WorldWideScience

Sample records for strong inlet flow

  1. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  2. Numerical Investigation of unsteady inlet flow fields

    Science.gov (United States)

    Hsieh, T.; Wardlaw, A. B., Jr.; Collins, P.; Coakley, T.

    1984-01-01

    The flow field within an unsteady, two-dimensional inlet is studied numerically, using a two dimensional Navier Stokes and a one-dimensional inviscid model. Unsteadiness is introduced by varying the outflow pressure boundary condition. The cases considered include outflow pressure variations which were a single pressure pulse, a rapid increase and a sine function. The amplitude of the imposed exit plane pressure disturbance varied between 1 percent and 20 percent of the mean exit pressure. At the higher levels of pressure fluctuation, the viscous flow field results bore little resemblance to the inviscid ones. The viscous solution included such phenomena as shock trains and bifurcating separation pockets. The induced velocity at the outflow plane predicted by the viscous model differs significantly from accoustical theory or small perturbation results.

  3. Flow distribution in the inlet plenum of steam generator

    International Nuclear Information System (INIS)

    Khadamakar, H.P.; Patwardhan, A.W.; Padmakumar, G.; Vaidyanathan, G.

    2011-01-01

    Highlights: → Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. → Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). → CFD modeling has been carried out to give more insights. → Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  4. Analysis of flow distribution in plate-type core affected by uneven inlet temperature distribution

    International Nuclear Information System (INIS)

    Xia, G.L.; Su, G.H.; Peng, M.J.

    2016-01-01

    Highlights: • Flow and power distribution of plate-type core are studied using RELAP5-3D code. • Effect of uneven inlet temperature on flow distribution can be considered. • Reactor power peaking factor shifts to low inlet temperature region. • Flow peaking factor shifts to high inlet temperature region. • Effect of uneven inlet temperature on flow distribution is much greater than power. - Abstract: The flow and power distribution characteristics of plate-type fuel reactor core have been investigated in the present study. A reactor core thermal-hydraulic and neutronics coupled model was established using RELAP5-3D codes. The coupled modeling method was used to establish the thermo-hydraulic model, and the phenomenon of two-phase flow instability in a parallel two-channel system was used to verify the reliability of the method. Besides, the influence on power and flow distributions of uneven core inlet temperature was also studied by the application of coupled three-dimensional neutron-kinetics and thermal-hydraulics. The results show that, the coupled modeling method is reliable and can be used to establish the thermo-hydraulic model of a reactor core. By this method, both the effects of heating power and inlet temperature on flow distribution have been studied. The flow and power distributions of reactor core are inseparable and have a great effect on each other under the strong coupling of thermal-hydraulic and neutronics, but the non-uniformity of power distribution is greater than flow distribution. When reactor core inlet temperature distribution is uneven, reactor power peaking factor shifts to the low inlet temperature region, and flow peaking factor shifts to the high inlet temperature region. The effect of uneven core inlet temperature on flow distribution has a far greater impact than reactor power.

  5. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  6. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  7. Active Control of Jet Engine Inlet Flows

    National Research Council Canada - National Science Library

    Rediniotis, Othon; Bowersox, Rodney; Kirk, Aaron; Kumar, Abhinav; Tichenor, Nathan

    2007-01-01

    ...), flow visualization tests, particle image velocimetry (PIV), pressure probe and wall static tap experiments at various locations, the development and evolution of the secondary flow structures were observed...

  8. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    smoothly bifurcate the flow. 3. Experimental setup. The experiments were conducted in River Engineering Laboratory, Water Resources Devel- opment and Management Department, Indian Institute of Technology Roorkee, India. An experimental program was established to quantify the flow behavior at crest level inlet key ...

  9. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  10. Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header

    International Nuclear Information System (INIS)

    Wang, Chi-Chuan; Yang, Kai-Shing; Tsai, Jhong-Syuan; Chen, Ing Youn

    2011-01-01

    This study experimentally and numerically investigates the single-phase flow into parallel flow heat exchangers with inlet and outlet rectangular headers having square cross section and 9 circular tubes. The effects of inlet flow condition, tube diameter, header size, area ratio, flow directions (Z and U-type), as well as the gravity are investigated. The experimental results indicate that flow distribution for U-type flow is more uniform than Z-type flow. Depending on the inlet volumetric flow rate, the flow ratio at the first several tubes can be lower than 50% of the last tube for Z-type arrangement, and this phenomenon becomes more and more pronounced with the rising velocity at the intake conduit. The mal-distribution can be eased via reducing the branching tube size or increasing the entrance settling distance at the intake conduit. It is found that the influence of gravity on mal-distribution is negligible and the mal-distribution is associated with the jet flow pattern. - Highlights: → The flow distribution into parallel flow heat exchangers with rectangular headers is examined. → The first several tubes may show only 50% flow rate of the last tube. → The mal-distribution becomes more severe with the rising velocity at the intake conduit. → The mal-distribution is mainly associated with the jet flow pattern. → Flow distribution is improved via smaller tubes or increasing the inlet distance at the intake conduit.

  11. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  12. Laminar Flow Through Circular Tubes with Side Inlets

    Science.gov (United States)

    Abedian, Behrouz; Muhlanger, Eric

    2004-11-01

    We discuss experimental results on steady axisymmetric flow of a Newtonian incompressible fluid through circular pipes with side inlets. Circular tubes with a set of holes along their sidewalls are used in a number of medical procedures as straight catheters to transfer fluid into or out of the human body. For example, because of the small size of the incision required, they are commonly used in peritoneal dialysis. The internal diameter and the diameter of the side holes are often 1 mm and less, and as a result, the fluid flow is laminar in a typical medical procedure. An understanding of the flow inside the catheter tube in terms of its geometric parameters will be key in designing new catheters with optimal clinical performance for specific applications. In the experiments, water is withdrawn from a smooth tube with side holes and the local axial pressure and flow rates through the side holes are measured for different flow conditions. A nondimensionalization of the data shows a power-law behavior in only some cases. Using numerical simulations, it is shown how the interaction of the axial flow with the impinging jets from the side holes can change the overall behavior of the flow for a given suction pressure.

  13. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    Science.gov (United States)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  14. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu

    2017-01-01

    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  15. Flow Visualization of a Scramjet Inlet - Isolator Model in Supersonic Flow

    Science.gov (United States)

    Seckin, S.; Yuceil, K. B.

    2013-04-01

    Understanding the physical mechanisms and having insight to the complex flowfield involving unstart phenomena in supersonic inlets has gained considerable attention especially in the area of scramjet inlet/isolator aerothermodynamics. In this study, Schlieren visualization and computational analysis of shock wave structures in ramjet/scramjet inlet/isolator models in supersonic flow have been performed. Experiments were performed in the supersonic wind tunnel at the Trisonic Research Laboratory in Istanbul Technical University. The test section floor and the existing mechanism underneath have been modified to be able to mount the designed inlet/isolator model on the floor of the test section. The inlet/isolator model with a 12- degree compression ramp is investigated at Mach 2 both computationally and experimentally. Computations were performed using Star-CCM+ software to investigate shock wave structures in and around the three dimensional inlet/isolator model as mounted on the test section floor as a guide for designing the experimental model. In the results, the effects of shock wave - boundary layer interactions with flow separations with were observed. Ensemble average of the density distributions on a series of planes from one side wall to the other from the CFD results agreed well with the Schlieren images obtained experimentally. The structure of the shock waves and angles obtained from the Schlieren images agree quite well with those obtained from the CFD results. The effects of lambda-shock formations which indicate possible boundary layer separations, reflections of shock waves, and shock wave - boundary layer interactions on inlet unstart phenomena have been discussed. In order to investigate inlet unstart mechanism further, different experimental setups have been suggested for future work.

  16. Flow Visualization of a Scramjet Inlet – Isolator Model in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Yuceil K.B.

    2013-04-01

    Full Text Available Understanding the physical mechanisms and having insight to the complex flowfield involving unstart phenomena in supersonic inlets has gained considerable attention especially in the area of scramjet inlet/isolator aerothermodynamics. In this study, Schlieren visualization and computational analysis of shock wave structures in ramjet/scramjet inlet/isolator models in supersonic flow have been performed. Experiments were performed in the supersonic wind tunnel at the Trisonic Research Laboratory in Istanbul Technical University. The test section floor and the existing mechanism underneath have been modified to be able to mount the designed inlet/isolator model on the floor of the test section. The inlet/isolator model with a 12- degree compression ramp is investigated at Mach 2 both computationally and experimentally. Computations were performed using Star-CCM+ software to investigate shock wave structures in and around the three dimensional inlet/isolator model as mounted on the test section floor as a guide for designing the experimental model. In the results, the effects of shock wave – boundary layer interactions with flow separations with were observed. Ensemble average of the density distributions on a series of planes from one side wall to the other from the CFD results agreed well with the Schlieren images obtained experimentally. The structure of the shock waves and angles obtained from the Schlieren images agree quite well with those obtained from the CFD results. The effects of lambda-shock formations which indicate possible boundary layer separations, reflections of shock waves, and shock wave – boundary layer interactions on inlet unstart phenomena have been discussed. In order to investigate inlet unstart mechanism further, different experimental setups have been suggested for future work.

  17. Measurement of Turbulent Fluxes of Swirling Flow in a Scaled Up Multi Inlet Vortex Reactor

    Science.gov (United States)

    Olsen, Michael; Hitimana, Emmanual; Hill, James; Fox, Rodney

    2017-11-01

    The multi-inlet vortex reactor (MIVR) has been developed for use in the FlashNanoprecipitation (FNP) process. The MIVR has four identical square inlets connected to a central cylindrical mixing chamber with one common outlet creating a highly turbulent swirling flow dominated by a strong vortex in the center. Efficient FNP requires rapid mixing within the MIVR. To investigate the mixing, instantaneous velocity and concentration fields were acquired using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. The simultaneous velocity and concentration data were used to determine turbulent fluxes and spatial cross-correlations of velocity and concentration fluctuations. The measurements were performed for four inlet flow Reynolds numbers (3250, 4875, 6500, and 8125) and at three measurement planes within the reactor. A correlation between turbulent fluxes and vortex strength was found. For all Reynolds numbers, turbulent fluxes are maximum in the vortex dominated central region of the reactor and decay away from the vortex. Increasing Reynolds number increased turbulent fluxes and subsequently enhanced mixing. The mixing performance was confirmed by determining coefficients of concentration variance within the reactor.

  18. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  19. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed...... that the strong swirlingflow produced a high centrifugal force to remove the particles from the gas mixture.The larger particles moved downward on the internal surface and were removeddue to the outer vortex near the wall. Most of the tiny particles went into the innervortex zones and escaped from the up...

  20. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    Science.gov (United States)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication

  1. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  2. Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow

    Science.gov (United States)

    Giuliani, James Edward

    Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion

  3. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC inlet mode transition

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available A turbine based combined cycle (TBCC propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition, at which point, the propulsion system performs a “mode transition” from the turbine to ramjet engine. Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other, without experiencing unstart or buzz. The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality. In order to unveil the unsteady process of inlet mode transition, the research of over/under TBCC inlet mode transition was conducted through a numerical simulation. It shows that during the mode transition the terminal shock oscillates in the inlet. During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation. While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition. The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock. The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust.

  4. Experimental and Computational Investigation of Flow in a Transonic Compressor Inlet

    National Research Council Canada - National Science Library

    Brunner, Matthew D

    2005-01-01

    .... The data for Mach number were compared to data obtained with a three-hole probe. A numerical investigation of the flow in the inlet ducting to the rotor was also initiated using the commercial code CFX marketed by ANSYS...

  5. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    OpenAIRE

    Cao Dalu; Tang Hailong; Chen Min

    2017-01-01

    The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI) to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching...

  6. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    This paper presents fundamental outcomes from an experimental study on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). Hydrodynamic performance was tested in a circulated open channel that comprised of PKW and sand bed (d50 = 0.25 mm). Instantaneous velocities were measured at 20 cross ...

  7. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  8. Effects of lower plenum flow structure on core inlet flow of ABWR

    International Nuclear Information System (INIS)

    Watanabe, Shun; Abe, Yutaka; Kaneko, Akiko; Watanabe, Fumitoshi; Tezuka, Kenichi

    2010-01-01

    The evaluation of coolant flow structure at a lower plenum of an advanced boiling water reactor (ABWR) in which there are many structures is very important in order to improve generating power. Although the simulation results by CFD (Computational Fluid Dynamics) codes can predict such complicated flow in the lower plenum, it is required to establish the database of flow structure in lower plenum of ABWR experimentally for the benchmark of the CFD codes. In the model of the lower plenum, we measured velocity profiles with LDV and PIV. And differential pressure of constructed model is measured with differential pressure instrument. It was identified that the velocity and differential pressure profiles also showed the tendency to be flat in the core inlet. Moreover, vortexes were observed around side entry orifice by PIV measurement. (author)

  9. Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney

    International Nuclear Information System (INIS)

    Furuya, M.; Inada, F.; Yasuo, A.

    2001-01-01

    Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (orig.)

  10. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  11. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  12. Analysis of the Scramjet inlet flow field using two-dimensional Navier-Stokes equations

    Science.gov (United States)

    Kumar, A.; Tiwari, S. N.

    1982-01-01

    A computer code was developed to solve the full two dimensional Navier-Stokes equations in a scramjet inlet. The analysis uses a numerical coordinate transformation which generates a set of boundary-fitted curvilinear coordinates. The explicit finite difference algorithm of MacCormack is used to solve the governing equations. A two-layer eddy viscosity model is used for the turbulent flow. The code can analyze both inviscid and viscous flows with multiple struts in the flow field. Detailed results are presented for two model problems and two scramjet inlets with one and two struts. The application of the two dimensional analysis in the preliminary design of the actual scramjet inlet is briefly discussed.

  13. Experimental Investigation of a Hypersonic Inlet with Variable Sidewall for Flow Control

    Science.gov (United States)

    Rolim, T. C.; Lu, F. K.

    The main function of a scramjet inlet is to decelerate and compress the air for subsequent reaction with the fuel inside the combustor and, of course, contribute toward meeting the thrust requirement for the entire mission by providing adequate mass flow. It is desirable that the inlet be lightweight and that its geometry be capable of producing a uniform flow in an appropriate state to permit efficient mixing and subsequent combustion. Engine cycle analysis indicates that high contraction ratios CR are desirable for achieving high overall engine efficiency.

  14. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    cations have taken place making it the standard in velocity measurement in fluid flow (Yeh &. Cummins 1964). ... Turbulent intensity is basically defined as the ratio root mean square velocity to the mean velocity (Eq. 1). %T I = ... lies in between very short range (25.2–35.3) with 2.67% of standard deviation. The same feature.

  15. Numerical Calibration of Mass Flow Plug for Inlet Testing

    Science.gov (United States)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  16. Unsteady supercritical/critical dual flowpath inlet flow and its control methods

    Directory of Open Access Journals (Sweden)

    Jun LIU

    2017-12-01

    Full Text Available The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC propulsion system, and the control methods of unsteady flow were investigated experimentally and numerically. It was characterized by large-amplitude pressure oscillations and traveling shock waves. As the inlet operated in supercritical condition, namely the terminal shock located in the throat, the shock oscillated, and the period of oscillation was about 50 ms, while the amplitude was 6 mm. The shock oscillation was caused by separation in the diffuser. This shock oscillation can be controlled by extending the length of diffuser which reduces pressure gradient along the flowpath. As the inlet operated in critical condition, namely the terminal shock located at the shoulder of the third compression ramp, the shock oscillated, and the period of oscillation was about 7.5 ms, while the amplitude was 12 mm. At this condition, the shock oscillation was caused by an incompatible backpressure in the bleed region. It can be controlled by increasing the backpressure of the bleed region. Keywords: Airbreathing hypersonic vehicle, Dual flowpath inlet, Terminal shock oscillation, Turbine based combined cycle, Unsteady flow

  17. Velocity and Temperature Distribution in Flow from an Inlet Device in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T.V.; Nielsen, Peter V.

    Measurements are performed in a full-scale test room with displacement ventilation with focus on the velocity and temperature field in the region close to the inlet device. Investigations based on these detailed measurements have been made in order to see if it is possible to describe the velocit...... decay and the shape of velocity and temperature profiles in front of the inlet device by traditional jet theory, by stratified flow theory or by a combination of the two theories.......Measurements are performed in a full-scale test room with displacement ventilation with focus on the velocity and temperature field in the region close to the inlet device. Investigations based on these detailed measurements have been made in order to see if it is possible to describe the velocity...

  18. Simulation of turbulent flows containing strong shocks

    Science.gov (United States)

    Fryxell, Bruce; Menon, Suresh

    2008-12-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  19. Simulation of turbulent flows containing strong shocks

    International Nuclear Information System (INIS)

    Fryxell, Bruce; Menon, Suresh

    2008-01-01

    Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.

