAChR expression, nAChR interactions with ligands acting at orthosteric and allosteric sites and in particular their interactions with insecticides. Actions on insect nAChRs of cartap, neonicotinoids, spinosyns, sulfoxamines, butenolides and mesoionic insecticides are reviewed and current knowledge of their modes of action are addressed. Mutations that add to our understanding of insecticide action and those leading to resistance are discussed. Co-crystallisation of neonicotinoids with the acetylcholine binding protein (AChBP), a surrogate for the nAChR ligand binding domain, has proved instructive. Toxicity issues relating to insecticides targeting nAChRs are also considered. An overview of insecticide classes targeting insect nAChRs has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native nAChRs remains poorly understood and functional expression still presents difficulties. These topics together with improved understanding of the precise sites of insecticide actions on insect nAChRs will be the subject of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Culminating anti-malaria efforts at long lasting insecticidal net?

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    2014-11-01

    Full Text Available Summary: Background: Long-lasting insecticidal nets (LLINs are a primary method in malaria control efforts. However, a decline in the biological efficacy and physical integrity over a period of comparatively lesser time than claimed, waning of naturally acquired immunity among regular users and misuse of LLINs are serious concerns. Search and selection of literature: The literature for the current review was searched in PubMed, SCOPUS Database and Google using combined search strings of related key-words. Literature with sufficient data and information on the current subject was selected to reach a valid conclusion. Findings: The World Health Organization (WHO has emphasized that LLINs should be considered a public good for people inhabiting malaria endemic settings. LLINs exhibited a cumulative effect on the vector density and may force anthropophilic mosquito vectors to find alternative animal hosts for blood meal. However, the physical integrity and biological activity of LLINs declines faster than the anticipated time due to different operational conditions and the spread of insecticide resistance. LLINs have been successful in reducing malaria incidences by either reducing or not allowing human exposure to the vector mosquitoes, but at the same time, LLINs debilitate the natural protective immunity against malaria parasite. Misuse of LLINs for deviant purposes is common and is a serious environmental concern, as people believe that traditional methods of prevention against malaria that have enabled them to survive through a long time are effective and sufficient. Moreover, people are often ill-informed regarding the toxic effects of LLINs. Conclusions: Specific criteria for determining the serviceable life and guidelines on the safe washing and disposal of LLINs need to be developed, kept well-informed and closely monitored. Malaria case management, environment management and community awareness to reduce the misuse of LLINs are crucial

  12. Insecticidal effects of Ocimum sanctum var. cubensis essential oil on the diseases vector Chrysomya putoria

    Directory of Open Access Journals (Sweden)

    Idelsy Chil-Núñez

    2018-05-01

    Full Text Available Context: The blowfly Chrysomya putoria is widely distributed throughout the Neotropical region and, besides transmitting pathogens; they could cause secondary myiasis. Botanical insecticides provide an alternative to synthetic pesticides because the excessive use of synthetic insecticides resulted in a progressive resistance of the pests to these chemicals, diminishing their effectiveness and generating consequences with negative environmental impact. The essential oil extracted from Ocimum sanctum (basil has showed insecticidal activity against some insects but has no reported studies on the activity of this plant against flies. Aims: To evaluate the insecticidal effects of Ocimum sanctum var. cubensis Gomes essential oil on the post embryonic development of Chrysomya putoria. Methods: The colonies of Chrysomya putoria were established and maintained at the Laboratório de Entomologia Médica e Forense (FIOCRUZ, Rio de Janeiro, Brazil. The basil essential oil was tested in six concentrations (4.13, 8.25, 20.63, 41.25, 61.87 and 80,25 mg/mL. Mortality and changes in life cycle were recorded daily. Results: β-caryophyllene, β-selinene and eugenol, were the main constituents of the basil essential oil. The experiments demonstrated that in all concentrations tested, this essential oil shortening the duration of all post embryonic stages having a direct impact in the viability of this fly estimating the LC50 in 7.47 mg/mL of concentration. In addition, the essential oil caused morphological alterations in abdomen, wings and ptilinum at lower concentrations. Conclusions: This essential oil emerge as a good option for the control of the disease vector blowfly Chrysomya putoria.

  13. Existence of Insecticides in Tap Drinking Surface and Ground Water in Dakahlyia Governorate, Egypt in 2011

    Directory of Open Access Journals (Sweden)

    RA Mandour

    2011-12-01

    Full Text Available Background: The environmental degradation products of pesticides may enter drinking water and result in serious health problems. Objective: To evaluate the occurrence of insecticides in drinking surface and ground water in Dakahlyia Governorate, northern Egypt in 2011. Methods: We studied blood samples collected from 36 consecutive patients diagnosed with pesticides poisoning and 36 tap drinking water (surface and ground. Blood and water samples were analyzed for pesticides using gas chromatography-electron captured detector (GC-ECD. In addition, blood samples were analyzed for plasma pseudo-cholinesterase level (PChE and red blood cells acetyl cholinesterase activity (AChE. Results: The results confirmed the presence of high concentrations of insecticides, including organonitrogenous and organochlorine in tap drinking surface and ground water. Conclusion: Drinking water contaminated with insecticides constitutes an important health concern in Dakahlyia governorate, Egypt.

  14. Synthesis of new α-amino nitriles with insecticidal action on Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Andrés G. Rueda

    2018-04-01

    Full Text Available Aedes aegypti is the principal vector of arboviral pathogens that may cause diseases as dengue fever, chikungunya and zika. The harmful environmental effects of commercial pesticides coalesced with the development of insecticide-resistant populations encourage the discovery and generation of new alternative products as a tool to reduce the incidence of vector-borne diseases. In this work, through the classic three component Strecker reaction of commercial benzaldehydes, cyclic secondary amines and KCN, a new series of nine α-amino nitriles, girgensohnine analogs, has been synthetized and screened for larvicide and adulticide properties against A. aegypti, one of the dominant vectors of dengue, chikungunya and zika in tropical and subtropical areas all over the world. Molecules 3 and 4 were identified as potential larvicidal agents with LC50 values of 50.55 and 69.59 ppm, respectively. Molecule 3 showed 100% of mortality after 2 h of treatment when a concentration of 30 ppm in adulticidal assays was evaluated. Additionally, in order to elucidate the mode of action of these molecules, their acetylcholinesterase (AChE inhibitory properties were evaluated using the Ellman assay. It was found that the molecules possess a weak AChE inhibitory activity with IC50 values between 148.80 and 259.40 μM, indicating that AChE could not be a principal target for insecticide activity. Keywords: Arthropod-borne diseases, Girgensohnine analogs, Strecker reaction, Insecticidal activity, Vector control

  15. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    Science.gov (United States)

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  16. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment of A Simple Compound-Saving Method To Study Insecticidal Activity of Natural Extracts and Pure Compounds Against Mosquito Larvae.

    Science.gov (United States)

    Falkowski, Michaël; Jahn-Oyac, Arnaud; Ferrero, Emma; Issaly, Jean; Eparvier, Véronique; Girod, Romain; Rodrigues, Alice M S; Stien, Didier; Houël, Emeline; Dusfour, Isabelle

    2016-12-01

    Research on natural insecticides has intensified with the spread of resistance to chemicals among insects, particularly disease vectors. To evaluate compounds, the World Health Organization (WHO) has published standardized procedures. However, those may be excessively compound-consuming when it comes to assessing the activity of natural extracts and pure compounds isolated in limited amount. As part of our work on the discovery of new mosquito larvicides from Amazonian plants, we developed a compound-saving assay in 5-ml glass tubes instead of WHO larval 100-ml cups. Comparing activity of synthetic and natural chemicals validated the glass tube assay. Raw data, lethal doses that kill 50% (LD 50 ) and 90% (LD 90 ) at 24 and 48 h, were highly correlated (0.68 natural extracts and molecules, identifying active compounds using 10 times less material than in the WHO protocol.

  18. Synthetic feeding stimulants enhance insecticide activity against western corn rootworm larvae, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)

    Science.gov (United States)

    In behavioral bioassays, the addition of a synthetic feeding stimulant blend improved the efficacy of the insecticide thiamethoxam against neonate western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae. In 4-h bioassays, the concentration of thiamethoxam required for 50% mortality (LC...

  19. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  20. Insecticide-mediated apparent displacement between two invasive species of leafminer fly.

    Directory of Open Access Journals (Sweden)

    Yulin Gao

    Full Text Available BACKGROUND: Closely related invasive species may often displace one another, but it is often difficult to determine mechanisms because of the historical nature of these events. The leafmining flies Liriomyza sativae and Liriomyza trifolii have become serious invasive agricultural pests throughout the world. Where both species have invaded the same region, one predominates over the other. Although L. sativae invaded Hainan Island of China first, it recently has been displaced by the newly invasive L. trifolii. We hypothesized that differential susceptibilities to insecticides could be causing this demographic shift. METHODOLOGY/PRINCIPAL FINDINGS: Avermectin and cyromazine are the most commonly used insecticides to manage leafminers, with laboratory bioassays demonstrating that L. trifolii is significantly less susceptible to these key insecticides than is L. sativae. In trials where similar numbers of larvae of both species infested plants, which subsequently were treated with the insecticides, the eclosing adults were predominately L. trifolii, yet similar numbers of adults of both species eclosed from control plants. The species composition was then surveyed in two regions where L. trifolii has just begun to invade and both species are still common. In field trials, both species occurred in similar proportions before insecticide treatments began. Following applications of avermectin and cyromazine, almost all eclosing adults were L. trifolii in those treatment plots. In control plots, similar numbers of adults of the two species eclosed, lending further credence to the hypothesis that differential insecticide susceptibilities could be driving the ongoing displacement of L. sativae by L. trifolii. CONCLUSIONS/SIGNIFICANCE: Our results show that differential insecticide susceptibility can lead to rapid shifts in the demographics of pest complexes. Thus, successful pest management requires the identification of pest species to understand the

  1. Molecular Approaches to Improve the Insecticidal Activity of Bacillus thuringiensis Cry Toxins

    Directory of Open Access Journals (Sweden)

    Wagner A. Lucena

    2014-08-01

    Full Text Available Bacillus thuringiensis (Bt is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.