  20. Numerical solutions of unsteady flows with low inlet Mach numbers

    Czech Academy of Sciences Publication Activity Database

    Punčochářová, Petra; Furst, Jiří; Horáček, Jaromír; Kozel, Karel

    2010-01-01

    Roč. 80, č. 8 (2010), s. 1795-1805 ISSN 0378-4754 R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * unsteady flow * low Mach number * viscous compressible fluid Subject RIV: BI - Acoustics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4Y0D67D-1-R&_cdi=5655&_user=640952&_pii=S0378475409003607&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLbVlb-zSkzk&md5=ed6eaf0a050968ee978714fd54e7f131&ie=/sdarticle.pdf

  1. The Influence of Inlet Asymmetry on Steam Turbine Exhaust Hood Flows.

    Science.gov (United States)

    Burton, Zoe; Hogg, Simon; Ingram, Grant L

    2014-04-01

    It has been widely recognized for some decades that it is essential to accurately represent the strong coupling between the last stage blades (LSB) and the diffuser inlet, in order to correctly capture the flow through the exhaust hoods of steam turbine low pressure cylinders. This applies to any form of simulation of the flow, i.e., numerical or experimental. The exhaust hood flow structure is highly three-dimensional and appropriate coupling will enable the important influence of this asymmetry to be transferred to the rotor. This, however, presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching for methods to reduce the computational effort without compromising solution accuracy. However, this can result in excessive computational demands in numerical simulations. Unsteady full-annulus CFD calculation will remain infeasible for routine design calculations for the foreseeable future. More computationally efficient methods for coupling the unsteady rotor flow to the hood flow are required that bring computational expense within realizable limits while still maintaining sufficient accuracy for meaningful design calculations. Research activity in this area is focused on developing new methods and techniques to improve accuracy and reduce computational expense. A novel approach for coupling the turbine last stage to the exhaust hood employing the nonlinear harmonic (NLH) method is presented in this paper. The generic, IP free, exhaust hood and last stage blade geometries from Burton et al. (2012. "A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research,"Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-68485) that are representative of modern designs, are used to demonstrate the effectiveness of the method. This is achieved by comparing results obtained with the NLH to those obtained with a more conventional mixing

  2. Unstart phenomena induced by flow choking in scramjet inlet-isolators

    Science.gov (United States)

    Im, Seong-kyun; Do, Hyungrok

    2018-02-01

    A review of recent research outcomes in downstream flow choking-driven unstart is presented. Unstart is a flow phenomenon at the inlet that severely reduces the air mass flow rate through the engine, causing a loss of thrust and considerable transient mechanical loading. Therefore, unstart in a scramjet engine crucially affects the design and the operation range of hypersonic vehicles. Downstream flow choking is known to be one of the major mechanisms inducing inlet unstart, as confirmed by recent scramjet-powered flight tests. The current paper examines recent research progress in identifying flow choking mechanisms that trigger unstart. Three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions. Current research outcomes on the characteristic of unstarting flows, such as transient and quasi-steady motions, are reviewed for each flow choking mechanism. The characteristics of unstarted flows are described including Buzzing phenomena and oscillatory motions of unstarted shockwaves. Then, the state-of-the-art methods to predict, detect, and control unstart are presented. The review suggests that further investigations with high-enthalpy ground facilities will aid understanding of heat release-driven unstart.

  3. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  4. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    Science.gov (United States)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  5. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  6. Estimation of roughness lengths and flow separation over compound bedforms in a natural-tidal inlet

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    2013-01-01

    The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act...... velocities from log–linear segments sought on transect-averaged and single-location velocity profiles. During the ebb tide a permanent flow separation zone was established over the steep (10–20°) lee sides of the ebb-oriented primary bedforms, which generated a consequent drag on the flow. During the flood...

  7. Flow dynamical behavior and performance of a micro viscous pump with unequal inlet and outlet areas

    Directory of Open Access Journals (Sweden)

    Chenhui Hu

    2016-01-01

    Full Text Available The micro viscous pump is an important type of fluidic device. Optimizing the working performance of the pump is crucial for its wider application. A micro viscous pump design with unequal inlet and outlet areas is proposed in this paper. The flow field of the viscous pump is investigated using 2D laminar simulations. The mass flow rate and driving power are studied with different opening angles. The effects of the Reynolds number and the pressure load on the working performance are discussed in detail. Flow structures and vortex evolution are analyzed. With larger inlet and outlet areas, a higher mass flow rate is obtained and less driving power is achieved. A high pressure load results in a reduction in mass flow rate and an increase in driving power. Pumps with large opening angles are more susceptive to the Reynolds number and the pressure load. The adverse impact of the pressure load can be reduced by increasing the rotor speed. The vortex structure is affected by the geometric and operating parameters in the flow field. The flow dynamical behavior of the viscous pump exerts significant influence on its pumping ability. The present work gives rise to performance improvements for the micro viscous pump.

  8. Flow control in axial fan inlet guide vanes by synthetic jets

    Directory of Open Access Journals (Sweden)

    Wurst P.

    2013-04-01

    Full Text Available Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV, rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz – 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 – 12 mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  9. Numerical and experimental investigation of VG flow control for a low-boom inlet

    Science.gov (United States)

    Rybalko, Michael

    The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil

  10. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  11. Inlet effects on roll-wave development in shallow turbulent open-channel flows

    Directory of Open Access Journals (Sweden)

    Campomaggiore Francesca

    2016-03-01

    Full Text Available The present work investigates the effect of the flow profile induced by an inlet condition on the roll-wave evolution in turbulent clear-water flows. The study employs theoretical and numerical analyses. Firstly, the influence of the inlet condition on the spatial evolution of a single perturbation in a hypercritical flow is examined through the expansion near a wavefront analysis. The results show that an accelerated unperturbed profile reduces the disturbance spatial growth. A decelerated profile causes an increase. The effect of the flow profile on the spatial evolution of roll-wave trains is then numerically investigated solving the Saint Venant equations with a second-order Runge-Kutta Total Variation Diminishing (TVD Finite Volume scheme. The numerical simulations comply with the analytical results for the initial and transition phases of the roll-wave development. The unperturbed profile influences even the roll-waves statistical characteristics in the final stage, with a more evident effect in case of accelerated profiles. The influence of the flow profile should be therefore accounted for in the formulation of predictive criteria for roll-waves appearance based on the estimation of the disturbance spatial growth rate.

  12. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina

    Science.gov (United States)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.

    2017-12-01

    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales

  13. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C., E-mail: delvonei@ipen.b, E-mail: gfainer@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  14. Numerical simulation of self-excited oscillations in a ramjet inlet-diffuser flow

    Science.gov (United States)

    Hsieh, T.; Coakley, T.

    1985-01-01

    This paper describes numerical simulations of self-excited oscillations in a two-dimensional transonic inlet-diffuser flow by solving the Navier-Stokes equations with a two-equation turbulence model. The calculated amplitudes of oscillations for the terminal shock and the velocity fields compare well with experimental measurements; however, the predicted frequency of oscillations is about 50 percent higher. The formation of a pair of downstream-traveling, counter-rotating vortices at each cycle of velocity fluctuations, as reported experimentally, is vividly revealed by the numerical results.

  15. Research for the influence on PRHR HX performance with different inlet temperature and flow rate

    International Nuclear Information System (INIS)

    Jia Bin; Jing Jianping; An Jieru; Bi Jinsheng; Li Yuanshan; Zhuang Shaoxin

    2014-01-01

    To study the residual heat removal capacity of PRHR HX, numerical simulation is demonstrated using FLUENT. Meanwhile to research the trends of PRHR HX residual heat removal capacity, different operating modes have been simulated with parameters deviated from design value. Finally it's found that when the coolant inlet temperature is higher than design valve the residual heat removal capacity is better and the higher the temperature is the lower the coolant outlet temperature can be obtained. And meanwhile the faster the coolant flows the better the residual heat in the core can be removed. (authors)

  16. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    Science.gov (United States)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  17. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-11-01

    The concept of residual, i.e., tidally-averaged, flows through a multiple inlet system is reappraised. The evaluation of the residual through-flow depends on the time interval over which is integrated, in other words, on how one defines the tidal period. It is demonstrated that this definition is ambiguous and that different definitions (based on, e.g., high waters, slack tides, etc.) yield very different results for the residual, also in terms of their long-term statistical properties (median and standard deviation). A basin-wide applicable method of defining the tidal period, in terms of enclosed water volume, is analyzed. We compare the different methods on the basis of high-resolution model results for the Western Dutch Wadden Sea. The multitude of tidal constituents together with wind variability creates broad distributions for the residuals, with standard deviations much larger than the mean or median residual flows.

  18. Dynamics of the plasma flow at the inlet of a quasistationary plasma accelerator

    International Nuclear Information System (INIS)

    Belan, V.G.; Levashov, V.F.; Mainashev, V.S.; Podkovyrov, V.L.; Skvortsov, Yu.V.

    1991-01-01

    Recently published detailed theoretical and experimental studies of quasistationary plasma accelerators (QSPA) have revealed them to be promising and have opened the way for the creation of a new type of accelerator, one with plasma cathode and anode. The necessity of using plasma electrodes in accelerators of this type stems from the fact that the current in the accelerator is carried by ions, so that in operation the region near the anode develops an ion shortage. If there is no external source of ions large discontinuities can appear in the potential near the anode, and consequently the anode can incur severe erosion. A plasma anode can supply a continuous flow of ions into the discharge and a plasma cathode can collect this current. In accelerators with passive (metal) electrodes the anode and cathode are also subject to large heat loads, which is responsible for rapid vaporization and the appearance of impurities in the plasma. Consequently it is necessary to provide magnetic insulation for the components of the accelerator. In normal operation a plasma flux must be supplied at the inlet of the accelerator with the right velocity and radial density distribution. Thus a QSPA consists of a large number of fairly complicated elements, which then must be adjusted and optimized when they are combined and the whole accelerator is in operation. The present work is devoted to the experimental study of the plasma flow in the drift tube and in the inlet zone of the second stage of the accelerator

  19. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Kim, Jae Won; Byun, S. M.; Ahn, E. Y.

    2012-01-01

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower

  20. Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems

    Science.gov (United States)

    Akturk, Ali

    The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at

  1. Effects of the inlet boundary layer thickness on the flow in an axial compressor (I) : hub corner stall and tip leakage flow

    International Nuclear Information System (INIS)

    Choi, Min Suk; Baek, Je Hyun; Park, Jun Young

    2005-01-01

    A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition(φ=85%) and near stall condition(φ=65%). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub corner-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss

  2. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    Science.gov (United States)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  3. The effect of inlet flow oscillations on reflooding of a tubular test section

    International Nuclear Information System (INIS)

    Oh, S.; Banerjee, S.; Yadigaroglu, G.

    1983-01-01

    The reflooding of a vertical channel under oscillatory inlet flow conditions has been investigated experimentally. Compared to constant injection, oscillations always increase the liquid carryover in the early stages of reflooding. As reflooding progresses, the enhancement diminishes. The crossover point roughly coincides with saturation of the liquid at the quench front (QF). The higher liquid carryover at the beginning increases downstream heat transfer and speeds up QF propagation. But this higher liquid carryover, in turn, reduces the test section mass accumulation rate and delays QF propagation at later stages. The enhancement of liquid carryover, and the early increase and subsequent decrease in quench velocity are all accentuated as the oscillation amplitude and frequency increase. Large amplitude oscillations change the characteristics of QF propagation and the heat transfer immediately downstream of QF substantially. Correlations based on constant-injection reflooding data are not adequate, even if they are applied on an average local-conditions basis

  4. The Unsteady Response of an Axial Flow Turbo-Machinery Rotor to Inlet Flow Distortions.

    Science.gov (United States)

    1978-10-12

    17. Namba, M. "Lifting Surface Theory for Unsteady Flows in a Rotating Annular Cascade." Revue Francaise de Mecanique, Numero Special, 1976, pp. 39-46...coefficients, the test section velocity, and the Reynolds number based on the probe tip diameter. Each probe was calibrated three times to verify the... Reynolds number. Therefore, the effects of Reynolds number variations were assessed by calibrating the five-hole probes in air over a Reynolds 51

  5. Quantitative analysis and design of a spray aerosol inhaler. Part 1: effects of dilution air inlets and flow paths.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2009-09-01

    The objective of this study was to evaluate the effects of modifying inhaler design variables on aerosol drug deposition within the mouthpiece for a representative spray system using a quantitative analysis and design approach. Capillary aerosol generation (CAG) was selected as a model spray aerosol system in conjunction with four prototype inhaler body and mouthpiece combinations. In vitro experiments were used to determine drug deposition in the mouthpiece and induction port. Validated computational fluid dynamics (CFD) simulations were implemented to establish relationships between design variables, transport characteristics, and aerosol drug deposition. Results of this study indicated that both the size of the upstream dilution air inlets and the flow pathway configuration near the spray nozzle significantly influenced aerosol transport and deposition. CFD results showed that the primary transport characteristics associated with drug deposition were turbulence intensity and the effective diameter of the mouthpiece. Strong quantitative correlations were developed between the identified transport characteristics and mouthpiece drug deposition. Based on quantitative analysis and design, turbulence intensity and effective mouthpiece diameter were identified as key transport characteristics within the design space that directly influenced aerosol deposition and may be used to predict and optimize drug delivery to the patient.

  6. New River Inlet DRI: Observations and Modeling of Flow and Material Exchange

    Science.gov (United States)

    2012-09-30

    Figure 2). NRI is a shallow-water, frictional estuary that connects to the ocean via a 5 km long, narrow channel to the back bay. NRI is considered...Inlet ( NRI ), the technique can be applied to any inlet. Residence time can be thought of as the average time a volume of water will remain entrained...from NRI , this approach will provide a baseline with which to examine the importance of various physical processes on tidal exchange and residence

  7. Effect of Inlet Geometry on Fan Performance and Flow Field in a Half-Ducted Propeller Fan

    Directory of Open Access Journals (Sweden)

    Pin Liu

    2012-01-01

    Full Text Available In order to clarify the effect of rotor inlet geometry of half-ducted propeller fan on performance and velocity fields at rotor outlet, the experimental investigation was carried out using a hotwire anemometer. Three types of inlet geometry were tested. The first type is the one that the rotor blade tip is fully covered by a casing. The second is that the front one-third part of blade tip is opened and the rest is covered. The third is that the front two-thirds are opened and the rest is covered. Fan test and internal flow measurement at rotor outlet were conducted about three types of inlet geometry. At the internal flow measurement, a single slant hotwire probe was used and a periodical multisampling technique was adopted to obtain the three-dimensional velocity distributions. From the results of fan test, the pressure-rise characteristic drops at high flowrate region and the stall point shifts to high flowrate region, when the opened area of blade tip increases. From the results of velocity distributions at rotor outlet, the region with high axial velocity moves to radial inwards, the circumferential velocity near blade tip becomes high, and the flow field turns to radial outward, when the opened area increases.

  8. Calculation of the flow field including boundary layer effects for supersonic mixed compression inlets at angles of attack

    Science.gov (United States)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.

  9. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  10. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    Science.gov (United States)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  11. The Otto-Atkinson engine. A study of fluid flow and combustion with early and late inlet valve closing

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Henrik

    1999-10-01

    This report contains results of measurements on an Otto engine. The purpose for this work has been to do measurements of the flow in the cylinder but also measurements of the cylinder pressure have been performed. The flow measurements are made with the method Laser Doppler Velocimetry, LDV. The reason why these measurements are made at all are the pump losses that implies a lower efficiency for the Otto engine at part load. In this work two alternative ways that highly reduces the pump losses are examined. These are early inlet valve closing and late inlet valve closing. To further increase the efficiency at part load an increased compression ratio has been used together with the different valve strategies. With these two ways of operation, at a part load of about 4 - 5 IMEP{sub net}, increases of about 20% of the net indicated efficiency has been obtained. Additionally this report contains a chapter about the possible use of a variable valve actuation or timing system, VVA or VVT. Many conditions for the Otto cycle can be improved by the use of a variable valve actuation and in this chapter it is dealt with the most important ones.

  12. Three dimensional viscous analysis of a hypersonic inlet

    Science.gov (United States)

    Reddy, D. R.; Smith, G. E.; Liou, M.-F.; Benson, Thomas J.

    1989-01-01

    The flow fields in supersonic/hypersonic inlets are currently being studied at NASA Lewis Research Center using 2- and 3-D full Navier-Stokes and Parabolized Navier-Stokes solvers. These tools have been used to analyze the flow through the McDonnell Douglas Option 2 inlet which has been tested at Calspan in support of the National Aerospace Plane Program. Comparisons between the computational and experimental results are presented. These comparisons lead to better overall understanding of the complex flows present in this class of inlets. The aspects of the flow field emphasized in this work are the 3-D effects, the transition from laminar to turbulent flow, and the strong nonuniformities generated within the inlet.

  13. Experimental and numerical study of two-phase flows at the inlet of evaporators in vapour compression cycles

    International Nuclear Information System (INIS)

    Ahmad, M.

    2007-09-01

    Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)

  14. Spiral inlets for steam turbines

    Science.gov (United States)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  15. Steady flow in a rotating sphere with strong precession

    Science.gov (United States)

    Kida, Shigeo

    2018-04-01

    The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.

  16. Strongly-Heated Gas Flow in Parallel Tube Rotation

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    1998-01-01

    Full Text Available A numerical analysis is performed to study thermal transport phenomena in gas flow through a strongly heated tube whose axis is in parallel with the rotational axis. The velocity and temperature fields prevail when fluid flows in a rotating tube with uniform heat flux on the tube wall. The two-equation k-ω turbulence and t2¯-εt heat transfer models are employed to determine turbulent viscosity and eddy diffusivity for heat, respectively. The governing boundary-layer equations are discritized by means of a control volume finitedifference techniques. It is found that the Coriolis and centrifugal (or centripetal forces cause fluid flow and heat transfer performance in the parallel-rotation system to be drastically different from those in the stationary case. Consequently, even if a tube rotating around a parallel axis is heated with high heat flux whose level causes a laminarizing flow in the stationary tube case, both the turbulent kinetic energy and the temperature variance remain over the pipe cross section, resulting in the suppression of an attenuation in heat transfer performance. In other words, an increase in tube rotation suppresses laminarization of gas flow.

  17. Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES

    Science.gov (United States)

    Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.

    2015-11-01

    The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.