  2. Susceptibility of natural enemies of pests of agriculture to commonly applied insecticides in Honduras

    International Nuclear Information System (INIS)

    Bustamante, M.; Sabillon, A.; Velasquez, C.; Ordonez, J.; Baquedano, F.

    1999-01-01

    Insecticides are commonly used by Honduran farmers to control pest insects in agricultural crops such as corn, melons and tomatoes. However, the insecticides have the potential for toxicity to the natural enemies of the pest insects also. Therefore, efforts are being made to identify insecticides which, when used within the Inegerated Pest Management (IPM) programme, are selectively more toxic to the pest insects than their natural enemies. A number of selected chemical insecticides and a biological insecticide (NPV) were tested in three different tests to determine toxicity to two beneficial insects: Telenomus remus Nixon (Hymenoptera: Scelionidae) and Chrysoperla carnea Steph. (Neuroptera: Chrysopidae). All insecticides were toxic to T. remus which suffered high mortality. There was no significant difference in mortality of the insect due to the method of exposure to the insecticides. There were some differences in the toxicity of the insecticides to C. carnea, and abamectin, bifenthrin, cypermethrin, diafenthiuron, imidacloprid and fenpropathrin were relatively less toxic and could be used in IPM for the control of pest insects. (author)

  3. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests.

    Science.gov (United States)

    Chen, Wen-Bo; Lu, Guo-Qing; Cheng, Hong-Mei; Liu, Chen-Xi; Xiao, Yu-Tao; Xu, Chao; Shen, Zhi-Cheng; Wu, Kong-Ming

    2017-10-01

    Although farmers in China have grown transgenic Bt-Cry1Ac cotton to resist the major pest Helicoverpa armigera since 1997 with great success, many secondary lepidopteran pests that are tolerant to Cry1Ac are now reported to cause considerable economic damage. Vip3AcAa, a chimeric protein with the N-terminal part of Vip3Ac and the C-terminal part of Vip3Aa, has a broad insecticidal spectrum against lepidopteran pests and has no cross resistance to Cry1Ac. In the present study, we tested insecticidal activities of Vip3AcAa against Spodoptera litura, Spodoptera exigua, and Agrotis ipsilon, which are relatively tolerant to Cry1Ac proteins. The bioassay results showed that insecticidal activities of Vip3AcAa against these three pests are superior to Cry1Ac, and after an activation pretreatment, Vip3AcAa retained insecticidal activity against S. litura, S. exigua and A. ipsilon that was similar to the unprocessed protein. The putative receptor for this chimeric protein in the brush border membrane vesicle (BBMV) in the three pests was also identified using biotinylated Vip3AcAa toxin. To broaden Bt cotton activity against a wider spectrum of pests, we introduced the vip3AcAa and cry1Ac genes into cotton. Larval mortality rates for S. litura, A. ipsilon and S. exigua that had fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and Bt-Cry1Ac cotton in a laboratory experiment. These results suggested that the Vip3AcAa protein is an excellent option for a "pyramid" strategy for integrated pest management in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available BACKGROUND: Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. METHODOLOGY/PRINCIPAL FINDINGS: Six small interfering RNAs (siRNAs were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 µg cm(-2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 µg/ml and 759.71 µg/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2 were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. CONCLUSIONS: The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P

  5. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    Science.gov (United States)

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot

  6. Comparison of susceptibility of pest Euschistus servus and predator Podisus maculiventris (Heteroptera: Pentatomidae) to selected insecticides.

    Science.gov (United States)

    Tillman, P Glynn; Mullinix, Benjamin G

    2004-06-01

    Susceptibility of the brown stink bug, Euschistus serous (Say), and the spined soldier bug, Podisus maculiventris (Say), to acetamiprid, cyfluthrin, dicrotophos, indoxacarb, oxamyl, and thiamethoxam, was compared in residual and oral toxicity tests. Generally, susceptibility of P. maculiventris to insecticides was significantly greater than or not significantly different from that of E. servus. Cyfluthrin and oxamyl were more toxic to the predator than to E. servus in residual and feeding tests, respectively. Dicrotophos is the only compound that exhibited both good residual and oral activity against E. servus, but even this toxicant was more toxic to the predator than to the pest in oral toxicity tests. Feeding on indoxacarb-treated food caused high mortality for both nymphs and adults of P. maculiventris. In contrast, E. servus was unaffected by feeding on food treated with this compound. Insecticide selectivity to P. maculiventris was detected only with acetamiprid for adults in residual toxicity tests and for nymphs in oral toxicity tests. Because insecticide selectivity to P. maculiventris was limited, it is extremely important to conserve P. maculiventris in cotton fields by applying these insecticides for control of brown stink bugs only when the pest reaches economic threshold.

  7. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti

    Science.gov (United States)

    2014-01-01

    wriggling movements. A similar trend was also observed for swimming pupa, except for imidacloprid, which increased the swimming activity of pupa. Curiously, the insecticides did not affect cell damage in the neuromuscular system of larvae and pupae. Conclusions Deltamethrin and spinosad were the main compounds to exhibit lethal effects, which allowed the control of A. aegypti larvae and pupae, and impair their swimming potentially compromising foraging and predation likelihood. PMID:24761789

  8. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti.

    Science.gov (United States)

    Tomé, Hudson Vv; Pascini, Tales V; Dângelo, Rômulo Ac; Guedes, Raul Nc; Martins, Gustavo F

    2014-04-24

    similar trend was also observed for swimming pupa, except for imidacloprid, which increased the swimming activity of pupa. Curiously, the insecticides did not affect cell damage in the neuromuscular system of larvae and pupae. Deltamethrin and spinosad were the main compounds to exhibit lethal effects, which allowed the control of A. aegypti larvae and pupae, and impair their swimming potentially compromising foraging and predation likelihood.

  9. Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?

    Science.gov (United States)

    Rix, Rachel R; Cutler, G Christopher

    2018-02-01

    Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and the insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors. Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits. Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Limonene--A Natural Insecticide.

    Science.gov (United States)

    Beatty, Joseph H.

    1986-01-01

    Describes a high school chemistry student's research project in which limonene was isolated from the oil of lemons and oranges. Outlines the students' tests on the use of this chemical as an insecticide. Discusses possible extensions of the exercises based on questions generated by the students. (TW)

  11. Bystander Exposure to Ultra-Low-Volume Insecticide Applications Used for Adult Mosquito Management

    Directory of Open Access Journals (Sweden)

    Robert K.D. Peterson

    2011-06-01

    Full Text Available A popular and effective management option for adult mosquitoes is the use of insecticides applied by ultra-low-volume (ULV equipment. However, there is a paucity of data on human dermal exposure to insecticides applied by this method. The objective of the current study was to estimate dermal exposures to the insecticide active ingredient permethrin using water- (Aqua-Reslin® and oil-based (Permanone® 30-30 formulations with passive dosimetry. No significant differences in deposition of permethrin were observed between years, distance from the spray source, front or back of the body, or the placement of the patches on the body. However, exposure to Aqua-Reslin was significantly greater than Permanone 30-30 and average concentrations deposited on the body were 4.2 and 2.1 ng/cm2, respectively. The greater deposition of Aqua-Reslin is most likely due to the higher density of the water-based formulation which causes it to settle out faster than the lighter oil-based formulation of Permanone 30-30. The estimated average absorbed dermal exposure for permethrin from Aqua-Reslin and Permanone 30-30 was 0.00009 and 0.00005 mg/kg body weight, respectively. We also found that ground deposition of ULV insecticides can be used as a surrogate for estimating dermal exposure. The estimated exposures support the findings of previous risk assessments that exposure to ULV applications used for mosquito management are below regulatory levels of concern.

  12. Efficacy, persistence and vector susceptibility to pirimiphos-methyl (Actellic 300CS) insecticide for indoor residual spraying in Zanzibar.

    Science.gov (United States)

    Haji, Khamis A; Thawer, Narjis G; Khatib, Bakari O; Mcha, Juma H; Rashid, Abdallah; Ali, Abdullah S; Jones, Christopher; Bagi, Judit; Magesa, Stephen M; Ramsan, Mahdi M; Garimo, Issa; Greer, George; Reithinger, Richard; Ngondi, Jeremiah M

    2015-12-09

    Indoor residual spraying (IRS) of households with insecticide is a principal malaria vector control intervention in Zanzibar. In 2006, IRS using the pyrethroid lambda-cyhalothrine was introduced in Zanzibar. Following detection of pyrethroid resistance in 2010, an insecticide resistance management plan was proposed, and IRS using bendiocarb was started in 2011. In 2014, bendiocarb was replaced by pirimiphos methyl. This study investigated the residual efficacy of pirimiphos methyl (Actellic 300CS) sprayed on common surfaces of human dwellings in Zanzibar. The residual activity of Actellic 300CS was determined over 9 months through bioassay tests that measured the mortality of female Anopheles mosquitoes, exposed to sprayed surfaces under a WHO cone. The wall surfaces included; mud wall, oil or water painted walls, lime washed wall, un-plastered cement block wall and stone blocks. Insecticide susceptibility testing was done to investigate the resistance status of local malaria vectors against Actellic 300CS using WHO protocols; Anopheline species were identified using PCR methods. Baseline tests conducted one-day post-IRS revealed 100% mortality on all sprayed surfaces. The residual efficacy of Actellic 300CS was maintained on all sprayed surfaces up to 8 months post-IRS. However, the bioassay test conducted 9 months post-IRS showed the 24 h mortality rate to be ≤80% for lime wash, mud wall, water paint and stone block surfaces. Only oil paint surface retained the recommended residual efficacy beyond 9 months post-IRS, with mortality maintained at ≥97 %. Results of susceptibility tests showed that malaria vectors in Zanzibar were fully (100%) susceptible to Actellic 300CS. The predominant mosquito vector species was An. arabiensis (76.0%) in Pemba and An. gambiae (83.5%) in Unguja. The microencapsulated formulation of pirimiphos methyl (Actellic 300CS) is a highly effective and appropriate insecticide for IRS use in Zanzibar as it showed a relatively prolonged

  13. Amélioration des activités insecticides des protéines Vip3 de Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Sameh SELLAMI

    2016-07-01

    Full Text Available Vip3 proteins were considered as a second generation of biopesticides. They are synthesized and secreted by Bacillus thuringiensis during the vegetative growth phase. Vip3 proteins, which are discovered in 1990, are of great interest for the control of Lepidopteran insects pests such as Agrotis ipsilon, Spodoptera littoralis, Spodoptera exigua and Spodoptera frugiperda. Many researches were conducted on the Vip3 proteins in order to enlarge their spectrum, improve their insecticidal activities and resolve the problems of resistance that appeared recently after the massive use of δ-endotoxins, considered as first generation of biopesticides. In this review, we tried to summarize research studies interested in the improvement of the insecticidal activities of Vip3 proteins.