  18. Spontaneous electromagnetic emission from a strongly localized plasma flow.

    Science.gov (United States)

    Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E

    2011-05-06

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  19. The Effect of the Holes Size Change of Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution

    International Nuclear Information System (INIS)

    Lee, Gong Hee; Bang, Young Seok; Cheong, Ae Ju

    2015-01-01

    Complex thermal-hydraulic phenomena exist inside PWR because reactor interiors include a fuel assembly, control rod assembly, ICI (In-Core Instrumentation), and other internal structures. Because changes to reactor design may influence interior, thermal-hydraulic characteristics, licensing applicants commonly conduct a flow-distribution test and use test results (e.g., core-inlet flow-rate distribution) as the input data for a core thermal-margin analysis program. Because the APR+ (Advanced Power Reactor Plus) had more fuel assemblies (241EA → 257EA) and the design of some internal structures was changed (from those of APR1400), the core-inlet flow-rate distribution for a 1/5 scaled-down reactor model was measured and high flow-rates were found especially near the outer region of the reactor core. In this study, to examine the effect of the holes size change (i.e. smaller diameter) in the outer region of the LSSBP, not a 50% blockage of the flow holes, on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD (Computational Fluid Dynamics) software, ANSYS CFX R.14. The predicted results were compared with those of the original LSSBP. In this study, to examine the effect of the holes size change (smaller diameter) in the outer region of the LSSBP on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.14. The predicted results were compared with those of the original LSSBP. Through these comparisons it was concluded that a more uniform distribution of the mass-flow rate at the core-inlet plane could be obtained by reducing the holes size in the outer region of the LSSBP

  20. Interactive calculation procedures for mixed compression inlets

    Science.gov (United States)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  1. A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows

    Science.gov (United States)

    Coakley, T. J.; Hsieh, T.

    1985-01-01

    Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.

  2. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  3. Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD

    Directory of Open Access Journals (Sweden)

    Mohammed El-Adawy

    2017-11-01

    Full Text Available The current study demonstrates an experimental investigation of the tumble flow structures using Particle Image Velocimetry (PIV under steady-state conditions considering the central vertical tumble plane. The experiments were carried out on a four-valve, pent-roof Gasoline Direct Injection (GDI engine head at different valve lifts and with a pressure difference of 150 mmH2O across the intake valves. Furthermore, the Proper Orthogonal Decomposition (POD analytical technique was applied to PIV-measured velocity vector maps to characterize the flow structures at various valve lifts, and hence the different rig tumble values. The results show that at low valve lifts (1 to 5 mm, 48.9 to 46.6% of the flow energy is concentrated in the large (mode 1 eddies with only 8.4 to 11.46% in mode 2 and 7.2 to 7.5 in mode 3. At high valve lifts, it can be clearly seen that some of the energy in the large eddies of mode 1 is transferred to the smaller flow structures of modes 2 and 3. This can be clearly seen at valve lift 10 mm where the values of the flow energy were 40.6%, 17.3%, and 8.0% for modes 1, 2, and 3, respectively.

  4. Numerical and experimental investigation on effects of inlet humidity and fuel flow rate and oxidant on the performance on polymer fuel cell

    International Nuclear Information System (INIS)

    Takalloo, Pourya Karimi; Nia, Ehsan Shabahang; Ghazikhani, Mohsen

    2016-01-01

    Highlights: • The impact of alteration in humidification on performance of fuel cell. • The impact of variation of temperature on performance of fuel cell. • The effects of using pure oxygen on the polarity curve are studied. • Fuel cell has been investigated both experimentally and numerically. - Abstract: Considering the importance of water management in a fuel cell and in order to increase the rate of the electro-chemical process in fuel cells with polymer membrane, it is required to optimize the humidity and inlet flow rates on anode and cathode sides. In this study, the impact of alteration in humidification and inlet flow rates on performance improvements for polymer membrane fuel cells is investigated both experimentally and numerically. To obtain the objective, employing the results from experiments and simulations, polarity curve and power density are produced and further used to conduct the desired investigations. In addition, through the conducted simulations the effects of using pure oxygen in the cathode side and inlet gas temperatures on the polarity curve is studied. The results demonstrate that an increase in humidity of the inlet gases will lead to performance amelioration in the cell, due to reduction in ionic resistance at the membrane. Furthermore, with the aforementioned increment; molar fractions of hydrogen and oxygen are decreased through the channel which results in produced water increment. Amplification in inlet flow rates to a certain level will improve the penetration possibility for gaseous forms leading to betterment of the cell performance in this specified range. Performance improvements with inlet gases temperature increment conclude other results of this study.

  5. Nonlinear damping of drift waves by strong flow curvature

    International Nuclear Information System (INIS)

    Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.

    1993-01-01

    A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method

  6. The Effect of Inlet Pulsations on the Backward-Facing Step Flow

    Czech Academy of Sciences Publication Activity Database

    Tihon, Jaroslav; Pěnkavová, Věra; Pantzali, M.

    2010-01-01

    Roč. 29, č. 3 (2010), s. 224-235 ISSN 0997-7546 R&D Projects: GA ČR GA101/04/0745; GA ČR GA104/08/0428 Grant - others:HPMT(XE) CT/2000/00074 Institutional research plan: CEZ:AV0Z40720504 Keywords : flow separation and reattachment * backward-facing step * wall shear stress Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.068, year: 2010

  7. Two scenarios of instability development in flow with strong swirling

    DEFF Research Database (Denmark)

    Naumov, Igor; Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    The development of instability in a flow generated in a cylindrical cavity with a rotating endwall has been studied. Both possible scenarios of the development of instability, according to which the amplitude of velocity pulsation grows or decays with increasing twist of the flow, have been obser...... observed for the first time. It is established that these processes depend on the appearance of secondary perturbations and on their relative frequency....

  8. Method for Determining Optimum Injector Inlet Geometry

    Science.gov (United States)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  9. Low speed performance of a supersonic axisymmetric mixed compression inlet with auxiliary inlets. [Lewis 9x15-ft anechoic wind tunnel tests

    Science.gov (United States)

    Wasserbauer, J. F.; Cubbison, R. W.; Trefny, C. J.

    1983-01-01

    The aerodynamic performance of a representative supersonic cruise inlet was investigated using a fan simulator coupled to the inlet to provide characteristic noise signatures and to pump the inlet flow. Data were obtained at Mach numbers from 0 to 0.2 for the inlet equipped with an auxiliary inlet system that provided 20 to 40 percent of the fan flow. Results show that inlet performance improved when the inlet bleed systems were sealed; when the freestream Mach number was increased; and when the auxiliary inlets were opened. The inlet flow could not be choked by either centerbody translation or by increasing the fan speed when the 40 percent auxiliary inlet was incorporated.

  10. Improvement of Estimation method for two-phase flow in a large-diameter pipe. Pt. 4. Effect of the inlet boundary condition of the upward flow section on flow characteristics

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Okawa, Tomio; Zhou, Shirong

    1999-01-01

    In nuclear power plants, many large-diameter pipes are subject to gas-liquid two-phase flow. For rational design and performance estimation, the flow in the pipes should be predicted accurately. With the correlation used at present, however, the flow analysis can not reach desirable precision. This is partly due to the lack of understanding of the two-phase flow characteristics in large-diameter pipes. Therefore, steam-water two-phase flow in a vertical pipe (155 mm i.d.) was investigated empirically. Lateral distribution data of phase volume fraction, gas velocity and bubble diameter were obtained. The effects of the inlet boundary condition were also observed. The drift velocity in the developing region was considerably affected by the inlet boundary condition. By deriving the correlation of mean bubble diameter as a function of void fraction and pressure, the empirical data was predicted with high accuracy compared with the existing correlation used in best-estimate codes of nuclear reactor safety analysis. (author)

  11. Morphodynamic modelling for Thuan An inlet, Vietnam

    NARCIS (Netherlands)

    Lam, T.N.; Stive, M.J.; Verhagen, H.J.; Wang, Z.B.

    2006-01-01

    Thuan An is a tidal inlet located in Vietnam in a tropical monsoon area. The inlet is very dynamic and variable under the influences of not only tides and waves from the sea but also flows and floods from upstream rivers. Therefore, morphodynamic behaviour of the inlet is very complicated and not

  12. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  13. Sound power flux measurements in strongly exited ducts with flow

    Science.gov (United States)

    Holland, Keith R.; Davies, Peter O. A. L.; van der Walt, Danie C.

    2002-12-01

    This contribution describes new robust procedures for the measurement of sound power flux at appropriate axial positions along a duct with flow, using pairs of flush wall mounted microphones, or pressure transducers. The technology includes the application of selective averaging, order tracking, and optimized sampling rate methods to identify the small fraction of the total fluctuating wave energy that is being propagated along the flow path in a reverberent, or highly reactive duct system. Such measurements can also be used to quantify the local acoustic characteristics that govern the generation, transfer, and propagation of wave energy in the system. Illustrative examples include the determination of the acoustic characteristics of individual silencing elements installed in IC engine intakes and exhausts both on the flow bench and during controlled acceleration or run down on a test bed, where the wave component spectral levels approached 170 dB.

  14. CFD-PBM Approach with Different Inlet Locations for the Gas-Liquid Flow in a Laboratory-Scale Bubble Column with Activated Sludge/Water

    Directory of Open Access Journals (Sweden)

    Le Wang

    2017-08-01

    Full Text Available A novel computational fluid dynamics-population balance model (CFD-PBM for the simulation of gas mixing in activated sludge (i.e., an opaque non-Newtonian liquid in a bubble column is developed and described to solve the problem of measuring the hydrodynamic behavior of opaque non-Newtonian liquid-gas two-phase flow. We study the effects of the inlet position and liquid-phase properties (water/activated sludge on various characteristics, such as liquid flow field, gas hold-up, liquid dynamic viscosity, and volume-averaged bubble diameter. As the inlet position changed, two symmetric vortices gradually became a single main vortex in the flow field in the bubble column. In the simulations, when water was in the liquid phase, the global gas hold-up was higher than when activated sludge was in the liquid phase in the bubble column, and a flow field that was dynamic with time was observed in the bubble column. Additionally, when activated sludge was used as the liquid phase, no periodic velocity changes were found. When the inlet position was varied, the non-Newtonian liquid phase had different peak values and distributions of (dynamic liquid viscosity in the bubble column, which were related to the gas hold-up. The high gas hold-up zone corresponded to the low dynamic viscosity zone. Finally, when activated sludge was in the liquid phase, the volume-averaged bubble diameter was much larger than when water was in the liquid phase.

  15. Tests of a mixed compression axisymmetric inlet with large transonic mass flow at Mach numbers 0.6 to 2.65

    Science.gov (United States)

    Smeltzer, D. B.; Sorensen, N. E.

    1972-01-01

    A 38.8-cm (15.28-in.) capture diameter model of a mixed-compression axisymmetric inlet system with a translating cowl was designed and tested. The internal contours, designed for Mach number 2.65, provided a throat area of 59 percent of the capture area when the cowl was retracted for transonic operation. Other model features included a boundary-layer removal system, vortex generators, an engine airflow bypass system, cowl support struts, and rotating rakes at the engine face. All tunnel testing was conducted at a tunnel total pressure of about 1 atm (a unit Reynolds number of about 8.53 million/m at Mach number 2.65) at angles of attack from 0 deg to 4 deg. Results for the following were obtained: total-pressure recovery and distortion at the engine face as a function of bleed mass-flow ratio, the effect of bleed and vortex generator configurations on pressure recovery and distortion, inlet tolerance to unstart due to changes in angle of attack or Mach number, surface pressure distributions, boundary-layer profiles, and transonic additive drag. At Mach number 2.65 and with the best bleed configurations, maximum total pressure recovery at the engine face ranged from 91 to 94.5 percent with bleed mass-flow ratios from 4 to 9 percent, respectively, and total-pressure distortion was less than 10 percent. At off-design supersonic Mach numbers above 1.70, maximum total-pressure recoveries and corresponding bleed mass flows were about the same as at Mach number 2.65, with about 10 to 15 percent distortion. In the transonic Mach number range, total pressure recovery was high (above 96 percent) and distortion was low (less than 15 percent) only when the inlet mass-flow ration was reduced 0.02 to 0.06 from the maximum theoretical value (0.590 at Mach number 1.0).

  16. Influence of strong perturbations on wall-bounded flows

    Science.gov (United States)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is

  17. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine

    Science.gov (United States)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.

    2018-01-01

    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  18. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    Science.gov (United States)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters

  19. Inlet spillage drag tests and numerical flow-field analysis at subsonic and transonic speeds of a 1/8-scale, two-dimensional, external-compression, variable-geometry, supersonic inlet configuration

    Science.gov (United States)

    Hawkins, J. E.; Kirkland, F. P.; Turner, R. L.

    1976-01-01

    Accurate spillage drag and pressure data are presented for a realistic supersonic inlet configuration. Results are compared with predictions from a finite-differencing, inviscid analysis computer procedure. The analytical technique shows good promise for the evaluation of inlet drag, but necessary refinements were identified. A detailed description of the analytical procedure is contained in the Appendix.

  20. Investigating the effect of gas flow rate, inlet ozone concentration and relative humidity on the efficacy of catalytic ozonation process in the removal of xylene from waste airstream

    Directory of Open Access Journals (Sweden)

    H.R. MokaramI

    2010-10-01

    Full Text Available Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate, inlet ozone dose and relative humidity on this performanceMethodsthe catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selectedoperational variables.ResultsThe results indicated that the efficiency of catalytic ozonation was greater than that of single adsorption in removal of xylene under similar inlet concentration and relative humidity. We found a significant catalytic effect for activated carbon when used in combination with ozonation process, leading to improvement of xylene removal percentage. In addition, the elimination capacity of the system improved with the increase of inlet ozone dose as well as gas flow rate. The relative humidity showed a positive effect of the xylene removal at the range of 5 to 50%, while the higher humidity (more than 50% resulted in reduction of the performance.ConclusionThe findings of the present work revealed that the catalytic ozonation process can be an efficient technique for treating the air streams containing industrial concentrations of xylene. Furthermore, there is a practical potential to retrofit the present adsorption systems intothe catalytic ozonation simply by coupling them with the ozonation system. the catalytic ozonation of xylene was conducted using a bench scale set-up consisted of a syringe pump,an air pump, an ozone generator, and a glass reactor packed with activated carbon. Several experimental run was defined to investigate the influence of the selected

  1. Thermal stratification built up in hot water tank with different inlet stratifiers

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark

    2017-01-01

    in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb......Thermal stratification in a water storage tank can strongly increase the thermal performance of solar heating systems. Thermal stratification can be built up in a storage tank during charge, if the heated water enters through an inlet stratifier. Experiments with a test tank have been carried out......H is a rigid plastic pipe with holes for each 30 cm. The holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and in the full length of the stratifier. The flexibility...

  2. Predicting optimal back-shock times in ultrafiltration hollow fiber modules II: Effect of inlet flow and concentration dependent viscosity

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2015-01-01

    This paper concerns mathematical modeling and computational fluid dynamics of back-shocking during hollow fibre ultrafiltration of dextran T500. In this paper we present a mathematical model based on first Principles, i.e., solving the Navier-Stokes equation along with the continuity equation...... fibre membranes, J. Membr. Sci. 470 (2014) 275-293 [33]).Furthermore, the simulations have been performed with two different inlet velocities, i.e., crossflow velocities and are clone with and without a concentration dependent viscosity. This enables us, for the first time, to investigate the effect...... in this paper.Furthermore, it is found that the optimal back-shock time increases when the viscosity is allowed to depend on the concentration It is found that this can be explained by a decrease in the velocity tangential to the membrane due to the increase in viscosity where the concentration is high...

  3. Numerical simulation of strongly swirling turbulent flows through an abrupt expansion

    International Nuclear Information System (INIS)

    Paik, Joongcheol; Sotiropoulos, Fotis

    2010-01-01

    Turbulent swirling flow through an abrupt axisymmetric expansion is investigated numerically using detached-eddy simulation at Reynolds numbers = 3.0 x 10 4 and 1.0 x 10 5 . The effects of swirl intensity on the coherent dynamics of the flow are systematically studied by carrying out numerical simulations over a range of swirl numbers from 0.17 to 1.23. Comparison of the computed solutions with the experimental measurements of shows that the numerical simulations resolve both the axial and swirl mean velocity and turbulence intensity profiles with very good accuracy. Our simulations show that, along with moderate mesh refinement, critical prerequisite for accurate predictions of the flow downstream of the expansion is the specification of inlet conditions at a plane sufficiently far upstream of the expansion in order to avoid the spurious suppression of the low-frequency, large-scale precessing of the vortex core. Coherent structure visualizations with the q-criterion, friction lines and Lagrangian particle tracking are used to elucidate the rich dynamics of the flow as a function of the swirl number with emphasis on the onset of the spiral vortex breakdown, the onset and extent of the on-axis recirculation region and the large-scale instabilities along the shear layers and the pipe wall.

  4. The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions

    OpenAIRE

    Buscall, Richard; Kusuma, Tiara E.; Stickland, Anthony D.; Rubasingha, Sayuri; Scales, Peter J.; Teo, Hui-En; Worrall, Graham L.

    2014-01-01

    The behaviour in simple shear of two concentrated and strongly cohesive mineral suspensions showing highly non-monotonic flow curves is described. Two rheometric test modes were employed, controlled stress and controlled shear-rate. In controlled stress mode the materials showed runaway flow above a yield stress, which, for one of the suspensions, varied substantially in value and seemingly at random from one run to the next, such that the up flow-curve appeared to be quite irreproducible. Th...

  5. Morphodynamics of Hue tidal inlets, Vietnam

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2007-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Effects of tides, waves, river flows and system configuration on the inlet morphologies are investigated with the aid of process-based state-of-the-art numerical models.

  6. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    . The results showed that the gas flow was accelerated to supersonic velocity, and created the low pressure and temperature conditions for gas removal. Most of the particles collided with the walls or entered into the liquid-collection space directly, while only a few particles escaped together with the gas......The supersonic separator is a novel technique to remove the condensable components from gas mixtures. But the particle behavior is not well understood in this complex supersonic flow. The Discrete Particle Method was used here to study the particle motion in supersonic flows with a strong swirl...

  7. Strong Flows of Bottom Water in Abyssal Channels of the Atlantic

    Science.gov (United States)

    Morozov, E. G.

    Analysis of bottom water transport through the abyssal channels of the Atlantic Ocean is presented. The study is based on recent observations in the Russian expeditions and historical data. A strong flow of Antarctic Bottom Water from the Argentine Basin to the Brazil Basin through the Vema Channel is observed on the basis of lowered profilers and anchored buoys with current meters. The further flow of bottom water in the Brazil Basin splits in the northern part of the basin. Part of the bottom water flows to the East Atlantic through the Romanche and Chain fracture zones. The other part follows the bottom topography and flows to the northwester into the North American Basin. Part of the northwesterly flow propagates through the Vema Fracture Zone into the Northeastern Atlantic. This flow generally fills the bottom layer in the Northeastern Atlantic basins. The flows of bottom waters through the Romanche and Chain fracture zones do not spread to the Northeast Atlantic due to strong mixing in the equatorial zone and enhanced transformation of bottom water properties.

  8. Interhemispheric Asymmetry of the Sunward Plasma Flows for Strongly Dominant IMF BZ > 0

    Science.gov (United States)

    Yakymenko, K. N.; Koustov, A. V.; Fiori, R. A. D.

    2018-01-01

    Super Dual Auroral Radar Network (SuperDARN) convection maps obtained simultaneously in both hemispheres are averaged to infer polar cap ionospheric flow patterns under strongly dominant positive interplanetary magnetic field (IMF) Bz component. The data set consisted of winter observations in the Northern Hemisphere simultaneously with summer observations in the Southern Hemisphere. Long-lasting high-latitude dayside reverse convection cells are shown to have faster sunward flows at near-magnetic noon hours in the summer/Southern Hemisphere. Sunward flows typically deviate from the midnight-noon meridian toward 10-11 h of magnetic local time in the summer/Southern Hemisphere and are more aligned with the midnight-noon meridian in the winter/Northern Hemisphere. Flow deviations in the winter/Northern Hemisphere can be both toward prenoon and postnoon hours, and there is no clear relationship between flow deviation and the IMF By component. No strong preference for the sunward flow occurrence depending on the IMF Bx polarity was found. In addition, the rate of the sunward flow speed increase in response to an increase in driving conditions was found to be comparable for the IMF Bx > 0 and Bx < 0.

  9. Strong enhancement of streaming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system

  10. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    NARCIS (Netherlands)

    Kenjeres, S.

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations

  11. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two

  12. Experimental study of pseudoplastic fluid flows in a square duct of strong curvature

    Science.gov (United States)

    Ma, Kun; Yuan, Shiwei; Chang, Huaijian; Lai, Huanxin

    2014-08-01

    In this paper, laminar and turbulent flows of pseudoplastic fluids (0.1% and 0.2% by weight aqueous solutions of carboxymethylcellulose) in a square duct of strong curvature were measured using an ultrasonic Doppler velocimetry and microphones. Streamwise velocity in cross-sections of the duct and the fluctuating pressure on walls were measured for different flow rates. The velocity contours and their development along the duct were presented and compared with benchmark experiments by Taylor, Whitelaw and Yianneskis (1982) which were for the laminar and turbulent flows of water. The spectra of fluctuating wall pressures were also presented and analyzed. The objective of this paper was to provide a basis for understanding the pseudoplastic fluid flows in curved ducts. The results were also intended for use in the further development of numerical methods and turbulence models for shear-thinning fluids.

  13. <strong>CyNC: A method for real time analysis of systems with cyclic data flows>

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard

    2006-01-01

    The paper addresses a novel method for performance analysis of distributed realtime systems with complex, and especially cyclic data flow graphs. The presented method is based on Network Calculus principles, where flow and service constraint functions are used to bound data flows and processing...... on a relevant example. The method is implemented in a prototype tool also denoted CyNC providing a graphical user interface for model specification based on the MATLAB/SimuLink framework. Udgivelsesdato: DECEMBER...

  14. EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter L.; Littlejohn, David; Cheng, Robert K.; Portillo, J. Enrique; Martin, Scott M.

    2009-11-30

    Low Swirl Injector (LSI) technology is a lean premixed combustion method that is being developed for fuel-flexible gas turbines. The objective of this study is to characterize the fuel effects and influences of combustor geometry on the LSI's overall acoustic signatures and flowfields. The experiments consist of 24 flames at atmospheric condition with bulk flows ranging between 10 and 18 m/s. The flames burn CH{sub 4} (at {phi} = 0.6 & 0.7) and a blend of 90% H{sub 2} - 10% CH{sub 4} by volume (at {phi} = 0.35 & 0.4). Two combustor configurations are used, consisting of a cylindrical chamber with and without a divergent quarl at the dump plane. The data consist of pressure spectral distributions at five positions within the system and 2D flowfield information measured by Particle Imaging Velocimetry (PIV). The results show that acoustic oscillations increase with U{sub 0} and {phi}. However, the levels in the 90% H{sub 2} flames are significantly higher than in the CH{sub 4} flames. For both fuels, the use of the quarl reduces the fluctuating pressures in the combustion chamber by up to a factor of 7. The PIV results suggest this to be a consequence of the quarl restricting the formation of large vortices in the outer shear layer. A Generalized Instability Model (GIM) was applied to analyze the acoustic response of baseline flames for each of the two fuels. The measured frequencies and the stability trends for these two cases are predicted and the triggered acoustic mode shapes identified.

  15. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  16. Plane Couette flow in the presence of a strong centrifugal field

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1982-05-01

    The Pomraning problem of plane Couette flow in a strong centrifugal field is studied by several methods: a half-range polynomial expansion of the linearized BGK equation; the Liu-Lees method; and a new matching approximation constructed to give the correct solution in the free-molecule limit. The matching approximation, which appears valid for strong enough centrifugal field, predicts major differences from hydrodynamic behaviour, and suggests ways in which the lack of convergence of one method studied may be corrected. (author)

  17. Bactericidal Effect of Strong Acid Electrolyzed Water against Flow Enterococcus faecalis Biofilms.

    Science.gov (United States)

    Cheng, Xiaogang; Tian, Yu; Zhao, Chunmiao; Qu, Tiejun; Ma, Chi; Liu, Xiaohua; Yu, Qing

    2016-07-01

    This study evaluated the bactericidal effect of strong acid electrolyzed water (SAEW) against flow Enterococcus faecalis biofilm and its potential application as a root canal irrigant. Flow E. faecalis biofilms were generated under a constant shear flow in a microfluidic system. For comparison, static E. faecalis biofilms were generated under a static condition on coverslip surfaces. Both the flow and static E. faecalis biofilms were treated with SAEW. Sodium hypochlorite (NaOCl, 5.25%) and normal saline (0.9%) were included as the controls. Bacterial reductions were evaluated using confocal laser scanning microscopy and the cell count method. Morphological changes of bacterial cells were observed using scanning electron microscopy. The confocal laser scanning microscopic and cell count results showed that SAEW had a bactericidal effect similar to that of 5.25% NaOCl against both the flow and static E. faecalis biofilms. The scanning electron microscopic results showed that smooth, consecutive, and bright bacteria surfaces became rough, shrunken, and even lysed after treated with SAEW, similar to those in the NaOCl group. SAEW had an effective bactericidal effect against both the flow and static E. faecalis biofilms, and it might be qualified as a root canal irrigant for effective root canal disinfection. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  19. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  20. Inlet stratification device

    DEFF Research Database (Denmark)

    2014-01-01

    An inlet stratification (5) is adapted to be arranged vertically in a tank (1) during operation. The stratification device (5) comprises an inlet pipe (6) formed of a flexible porous material and having a lower and upper end. The lower end of the inlet pipe (6) is connected to a bottom cap (10......) with an inlet passage way (16). The upper end of the inlet pipe (6) is connected with a top cap (9). The top cap (9) and the bottom cap (10) are mutually connected by means of a wire (8) and the top cap (9) is configured as a floating device providing a buoyancy force larger than the downwardly directed force...... due to the wire (8), the inlet pipe (6) and any deposited on the above pass during operation....

  1. Bubble deformability is crucial for strong drag reduction in turbulent Taylor-Couette flow

    Science.gov (United States)

    Sun, Chao; Narezo Guzman, Daniela; van Gils, Dennis P. M.; Lohse, Detlef

    2011-11-01

    Bubbly Taylor-Couette flow in the turbulent regime is studied both globally and locally at Reynolds numbers of 5 . 1 ×105 - 2 . 0 ×106 for pure inner cylinder rotation. We measure the drag reduction (DR) based on the global torque for global gas volume fractions (αglobal) up to 4 %, and observe a moderate DR for Re = 5 . 1 ×105 , and a strong DR for Re = 1 . 0 ×106 and 2 . 0 ×106 . Remarkably, more than 40 % of DR is achieved for αglobal = 4 % at Re = 2 . 0 ×106 . We investigate the statistics of the liquid flow velocity, and directly measure the local bubble concentration and Weber number for two Reynolds numbers in different drag reduction regimes, i.e. Re = 1 . 0 ×106 (strong DR) and 5 . 1 ×105 (moderate DR). By combining global and local measurements we reveal that bubble deformability is crucial for strong drag reduction in bubbly turbulent Taylor-Couette flow. This work was financially supported by technology foundation STW in The Netherlands.

  2. Influence of the choice of the inlet turbulence intensity on the performance of numerically simulated moderate Reynolds jet flows – Part 1 – the near exit region of the jet

    Directory of Open Access Journals (Sweden)

    Radu DOLINSKI

    2013-12-01

    Full Text Available A real problem when trying to develop a numerical model reproducing the flow through an orifice is the choice of a correct value for the turbulence intensity at the inlet of the numerical domain in order to obtain at the exit plane of the jet the same values of the turbulence intensity as in the experimental evaluation. There are few indications in the literature concerning this issue, and the imposed boundary conditions are usually taken into consideration by usage without any physical fundament. In this article we tried to check the influence of the variation of the inlet turbulence intensity on the jet flow behavior. This article is focusing only on the near exit region of the jet. Five values of the inlet turbulence intensity Tu were imposed at the inlet of the computational domain, from 1.5% to 30%. One of these values, Tu= 2% was the one measured with a hot wire anemometer at the jet exit plane, and another one Tu= 8.8% was issued from the recommendation of Jaramillo [1]. The choice of the mesh-grid and of the turbulence model which was the SST k-ω model were previously established [2]. We found that in the initial region of the jet flow, the mean streamwise velocity profiles and the volumetric flow rate do not seem to be sensitive at all at the variation of the inlet turbulence intensity. On the opposite, for the vorticity and the turbulent kinetic energy (TKE distributions we found a difference between the maximum values as high as 30%. The closest values to the experimental case were found for the lowest value of Tu, on the same order of magnitude as the measurement at the exit plane of the jet flow. Mean streamwise velocity is not affected by these differences of the TKE distributions. Contrary, the transverse field is modified as it was displayed by the vorticity distributions. This observation allows us to predict a possible modification of the entire mean flow field in the far region of the jet flow.

  3. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous......An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...

  4. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin; Kobelke, Jens [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Wondraczek, Lothar [Otto Schott Institute of Material Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena (Germany); Troles, Johann; Caillaud, Celine [Université de Rennes I, Equipe Verres et Céramiques, UMR 6226 Sciences Chimiques de Rennes, Campus de Beaulieu, 35042 Rennes (France); Schmidt, Markus A., E-mail: markus.schmidt@ipht-jena.de [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Otto Schott Institute of Material Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena (Germany)

    2015-05-18

    The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glass network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.

  5. Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma

    Science.gov (United States)

    Mamo, Kiminad A.

    2012-10-01

    We study holographic RG flow of the shear viscosity tensor of anisotropic, strongly coupled {N}=4 super-Yang-Mills plasma by using its type IIB supergravity dual in anisotropic bulk spacetime. We find that the shear viscosity tensor has three independent components in the anisotropic bulk spacetime away from the boundary, and one of the components has a non-trivial RG flow while the other two have a trivial one. For the component of the shear viscosity tensor with non-trivial RG flow, we derive its RG flow equation, and solve the equation analytically to second order in the anisotropy parameter a. We derive the RG equation using the equation of motion, holographic Wilsonian RG method, and Kubo's formula. All methods give the same result. Solving the equation, we find that the ratio of the component of the shear viscosity tensor to entropy density η /s flows from above 1/{4π } the horizon (IR) to below 1/{4π } the boundary (UV) where it violates the holographic shear viscosity (Kovtun-Son-Starinets) bound and where it agrees with the other longitudinal component.

  6. Fives decades of strong temporal variability in the flow of the Brunt Ice Shelf, Antarctica

    Science.gov (United States)

    De Rydt, Jan; Gudmundsson, Hilmar; Nagler, Thomas

    2017-04-01

    The Brunt Ice Shelf, East Antarctica, is a complex conglomerate of meteoric and marine ice, weakly connected to the much larger and faster-flowing Stancomb Wills Glacier Tongue to the east, and pinned down to the seabed in a small area around the McDonalds Ice Rumples in the north. The ice shelf is home to the UK research station Halley, from which changes to the ice shelf have been monitored closely since the 1960s. A unique 50-year record of the flow speed and an intense surveying programme over the past 10 years, have revealed a strong temporal variability in the flow. In particular, the speed of the ice shelf has increased by 10% each year over the past few years. In order to understand these rapid changes, we use a state-of-the-art flow model in combination with a range of satellite, ground-based and airborne radar data, to accurately simulate the historical flow and recent changes. In particular, we model the effects of a recently formed rift that is propagating at a speed of up to 600m/day and threatens to dislodge the ice shelf from its pinning point at the McDonalds Ice Rumples. We also report on the recent reactivation of a large chasm which has prompted the relocation of the station during the 2016/17 austral summer.

  7. Comparison of strongly heat-driven flow codes for unsaturated media

    International Nuclear Information System (INIS)

    Updegraff, C.D.

    1989-08-01

    Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal of high-level radioactive waste (HLW) in unsaturated welded tuff. As part of this effort, SNL evaluated existing strongly heat-driven flow computer codes for simulating ground-water flow in unsaturated media. The three codes tested, NORIA, PETROS, and TOUGH, were compared against a suite of problems for which analytical and numerical solutions or experimental results exist. The problems were selected to test the abilities of the codes to simulate situations ranging from simple, uncoupled processes, such as two-phase flow or heat transfer, to fully coupled processes, such as vaporization caused by high temperatures. In general, all three codes were found to be difficult to use because of (1) built-in time stepping criteria, (2) the treatment of boundary conditions, and (3) handling of evaporation/condensation problems. A drawback of the study was that adequate problems related to expected repository conditions were not available in the literature. Nevertheless, the results of this study suggest the need for thorough investigations of the impact of heat on the flow field in the vicinity of an unsaturated HLW repository. Recommendations are to develop a new flow code combining the best features of these three codes and eliminating the worst ones. 19 refs., 49 figs

  8. Scaling of the velocity profile in strongly drag reduced turbulent flows over an oscillating wall

    International Nuclear Information System (INIS)

    Skote, Martin

    2014-01-01

    Highlights: • Scaling analysis is used to derive a log-law for drag reduced flow. • The slope of the log layer is directly linked to the drag reduction. • The result is only valid for wall manipulated flows – not fluid altering methods. • Extensive comparison with data found in the literature is made. - Abstract: Scaling analysis of the velocity profiles in strongly drag reduced flows reveals that the slope of the logarithmic part depends on the amount of drag reduction (DR). Unlike DR due to polymeric fluids, the slope changes gradually and can be predicted by the analysis. Furthermore, the intercept of the profiles is found to vary linearly with the DR. Two velocity scales are utilized: the reference (undisturbed) and the actual friction velocity. The theory is based on the assumption that the near-wall linear region is only governed by the actual friction velocity, while the outer part is governed by the reference friction velocity. As a result, logarithmic part is influenced by both velocity scales and the slope of the velocity profile is directly linked to the DR. The theoretically obtained results are verified by data from six previously performed direct numerical simulations (DNSs) of boundary layers over spatial and temporal wall oscillations, with a wide range of resulting DR. The theory is further supported by data from numerous investigations (DNSs as well as experiments) of wall-bounded flows forced by various forms of oscillating wall-motion. The assumption that the outer part is unaffected by the actual friction velocity limits the validity of the proposed log-law to flows not fully adapted to the imposed wall forcing, hence the theory provides a measure of the level of adjustment. In addition, a fundamental difference in the applicability of the theory to spatially developing boundary flow and infinite channel flow is discussed

  9. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  10. Bechevin Bay, Alaska, Inlet Stability Study.

    Science.gov (United States)

    1985-05-01

    Krenitzin. Bechevin Inlet, Bechevin Bay, and Isanotski Strait form an inlet system which * separates Unimak Island from the Alaska Peninsula. This...from the North Pacific must travel around Unimak Island through Unimak Pass. This route is 100-150 miles longer than the route through the Bechevin...period was semidiurnal, while the tidal flow at Unimak Pass (not too far southwest from the study area) was, interestingly, diurnal. Second, the phase

  11. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Kenjeres, Sasa

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell's equations (Biot-Savart/Ampere's law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery

  12. A Boundary Condition Relaxation Algorithm for Strongly Coupled, Ablating Flows Including Shape Change

    Science.gov (United States)

    Gnoffo, Peter A.; Johnston, Christopher O.

    2011-01-01

    Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.

  13. A strongly conservative finite element method for the coupling of Stokes and Darcy flow

    KAUST Repository

    Kanschat, G.

    2010-08-01

    We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.

  14. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  15. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  16. Modelling alongshore flow in a semi-enclosed lagoon strongly forced by tides and waves

    Science.gov (United States)

    Taskjelle, Torbjørn; Barthel, Knut; Christensen, Kai H.; Furaca, Noca; Gammelsrød, Tor; Hoguane, António M.; Nharreluga, Bilardo

    2014-08-01

    Alongshore flows strongly driven by tides and waves is studied in the context of a one-dimensional numerical model. Observations from field surveys performed in a semi-enclosed lagoon (1.7 km×0.2 km) outside Xai-Xai, Mozambique, are used to validate the model results. The model is able to capture most of the observed temporal variability of the current, but sea surface height tends to be overestimated at high tide, especially during high wave events. Inside the lagoon we observed a mainly uni-directional alongshore current, with speeds up to 1 ms-1. The current varies primarily with the tide, being close to zero near low tide, generally increasing during flood and decreasing during ebb. The observations revealed a local minimum in the alongshore flow at high tide, which the model was successful in reproducing. Residence times in the lagoon were calculated to be less than one hour with wave forcing dominating the flushing. At this beach a high number of drowning casualties have occurred, but no connection was found between them and strong current events in a simulation covering the period 2011-2012.