  14. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses.

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhang, Zhichao; Wang, Ying; You, Keke; Li, Yue; Zhang, Rongbin; Zhou, Qiang

    2017-10-01

    The brown planthopper, Nilaparvata lugens, possesses a strong adaptability to extreme temperature and insecticide stresses. Heat shock proteins (Hsps) are highly conserved molecular chaperones and play a pivotal role in response to various environmental stresses in insects. However, little is known about the response of Hsps to stresses in N. lugens. In the present study, an inducible Hsp70 (NlHsp70) was isolated from this insect and transcriptional expression patterns of NlHsp70 under temperature and insecticide stresses were analyzed. The full-length of NlHsp70 was 2805bp with an open reading frame (ORF) of 1896bp, showing high homology to its counterparts in other species. Expression of NlHsp70 was not altered by heat shock for 1h, nor following recovery from thermal stress. Conversely, decreased expression of NlHsp70 was observed in response to cold shock. In addition, the expression of NlHsp70 increased after imidacloprid exposure. RNA interference experiment combined with insecticide injury assay also demonstrated that NlHsp70 was essential for resistance against insecticide exposure. These observations indicated that NlHsp70 was an important gene involved in the resistance or tolerance to environmental stresses in N. lugens. Interestingly, weak changes in mRNA expression levels of two thermal-inducible Hsp genes, NlHsp90 and NlHsc70 were observed in imidacloprid-exposed N. lugens adults, suggesting that different Hsps may respond differential to the extreme temperature and insecticide stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).

    Science.gov (United States)

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-10-26

    The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. These results suggest that the high level of

  16. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.

    Science.gov (United States)

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Banchariya, Anjali; Rao, Atmakuri Ramakrishna

    2017-03-24

    Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has

  17. Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Araneae)

    Science.gov (United States)

    Genetically modified crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) have dramatically increased in acreage since their introduction in the mid-1990’s. Although the insecticidal mechanisms of Bt target specific pests, concerns persist regarding direct and indirect effects on...

  18. The use of insecticides to control insect pests

    OpenAIRE

    M Wojciechowska; P Stepnowski; M Gołębiowski

    2016-01-01

    Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resi...

  19. The response of natural enemies to selective insecticides applied to soybean.

    Science.gov (United States)

    Varenhorst, A J; O'Neal, M E

    2012-12-01

    Natural enemies of the invasive pest Aphis glycines Matsumura can prevent its establishment and population growth. However, current A. glycines management practices include the application of broad-spectrum insecticides that affect pests and natural enemies that are present in the field at the time of application. An alternative is the use of selective insecticides that affect the targeted pest species, although having a reduced impact on the natural enemies. We tested the effects of esfenvalerate, spirotetramat, imidacloprid, and a combination of spirotetramat and imidacloprid on the natural enemies in soybean during the 2009 and 2010 field season. The natural enemy community that was tested differed significantly between 2009 and 2010 (F = 87.41; df = 1, 598; P natural enemy in 2009 was Harmonia axyridis (Pallas) (56.0%) and in 2010 was Orius insidiosus (Say) (41.0%). During 2009, the abundance of natural enemies did not vary between the broad-spectrum and selective insecticides; however, the abundance of natural enemies was reduced by all insecticide treatments when compared with the untreated control. In 2010, the selective insecticide imidacloprid had more natural enemies than the broad-spectrum insecticide. Although we did not observe a difference in the abundance of the total natural enemy community in 2009, we did observe more H. axyridis in plots treated with spirotetramat. In 2010, we observed more O. insidiosus in plots treated with imidacloprid. We suggest a couple of mechanisms to explain how the varying insecticides have different impacts on separate components of the natural enemy community.

  20. Potential for sublethal insecticide exposure to impact vector competence of Aedes albopictus (Diptera: Culicidae for dengue and Zika viruses

    Directory of Open Access Journals (Sweden)

    Richards SL

    2017-05-01

    Full Text Available Stephanie L Richards, Avian V White, Jo Anne G Balanay Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA Abstract: Chikungunya, dengue, and Zika viruses (CHIKV, family Togaviridae, genus Alphavirus; DENV and ZIKV, family Flaviviridae, genus Flavivirus are arboviruses that cause human epidemics. Due to the lack of vaccines for many mosquito-borne diseases, there is a need for mosquito control. In the US and other regions, residual barrier insecticide sprays are applied to foliage where female mosquitoes rest and/or sugar feed between blood meals. Residual sprays are an important control method for anthropogenic day-active sylvan mosquitoes such as Aedes albopictus (vector of CHIKV, DENV, and ZIKV that are difficult to control using ultralow-volume sprays applied only at dusk or dawn when these mosquitoes are not active. In this exploratory study, we analyzed the extent to which ingestion of a sublethal dose of the active ingredient bifenthrin affected vector competence (i.e., infection, dissemination, and transmission of Ae. albopictus for DENV and ZIKV. Two incubation periods (IPs; 7 and 14 d were tested at 28°C for insecticide-fed and sugar-fed mosquitoes. We show that mosquitoes that were fed bifenthrin (0.128 µg/mL mixed with sucrose solution exhibited significantly lower DENV infection rates and body titers after a 14-d IP. During the 7-d IP, one mosquito (sugar group transmitted ZIKV. During the 14-d IP, 100% of mosquitoes showed body and leg ZIKV infections, and one mosquito (sugar+bifenthrin group transmitted ZIKV. This is a preliminary communication, and more studies will be required to further investigate these findings. We expect the findings of this small-scale study to spur larger-scale investigations of the impacts of insecticides on mechanisms regulating vector competence, and exposure to other active ingredients, and aid in development of new

  1. Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae vector of huanglongbing pathogens.

    Directory of Open Access Journals (Sweden)

    Jawwad A Qureshi

    Full Text Available Diaphorina citri vectors pathogens that cause 'huanglongbing' or citrus greening disease which poses a serious threat to citrus production worldwide. Vector suppression is critical to reduce disease spread. Efficacy is a main concern when choosing an insecticide. Insecticidal treatments of 49 products or 44 active ingredients (a.i labeled or experimental were field tested between 2005-2013 as foliar sprays (250 treatments, 39 a.i or soil applications (47 treatments, 9 a.i to control D. citri in citrus. A combined effect of nymphal and adult suppression in response to sprays of 23 insecticides representing 9 modes of action (MoA groups and 3 unknown MoA provided more than 90% reduction of adult D. citri over 24-68 days. Observable effects on nymphs were generally of shorter duration due to rapid maturation of flush. However, reduction of 76-100% nymphs or adults over 99-296 days was seen on young trees receiving drenches of the neonicotinoids imidacloprid, thiamethoxam or clothianidin (MoA 4A and a novel anthranilic diamide, cyantraniliprole (MoA 28. Effective products identified for foliar sprays to control D. citri provide sufficient MoA groups for rotation to delay evolution of insecticide resistance by D. citri and other pests. However, cyantraniliprole is now the only available alternative for rotation with neonicotinoids in soil application to young trees. Sprays of up to eight of the most effective insecticides could be rotated over a year without repetition of any MoA and little or no recourse to neonicotinoids or cyantraniliprole, so important for protection of young trees. Other considerations effecting decisions of what and when to spray include prevalence of huanglongbing, pest pressure, pre-harvest intervals, overall budget, equipment availability, and conservation of beneficial arthropods. Examples of spray programs utilizing broad-spectrum and relatively selective insecticides are provided to improve vector management and may vary

  2. Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of huanglongbing pathogens.