  17. New River Inlet DRI: Observations and Modeling of Flow and Material Exchange & Field and Numerical Study of the Columbia River Mouth

    Science.gov (United States)

    2013-09-30

    analyze the MCR drifter, in situ mini-catamaran, pressure, and USGS tripod observations; • describe the tidal chocking behavior at New River Inlet ( NRI ...describe the generation mechanisms for fronts at NRI through observations and modeling; • evaluate the optical properties of NRI through ins situ

  18. Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua

    Science.gov (United States)

    Figueras, Pau; Lucietti, James; Wiseman, Toby

    2011-11-01

    The elliptic Einstein-DeTurck equation may be used to numerically find Einstein metrics on Riemannian manifolds. Static Lorentzian Einstein metrics are considered by analytically continuing to Euclidean time. The Ricci-DeTurck flow is a constructive algorithm to solve this equation, and is simple to implement when the solution is a stable fixed point, the only complication being that Ricci solitons may exist which are not Einstein. Here we extend previous work to consider the Einstein-DeTurck equation for Riemannian manifolds with boundaries, and those that continue to static Lorentzian spacetimes which are asymptotically flat, Kaluza-Klein, locally AdS or have extremal horizons. Using a maximum principle, we prove that Ricci solitons do not exist in these cases and so any solution is Einstein. We also argue that the Ricci-DeTurck flow preserves these classes of manifolds. As an example, we simulate the Ricci-DeTurck flow for a manifold with asymptotics relevant for AdS5/CFT4. Our maximum principle dictates that there are no soliton solutions, and we give strong numerical evidence that there exists a stable fixed point of the flow which continues to a smooth static Lorentzian Einstein metric. Our asymptotics are such that this describes the classical gravity dual relevant for the CFT on a Schwarzschild background in either the Unruh or Boulware vacua. It determines the leading O(N2c) part of the CFT stress tensor, which interestingly is regular on both the future and past Schwarzschild horizons.

  19. Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua

    Energy Technology Data Exchange (ETDEWEB)

    Figueras, Pau [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Lucietti, James [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, King' s Buildings, Edinburgh EH9 3JZ (United Kingdom); Wiseman, Toby, E-mail: t.wiseman@imperial.ac.uk [Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2011-11-07

    The elliptic Einstein-DeTurck equation may be used to numerically find Einstein metrics on Riemannian manifolds. Static Lorentzian Einstein metrics are considered by analytically continuing to Euclidean time. The Ricci-DeTurck flow is a constructive algorithm to solve this equation, and is simple to implement when the solution is a stable fixed point, the only complication being that Ricci solitons may exist which are not Einstein. Here we extend previous work to consider the Einstein-DeTurck equation for Riemannian manifolds with boundaries, and those that continue to static Lorentzian spacetimes which are asymptotically flat, Kaluza-Klein, locally AdS or have extremal horizons. Using a maximum principle, we prove that Ricci solitons do not exist in these cases and so any solution is Einstein. We also argue that the Ricci-DeTurck flow preserves these classes of manifolds. As an example, we simulate the Ricci-DeTurck flow for a manifold with asymptotics relevant for AdS{sub 5}/CFT{sub 4}. Our maximum principle dictates that there are no soliton solutions, and we give strong numerical evidence that there exists a stable fixed point of the flow which continues to a smooth static Lorentzian Einstein metric. Our asymptotics are such that this describes the classical gravity dual relevant for the CFT on a Schwarzschild background in either the Unruh or Boulware vacua. It determines the leading O(N{sup 2}{sub c}) part of the CFT stress tensor, which interestingly is regular on both the future and past Schwarzschild horizons. (paper)

  20. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat......) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra...... in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen's early work in 1953 'on the spectrum of energy in turbulent shear flow' led Tchen to predict a shear production...

  1. Effects on inlet technology on cruise speed selection

    Science.gov (United States)

    Bangert, L. H.; Santman, D. M.; Horie, G.; Miller, L. D.

    1980-01-01

    The impact of cruise speed on technology level for certain aircraft components is examined. External-compression inlets were compared with mixed compression, self starting inlets at cruise Mach numbers of 2.0 and 2.3. Inlet engine combinations that provided the greatest aircraft range were identified. Results show that increased transonic to cruise corrected air flow ratio gives decreased range for missions dominated by supersonic cruise. It is also found important that inlets be designed to minimize spillage drag at subsonic cruise, because of the need for efficient performance for overland operations. The external compression inlet emerged as the probable first choice at Mach 2.0, while the self starting inlet was the probable first choice at Mach 2.3. Airframe propulsion system interference effects were significant, and further study is needed to assess the existing design methods and to develop improvements.

  2. Experimental and numerical study of two-phase flows at the inlet of evaporators in vapour compression cycles; Etude experimentale et numerique d'ecoulements diphasiques a l'entree des evaporateurs de cycles thermodynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M

    2007-09-15

    Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)

  3. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    Science.gov (United States)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  4. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow - I. Synchrotron absorption of strong electromagnetic waves

    Science.gov (United States)

    Lyubarsky, Yuri

    2018-02-01

    This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.

  5. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    Science.gov (United States)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  6. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree

  7. Tidally influenced alongshore circulation at an inlet-adjacent shoreline

    Science.gov (United States)

    Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.

    2013-01-01

    The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.

  8. The effect of inclusion of inlets in dual drainage modelling

    Science.gov (United States)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.; Djordjević, Slobodan

    2018-04-01

    In coupled sewer and surface flood modelling approaches, the flow process in gullies is often ignored although the overland flow is drained to sewer network via inlets and gullies. Therefore, the flow entering inlets is transferred to the sewer network immediately, which may lead to a different flood estimation than the reality. In this paper, we compared two modelling approach with and without considering the flow processes in gullies in the coupled sewer and surface modelling. Three historical flood events were adopted for model calibration and validation. The results showed that the inclusion of flow process in gullies can further improve the accuracy of urban flood modelling.

  9. Extension of SMAC scheme for variable density flows under strong temperature gradient

    Science.gov (United States)

    Anwer, S. F.; Khan, H. Naushad; Sanghi, S.; Ahmad, A.; Yahya, S. M.

    2012-06-01

    An extension of SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor-corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. To avoid the pressure odd-even decoupling that is typically encountered in such grids, a flux interpolation technique is introduced for the equations governing variable density flows. An important characteristic of the proposed algorithm is that it can be applied to flows in both open and closed domains. Its robustness and accuracy are illustrated with a non-isothermal, turbulent channel flow at temperature ratio of 1.01 and 2.

  10. Consistent Particle-Continuum Modeling and Simulation of Flows in Strong Thermochemical Nonequilibrium

    Data.gov (United States)

    National Aeronautics and Space Administration — During hypersonic entry into a planetary atmosphere, a spacecraft transitions from free-molecular flow conditions to fully continuum conditions. When modeling and...

  11. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    Science.gov (United States)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  12. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  13. Flow of a two-dimensional liquid metal jet in a strong magnetic field

    International Nuclear Information System (INIS)

    Reed, C.B.; Molokov, S.

    2002-01-01

    Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the presence of a transverse, nonuniform magnetic field is studied. The surface tension has been neglected, while gravity is shown to be not important. The main aim of the study is to evaluate the importance of the inertial effects. It has been shown that for gradually varying fields characteristic for the divertor region of a tokamak, inertial effects are negligible for N > 10, where N is the interaction parameter. Thus the inertialess flow model is expected to give good results even for relatively low magnetic fields and high jet velocity. Simple relations for the jet thickness and velocity have been derived. The results show that the jet becomes thicker if the field increases along the flow and thinner if it decreases

  14. Fundamental Aeronautics Program: Supersonics Project. Channeled Center-Body Inlet Experiment Overview

    Science.gov (United States)

    SaintJohn, Clint; Ratnayake, Nalin; Frederick, Mike

    2012-01-01

    The presentation describes supersonic flight testing accomplished on a novel mixed compression axisymmetric inlet utilizing channels for off design flow matching rather than a translating centerbody concept.

  15. A model of the plasma flow and current in Saturn's polar ionosphere under conditions of strong Dungey cycle driving

    Directory of Open Access Journals (Sweden)

    C. M. Jackman

    2006-05-01

    Full Text Available We propose a simple model of the flow and currents in Saturn's polar ionosphere. This model is motivated by theoretical reasoning, and guided quantitatively by in situ field and flow data from space missions, ground-based IR Doppler measurements, and Hubble Space Telescope images. The flow pattern consists of components which represent (1 plasma sub-corotation in the middle magnetosphere region resulting from plasma pick-up and radial transport from internal sources; (2 the Vasyliunas-cycle of internal plasma mass-loss down the magnetospheric tail at higher latitudes; and (3 the polar Dungey-cycle flow driven by the solar wind interaction. Upstream measurements of the interplanetary magnetic field (IMF indicate the occurrence of both extended low-field rarefaction intervals with essentially negligible Dungey-cycle flow, and few-day high-field compression regions in which the Dungey-cycle voltage peaks at a few hundred kV. Here we model the latter conditions when the Dungey-cycle is active, advancing on previous axi-symmetric models which may be more directly applicable to quiet conditions. For theoretical convenience the overall flow pattern is constructed by adding together two components - a purely rotational flow similar to previous axi-symmetric models, and a sun-aligned twin vortex representing the dawn-dusk asymmetry effects associated with the Vasyliunas-and Dungey-cycle flows. We calculate the horizontal ionospheric current associated with the flow and the field-aligned current from its divergence. These calculations show that a sheet of upward-directed field-aligned current flows at the boundary of open field lines which is strongly modulated in local-time by the Dungey-cycle flows. We then consider implications of the field-aligned current for magnetospheric electron acceleration and aurorae using two plasma source populations (hot outer magnetospheric electrons and cool dense magnetosheath electrons. Both sources display a strong dawn

  16. Field Observations Of The 29 September Tsunami In American Samoa: Spatial Variability And Indications Of Strong Return Flow

    Science.gov (United States)

    Jaffe, B. E.; Richmond, B. M.; Gelfenbaum, G. R.; Watt, S.; Apotsos, A. A.; Buckley, M. L.; Dudley, W. C.; Peck, B.

    2009-12-01

    The 29 September 2009 tsunami caused 181 fatalities and displaced more than 5000 people on the islands of Samoa, American Samoa, and Tonga. This is the first tsunami to cause significant damage and fatalities on U.S. soil in more than 30 years. Scientists from around the world quickly mobilized to help document the tsunami water levels before this ephemeral data was forever lost as recovery activities and natural processes overtook the effected area. A USGS team collected data in American Samoa from October 6-22 and November 5-12, 2009. The tsunami was large, reaching elevations of greater than 15 m, however wave heights and devastation varied from village to village in American Samoa. Even within villages, some structures were completely destroyed, some flooded and left standing, and others barely touched. Wave heights, flow depths, runup heights, inundation distances, and flow directions were collected for use in ground-truthing inundation models. The team also collected nearshore bathymetry, topography and reef flat elevation, sediment samples, and documented the distribution and characteristics of both sand and boulder deposits. Eyewitness accounts of the tsunami were also videotaped. One striking aspect of this tsunami was the abundance of indicators of strong return flow. For example at Poloa in the northwest of Tutuila, where the runup was greater than 11 m along a 300-m stretch of coast and flow depths exceeded 4 m, the coral reef flat was strewn with debris including chairs, desks, and books from a school. On land, River channels were excavated and new channels formed as return flow scoured sediment and transported it offshore. Possible causes for the strong return flow and the relation between the stength of the return flow, inundation distance, and runup in American Samoa are presented. These relationships and others based on data collected by field survey teams will ultimately reduce loss of life and destruction from tsunamis in the Pacific and

  17. Compressibility effects on a shear flow in strongly coupled dusty plasma. I. A study using computational fluid dynamics

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman

    2018-01-01

    We study compressibility effects on the two-dimensional strongly coupled dusty plasma by means of computational fluid dynamics (CFD) with the Kolmogorov flow as an initial shear flow profile. Nonlinear compressible vortex flow dynamics and other linear and nonlinear properties of such flow in the presence of variable density, pressure, and electrostatic potential are addressed using a generalised compressible hydrodynamic model. The stabilizing effect of compressibility on the unstable shear flows in the presence of strong correlation ( τm>0 ) is presented. Increasing the Mach number relatively reduces the growth-rate of perturbation. On the other hand, strong correlation makes the medium to be more unstable and increases the growth rate. Using an eigen value solver, various linear properties of compressible Kolmogorov flow have been investigated for a range of variable parameters, for example, Mach number, Reynolds number, and viscoelastic coefficient (τm). Compressible Kolmogorov flow becomes unstable above a critical value of the Reynolds number (Rc), and below Rc, the shear flow is found to be neutrally stable. In this study, it is found that the viscoelasticity reduces the value of Rc. For our choice of parameters, at τm=τmc , the compressible Kolmogorov flow becomes unconditionally unstable and no Rc exists for values of τm higher than τmc . To address the nonlinear properties, for example, mode-mode interaction due to the presence of nonlinearity in the fluid, vortex formation, etc., a massively parallelized Advanced Generalized SPECTral Code (AG-Spect) has been developed. AG-Spect, a newly developed code, is an efficient tool to solve any set of nonlinear fluid dynamic equations. A good agreement in linear growth rates obtained from the eigen value solver and time dependent simulation (AG-Spect) is found. In our CFD study, the suppression of instability, elongated vortex structures, pattern formation, nonlinear saturation, and visco

  18. Rheology of Confined Polymer Melts under Shear Flow : Strong Adsorption Limit

    NARCIS (Netherlands)

    Subbotin, A.; Manias, E.; Hadziioannou, G.; Brinke, G. ten

    1995-01-01

    The dynamics of a confined polymer melt between strong adsorbing surfaces is considered theoretically. In particular the influence of bridging on the theological behavior is investigated. It is shown that the bridges are very important for small enough shear velocities. Several regimes of

  19. Analysis of two-phase flow instability in vertical boiling channels I: development of a linear model for the inlet velocity perturbation

    International Nuclear Information System (INIS)

    Hwang, D.H.; Yoo, Y.J.; Kim, K.K.

    1998-08-01

    A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs

  20. Seasonal dynamics of adjoining tidal coastal inlet on east coast of India ­measurements and modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Reddy, N.A.; Ramanamurty, M.V.; ManiMurali, R.; ArunaKumar, A.; Rao, S.

    of these two inlets is carried out using satellite images and GIS. Field investigations are carried out on the hydrodynamics inside the inlet comprising of water level variations and flow dynamics. Nearshore wave information is obtained by transforming...

  1. A New Synergistic Forecasting Method for Short-Term Traffic Flow with Event-Triggered Strong Fluctuation

    Directory of Open Access Journals (Sweden)

    Darong Huang

    2018-01-01

    Full Text Available Directing against the shortcoming of low accuracy in short-term traffic flow prediction caused by strong traffic flow fluctuation, a novel method for short-term traffic forecasting based on the combination of improved grey Verhulst prediction algorithm and first-order difference exponential smoothing is proposed. Firstly, we constructed an improved grey Verhulst prediction model by introducing the Markov chain to its traditional version. Then, based on an introduced dynamic weighting factor, the improved grey Verhulst prediction method, and the first-order difference exponential smoothing technique, the new method for short-term traffic forecasting is completed in an efficient way. Finally, experiment and analysis are carried out in the light of actual data gathered from strong fluctuation environment to verify the effectiveness and rationality of our proposed scheme.

  2. Analytical and experimental investigations of magnetohydrodynamic flows near the entrance to a strong magnetic field

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Dauzvardis, P.V.; Walker, J.S.

    1986-01-01

    A program of analytical and experimental investigations in MHD flows has been established at Argonne National Lab. (ANL) within the framework of the Blanket Technology Program. An experimental facility for such investigations has been built and is being operated at ANL. The investigations carried out on the Argonne Liquid-Metal engineering EXperiment (ALEX) are complemented by analysis carried out at the Univ. of Illinois. The first phase of the experimental program is devoted to investigations of well-defined cases for which analytical solutions exist. Such testing will allow validation and increased confidence in the theory. Because analytical solutions exist for only a few cases, which do not cover the entire range of anticipated flow behavior, confining testing to these cases will not be an adequate validation of the theory. For this reason, this phase involves testing and a companion analytical effort aimed toward obtaining solutions for a broad range of cases, which, although simple in geometry, are believed to encompass the range of flow phenomena relevant to fusion. This parallel approach is necessary so that analysis will guide and help plan the experiments, whereas the experimental results will provide information needed to validate and/or refine the analysis

  3. Comparative statistical analysis of strong zonal jet flows generated in a laboratory device and a Global Climate Model.

    Science.gov (United States)

    Cabanes, S.; Spiga, A.; Guerlet, S.; Aurnou, J. M.; Favier, B.; Le Bars, M.

    2017-12-01

    The strong zonal (i.e. east-west) jet flows on the gas giants, Jupiter and Saturn, have persisted for hundreds of years. Zonal jets are large-scale features ubiquitous in planetary atmosphere and result from multi-scales interactions in rapidly rotating turbulent flows. Here we use a new Saturn Global Climate Model (GCM) coupling seasonal radiative model tailored for Saturn with a new hydrodynamical solver, developed in Laboratoire de Météorology Dynamique, which uses an original icosahedral mapping of the planetary sphere to ensure excellent conservation and scalability properties in massively parallel computing resources. Strong and quasi-steady Saturn jets are reproduced in our GCM simulations with both unprecedented horizontal resolutions (reference at 1/2 ° latitude/longitude, and tests at 1/4 ° and 1/8 ° ), integrated time (up to ten simulated Saturn years), and large vertical extent (from the troposphere to the stratosphere). We perform statistical analysis on the resulting flows to explore scales interactions and kinetic energy distribution at all scale. It appears that horizontal resolution as well as subgrid-scale (unresolved) dissipation, included as an additional hyperdiffusion term, strongly affect jets' intensity and statistical properties. In parallel, we set the first laboratory device capable to achieve the relevant regime to form planetary like zonal jets. We report that in a rapidly rotating cylindrical container, turbulent laboratory flow naturally generate multiple, alternating jets that share basic properties of the one observed on gas planets. By performing similar statistical analysis we directly confront flow properties of laboratory versus GCM generated jets and point out the effect of limited numerical resolution and subgrid-scale assumptions on atmospheric dynamics at large/jets scale.