    Science.gov (United States)

    Qureshi, Jawwad A; Kostyk, Barry C; Stansly, Philip A

    2014-01-01

    Diaphorina citri vectors pathogens that cause 'huanglongbing' or citrus greening disease which poses a serious threat to citrus production worldwide. Vector suppression is critical to reduce disease spread. Efficacy is a main concern when choosing an insecticide. Insecticidal treatments of 49 products or 44 active ingredients (a.i) labeled or experimental were field tested between 2005-2013 as foliar sprays (250 treatments, 39 a.i) or soil applications (47 treatments, 9 a.i) to control D. citri in citrus. A combined effect of nymphal and adult suppression in response to sprays of 23 insecticides representing 9 modes of action (MoA) groups and 3 unknown MoA provided more than 90% reduction of adult D. citri over 24-68 days. Observable effects on nymphs were generally of shorter duration due to rapid maturation of flush. However, reduction of 76-100% nymphs or adults over 99-296 days was seen on young trees receiving drenches of the neonicotinoids imidacloprid, thiamethoxam or clothianidin (MoA 4A) and a novel anthranilic diamide, cyantraniliprole (MoA 28). Effective products identified for foliar sprays to control D. citri provide sufficient MoA groups for rotation to delay evolution of insecticide resistance by D. citri and other pests. However, cyantraniliprole is now the only available alternative for rotation with neonicotinoids in soil application to young trees. Sprays of up to eight of the most effective insecticides could be rotated over a year without repetition of any MoA and little or no recourse to neonicotinoids or cyantraniliprole, so important for protection of young trees. Other considerations effecting decisions of what and when to spray include prevalence of huanglongbing, pest pressure, pre-harvest intervals, overall budget, equipment availability, and conservation of beneficial arthropods. Examples of spray programs utilizing broad-spectrum and relatively selective insecticides are provided to improve vector management and may vary depending on

  3. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  4. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  5. Insecticidal and repellent effects of tea tree and andiroba oils on flies associated with livestock.

    Science.gov (United States)

    Klauck, V; Pazinato, R; Stefani, L M; Santos, R C; Vaucher, R A; Baldissera, M D; Raffin, R; Boligon, A; Athayde, M; Baretta, D; Machado, G; DA Silva, A S

    2014-08-01

    This study aimed to evaluate the insecticidal and repellent effects of tea tree, Melaleuca alternifolia (Myrtales: Myrtaceae), and andiroba, Carapa guianensis (Sapindales: Meliaceae), essential oils on two species of fly. For in vitro studies, free-living adult flies were captured and reared in the laboratory. To evaluate the insecticidal effects of the oils, adult flies of Haematobia irritans (L.) and Musca domestica L. (both: Diptera: Muscidae) were separated by species in test cages (n = 10 per group), and subsequently tested with oils at concentrations of 1.0% and 5.0% using a negative control to validate the test. Both oils showed insecticidal activity. Tea tree oil at a concentration of 5.0% was able to kill M. domestica with 100.0% efficacy after 12 h of exposure. However, the effectiveness of andiroba oil at a concentration of 5.0% was only 67.0%. The insecticidal efficacy (100.0%) of both oils against H. irritans was observed at both concentrations for up to 4 h. The repellency effects of the oils at concentrations of 5.0% were tested in vivo on Holstein cows naturally infested by H. irritans. Both oils demonstrated repellency at 24 h, when the numbers of flies on cows treated with tea tree and andiroba oil were 61.6% and 57.7%, respectively, lower than the number of flies on control animals. It is possible to conclude that these essential oils have insecticidal and repellent effects against the species of fly used in this study. © 2014 The Royal Entomological Society.

  6. Identification of two acetylcholinesterases in Pardosa pseudoannulata and the sensitivity to insecticides.

    Science.gov (United States)

    Zhang, Yixi; Shao, Ying; Jiang, Feng; Li, Jian; Liu, Zewen

    2014-03-01

    Pardosa pseudoannulata is an important predatory enemy against insect pests, such as rice planthoppers and leafhoppers. In order to understand the insecticide selectivity between P. pseudoannulata and insect pests, two acetylcholinesterase genes, Pp-ace1 and Pp-ace2, were cloned from this natural enemy. The putative proteins encoded by Pp-ace1 and Pp-ace2 showed high similarities to insect AChE1 (63% to Liposcelis entomophila AChE1) and AChE2 (36% to Culex quinquefasciatus AChE2) with specific functional motifs, which indicated that two genes might encode AChE1 and AChE2 proteins respectively. The recombinant proteins by expressing Pp-ace1 and Pp-ace2 genes in insect sf9 cells showed high AChE activities. The kinetic parameters, Vmax and Km, of two recombinant AChE proteins were significantly different. The sensitivities to six insecticides were determined in two recombinant AChEs. Pp-AChE1 was more sensitive to all tested insecticides than Pp-AChE2, such as fenobucarb (54 times in Ki ratios), isoprocarb (31 times), carbaryl (13 times) and omethoate (6 times). These results indicated that Pp-AChE1 might be the major synaptic enzyme in the spider. By sequence comparison of P. pseudoannulata and insect AChEs, the key amino acid differences at or close to the functional sites were found. The locations of some key amino acid differences were consistent with the point mutation sites in insect AChEs that were associated with insecticide resistance, such as Phe331 in Pp-AChE2 corresponding to Ser331Phe mutation in Myzus persicae and Aphis gossypii AChE2, which might play important roles in insecticide selectivity between P. pseudoannulata and insect pests. Of course, the direct evidences are needed through further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Neurotoxicology of insecticides and pheromones

    National Research Council Canada - National Science Library

    Narahashi, Toshio

    1979-01-01

    The purpose of this symposium was to provide a forum where a variety of scientists who were interested in the interactions of insecticides and pheromones with the nervous system got together to exchange their views...

  8. Insecticide Usage and Chemical Contamination Assessment in Asiatic Pennywort

    Science.gov (United States)

    Bumroongsook, S.

    2017-07-01

    The insecticide usage in commercially grown asiatic pennywort plantations in Nakhonpatum and Nonthaburi province, Thailand was surveyed during January-June, 2016. The results showed that asiatic pennywort cuttworms was leaf destructive and caused the most damge to the production. The growers used organophosphate insecticides to control the caterpillars the most, followed by pyrethoid, abamectin, carbamate and organochlorine, respectively. The chemical contaminants of pennywort from 9 fresh markets in Bangkok was monitored, the result indicated that lead was not detected in the samples. The amount of arsenic was less than 0.075 mg / kg. The insecticide residue measurement of dicofol, chlorpyrifos and methidathion was 0.98, 2.84 and 0.46 mg / kg, respectively.

  9. Plant Essential Oils from Apiaceae Family as Alternatives to Conventional Insecticides

    Directory of Open Access Journals (Sweden)

    Asgar Ebadollahi

    2013-06-01

    Full Text Available Main method to control insect pest is using synthetic insecticides, but the development of insect resistance to this products, the high operational cost, environmental pollution, toxicity to humans and harmful effect on non-target organisms have created the need for developing alternative approaches to control insect pest. Furthermore, the demand for organic crops, especially vegetables for the fresh market, has greatly increased worldwide. The ideal insecticide should control target pests adequately and should be target-specific, rapidly degradable, and low in toxicity to humans and other mammals. Plant essential oils could be an alternative source for insect pest control because they constitute a rich source of bioactive chemicals and are commonly used as flavoring agents in foods. These materials may be applied to food crops shortly before harvest without leaving excessive residues. Moreover, medically safe of these plant derivatives has emphasized also. For these reasons, much effort has been focused on plant essential oils or their constituents as potential sources of insect control agents. In this context, Apiaceae (Umbelliferae family would rank among the most important families of plants. In the last few years more and more studies on the insecticidal properties of essential oils from Apiaceae family have been published and it seemed worthwhile to compile them. The focus of this review lies on the lethal (ovicidal, larvicidal, pupicidal and adulticidal and sublethal (antifeedant, repellent, oviposition deterrent, Growth inhibitory and progeny production activities of plant essential oils and theirmain components from Apiaceae family. These features indicate that pesticides based on Apiaceae essential oils could be used in a variety of ways to control a large number of pests. It can be concluded that essential oils and phytochemicals isolated from Apiaceae family may be efficacious and safe replacements for conventional synthetic

  10. Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status.

    Directory of Open Access Journals (Sweden)

    Nilanjana Banerjee

    Full Text Available BACKGROUND: Allium sativum leaf agglutinin (ASAL is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL. METHODOLOGY/PRINCIPAL FINDINGS: By introduction of 5 site-specific mutations (-DNSNN-, a β turn was incorporated between the 11(th and 12(th β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL. mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL. CONCLUSIONS/SIGNIFICANCE: Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of m

  11. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides.

    Science.gov (United States)

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-02-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

  12. The global status of insect resistance to neonicotinoid insecticides.

    Science.gov (United States)

    Bass, Chris; Denholm, Ian; Williamson, Martin S; Nauen, Ralf

    2015-06-01

    The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Zhu, Yu Cheng; Blanco, Carlos A; Portilla, Maribel; Adamczyk, John; Luttrell, Randall; Huang, Fangneng

    2015-07-01

    Fall armyworm (FAW) is a damaging pest of many economic crops. Long-term use of chemical control prompted resistance development to many insecticide classes. Many populations were found to be significantly less susceptible to major Bt toxins expressed in transgenic crops. In this study, a FAW strain collected from Puerto Rico (PR) with 7717-fold Cry1F-resistance was examined to determine if it had also developed multiple/cross resistance to non-Bt insecticides. Dose response assays showed that the PR strain developed 19-fold resistance to acephate. Besides having a slightly smaller larval body weight and length, PR also evolved a deep (2.8%) molecular divergence in mitochondrial oxidase subunit II. Further examination of enzyme activities in the midgut of PR larvae exhibited substantial decreases of alkaline phosphatase (ALP), aminopeptidase (APN), 1-NA- and 2-NA-specific esterase, trypsin, and chymotrypsin activities, and significant increases of PNPA-specific esterase and glutathione S-transferase (GST) activities. When enzyme preparations from the whole larval body were examined, all three esterase, GST, trypsin, and chymotrypsin activities were significantly elevated in the PR strain, while ALP and APN activities were not significantly different from those of susceptible strain. Data indicated that multiple/cross resistances may have developed in the PR strain to both Bt toxins and conventional insecticides. Consistently reduced ALP provided evidence to support an ALP-mediated Bt resistance mechanism. Esterases and GSTs may be associated with acephate resistance through elevated metabolic detoxification. Further studies are needed to clarify whether and how esterases, GSTs, and other enzymes (such as P450s) are involved in cross resistance development to Bt and other insecticide classes. Published by Elsevier Inc.

  14. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation.

    Science.gov (United States)

    Liao, Min; Xiao, Jin-Jing; Zhou, Li-Jun; Liu, Yang; Wu, Xiang-Wei; Hua, Ri-Mao; Wang, Gui-Rong; Cao, Hai-Qun

    2016-01-01

    The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation. M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain

  15. POTENTIATION OF COPAÍBA OIL-RESIN WITH SYNTHETIC INSECTICIDES TO CONTROL OF FALL ARMYWORM

    OpenAIRE

    ALMEIDA, WALDIANE ARAÚJO DE; SILVA, IGOR HONORATO LEDUÍNO DA; SANTOS, ANA CLÁUDIA VIEIRA DOS; BARROS JÚNIOR, AURÉLIO PAES; SOUSA, ADALBERTO HIPÓLITO DE

    2017-01-01

    ABSTRACT The control of Spodoptera frugiperda (J. E. SMITH) (Lepidoptera: Noctuidae) has been carried out mainly with pyrethroids and organophosphates insecticides. The continuous and indiscriminate use of synthetic insecticides, for decades, has led to the selection of resistant populations and has caused concerns for human health and the environment. An alternative is the use of botanical insecticides, including through the mixtures with synthetic insecticides. This study aimed to investiga...

  16. Design, Synthesis and Antifungal/Insecticidal Evaluation of Novel Cinnamide Derivatives

    Directory of Open Access Journals (Sweden)

    Yanjun Xu

    2011-10-01

    Full Text Available Twenty novel cinnamamide derivatives were designed and synthesized using as lead compound pyrimorph, whose morpholine moiety was replaced by β-phenylethylamine. All the compounds were characterized by their spectroscopic data. The fungicidal and insecticidal activities were also evaluated. The preliminary results showed that all the title compounds had certain fungicidal activities against seven plant pathogens at a concentration of 50 μg/mL, and compounds 11a and 11l showed inhibition ratios of up to 90% against R. solani. Most of the title compounds exhibited moderate nematicidal activities. In general, the morpholine ring may be replaced by other amines and a chlorine atom in the pyridine ring is helpful to fungicidal activity.

  17. Status of insecticide resistance in high-risk malaria provinces in Afghanistan.

    Science.gov (United States)

    Ahmad, Mushtaq; Buhler, Cyril; Pignatelli, Patricia; Ranson, Hilary; Nahzat, Sami Mohammad; Naseem, Mohammad; Sabawoon, Muhammad Farooq; Siddiqi, Abdul Majeed; Vink, Martijn

    2016-02-18

    Insecticide resistance seriously threatens the efficacy of vector control interventions in malaria endemic countries. In Afghanistan, the status of insecticide resistance is largely unknown while distribution of long-lasting insecticidal nets has intensified in recent years. The main objective of this study was thus to measure the level of resistance to four classes of insecticides in provinces with medium to high risk of malaria transmission. Adult female mosquitoes were reared from larvae successively collected in the provinces of Nangarhar, Kunar, Badakhshan, Ghazni and Laghman from August to October 2014. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), bendiocarb (0.1 %), permethrin (0.75 %) and deltamethrin (0.05 %). In addition, the presence of kdr mutations was investigated in deltamethrin resistant and susceptible Anopheles stephensi mosquitoes collected in the eastern provinces of Nangarhar and Kunar. Analyses of mortality rates revealed emerging resistance against all four classes of insecticides in the provinces located east and south of the Hindu Kush mountain range. Resistance is observed in both An. stephensi and Anopheles culicifacies, the two dominant malaria vectors in these provinces. Anopheles superpictus in the northern province of Badakhshan shows a different pattern of susceptibility with suspected resistance observed only for deltamethrin and bendiocarb. Genotype analysis of knock down resistance (kdr) mutations at the voltage-gated channel gene from An. stephensi mosquitoes shows the presence of the known resistant alleles L1014S and L1014F. However, a significant fraction of deltamethrin-resistant mosquitoes were homozygous for the 1014L wild type allele indicating that other mechanisms must be considered to account for the observed pyrethroid resistance. This study confirms the importance of monitoring insecticide resistance for the development of an integrated vector management in Afghanistan. The

  18. Evaluation of new tools for malaria vector control in Cameroon: focus on long lasting insecticidal nets.

    Science.gov (United States)

    Etang, Josiane; Nwane, Philippe; Piameu, Michael; Manga, Blaise; Souop, Daniel; Awono-Ambene, Parfait

    2013-01-01

    From 2006 to 2011, biological activity of insecticides for Indoor Residual Spraying (IRS), conventional treatment of nets (CTNs) or long lasting insecticidal nets (LLINs) was evaluated before their approval in Cameroon. The objective of the study was to select the best tools for universal malaria vector control coverage. Bioassays were performed using WHO cones and the Kisumu susceptible strain of Anopheles gambiae s.s.. Among tested products, residual activity and wash resistance of Alpha-cypermethrin LLINs (Interceptor) and CTNs (Fendona) were assessed during 5 months in the Ntougou neighborhood. All the 14 tested products were found effective (95-100% knockdown and mortality rates), although a significant decrease of efficacy was seen with lambda-cyhalothrinWP IRS, alpha-cypermethrin CTNs and LLINs (peducation toward universal coverage of malaria vector control in Cameroon.

  19. Arthropod Pest Control for UK Oilseed Rape - Comparing Insecticide Efficacies, Side Effects and Alternatives.

    Directory of Open Access Journals (Sweden)

    Han Zhang

    Full Text Available Oilseed rape (Brassica napus is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users' health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0-1 t/ha less. Alternatives for future

  20. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    USER

    2010-03-15

    Mar 15, 2010 ... This study provides information on the incidence of major insect pests of cowpea as well as the minimum insecticide control intervention necessary for effectively reducing cowpea yield losses on the field. Two insecticide spray regimes (once at flowering and podding) significantly reduced insect population ...

  1. Substances inertes et plantes à effet insecticide utilisées dans la ...

    African Journals Online (AJOL)

    Les insecticides naturels tels que les plantes à effet insecticide et les substances inertes (sable, cendre, terres à diatomées,…) méritent d'être valorisées afin de réduire l'utilisation des insecticides chimiques et protéger l'environnement. Ce travail basé sur une revue documentaire fouillée et actualisée vise à faire la genèse ...

  2. Efficacy of eco-smart insecticides against certain biological stages of jasmine moth, Palpita unionalis Hb.(Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Mahmoud Farag Mahmoud

    2014-03-01

    Full Text Available The efficacy of six eco-smart insecticides, Dipel 2x 6.4% WP (Bacillus thuringensis AI, Biofly 100% WP (Beauvaria bessiana AI, Radiant 12% SC (Saccharopolyspora spinosa AI, Mectin 1.8% EC (Streptomyces avermitilis AI, Nimbecidine 0.03% EC (Azadirachtin AI and Bio-Power 50% EC (Beauvaria bessiana AI, were tested against eggs, larvae and pupae of the jasmine moth, Palpita unionalis Hb. and its parasitoid Apanteles syleptae under laboratory conditions. Data indicated that all tested insecticides had ovicidal activity against P. unionalis. Mectin was the most toxic among the tested insecticides against the egg stage, followed by Radiant or Dipel 2x, and their respective values of LC50 were 0.005 cm/l, 0.006 cm/l and 0.055 g/l. Dipel 2x was the most toxic insecticide to the 1st instar larvae of P. unionalis, whereas Mectin was the most toxic to both the 3rd and 5th instar larvae. Also, the results revealed that Mectin was the most effective against the pupal stage, followed descendingly by Radiant and Dipel 2x. The toxicity index values showed a superior efficiency of Mectin at LC50 (100% against eggs, 3rd and 5th instar larvae, and pupal stage, whereas Dipel 2x showed such superior efficiency at LC50 (100% only against 1st instar larvae. The results showed that the percents of pupation and emergence of moths were significantly different in all treatments compared to control, while deformed pupae and malformed adults were insignificantly different when fifth instar larvae were treated with the tested insecticides. Moreover, the rate of P. unionalis adult emergence from treated pupae was concentration-dependent and significant differences were found between insecticide treatments and control. Generally, Mectin, Radiant and Dipel 2x caused the highest impacts on adult emergence and malformed adults percentages. Regarding the toxicity of insecticides to the endoparasitoid A. syleptae, the treated cocoons developed to adult stages with no significant

  3. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies

    Directory of Open Access Journals (Sweden)

    Yébakima André

    2009-10-01

    Full Text Available Abstract Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies. Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71% of the sodium channel 'knock down resistance' (kdr mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT

  4. Some physiological aspects of the insecticidal action of diflubenzuron, an inhibitor of chitin synthesis

    NARCIS (Netherlands)

    Grosscurt, A.C.

    1980-01-01

    Diflubenzuron is the common name for 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea, the active ingredient of the insecticide Dimilin.

    Diflubenzuron was discovered in 1971 as a larvicide. Evidence was provided by several authors that the larvicidal effect of this compound was caused by its

  5. Effects of insecticide spray application on insect pest infestation and ...

    African Journals Online (AJOL)

    Field studies were conducted during the 2008 - 2009 cropping season to determine the minimal insecticide application which can reduce cowpea yield losses on the field due to insect pest infestations in the Transkei region of South Africa. Treatments consisted of five cowpea varieties and four regimes of insecticide spray ...

  6. Underpinning sustainable vector control through informed insecticide resistance management.

    Directory of Open Access Journals (Sweden)

    Edward K Thomsen

    Full Text Available There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions.A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s.Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan.

  7. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  8. Genetics, Synergists, and Age Affect Insecticide Sensitivity of the Honey Bee, Apis mellifera

    Science.gov (United States)

    Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Danka, Robert G.; Tarver, Matthew R.; Ottea, James A.; Healy, Kristen B.