  4. Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions

    Directory of Open Access Journals (Sweden)

    J. L. Palau

    2009-01-01

    Full Text Available By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null physical significance of the classical definition of horizontal standard deviation of the concentration distribution.

  5. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    Science.gov (United States)

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.

  6. An investigation of scramming the outer shutdown rods of the ANS with no reversal of flow in the manifold inlet lines

    International Nuclear Information System (INIS)

    Morsk, K.

    1992-10-01

    This report provides calculations and calculation checks on the outer shutdown system, consisting of eight shutdown rods located on the outside of the core. The function of the system is to scram the reactor, or to break the chain reaction of the fission process. The shutdown rods are clad with a neutron-absorbing material (i.e., hafnium) to achieve scram. During normal operation, the outer shutdown rods (Fig. 1) are in a nonscram, withdrawn position. This means that they are not close enough to the core to absorb a significant number of the neutrons that cause the fission process. In the case of a malfunction or an emergency, the outer control rods are moved to a position near the core. The outer shutdown system is operated with the use of springs and hydraulics. During normal operation, a constant flow of heavy water is circulated through the reflector vessel. A part of this flow provides a pressure high enough to keep the rods in their withdrawn or upper position, a nonscram status. If any signs of abnormal operation occur, the valves in the hydraulic system cut off the flow, and the springs push the rods into the scram position, stopping the chain reaction. Once the flow is restarted, the rods can be withdrawn to the nonscram position. Calculations of the mass of the outer control rod, the scram spring data, and the hydraulic pressure to hold the rods in the withdrawn position have been checked. In the case of a malfunction of the flow/pressure relief valves, a calculation was needed to show that the scram time would not exceed the time allowed. The scram time has been determined based on different values of the rod insertion length and the outside radius of the annulus was calculated. The effective force pushing the rod into the scram position, the rate of acceleration, and the actual scram time was then determined

  7. Self-regulation of mean flows in strongly stratified sheared turbulence

    Science.gov (United States)

    Salehipour, Hesam; Caulfield, Colm-Cille; Peltier, W. Richard

    2016-11-01

    We investigate the near-equilibrium state of shear-driven stratified turbulence generated by the breaking of Holmboe wave instability (HWI) and Kelvin-Helmholtz instability (KHI). We discuss DNS analyses associated with HWI under various initial conditions. We analyze the time-dependent distribution of the gradient Richardson number, Rig (z , t) associated with the horizontally-averaged velocity and density fields. We demonstrate that unlike the KHI-induced turbulence, the fully turbulent flow that is generated by HWI is robustly characterized by its high probability of Rig 0 . 2 - 0 . 25 , independent of the strength of the initial stratification and furthermore that the turbulence evolves in a 'near-equilibrium' state. The KHI-induced turbulence may become grossly 'out of equilibrium', however, and therefore decays rapidly when the initial value at the interface, Rig (0 , 0) , is closer to the critical value of 1/4; otherwise as Rig (0 , 0) -> 0 the KHI-induced turbulence is close to a state of equilibrium and hence is much more long-lived. We conjecture that stratified shear turbulence tends to adjust to a state of 'near-equilibrium' with horizontally-averaged flows characterized by a high probability of Rig <= 1 / 4 , and hence sustained turbulence over relatively long times.

  8. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity.

    Science.gov (United States)

    Glavatskiy, Kirill S; Dalton, Benjamin A; Daivis, Peter J; Todd, B D

    2015-06-01

    We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.

  9. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity

    Science.gov (United States)

    Glavatskiy, Kirill S.; Dalton, Benjamin A.; Daivis, Peter J.; Todd, B. D.

    2015-06-01

    We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.

  10. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  11. Improved Inlet Conditions for Terrain CFD

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard

    The atmospheric boundary layer flow over different types of terrain is studied through simulations made with the finite volume CFD code of Ellipsys 2D and 3D. The simulations are compared to measurements made at the Høvsøre test site and over the hill of Askervein.The primary objective...... for describing the flow after a change in the surface roughness. The derivation of these expressions is based on a range of simulations of flows over flat terrain with different types of roughness changes.The derived expressions show good agreement with simulations and could, as intended, be used to define inlet...... conditions for flow simulations over terrain, where an upstream roughness change is thought to have an influence. More thorough experimental verification is however, thought necessary to make the expressions sufficiently reliable. The same goes for the simulations-based conclusions regarding the flow over...

  12. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is

  13. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    Science.gov (United States)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  14. Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations

    Directory of Open Access Journals (Sweden)

    C. Senior

    2002-06-01

    Full Text Available High-time resolution data from the two Iceland SuperDARN HF radars show very strong nightside convection activity during a prolonged period of low geomagnetic activity and northward interplanetary magnetic field (IMF. Flows bursts with velocities ranging from 0.8 to 1.7 km/s are observed to propagate in the sunward direction with phase velocities up to 1.5 km/s. These bursts occur over several hours of MLT in the 20:00–01:00 MLT sector, in the evening-side sunward convection. Data from a simultaneous DMSP pass and POLAR UVI images show a very contracted polar cap and extended regions of auroral particle precipitation from the magnetospheric boundaries. A DMSP pass over the Iceland-West field-of-view while one of these sporadic bursts of enhanced flow is observed, indicates that the flow bursts appear within the plasma sheet and at its outward edge, which excludes Kelvin-Helmholtz instabilities at the magnetopause boundary as the generation mechanism. In the nightside region, the precipitation is more spot-like and the convection organizes itself as clockwise U-shaped structures. We interpret these flow bursts as the convective transport following plasma injection events from the tail into the night-side ionosphere. We show that during this period, where the IMF clock angle is around 70°, the dayside magnetosphere is not completely closed.Key words. Ionosphere (Auroral ionosphere; Ionospheremagnetosphere interactions; Particle precipitation

  15. Max Data Report Jet Stability versus Inlet Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This document describes experiments investigating the effect of inlet geometry on the flow field within a glass tank where two jets mix and impinge upon the lid. The setup mimics the outlet plenum of a fast reactor where core exit flows of different temperatures can mix in ways that induce thermal cycling in neighboring structures.

  16. Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi

    1997-01-01

    Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)

  17. Combined Magnetohydrodynamic and Geometric Optimization of a Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Kamesh Subbarao

    2009-01-01

    Full Text Available This paper considers the numerical optimization of a double ramp scramjet inlet using magnetohydrodynamic (MHD effects together with inlet ramp angle changes. The parameter being optimized is the mass capture at the throat of the inlet, such that spillage effects for less than design Mach numbers are reduced. The control parameters for the optimization include the MHD effects in conjunction with ramp angle changes. To enhance the MHD effects different ionization scenarios depending upon the alignment of the magnetic field are considered. The flow solution is based on the Advection Upstream Splitting Method (AUSM that accounts for the MHD source terms as well. A numerical Broyden-Flecher-Goldfarb-Shanno- (BFGS- based procedure is utilized to optimize the inlet mass capture. Numerical validation results compared to published results in the literature as well as the outcome of the optimization procedure are summarized to illustrate the efficacy of the approach.

  18. Experimental investigations on inlet flow of ducted turbines. A contribution to turbine intake optimization; Experimentelle Untersuchungen zur Anstroemung von Rohrturbinen. Ein Beitrag zur Optimierung des Turbineneinlaufes

    Energy Technology Data Exchange (ETDEWEB)

    Godde, D. [Technische Univ. Muenchen, Obernach (Germany). Versuchsanstalt fuer Wasserbau und Wasserwirtschaft (Oskar-von-Miller-Institut)

    1994-12-31

    In the borderline region between hydraulic engineering and turbine technology, a wide range of conjectures on cause-effect relationships in connection with turbine inflow have existed for quite some time. It is remarkable that these conjectures, which are partly based on observations and `a feeling for hydraulics`, have not as yeet been subject to scientific scrutiny. This is more the remarkable when one considers the requirements specified by turbine manufacturers concerning the quality of the intake flow based upon such uncertain conjectures. However, extensive contructional measures are sometimes necessary to satisfy these requirements, which are also formulated in general terms in numerous publications. Within the scope of this treatise the new investigations in this field - at a model and a turbine test rig - concentrate on the separating pier, the trash rack and the adjoining convergence channel in the intake region of bulb turbines. The experimental results serve to clarify a number of relationships, partly negate or confirm previous assumptions and relativize some of the requirements. Although the results must be assessed in the light of model-specific restrictions and the characteristics of the turbines tested, they are nevertheless generally applicable to a certain degree owing to the wide scope of the investigations. (AKF) [Deutsch] Im Grenzbereich zwischen Wasserbau und Turbinentechnologie besteht seit geraumer Zeit zu Fragen der Turbinenanstroemung eine Reihe von Vermutungen ueber Ursache-Wirkung-Zusammenhaenge. Es ist bemerkenswert, dass diese zum Teil auf Beobachtungen und `hydraulischem Gefuehl` basierenden Deutungen bisher keiner wissenschaftlichen Ueberpruefung unterzogen wurden. Das ist um so bemerkenswerter, als auf der Grundlage solcher unsicheren Vermutungen seitens der Turbinenhersteller nun Anforderungen an die Stroemungsqualitaet im Einlaufbereich erhoben werden. Es erfordert aber mitunter grossen baulichen Aufwand, diese Forderungen zu

  19. On the question of starting conditions for frontal axisymmetric inlets tested in hot-shot wind tunnels

    Science.gov (United States)

    Gounko, Yu. P.; Mazhul, I. I.

    2017-05-01

    The work presents the results of an analysis of starting conditions for some frontal axisymmetric inlets of internal compression tested at freestream Mach numbers M = 3-8.4 in the hot-shot wind tunnels based at Khristianovich Institute of Theoretical and Applied Mechanics (ITAM). The results of these inlets test are compared with the data of numerical computations of inviscid, laminar, and turbulent flows carried out by the pseudo-unsteady method. There were determined the inlet throat areas limiting either with regard to the inlet starting or with regard to providing the maximally possible degree of geometric compression of the inlet-captured supersonic airstream at its deceleration in the already started inlet. Reshaping of computed flow patterns in the inlets depending on the variation of the minimal cross section of the inlet internal duct is analyzed.

  20. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    Energy Technology Data Exchange (ETDEWEB)

    Capecelatro, Jesse, E-mail: jcaps@illinois.edu [Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2307 (United States); Desjardins, Olivier [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853 (United States); Fox, Rodney O. [Department of Chemical and Biological Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011-2230 (United States); Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Vois des Vignes, 92295 Chatenay Malabry (France)

    2016-03-15

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  1. Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets

    Science.gov (United States)

    Slater, John W.

    2014-01-01

    A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.

  2. Compressible Kolmogorov flow in strongly coupled dusty plasma using molecular dynamics and computational fluid dynamics. II. A comparative study

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2018-01-01

    In this paper, we perform comparative studies of compressible Kolmogorov flow in the two-dimensional strongly coupled dusty plasma by means of atomistic or molecular dynamics (MD) and continuum or computational fluid dynamics (CFD) methods. Recently, using MD simulation, generation of molecular shear heat at the atomistic level is shown to reduce the average coupling strength of the system and destruct the vortical structures. To suppress the molecular heat, a novel method of a thermostat, namely, the configurational thermostat is introduced by which the microscale heat generated by the shear flow has shown to be thermostatted out efficiently without compromising the large scale vortex dynamics. While using a configurational thermostat, it has been found that the growth rate obtained from both the studies is the same with the marginal difference. To make the comparison with the continuum fluid model, we perform the same study using the generalised hydrodynamic model, wherein molecular shear heating phenomena is completely absent, however, viscous dissipation is there at the macroscale level. For this purpose, an Advanced Generalised SPECTral Code has been developed to study the linear and nonlinear aspects of the Kolmogorov flow in the incompressible and compressible limit for viscoelastic fluids. All the phenomenological parameters used in CFD simulations have been calculated from MD simulations. Code is benchmarked against the eigen value solver in the linear regime. Linear growth-rates calculated from the phenomenological fluid model is found to be close to that obtained from MD simulation for the same set of input parameters. The transition from laminar to turbulent flow has been found at a critical value of Reynolds number Rc in both the macroscopic (CFD) and microscopic (MD) simulation. Rc in MD is smaller than the one obtained by CFD simulation. In the nonlinear regime of CFD, the mode becomes unstable and vortex formation happens earlier than in MD. The

  3. Levitated superconductor ring trap (mini-RT) project - A new self-organized structure with strong plasma flow

    International Nuclear Information System (INIS)

    Ogawa, Y.; Himura, H.; Hishinuma, Y.

    2003-01-01

    Mahajan-Yoshida has theoretically developed a new relaxation state under the condition of a strong plasma flow, and proposed a possibility for confining high beta plasmas. In this self-organized state, two fluids (electron and ion) would relax to the condition given by the relation β + (V/V A ) 2 = const.. An internal coil device is suitable for studying a self-organized structure with strong plasma flow, because a strong toroidal flow is easily induced by introducing an appropriate radial electric field. We are constructing a Mini-RT device, which is equipping a floating coil with a high temperature superconductor (HTS) coil (R=0.15m, Ic=50kAturns). The magnetic field strength near the floating coil is around 0.1 T, and the plasma production with 2.45 GHz Electron Cyclotron Heating is planned. We are preparing several techniques to build up the radial electric field in the plasma such as the direct insertion of the electrode and so on. The utilization of direct orbit loss of high energy electrons produced by ECH might be an interesting method. The orbit calculation results show that the electrons with the energy of more than 10 keV would escape at the outer region of the plasma column, yielding the build-up of the radial electric field. The engineering aspect of the HTS coil is in progress. We have fabricated a small HTS coil (R=0.04 m and Ic= 2.6 kAturns), and succeeded in levitating it during four minutes with an accuracy of a few tens of micrometers. Since the HTS coil is excited by the external power supply, the persistent current switch for the HTS coil has been developed. The HTS coil system with the PCS coil has been fabricated and the excitation test has been carried out. We have succeeded in achieving a persistent current, and it is found that the decay constant of the coil current is evaluated to be around 40 hours and 6.5 hours at 20 K and 40 K, respectively. (author)

  4. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An experimental study of high contraction ratio, subsonic wind tunnel inlets

    Science.gov (United States)

    Caylor, M. J.; Batill, S. M.

    1984-01-01

    The inlet or contraction section has significant impact on the performance and operating characteristics of any subsonic wind tunnel. Previous experimental studies have been conducted to examine specific aspects of inlet performance and design. This work builds on this earlier experience by performing a comprehensive experimental analysis of a member of a family of high contraction ratio inlets used on indraft type wind tunnels. Quantitative flow field measurements were made using wall static ports, a five-hole pressure probe, and a hot wire anemometry system. Smoke flow visualization techniques were used to examine the inlet flow in a more qualitative manner and to correlate with quantitative measurements. This experimental investigation has provided insight into some of the many problems associated with inlet flows.

  6. Analytical Model of Inlet Growth and Equilibrium Cross-Sectional Area

    Science.gov (United States)

    2016-04-01

    ERDC/CHL CHETN-IV-107 April 2016 Approved for public release; distribution is unlimited. Analytical Model of Inlet Growth and Equilibrium Cross...encompass a broader range of theoretical alternatives to investigate inlet stability. The quadratic formula provides quantitative estimates of equilibrium ...rework sediment. Escoffier (1940) theorized that stable inlets form when the maximum flow equals an equilibrium value based on sediment transport

  7. Characteristics of a disk MHD generator with inlet swirl

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Nob [Nagaoka University of Technology (Japan)

    1999-10-01

    Two kinds of experimental studies have been performed to know the effect of inlet swirl in a disk-type MHD generator. Firstly, we decreased stagnation temperature in order to simulate a poor inlet plasma condition. Inlet swirl provided relatively higher radial Hall voltage and much better performance even for lower stagnation temperatures compared with those for the simple radial flow case, mainly due to the contribution of Faraday e.m.f. U{sub {theta}}B. High enthalpy extraction level near 30% could be kept even for lower stagnation temperatures in the range of 1600-1700 K. Secondly, we decreased stagnation pressure to know generator performance under smaller pressure ratio inlet to exit. Decrease of stagnation pressure improved enthalpy extraction very much unless the increase of static pressure and decrease of Hall field became significant. Highest enthalpy extraction ratio of 38.2% was successfully achieved. From considerations of momentum balance along the radial direction, positive inlet swirl has an important effect to reduce static pressure and also to reduce the unfavorable effect of Lorentz force. This suggests that introduction of inlet swirl is an influential way to reach high isentropic efficiency. (author)

  8. Marginal flow and gap flow in strongly staggered cascades of slightly convex profiles; Rand- und Spaltstroemungen in stark gestaffelten Verdichtergittern aus schwach gewoelbten Profilen

    Energy Technology Data Exchange (ETDEWEB)

    Sasongko, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik

    1997-09-01

    Marginal flow and gap flow through a highly staggered cascade consisting of slightly convex profiles were investigated in two steps. Cascades without gap were investigated in the first step and cascades with gap in the second. In the first step, a slightly staggered cascade of identical geometry was used for comparison. In the second step, an external rotor cascade of 9C7/32,5C50 profiles with a division ratio t/l = 1.0 and a staggering angle of {lambda} = 50 was used. At a Reynolds number Re{sub j} = 3.5 x 10{sup 5} and gap widths of s/l = 0.0, 0.01 and 0.3, flows, wakes and pressure distributions were measured and diagrams made. The measurements were evaluated by mass averaging and with the aid of the pulse method. In addition to the averaged results of a standard investigation, the dissertation comprises extensive data on 3D flow near the blade ends and at the side wall as a function of blade angles and gap widths between blades and side wall. This was the first time that marginal flow and gap flow of strongly staggered cascades with slightly convex profiles were investigated in a cascade wind tunnel. The findings are therefore quite new and deviate strongly from the results of earlier investigations on strongly convex profiles. The findings were compared with the results of compressor investigations, and good agreement was found. (orig./AKF) [Deutsch] Die vorliegende Arbeit berichtet ueber die in zwei Schritten durchgefuehrten Untersuchungen der Rand- und Spaltstroemungen eines hoch gestaffelten Verdichtergitters aus schwach gewoelbten Profilen. Im ersten Schritt wurde das Gitter ohne Spalt, im zweiten Schritt mit Spalt untersucht. Vergleichsgitter im ersten Schritt war ein zusaetzlich untersuchtes Gitter schwacher Staffelung mit sonst gleicher Geometrie. Vergleichsgitter im zweiten Schritt war das hoch gestaffelte Gitter aus dem ersten Schritt. Das untersuchte Verdichtergitter ist ein Rotor-Aussenschnitt-Gitter aus 9C7/32,5C50-Profilen mit einem

  9. Unsteady Flow in Supersonic Inlet Diffuser.

    Science.gov (United States)

    1987-11-01

    September 1987 Principal Investigators T. C. Adamson, Jr. and A. F. Messiter Department of Aerospace Engienering CT’ The University of Michigan...is a first order nonlinear ordinary differential equation which must be solved numerically. Typical run times were one to three minutes of CPU time

  10. Cavitation in centrifugal pump with rotating walls of axial inlet device

    Science.gov (United States)

    Moloshnyi, O.; Sotnyk, M.