    2015-01-01

    The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature. PMID:26431171

  9. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  10. Organochlorine insecticide poisoning in Golden Langurs Trachypithecus geei

    Directory of Open Access Journals (Sweden)

    D.C. Pathak

    2011-07-01

    Full Text Available Organochlorine insecticide poisoning was recorded in three Golden Langurs (Trachypithecus geei in Chakrashila Wildlife Sanctuary (CWS in Kokrajhar district of Assam during the month of December, 2008. The poisoning was due to prolonged ingestion of rubber plant leaves sprayed with the insecticide in a rubber plantation adjacent to the sanctuary. Though no specific gross lesions were observed, histopathologically, centilobular hepatic necrosis, mild renal degeneration, necrotic enteritis, pulmonary congestion and neuronal degeneration were recorded in all three animals.

  11. Household use of insecticide consumer products in a dengue-endemic area in México.

    Science.gov (United States)

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E; Keefe, Thomas J; Beaty, Barry J; Eisen, Lars

    2014-10-01

    To evaluate the household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue-endemic area of México. A questionnaire was administered to 441 households in Mérida City and other communities in Yucatán to assess household use of insecticide consumer products. A total of 86.6% of surveyed households took action to kill insect pests with consumer products. The most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%) and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. Products were used daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%) and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to approximately 31 $US. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $US) for Mérida City alone. Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. © 2014 John Wiley & Sons Ltd.

  12. Quantification of the efficiency of treatment of Anopheles gambiae breeding sites with petroleum products by local communities in areas of insecticide resistance in the Republic of Benin

    Directory of Open Access Journals (Sweden)

    Doannio Julien MC MC

    2007-05-01

    Full Text Available Abstract Background The emergence of Anopheles populations capable of withstanding lethal doses of insecticides has weakened the efficacy of most insecticide based strategies of vector control and, has highlighted the need for developing new insecticidal molecules or, improving the efficacy of existing insecticides or abandoning those to which resistance has emerged. The use of petroleum products (PP against mosquito larvae had an immense success during early programmes of malaria control, but these compounds were abandoned and replaced in the 1950s by synthetic insecticides probably because of the high performances given by these new products. In the current context of vector resistance, it is important to elucidate the empirical use of PP by quantifying their efficiencies on resistant strains of Anopheles. Methods Larvae of Anopheles Ladji a local resistant strain were exposed to increasing concentrations of various PP (kerosene, petrol and engine oils for 24 hours and the lethal activities recorded. The highest concentration (HiC having no lethal activity (also referred as the NOEL or no effect level and the lowest concentration (LoC100 yielding 100% mortality were rated for each PP on the Ladji strain. Prior to laboratory analysis, KAP studies were conducted in three traditional communities were insecticide resistance is clearly established to confirm the use of PP against mosquitoes. Results Laboratory analysis of petrol, kerosene and engine oils, clearly established their lethal activities on resistant strains of Anopheles larvae. Contrary to existing references, this research revealed that exposed larvae of Anopheles were mostly killed by direct contact toxicity and not by suffocation as indicated in some earlier reports. Conclusion This research could serve as scientific basis to backup the empirical utilisation of PP on mosquito larvae and to envisage possibilities of using PP in some traditional settings where Anopheles have developed

  13. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India.

    Science.gov (United States)

    Malathi, Vijayakumar Maheshwari; Jalali, Sushil K; Gowda, Dandinashivara K Sidde; Mohan, Muthugounder; Venkatesan, Thiruvengadam

    2017-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the major pests of rice throughout Asia. Extensive use of insecticides for suppressing N. lugens has resulted in the development of insecticide resistance leading to frequent control failures in the field. The aim of the present study was to evaluate resistance in the field populations of N. lugens from major rice growing states of South India to various insecticides. We also determined the activity of detoxifying enzymes (esterases [ESTs], glutathione S-transferases [GSTs], and mixed-function oxidases [MFOs]). Moderate levels of resistance were detected in the field populations to acephate, thiamethoxam and buprofezin (resistance factors 1.05-20.92 fold, 4.52-14.99 fold, and 1.00-18.09 fold, respectively) as compared with susceptible strain while there were low levels of resistance to imidacloprid (resistance factor 1.23-6.70 fold) and complete sensitivity to etofenoprox (resistance factor 1.05-1.66 fold). EST activities in the field populations were 1.06 to 3.09 times higher than the susceptible strain while for GST and MFO the ratios varied from 1.29 to 3.41 and 1.03 to 1.76, respectively. The EST activity was found to be correlated to acephate resistance (r = 0.999, P ≥ 0.001). The high selection pressure of organophosphate, neonicotinoid, and insect growth regulator (IGR) in the field is likely to be contributing for resistance in BPH to multiple insecticides, leading to control failures. The results obtained will be beneficial to IPM recommendations for the use of effective insecticides against BPH. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  14. Neural network-based QSAR and insecticide discovery: spinetoram

    Science.gov (United States)

    Sparks, Thomas C.; Crouse, Gary D.; Dripps, James E.; Anzeveno, Peter; Martynow, Jacek; DeAmicis, Carl V.; Gifford, James

    2008-06-01

    Improvements in the efficacy and spectrum of the spinosyns, novel fermentation derived insecticide, has long been a goal within Dow AgroSciences. As large and complex fermentation products identifying specific modifications to the spinosyns likely to result in improved activity was a difficult process, since most modifications decreased the activity. A variety of approaches were investigated to identify new synthetic directions for the spinosyn chemistry including several explorations of the quantitative structure activity relationships (QSAR) of spinosyns, which initially were unsuccessful. However, application of artificial neural networks (ANN) to the spinosyn QSAR problem identified new directions for improved activity in the chemistry, which subsequent synthesis and testing confirmed. The ANN-based analogs coupled with other information on substitution effects resulting from spinosyn structure activity relationships lead to the discovery of spinetoram (XDE-175). Launched in late 2007, spinetoram provides both improved efficacy and an expanded spectrum while maintaining the exceptional environmental and toxicological profile already established for the spinosyn chemistry.

  15. QSAR Study of Insecticides of Phthalamide Derivatives Using Multiple Linear Regression and Artificial Neural Network Methods

    Directory of Open Access Journals (Sweden)

    Adi Syahputra

    2014-03-01

    Full Text Available Quantitative structure activity relationship (QSAR for 21 insecticides of phthalamides containing hydrazone (PCH was studied using multiple linear regression (MLR, principle component regression (PCR and artificial neural network (ANN. Five descriptors were included in the model for MLR and ANN analysis, and five latent variables obtained from principle component analysis (PCA were used in PCR analysis. Calculation of descriptors was performed using semi-empirical PM6 method. ANN analysis was found to be superior statistical technique compared to the other methods and gave a good correlation between descriptors and activity (r2 = 0.84. Based on the obtained model, we have successfully designed some new insecticides with higher predicted activity than those of previously synthesized compounds, e.g.2-(decalinecarbamoyl-5-chloro-N’-((5-methylthiophen-2-ylmethylene benzohydrazide, 2-(decalinecarbamoyl-5-chloro-N’-((thiophen-2-yl-methylene benzohydrazide and 2-(decaline carbamoyl-N’-(4-fluorobenzylidene-5-chlorobenzohydrazide with predicted log LC50 of 1.640, 1.672, and 1.769 respectively.

  16. Identification of Repellent and Insecticidal Constituents of the Essential Oil of Artemisia rupestris L. Aerial Parts against Liposcelis bostrychophila Badonnel

    OpenAIRE

    Liu, Xin; Li, Yin; Li, He; Deng, Zhi; Zhou, Ligang; Liu, Zhi; Du, Shu

    2013-01-01

    The aim of this research was to determine the chemical composition and insecticidal and repellent activity of the essential oil of Artemisia rupestris L. aerial parts against the booklice Liposcelis bostrychophila Badonnel and isolation of insecticidal and repellent constituents from the essential oil. The essential oil of A. rupestris was obtained by hydrodistillation and analyzed by GC-MS. A total of 30 components of the essential oil of A. rupestris was identified and the principal compoun...

  17. A magical biological insecticide extracted from seeds of Millettia pachyarpa to kill cabbage aphids

    Science.gov (United States)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan

    2018-04-01

    Millettia pachycarpa Benth is a perennial climbing shrub belonging to the genus Millettia, as it is widely used in traditional practices like agricultural pesticides, blood tonics, fish poison, and treatments for cancer and infertility. The crude extract of the seeds of M. pachycarpa had insecticidal activity on cabbage aphids. The conventional extract approach with three kinds of organic solvents: methanol, ethanol, and acetone was used for extracting of crude extract of seeds of M. pachycarpa. The leaf immersion method in a petri dish was used to measure contact activity on cabbage aphids. The field measurement method in a cabbage field was used to measure the control effect. The result indicated that the average mortality rate of cabbage aphids reached 91.3 percent under the action of crude extract of the seeds of M. pachycarpa, indicating that contacting activity against cabbage aphid was strong. After the crude extract was sprayed for 2 days, the proofread control effect of 1000 μg / mL ethanol crude extract against cabbage aphid was 85.0 percent. After 7 days of spraying, this number increased to 92.2 percent. The study concluded that crude extract of the seeds of M. pachyarpa extracted with methanol, ethanol, acetone had demonstrable contact activity against cabbage aphid and 1000 μg / mL ethanol crude extract had significant control effect against the larvae of cabbage aphid.

  18. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.

    Science.gov (United States)

    Mougabure-Cueto, Gastón; Picollo, María Inés

    2015-09-01

    Chagas disease is a chronic parasitic infection restricted to America. The disease is caused by the protozoa Trypanosoma cruzi, which is transmitted to human through the feces of infected triatomine insects. Because no treatment is available for the chronic forms of the disease, vector chemical control represents the best way to reduce the incidence of the disease. Chemical control has been based principally on spraying dwellings with insecticide formulations and led to the reduction of triatomine distribution and consequent interruption of disease transmission in several areas from endemic region. However, in the last decade it has been repeatedly reported the presence triatomnes, mainly Triatoma infestans, after spraying with pyrethroid insecticides, which was associated to evolution to insecticide resistance. In this paper the evolution of insecticide resistance in triatomines is reviewed. The insecticide resistance was detected in 1970s in Rhodnius prolixus and 1990s in R. prolixus and T. infestans, but not until the 2000s resistance to pyrthroids in T. infestans associated to control failures was described in Argentina and Bolivia. The main resistance mechanisms (i.e. enhanced metabolism, altered site of action and reduced penetration) were described in the T. infestans resistant to pyrethrods. Different resistant profiles were demonstrated suggesting independent origin of the different resistant foci of Argentina and Bolivia. The deltamethrin resistance in T. infestans was showed to be controlled by semi-dominant, autosomally inherited factors. Reproductive and developmental costs were also demonstrated for the resistant T. infestans. A discussion about resistance and tolerance concepts and the persistence of T. infestans in Gran Chaco region are presented. In addition, theoretical concepts related to toxicological, evolutionary and ecological aspects of insecticide resistance are discussed in order to understand the particular scenario of pyrethroid

  19. Identification of insecticide residues with a conducting-polymer electronic nose

    Science.gov (United States)

    A.D. Wilson

    2014-01-01

    The identification of insecticide residues on crop foliage is needed to make periodic pest management decisions. Electronic-nose (e-nose) methods were developed and tested as a means of acquiring rapid identifications of insecticide residue types at relatively low cost by detection of headspace volatiles released from inert surfaces in vitro. Detection methods were...

  20. Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizing the insecticide imidacloprid in vivo.

    Science.gov (United States)

    Hoi, Kin Kuan; Daborn, Phillip J; Battlay, Paul; Robin, Charles; Batterham, Philip; O'Hair, Richard A J; Donald, William A

    2014-04-01

    Insecticide resistance is one of the most prevalent examples of anthropogenic genetic change, yet our understanding of metabolic-based resistance remains limited by the analytical challenges associated with rapidly tracking the in vivo metabolites of insecticides at nonlethal doses. Here, using twin ion mass spectrometry analysis of the extracts of whole Drosophila larvae and excreta, we show that (i) eight metabolites of the neonicotinoid insecticide, imidacloprid, can be detected when formed by susceptible larval genotypes and (ii) the specific overtranscription of a single gene product, Cyp6g1, associated with the metabolic resistance to neonicotinoids, results in a significant increase in the formation of three imidacloprid metabolites that are formed in C-H bond activation reactions; that is, Cyp6g1 is directly linked to the enhanced metabolism of imidacloprid in vivo. These results establish a rapid and sensitive method for dissecting the metabolic machinery of insects by directly linking single gene products to insecticide metabolism.

  1. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin.

    Science.gov (United States)

    Park, Hee Geun; Kyung, Seung Su; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Kwon, Hyung Wook; Je, Yeon Ho; Jin, Byung Rae

    2014-12-01

    Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Influence on sensitivity to insecticides: a case study of a settled area ...

    African Journals Online (AJOL)

    monitoring for successful alternative insecticides. There are currently two ... behaviour or modification avoid landing on insecticide .... aquarium fish food18. When they .... National Statistical Office (NSO) Malawi Government 1998 Census. 16.

  3. The Experiment of Carbofuran Controlled Release Formulation Insecticide Application on Rice Plants

    International Nuclear Information System (INIS)

    Sulistyati, M.; Ulfa TS; Sofnie M Ch; Kuswadi AN

    2004-01-01

    Field test of carbofuran insecticide (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methylcarbamate) controlled release formulation on rice plants of IR-64 variety was carried out in Pusakanegara, West Java. This insecticide formulation was made by using the mixture of activated charcoal, tapioca, kaolin, Na-alginate as a filler matrix. Insecticide formulation was applied one week after transplanting. The observations were conducted on the number of tillers, damage level caused by Orseolia oryzae (Wood/Mason), Chilo suppressalis (Walker), and Cnaphalocrosis medinalis (Guen) on new young plants. The observation were carried out on three weeks after application of carbofuran insecticide formulation then every two weeks until harvest. The number of tillers were occurred at the treatments of controlled release formulation of 20kg/ha, 30kg/ha, and 40kg/ha dose rate on the third weeks, it was showed significant difference compared with commercial carbofuran, and the following weeks were no significant difference between the treatments. The attack of Orseolia oryzae was occurred at the treatments of controlled release formulation with dose rate of 30 kg/ha and 40 kg/ha on the seventh weeks, ninth weeks, and eleventh weeks, those attacks were significantly difference found compared with commercial carbofuran. The attack of Chilo suppressalis was occurred at the treatments of controlled release formulation of 40kg/ha dose rate on the fifth weeks, it was showed significant difference which was compared to untreated carbofuran. The attack of Cnaphalocrosis medinalis was occurred on the ninth weeks, three dose rate of controlled released formulation were showed significant differences which compared with commercial carbofuran and were showed 50% less than commercial carbofuran, while the grains dry weight were no significant difference between the treatments. (author)

  4. Effects of an Environmentally-relevant Mixture of Pyrethroid Insecticides on Spontaneous Activity in Primary Cortical Networks on Microelectrode Arrays

    Data.gov (United States)

    U.S. Environmental Protection Agency — This manuscript tests the hypothesis of dose additivity of an environmental mixture of pyrethriod insecticides at the level of network function, in vitro. The...

  5. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans.

    Science.gov (United States)

    Moyes, Catherine L; Vontas, John; Martins, Ademir J; Ng, Lee Ching; Koou, Sin Ying; Dusfour, Isabelle; Raghavendra, Kamaraju; Pinto, João; Corbel, Vincent; David, Jean-Philippe; Weetman, David

    2017-07-01

    Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.

  6. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans

    Science.gov (United States)

    Vontas, John; Martins, Ademir J.; Ng, Lee Ching; Koou, Sin Ying; Dusfour, Isabelle; Raghavendra, Kamaraju; Pinto, João; Corbel, Vincent; David, Jean-Philippe; Weetman, David

    2017-01-01

    Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance. PMID:28727779

  7. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans.

    Directory of Open Access Journals (Sweden)

    Catherine L Moyes

    2017-07-01

    Full Text Available Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus, making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids. Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.

  8. Household use of insecticide consumer products in a dengue endemic area in México

    Science.gov (United States)

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N.; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E.; Keefe, Thomas J.; Beaty, Barry J.; Eisen, Lars

    2014-01-01

    Objectives To evaluate household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue endemic area in México. Methods A questionnaire was administered to 441 households in Mérida City or other communities in Yucatán State to assess household use of insecticide consumer products. Results Most (86.6%) households took action to kill insect pests with consumer products. Among those households, the most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%), and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. During the part of the year when a given product type was used, the frequency of use was daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%), and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to ∼31 $U.S. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $U.S.) for Mérida City alone. Conclusion Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. PMID:25040259

  9. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae.

    Science.gov (United States)

    Bass, Chris; Puinean, Alin M; Zimmer, Christoph T; Denholm, Ian; Field, Linda M; Foster, Stephen P; Gutbrod, Oliver; Nauen, Ralf; Slater, Russell; Williamson, Martin S

    2014-08-01

    The peach potato aphid, Myzus persicae is a globally distributed crop pest with a host range of over 400 species including many economically important crop plants. The intensive use of insecticides to control this species over many years has led to populations that are now resistant to several classes of insecticide. Work spanning over 40 years has shown that M. persicae has a remarkable ability to evolve mechanisms that avoid or overcome the toxic effect of insecticides with at least seven independent mechanisms of resistance described in this species to date. The array of novel resistance mechanisms, including several 'first examples', that have evolved in this species represents an important case study for the evolution of insecticide resistance and also rapid adaptive change in insects more generally. In this review we summarise the biochemical and molecular mechanisms underlying resistance in M. persicae and the insights study of this topic has provided on how resistance evolves, the selectivity of insecticides, and the link between resistance and host plant adaptation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Synthesis, herbicidal, fungicidal and insecticidal evaluation of 3-(dichlorophenyl)- isocoumarins and (±)-3-(dichlorophenyl)-3,4-dihydroisocoumarins

    International Nuclear Information System (INIS)

    Qadeer, Ghulam; Rama, Nasim Hasan; Fan, Zhi-Jin; Liu, Bin; Liu, Xiu-Feng

    2007-01-01

    This is the first report showing that 3-(dichlorophenyl)isocoumarins and (±)-3,4-dihydroisocoumarins are plant and plant fungus growth inhibitors. 3-Dichlorophenylisocoumarins were synthesized by condensation of homophthalic acid with dichlorobenzoyl chlorides. The alkaline hydrolysis of these isocoumarins afforded keto acids. Racemic 3-(Dichlorophenyl)-3,4-dihydroisocoumarins were obtained by reduction of keto acids to racemic hydroxy acids, followed by cyclodehydration using acetic anhydride. The herbicidal, fungicidal and insecticidal activities of the synthesized compounds have been evaluated. Some of the synthesized compounds show excellent herbicidal and fungicidal activities but none of the synthesized compounds presented any insecticidal effects on the test insects. The findings of this study suggest that isocoumarins and related compounds may serve as lead compounds towards the design of bioactive herbicides and fungicides. (author)

  11. Combining the essential oil of Piper aduncum L. with commercial insecticides

    Directory of Open Access Journals (Sweden)

    Murilo Fazolin

    2016-12-01

    Full Text Available The use of synergists is important to minimize the amount of chemical insecticide required for insect control. Their use may contribute to reducing environmental contamination and preserving beneficial insects. The aim of this study was to evaluate the synergy and uniformity of the response of Spodoptera frugiperda (Noctuidae larvae to doses of an essential oil of an Amazon chemotype, Piper aduncum (Piperaceae, when combinationed with the following commercial insecticides: cypermethrin, zeta-cypermethrin, permethrin and esfenvarelate, compared to piperonyl butoxide (PBO. Through the relationship between CL50 and DL50 of insecticides taken separately and their synergistic combinations with the essential oil and PBO, synergism factors (SF were obtained for comparison with each other. With residual contact, there was a significant enhancement of commercial insecticides formulated with cypermethrin (SF = 73.03, zeta-cypermethrin (SF = 16.51 and permethrin (SF = 8.46-17.22, when combined with the P. aduncum essential oil; in turn, with topical application, there was only an observed significant enhancement for zeta-cypermethrin (SF = 0.40-4.26, permethrin (SF = 2.10-4.79 and esfenvarelate (SF = 3.80 insecticides when combined with the essential oil. With the exception of esfenvarelate, the other synergistic combinations showed homogeneous responses for topical application and residual contact for at least one synergistic combination with P. aduncum essential oil. The significance of the SF values from combining P. aduncum essential oil with cypermethrin, zeta-cypermethrin, permethrin and esfenvarelate insecticides may indicate that this essential oil is an alternative option to PBO.