    2017-08-01

    The article deals with the analysis of cavitation processes in the flowing part of the double entry centrifugal pump. The analysis is conducted using numerical modeling of the centrifugal pump operating process in the software environment ANSYS CFX. Two models of the axial inlet device is researched. It is shaped by a cylindrical section and diffuser section in front of the impeller, which includes fairing. The walls of the axial inlet device rotate with the same speed as the pump rotor. The numerical experiment is conducted under the condition of the flow rate change and absolute pressure at the inlet. The analysis shows that the pump has the average statistical cavitation performance. The occurrence of the cavitation in the axial inlet device is after narrowing the cross-section of flow channel and at the beginning of the diffuser section. Additional sudden expansion at the outlet of the axial inlet diffuser section does not affect the cavitation characteristics of the impeller, however, improves cavitation characteristics of the axial inlet device. For considered geometric parameters of the axial inlet device the cavitation in the impeller begins earlier than in the axial inlet device. That is, the considered design of the axial inlet device will not be subjected to destruction at the ensuring operation without cavitation in the impeller.

  11. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  12. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  13. Performance study for inlet installations

    Science.gov (United States)

    Bingaman, Donald C.

    1992-01-01

    A conceptual design trade study was conducted by McDonnell Aircraft Company (MCAIR) and NASA LARC PAB to determine the impact of inlet design features incorporated for reduced detectability on inlet performance, weight, and cost, for both fighter and attack-type aircraft. Quality Function Deployment (QFD) techniques were used to prioritize trade study issues, and select 'best' air induction system configurations for each of two notional aircraft, the Multi-Role Fighter (MRF) and the Advanced Medium Attack (AMA) bomber. Database deficiencies discovered in the trade study process were identified, and technology roadmaps were developed to address these deficiencies. Finally, two high speed inlet wind tunnel model concepts were developed for follow-on wind tunnel investigations.

  14. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    Science.gov (United States)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  15. Design and qualification of ITER CS and TF cooling inlets

    International Nuclear Information System (INIS)

    Decool, P.; Cloez, H.; Nicollet, S.; Serries, J.P.

    2005-01-01

    In the ITER superconducting magnets, the CIC (cable-in-conduit) conductors cooling is insured by supercritical helium forced flow in the central and annular parallel channels. In the Central Solenoid (CS), with a thick square jacket conductor, the helium inlet is in the highest field region at the inner bore pancake joggle, and it has to support the high hoop force stress level with a very low stress concentration factor. In the TF (toroidal field) magnets, a thin jacket circular conductor is wound in double pancakes, inserted into radial plates, stacked and embedded into a steel case. The helium inlets are located at the inner bore, in the limited space between the radial plates and the coil casing. The PF coils helium inlets, not studied here, are similar to the CS ones, but with a lower stress level. A complete qualification work on the CS and TF helium inlets is presented. A design optimisation was performed, by FEM analysis, resulting in acceptable stress level in both helium inlets. The welding procedure was qualified and specific fatigue life mock-ups were designed, analysed and manufactured using representative jacket materials. Fatigue life qualification at 4 K was performed in the German test facility applying the relevant loading and number of cycles. Hydraulic mock-ups were manufactured and qualified in the CEA test facility using GN2 at relevant Reynolds number. Pressure drop as well as flow distribution inside conductors' petals were measured. The mechanical and hydraulic results are presented. (authors)

  16. Design and qualification of ITER CS and TF cooling inlets

    Energy Technology Data Exchange (ETDEWEB)

    Decool, P.; Cloez, H.; Nicollet, S.; Serries, J.P. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Nyilas, A. [Forschungszentrum Karlsruhe GmbH (FZK) Institut fur Technische Physik (ITP), Karlsruhe (Germany)

    2005-07-01

    In the ITER superconducting magnets, the CIC (cable-in-conduit) conductors cooling is insured by supercritical helium forced flow in the central and annular parallel channels. In the Central Solenoid (CS), with a thick square jacket conductor, the helium inlet is in the highest field region at the inner bore pancake joggle, and it has to support the high hoop force stress level with a very low stress concentration factor. In the TF (toroidal field) magnets, a thin jacket circular conductor is wound in double pancakes, inserted into radial plates, stacked and embedded into a steel case. The helium inlets are located at the inner bore, in the limited space between the radial plates and the coil casing. The PF coils helium inlets, not studied here, are similar to the CS ones, but with a lower stress level. A complete qualification work on the CS and TF helium inlets is presented. A design optimisation was performed, by FEM analysis, resulting in acceptable stress level in both helium inlets. The welding procedure was qualified and specific fatigue life mock-ups were designed, analysed and manufactured using representative jacket materials. Fatigue life qualification at 4 K was performed in the German test facility applying the relevant loading and number of cycles. Hydraulic mock-ups were manufactured and qualified in the CEA test facility using GN2 at relevant Reynolds number. Pressure drop as well as flow distribution inside conductors' petals were measured. The mechanical and hydraulic results are presented. (authors)

  17. Improved Hypersonic Inlet Performance Using Validated Strut Compression Designs

    Science.gov (United States)

    Bulman, M. J.; Stout, P. W.; Fernandez, R.

    1997-01-01

    Aerojet is currently executing two Strutjet propulsion contracts: one a Rocket Based Combined Cycle (RBCC) engine for a NASA-Marshall Space Flight Center (MSFC) Advanced Reusable Transportation Technology (ARTT) program, the second a Dual Mode Ram/Scramjet engine for a USAF Wright Laboratories Storable Fuel Scramjet Flow Path Concepts program. The engines employed in both programs operate at supersonic and low hypersonic speeds and use inlets employing forebody external and sidewall compression. Aerojet has developed and validated a successful design methodology applicable to these inlet types. Design features include an integrated vehicle forebody, external side compression struts, strut sidewall and throat bleed, a throat shock trap, and variable geometry internal contraction. Computation Fluid Dynamic (CFD) predictions and test data show these inlets allow substantially increased flow turning angles over other designs. These increased flow turning angles allow shorter and lighter engines than current designs, which in turn enables higher performing vehicles with broad operating characteristics. This paper describes the designs of two different inlets evaluated by the NASA-MSFC and USAF programs, discusses the results of wind tunnel tests performed by NASA-Lewis Research Center, and provides correlations of test data with CFD predictions. Parameters of interest include low Mach number starting capability, start sensitivity as a function of back pressure at various contraction ratios, flow turning angles, strut and throat bleed effects, and pressure recovery at various Mach numbers.

  18. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-06-01

    Full Text Available Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies best mimicking the in vivo micro-environment. These devices are capable of creating precise and controllable surroundings of pH value, temperature, salt concentration, and other physical or chemical stimuli. Various cell studies such as chemotaxis and electrotaxis can be performed by using such devices. Moreover, microfluidic chips are designed and fabricated for applications in cell separations such as circulating tumor cell (CTC chips. Usually, there are two most commonly used inlets in connecting the microfluidic chip to sample/reagent loading tubes: the vertical (top-loading inlet and the parallel (in-line inlet. Designing this macro-to-micro interface is believed to play an important role in device performance. In this study, by using the commercial COMSOL Multiphysics software, we compared the cell capture behavior in microfluidic devices with different inlet types and sample flow velocities. Three different inlets were constructed: the vertical inlet, the parallel inlet, and the vertically parallel inlet. We investigated the velocity field, the flow streamline, the cell capture rate, and the laminar shear stress in these inlets. It was concluded that the inlet should be designed depending on the experimental purpose, i.e., one wants to maximize or minimize cell capture. Also, although increasing the flow velocity could reduce cell sedimentation, too high shear stresses are thought harmful to cells. Our findings indicate that the inlet design and flow velocity are crucial and should be well considered in fabricating microfluidic devices for cell studies.

  19. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  20. Gas-dynamic problems in off-design operation of supersonic inlets ( review)

    Science.gov (United States)

    Zvegintsev, V. I.

    2017-11-01

    Modern concepts of operation of supersonic inlets of high-velocity air-breathing engines are analyzed. It is demonstrated that the flow in the engine duct becomes extremely complicated in off-design modes of inlet operation, which can lead to unpredictable consequences, in particular, to inlet unstart. The term "inlet unstart" is considered in the present paper as a synonym of the absence of theoretical understanding and prediction of gas-dynamic phenomena. Various approaches are proposed to ensure self-regulation of the inlet-combustor system for air-breathing engines. Possible directions of further research are indicated for the purpose of stable operation of inlets in a wide range of flight conditions.

  1. Effects of inlet treatment location and treatment cavity depth on compressor noise

    Science.gov (United States)

    Clark, L. R.

    1975-01-01

    The ability of acoustic liners to reduce compressor noise inside and in front of an inlet was studied. An axial flow research compressor and a specially designed inlet were used inside an anechoic chamber. Acoustic and performance data were obtained for a range of inlet treatment locations and cavity depths to determine their effects on inlet noise over a range of blade passing frequencies. The greatest noise reductions in front of the inlet were obtained with acoustic treatment located close to the compressor and backed with the deepest cavities tested. Inside the inlet the maximum noise level reductions were obtained in the area of the treatment regardless of treatment location. No appreciable losses in compressor performance were measured.

  2. New microsatellites revealed strong gene flow among populations of a new outbreak pest, Athetis lepigone (Möschler).

    Science.gov (United States)

    Zhu, W-C; Sun, J-T; Dai, J; Huang, J-R; Chen, L; Hong, X-Y

    2017-11-27

    Athetis lepigone (Möschler) (Lepidoptera: Noctuidae) is a new outbreak pest in China. Consequently, it is unclear whether the emergence and spread of the outbreak of this pest are triggered by rapid in situ population size increases in each outbreak area, or by immigrants from a potential source area in China. In order to explore the outbreak process of this pest through a population genetics approach, we developed ten novel polymorphic expressed sequence tags (EST)-derived microsatellites. These new microsatellites had moderately high levels of polymorphism in the tested population. The number of alleles per locus ranged from 3 to 19, with an average of 8.6, and the expected heterozygosity ranged from 0.269 to 0.783. A preliminary population genetic analysis using these new microsatellites revealed a lack of population genetic structure in natural populations of A. lepigone. The estimates of recent migration rate revealed strong gene flow among populations. In conclusion, our study developed the first set of EST-microsatellite markers and shed a new light on the population genetic structure of this pest in China.

  3. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  4. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  5. Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique

    Science.gov (United States)

    Kulkarni, P. S.

    2017-04-01

    Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.

  6. Analytical and experimental evaluation of a 3-D hypersonic fixed-geometry, swept, mixed compression inlet

    Science.gov (United States)

    Agnone, Anthony M.

    1987-01-01

    The performance of a fixed-geometry, swept, mixed compression hypersonic inlet is presented. The experimental evaluation was conducted for a Mach number of 6.0 and for several angles of attack. The measured surface pressures and pitot pressure surveys at the inlet throat are compared to computations using a three-dimensional Euler code and an integral boundary layer theory. Unique features of the intake design, including the boundary layer control, insure a high inlet performance. The experimental data show the inlet has a high mass averaged total pressure recovery, a high mass capture and nearly uniform flow diffusion. The swept inlet exhibits excellent starting characteristics, and high flow stability at angle of attack.

  7. Impulse oscillometry at preschool age is a strong predictor of lung function by flow-volume spirometry in adolescence.

    Science.gov (United States)

    Lauhkonen, Eero; Riikonen, Riikka; Törmänen, Sari; Koponen, Petri; Nuolivirta, Kirsi; Helminen, Merja; Toikka, Jyri; Korppi, Matti

    2018-05-01

    The transition from early childhood wheezing to persistent asthma is linked to lung function impairment over time. Little is known how the methods used to study lung function at different ages correlate longitudinally. Sixty-four children with a history of hospitalization for bronchiolitis before 6 months of age were prospectively studied with impulse oscillometry (IOS) at the mean age of 6.3 years and these preschool IOS results were compared with flow-volume spirometry (FVS) measurements at mean age of 11.4 years. The baseline respiratory system resistance at 5 Hz (Rrs5) showed a modest statistically significant correlation with all baseline FVS parameters except FVC. The post-bronchodilator (post-BD) Rrs5 showed a modest statistically significant correlation with post-BD FEV 1 and FEV 1 /FVC. The bronchodilator-induced decrease in Rrs5 showed a modest statistically significant correlation with the percent increase in FEV 1 . Baseline and post-BD respiratory reactance at 5 Hz (Xrs5) showed a modest statistically significant correlation with baseline and post-BD FVS parameters except post-BD FEV 1 /FVC, respectively, and post-BD Xrs5 showed a strong correlation with post-BD FVC (ρ = 0.61) and post-BD FEV 1 (ρ = 0.59). In adjusted linear regression, preschool Xrs5 remained as a statistically significant independent predictor of FVS parameters in adolescence; the one-unit decrease in the Z-score of preschool post-BD Xrs5 predicted 9.6% lower post-BD FEV 1 , 9.3% lower post-BD FVC, and 9.7% lower post-BD MEF 50 when expressed as %-predicted parameters. Persistent post-BD small airway impairment in children with a history of bronchiolitis detected with IOS at preschool age predicted FVS results measured in early adolescence. © 2018 Wiley Periodicals, Inc.

  8. Fundamental Aeronautics Program: Supersonics Project - Channeled Center-Body Inlet Experiment Overview

    Science.gov (United States)

    St. John, Clint; Ratnayake, Nalin A.; Frederick, Mike

    2012-01-01

    The presentation describes supersonic flight testing accomplished on a novel mixed-compression axisymmetric inlet utilizing channels for off-design flow matching rather than a translating centerbody concept.

  9. Snail Larvae From Turbulent Inlets and the Wavy Continental Shelf Use Different Physical Behavioral Cues

    Science.gov (United States)

    Fuchs, H. L.; Gerbi, G. P.

    2016-02-01

    Dispersing larvae experience hydrodynamic signals from turbulence and waves; these signals vary geographically in their intensity and may cue behaviors enhancing transport to suitable habitats. Turbulence dominates the production of spatial velocity gradients (strain or vorticity), whereas waves often dominate the production of accelerations. Spatial patterns in these two signal types create a potential mechanism for larvae to distinguish or navigate among habitats. We quantified flow-induced behaviors in late-stage larvae of congeneric snails from turbulent coastal inlets (Ilyanassa obsoleta) and from the wavy continental shelf (Ilyanassa trivittata). Larvae were exposed to turbulence and to simpler flows dominated by strain, vorticity, or wave-generated acceleration. Fluid flow and individual larvae were observed simultaneously using infrared, particle-image velocimetry. In turbulence, larvae of both species sank or swam downward more frequently at higher dissipation rates, but the average vertical velocities of I. obsoleta became more negative (downward) than those of I. trivittata. In simpler flows, larvae of I. obsoleta reacted more strongly to vorticity-induced rotation relative to gravity, whereas only I. trivittata exhibited a strong reaction to wave-generated accelerations. Both species reacted to vorticity or acceleration in the absence of large strain rates, indicating that larvae likely sense flow using the statocysts. Although statocysts can sense two signal types, these closely related species responded differently to those signals, suggesting that behavior is attuned to the physical signals that dominate their respective adult habitats.

  10. Tensor formulation of the model equations on strong conservation form for an incompressible flow in general coordinates

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann

    2003-01-01

    This brief report expresses the basic equations of an incompressible flow model in a form which can be translated easily into the form used by a numerical solver. The application of tensor notation makes is possible to effectively address the issue ofnumerical robustness and stating the model equ...... form of the equations is included which allows for special solutions to be developed in the transformedcoordinate system. Examples of applications are atmospheric flows over complex terrain, aerodynamically flows, industrial flows and environmental flows.......This brief report expresses the basic equations of an incompressible flow model in a form which can be translated easily into the form used by a numerical solver. The application of tensor notation makes is possible to effectively address the issue ofnumerical robustness and stating the model...

  11. Micro-Ramps for External Compression Low-Boom Inlets

    Science.gov (United States)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  12. Comparison of multifrequency acoustic and in situ measurements of zooplankton abundances in Knight Inlet, British Columbia

    Science.gov (United States)

    Trevorrow, Mark V.; Mackas, David L.; Benfield, Mark C.

    2005-06-01

    An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation. .

  13. An Investigation of Starting Techniques for Inward Turning Inlets at Flight Speeds below the On-Design Mach Number

    National Research Council Canada - National Science Library

    Mack, John D

    2005-01-01

    .... Five cases, three geometries at two flow conditions and the base non-modified inlet at the two flow conditions, were generated, and all were numerically simulated using a commercially produced numerical solver: CFD...