  12. Chemical composition and insecticidal activity of the essential oil from Helichrysum faradifani endemic to Madagascar.

    Science.gov (United States)

    Benelli, Giovanni; Pavela, Roman; Rakotosaona, Rianasoambolanoro; Randrianarivo, Emmanuel; Nicoletti, Marcello; Maggi, Filippo

    2017-11-03

    Helichrysum faradifani (Asteraceae) is a perennial shrub growing in rocky and sandy places of Madagascar. The plant is used in the Malagasy traditional medicine as a wound-healing agent, disinfectant and for the treatment of syphilis, diarrhea, cough and headache. In the present work, we analysed the chemical composition of the essential oil distilled from the aerial parts of H. faradifani by GC-MS and evaluated its insecticidal activity against 2nd, 3rd and 4th instar larvae of the lymphatic filariasis vector Culex quinquefasciatus by acute toxicity assays. The most sensitive were 2nd instar (LC 50  = 85.7 μL L -1 ) larvae. For the 3rd and 4th instar larvae, the estimated LC 50 were 156.8 and 134.1 μL L -1 , respectively. Monoterpene hydrocarbons (51.6%) were the major fraction of the essential oil, with the bicyclic α-fenchene (35.6%) as the predominant component. Sesquiterpene hydrocarbons (34.0%) were the second major group characterising the oil, with γ-curcumene (17.7%) as the most abundant component.

  13. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides.

    Science.gov (United States)

    Rocha, Hélio Daniel Ribeiro; Paiva, Marcelo Henrique Santos; Silva, Norma Machado; de Araújo, Ana Paula; Camacho, Denise Dos Reis da Rosa de Azevedo; Moura, Aires Januário Fernandes da; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira; Santos, Maria Alice Varjal de Melo

    2015-12-01

    In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and β-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major

  14. Agricultural insecticides threaten surface waters at the global scale.

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  15. Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens.

    Directory of Open Access Journals (Sweden)

    Pierrick Labbé

    2007-11-01

    Full Text Available One view of adaptation is that it proceeds by the slow and steady accumulation of beneficial mutations with small effects. It is difficult to test this model, since in most cases the genetic basis of adaptation can only be studied a posteriori with traits that have evolved for a long period of time through an unknown sequence of steps. In this paper, we show how ace-1, a gene involved in resistance to organophosphorous insecticide in the mosquito Culex pipiens, has evolved during 40 years of an insecticide control program. Initially, a major resistance allele with strong deleterious side effects spread through the population. Later, a duplication combining a susceptible and a resistance ace-1 allele began to spread but did not replace the original resistance allele, as it is sublethal when homozygous. Last, a second duplication, (also sublethal when homozygous began to spread because heterozygotes for the two duplications do not exhibit deleterious pleiotropic effects. Double overdominance now maintains these four alleles across treated and nontreated areas. Thus, ace-1 evolution does not proceed via the steady accumulation of beneficial mutations. Instead, resistance evolution has been an erratic combination of mutation, positive selection, and the rearrangement of existing variation leading to complex genetic architecture.

  16. The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions

    Science.gov (United States)

    Martins, Ademir de Jesus; Maciel-de-Freitas, Rafael; Linss, Jutta Gerlinde Birggitt; Araújo, Simone Costa; Lima, José Bento Pereira; Valle, Denise

    2018-01-01

    Background In the tropics, the utilization of insecticides is still an important strategy for controlling Aedes aegypti, the principle vector of dengue, chikungunya and Zika viruses. However, increasing insecticide resistance in Ae. aegypti populations might hinder insecticide efficacy on a long-term basis. It will be important to understand the dynamics and evolution of insecticide resistance by assessing its frequency and the mechanisms by which it occurs. Methodology/Principal findings The insecticide resistance status of four Brazilian Ae. aegypti populations was monitored. Quantitative bioassays with the major insecticides employed in the country was performed: the adulticide deltamethrin (a pyrethroid—PY) and the larvicides, temephos (an organophosphate) and diflubenzuron (a chitin synthesis inhibitor). Temephos resistance was detected in all populations although exhibiting a slight decrease over time probably due to the interruption of field use. All vector populations were susceptible to diflubenzuron, recently introduced in the country to control Ae. aegypti. Resistance against deltamethrin was extremely high in three populations. Molecular assays investigated substitutions in the voltage gated sodium channel (NaV), the PY target site, at positions 1011, 1016 and 1534. Elevated frequencies of substitutions Val1016Ile and Phe1534Cys related to high PY resistance levels were identified. Biochemical assays detected alterations in the activities of two detoxifying enzyme classes related to metabolic resistance, glutathion-S-transferases and esterases. The results obtained were evaluated in the context of both recent insecticide use and the records of dengue incidence in each locality. Conclusions/Significance The four Ae. aegypti populations evaluated were resistant to the neurotoxic insecticides, temephos and deltamethrin. However, they were still susceptible to diflubenzuron. A probable correlation between adult insect resistance to PY and the domestic

  17. Enhanced degradation of spiro-insecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Vela, Nuria; Ros, Caridad; Navarro, Simón

    2017-04-01

    The leaching potential of three insecticides (spirodiclofen, spiromesifen, and spirotetramat) was assessed using disturbed soil columns. Small quantities of spirodiclofen and spiromesifen were detected in leachate fraction, while spirotetramat residues were not found in the leachates. In addition, the transformation products (enol derivatives) are relatively more mobile than the parent compounds and may leach into groundwater. Moreover, the use of disinfection soil techniques (solarization and biosolarization) to enhance their degradation rates in soil was investigated. The results show that both practices achieved a reduction in the number of juvenile nematodes, enhancing in a parallel way degradation rates of the insecticides and their enol derivatives as compared with the non-disinfected soil. This behavior can be mainly attributed to the increase in soil temperature and changes in microbial activity. All insecticides showed similar behavior under solarization and biosolarization conditions. As a consequence, both agronomic techniques could be considered as suitable strategies for detoxification of soils polluted with the studied pesticides.

  18. Insecticide resistance in the western flower thrips, Frankliniella occidentalis

    DEFF Research Database (Denmark)

    Jensen, Sten Erik

    of acetylcholinesterase, the target site enzyme for methiocarb. The results from bioassays with synergists included indicated involvement of cytochrome P450- monooxygenases and esterases in methiocarb resistance in the most resistant populations. Selection with methiocarb on one of the populations to increase the level......The western flower thrips, Frankliniella occidentalis (Pergande) is a serious pest on a wide range of crops throughout the world. In Denmark F. occidentalis is a pest in greenhouses. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance...... to insecticides. Since F. occidentulis spread to become a worldwide pest in 1980’es, resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity...

  19. Evaluating the efficacy of biological and conventional insecticides with the new 'MCD bottle' bioassay.

    Science.gov (United States)

    Sternberg, Eleanore D; Waite, Jessica L; Thomas, Matthew B

    2014-12-16

    Control of mosquitoes requires the ability to evaluate new insecticides and to monitor resistance to existing insecticides. Monitoring tools should be flexible and low cost so that they can be deployed in remote, resource poor areas. Ideally, a bioassay should be able to simulate transient contact between mosquitoes and insecticides, and it should allow for excito-repellency and avoidance behaviour in mosquitoes. Presented here is a new bioassay, which has been designed to meet these criteria. This bioassay was developed as part of the Mosquito Contamination Device (MCD) project and, therefore, is referred to as the MCD bottle bioassay. Presented here are two experiments that serve as a proof-of-concept for the MCD bottle bioassay. The experiments used four insecticide products, ranging from fast-acting, permethrin-treated, long-lasting insecticide nets (LLINs) that are already widely used for malaria vector control, to the slower acting entomopathogenic fungus, Beauveria bassiana, that is currently being evaluated as a prospective biological insecticide. The first experiment used the MCD bottle to test the effect of four different insecticides on Anopheles stephensi with a range of exposure times (1 minute, 3 minutes, 1 hour). The second experiment is a direct comparison of the MCD bottle and World Health Organization (WHO) cone bioassay that tests a subset of the insecticides (a piece of LLIN and a piece of netting coated with B. bassiana spores) and a further reduced exposure time (5 seconds) against both An. stephensi and Anopheles gambiae. Immediate knockdown and mortality after 24 hours were assessed using logistic regression and daily survival was assessed using Cox proportional hazards models. Across both experiments, fungus performed much more consistently than the chemical insecticides but measuring the effect of fungus required monitoring of mosquito mortality over several days to a week. Qualitatively, the MCD bottle and WHO cone performed comparably

  20. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.