  14. Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC

    Science.gov (United States)

    Clem, Michelle; Woike, Mark; Saunders, John

    2016-01-01

    Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.

  15. EUROMECH colloquium 377. Stability and control of shear flows with strong temperature or density gradients. Book of abstracts

    International Nuclear Information System (INIS)

    1998-10-01

    The topics discussed comprise the onset of instability in heated free jets and jets with density gradients, flow past heated/cooled boundaries, atmospheric shear flow, and mathematical modeling of laminar-turbulent transition phenomena. Three contributions have been input to INIS. (P.A.)

  16. Residual currents in a multiple-inlet system and the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-04-01

    the yearly average transport is not representative of typical conditions (Duran-Matute et al. 2014), since the residual circulation has a strongly episodic character due to wind variability. This puts the focus again on the shorter time-scales of these episodes. Hence the central point of this presentation: to examine how the mean, median and the standard deviation of residual flows depend on how one defines the tidal period. We offer an alterative definition that is particularly suitable on a basin-wide scale. In this presentation we focus on the residual transport of water itself, but the relevance of the problem at hand extends directly to residual transports of sediment, nutrients, pollutants, etc., in multiple-inlet systems.

  17. Silicon Microleaks for Inlets of Mass Spectrometers

    Science.gov (United States)

    Harpold, Dan; Hasso, Niemann; Jamieson, Brian G.; Lynch, Bernard A.

    2009-01-01

    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches.

  18. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  19. Measurements of turbulence in a microscale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Shi, Yanxiang; Chungyin Cheng, Janine; Fox, Rodney O.; Olsen, Michael G.

    2013-07-01

    The microscale multi-inlet vortex reactor (MIVR) is designed for use in Flash NanoPrecipitation (FNP), a promising technique for producing nanoparticles within small particle size distribution. Fluid mixing is crucial in the FNP process, and due to mixing’s strong dependence upon fluid kinematics, investigating velocity and turbulence within the reactor is crucial to optimizing reactor design. To this end, microscopic particle image velocimetry has been used to investigate flow within the MIVR. Three Reynolds numbers are studied, namely, Rej = 53, 93 and 240. At Rej = 53, the flow is laminar and steady. Due to the strong viscous effects at this Reynolds number, distinct flow patterns are observed at different distances from the reactor top and bottom walls. The viscous effects also retard the tangential motions within the reactor, resulting in a weaker vortex than appears at the higher Reynolds numbers. As the Reynolds number is increased to 93, the flow becomes more homogeneous over the depth of the reactor due to weaker viscous effects, yet the flow is still steady. The diminishing effects of viscosity also result in a stronger vortex. At the highest Reynolds number investigated, the flow is turbulent. Turbulent statistics including tangential and radial velocity fluctuations and Reynolds shear stresses are analyzed for this case in addition to the mean velocity field. The tangential motions of the flow are strongest at Rej = 240. Both the tangential and radial velocity fluctuations increase as the flow spirals toward the center of the reactor. The magnitudes of the tangential and radial velocity fluctuations are similar, suggesting that the turbulence is locally isotropic.

  20. Measurements of turbulence in a microscale multi-inlet vortex nanoprecipitation reactor

    International Nuclear Information System (INIS)

    Shi, Yanxiang; Cheng, Janine Chungyin; Fox, Rodney O; Olsen, Michael G

    2013-01-01

    The microscale multi-inlet vortex reactor (MIVR) is designed for use in Flash NanoPrecipitation (FNP), a promising technique for producing nanoparticles within small particle size distribution. Fluid mixing is crucial in the FNP process, and due to mixing’s strong dependence upon fluid kinematics, investigating velocity and turbulence within the reactor is crucial to optimizing reactor design. To this end, microscopic particle image velocimetry has been used to investigate flow within the MIVR. Three Reynolds numbers are studied, namely, Re j = 53, 93 and 240. At Re j = 53, the flow is laminar and steady. Due to the strong viscous effects at this Reynolds number, distinct flow patterns are observed at different distances from the reactor top and bottom walls. The viscous effects also retard the tangential motions within the reactor, resulting in a weaker vortex than appears at the higher Reynolds numbers. As the Reynolds number is increased to 93, the flow becomes more homogeneous over the depth of the reactor due to weaker viscous effects, yet the flow is still steady. The diminishing effects of viscosity also result in a stronger vortex. At the highest Reynolds number investigated, the flow is turbulent. Turbulent statistics including tangential and radial velocity fluctuations and Reynolds shear stresses are analyzed for this case in addition to the mean velocity field. The tangential motions of the flow are strongest at Re j = 240. Both the tangential and radial velocity fluctuations increase as the flow spirals toward the center of the reactor. The magnitudes of the tangential and radial velocity fluctuations are similar, suggesting that the turbulence is locally isotropic. (paper)

  1. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  2. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  3. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  4. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  5. Sediment Connectivity and Transport Pathways in Tidal Inlets: a Conceptual Framework with Application to Ameland Inlet

    Science.gov (United States)

    Pearson, S.; van Prooijen, B. C.; Zheng Bing, W.; Bak, J.

    2017-12-01

    Predicting the response of tidal inlets and adjacent coastlines to sea level rise and anthropogenic interventions (e.g. sand nourishments) requires understanding of sediment transport pathways. These pathways are strongly dependent on hydrodynamic forcing, grain size, underlying morphology, and the timescale considered. To map and describe these pathways, we considered the concept of sediment connectivity, which quantifies the degree to which sediment transport pathways link sources to receptors. In this study we established a framework for understanding sediment transport pathways in coastal environments, using Ameland Inlet in the Dutch Wadden Sea as a basis. We used the Delft3D morphodynamic model to assess the fate of sediment as it moved between specific morphological units defined in the model domain. Simulation data was synthesized in a graphical network and then graph theory used to analyze connectivity at different space and time scales. At decadal time scales, fine and very fine sand (250μm) shows lower connectivity, even in more energetic areas. Greater sediment connectivity was found under the influence of wind and waves when compared to purely tidal forcing. Connectivity shows considerable spatial variation in cross shore and alongshore directions, depending on proximity to the inlet and dominant wave direction. Furthermore, connectivity generally increases at longer timescales. Asymmetries in connectivity (i.e. unidirectional transport) can be used to explain long-term erosional or depositional trends. As such, an understanding of sediment connectivity as a function of grain size could yield useful insights for resolving sediment transport pathways and the fate of a nourishment in coastal environments.

  6. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  7. Aerodynamic performance of 0.4066-scale model of JT8D refan stage with S-duct inlet

    Science.gov (United States)

    Moore, R. D.; Kovich, G.; Lewis, G. W., Jr.

    1977-01-01

    A scale model of the JT8D refan stage was tested with a scale model of the S-duct inlet design for the refanned Boeing 727 center engine. Detailed survey data of pressures, temperatures, and flow angles were obtained over a range of flows at speeds from 70 to 97 percent of design speed. Two S-duct configurations were tested; one with a bellmouth inlet and the other with a flight lip inlet. The results indicated that the overall performance was essentially unaffected by the distortion generated by the S-duct inlet. The stall weight flow increased by less than 0.5 kg/sec (approximately 1.5% of design flow) with the S-duct inlet compared with that obtained with uniform flow. The detailed measurements indicated that the inlet guide vane (IGV) significantly reduced circumferential variations. For example, the flow angles ahead of the IGV were positive in the right half of the inlet and negative in the left half. Behind the IGV, the flow angles tended to be more uniform circumferentially.

  8. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  9. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    Science.gov (United States)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  10. Development of a coupled supersonic inlet-fan Navier–Stokes simulation method

    Directory of Open Access Journals (Sweden)

    Qiushi LI

    2018-02-01

    Full Text Available A coupled supersonic inlet-fan Navier–Stokes simulation method was developed by using COMSOL-CFD code. The flow turning, pressure rise and loss effects across blade rows of the fan and the inlet-fan interactions were taken into account as source terms of the governing equations without a blade geometry by a body force model. In this model, viscous effects in blade passages can also be calculated directly, which include the exchange of momentum between fluids and detailed viscous flow close to walls. NASA Rotor 37 compressor test rig was used to validate the ability of the body force model to estimate the real performance of blade rows. Calculated pressure ratio characteristics and the distribution of the total pressure, total temperature, and swirl angle in the span direction agreed well with experimental and numerical data. It is shown that the body force model is a promising approach for predicting the flow field of the turbomachinery. Then, coupled axisymmetric mixed compression supersonic inlet-fan simulations were conducted at Mach number 2.8 operating conditions. The analysis includes coupled steady-state performance, and effects of the fan on the inlet. The results indicate that the coupled simulation method is capable of simulating behavior of the supersonic inlet-fan system. Keywords: Body force model, Coupled simulation, Rapid numerical method, Supersonic inlet-fan, Viscous flow

  11. A model of the plasma flow and current in Saturn's polar ionosphere under conditions of strong Dungey cycle driving

    Directory of Open Access Journals (Sweden)

    C. M. Jackman

    2006-05-01

    Full Text Available We propose a simple model of the flow and currents in Saturn's polar ionosphere. This model is motivated by theoretical reasoning, and guided quantitatively by in situ field and flow data from space missions, ground-based IR Doppler measurements, and Hubble Space Telescope images. The flow pattern consists of components which represent (1 plasma sub-corotation in the middle magnetosphere region resulting from plasma pick-up and radial transport from internal sources; (2 the Vasyliunas-cycle of internal plasma mass-loss down the magnetospheric tail at higher latitudes; and (3 the polar Dungey-cycle flow driven by the solar wind interaction. Upstream measurements of the interplanetary magnetic field (IMF indicate the occurrence of both extended low-field rarefaction intervals with essentially negligible Dungey-cycle flow, and few-day high-field compression regions in which the Dungey-cycle voltage peaks at a few hundred kV. Here we model the latter conditions when the Dungey-cycle is active, advancing on previous axi-symmetric models which may be more directly applicable to quiet conditions. For theoretical convenience the overall flow pattern is constructed by adding together two components - a purely rotational flow similar to previous axi-symmetric models, and a sun-aligned twin vortex representing the dawn-dusk asymmetry effects associated with the Vasyliunas-and Dungey-cycle flows. We calculate the horizontal ionospheric current associated with the flow and the field-aligned current from its divergence. These calculations show that a sheet of upward-directed field-aligned current flows at the boundary of open field lines which is strongly modulated in local-time by the Dungey-cycle flows. We then consider implications of the field-aligned current for magnetospheric electron acceleration and aurorae using two plasma source populations (hot outer magnetospheric electrons and cool dense magnetosheath electrons. Both sources display a

  12. Effect of piano-key shape inlet on critical submergence at a vertical pipe intake

    International Nuclear Information System (INIS)

    Shemshi, R; Kabiri-Samani, A

    2012-01-01

    Intake vortices are the result of angular momentum conservation at the flow constriction, where angular velocity increases with a decrease in the cross sectional area. The common solution for avoiding air-entrainment and swirl is to provide sufficient submergence to the intake. If the required approach flow conditions can not be met to avoid swirl and air entrainment, other approaches for preventing vortices at water intakes are considered. There are several means of avoiding air-entrainment, where the most cost-effective option is often determined by a physical model study. Among the most economical and common measures of reducing the effect of air-entrainment and swirl strength, is the optimized shape of inlet for instance by installing a Piano-Key inlet over the pipe intake. If Piano-Key inlet is used, then, its' optimum geometry should be studied experimentally. Since there is not any realized guidance for the use of Piano-Key inlets in pipe intakes, hence, a comprehensive set of model experiments have been carried out using Piano-Key inlets with different dimensions, with respect to the vertical pipe intakes, and four different pipe diameters of (D=) 75, 100, 125 and 150 mm. Results showed that by employing a Piano-Key inlet over the vertical pipe intake, the critical submergence reduces significantly. Fianally, according to the results, the effect of Piano-Key inlet geometry on critical submergence were evaluated in the form of realized relationships which would be of practical interest for design engineers.

  13. Internal Shock Interactions in Propulsion/Airframe Integrated Three-Dimensional Sidewall Compression Scramjet Inlets

    Science.gov (United States)

    Holland, Scott D.; Perkins, John N.

    1992-01-01

    The advantages and design requirements of propulsion/airframe integration for high Mach number flight have led to extensive study of the three-dimensional sidewall compression scramjet inlet in recent years. Recent research publications have indicated testing over a broad range of Mach number (2 to 18) in a variety of test gases, such as air, helium, and tetrafluoromethane. Multiple experimental techniques have been employed to obtain detailed internal shock interaction data, performance data, and inlet starting limits. Computational fluid dynamics has been effectively used for preliminary parametric studies as well as in parallel with experiments to aid in the explanation of unusual or unexpected flow phenomena. Inlets of this genre afford a relatively simple, generic geometry while producing a highly complex, three-dimensional flow field dominated by shock/shock and shock/boundary layer interactions. While the importance of the viscous effects in high speed inlet interactions is recognized, the present work addresses in a parametric fashion the inviscid effects of leading edge sweep, sidewall compression, and inflow Mach number on the internal shock structure in terms of inlet compression and mass capture. In the process, the source of the of the Mach number invariance with leading edge sweep for a constant sidewall compression class of inlet is identified, and a previously undocumented spillage phenomenon in a constant effective wedge angle class of inlets is discussed.

  14. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    in ambient temperature and air exchange rate. The effect of housing equipment on environmental conditions has been examined both experimental and numerically and it was found that impervious housing equipment has a significant effect on the climatic conditions close to the wall in the occupational zone....... The wind tunnel experiments show that the diffuse material works as a heat exchanger and preheats the inlet air if the temperature in the room is higher than the inlet air. The result of the experiment is that the heat exchanging function of the inlet boundary surface is dependent on flow velocity...

  15. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  16. Strong solutions to the Stokes equations of a flow around a rotating body in weighted Lq spaces

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Schumacher, K.

    2011-01-01

    Roč. 284, č. 13 (2011), s. 1701-1714 ISSN 0025-584X R&D Projects: GA AV ČR IAA100190505; GA AV ČR IAA100190804; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : strong solution * Stokes problem * weighted spaces Subject RIV: BA - General Mathematics Impact factor: 0.682, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/ mana .200810166/abstract

  17. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  18. 2D Temperature Analysis of Energy and Exergy Characteristics of Laminar Steady Flow across a Square Cylinder under Strong Blockage

    Directory of Open Access Journals (Sweden)

    M. Ozgun Korukcu

    2015-05-01

    Full Text Available Energy and exergy characteristics of a square cylinder (SC in confined flow are investigated computationally by numerically handling the steady-state continuity, Navier-Stokes and energy equations in the Reynolds number range of Re = 10–50, where the blockage ratio (β = B/H is kept constant at the high level of β = 0.8. Computations indicated for the upstream region that, the mean non-dimensional streamwise (u/Uo and spanwise (v/Uo velocities attain the values of u/Uo = 0.840®0.879 and v/Uo = 0.236®0.386 (Re = 10®50 on the front-surface of the SC, implying that Reynolds number and blockage have stronger impact on the spanwise momentum activity. It is determined that flows with high Reynolds number interact with the front-surface of the SC developing thinner thermal boundary layers and greater temperature gradients, which promotes the thermal entropy generation values as well. The strict guidance of the throat, not only resulted in the fully developed flow character, but also imposed additional cooling; such that the analysis pointed out the drop of duct wall (y = 0.025 m non-dimensional temperature values (ζ from ζ = 0.387®0.926 (Re = 10®50 at xth = 0 mm to ζ = 0.002®0.266 at xth = 40 mm. In the downstream region, spanwise thermal disturbances are evaluated to be most inspectable in the vortex driven region, where the temperature values show decrease trends in the spanwise direction. In the corresponding domain, exergy destruction is determined to grow with Reynolds number and decrease in the streamwise direction (xds = 0®10 mm. Besides, asymmetric entropy distributions as well were recorded due to the comprehensive mixing caused by the vortex system.

  19. Modelling Complex Inlet Geometries in CFD

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    field. In order to apply CFD for this purpose it is essential to be able to model the inlet conditions precisely and effectively, in a way which is comprehensible to the manufacturer of inlet devices and in a way which can be coped with by the computer. In this paper a universal method is presented...

  20. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  1. Impact of inlet coherent motions on compressor performance

    Science.gov (United States)

    Forlese, Jacopo; Spoleti, Giovanni

    2017-08-01

    Automotive engine induction systems may be characterized by significant flow angularity and total pressure distortion at the compressor inlet. The impact of the swirl on compressor performance should be quantified to guide the design of the induction systems. In diesel engines, the presence of a valve for flow reduction and control of low pressure EGR recirculation could generate coherent motion and influence the performance of the compressor. Starting from experimental map, the compressor speed-lines have been simulated using a 3D CFD commercial code imposing different concept motion at the inlet. The swirl intensity, the direction and the number of vortices have been imposed in order to taking into account some combinations. Finally, a merit function has been defined to evaluate the performance of the compressor with the defined swirl concepts. The aim of the current work is to obtain an indication on the effect of a swirling motion at the compressor inlet on the engine performance and provide a guideline to the induction system design.

  2. The effect of inlet swirl on the rotordynamic shroud forces in a centrifugal pump

    Science.gov (United States)

    Ginzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1992-01-01

    The role played by fluid forces in determining the rotordynamic stability of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. In particular, the dependency of the rotordynamic characteristics of leakage flows on the swirl at the inlet to the leakage path was examined. An inlet guide vane was designed for the experiment so that swirl could be introduced at the leakage flow inlet. The data demonstrates substantial rotordynamic effects and a destabilizing tangential force for small positive whirl ratios; this force decreased with increasing flow rate. The effect of swirl on the rotordynamic forces was found to be destabilizing.

  3. Numerical simulation of a ramjet inlet flowfield in response to large amplitude combustor pressure oscillation

    Science.gov (United States)

    Hsieh, T.; Wardlaw, A. B., Jr.; Coakley, T.

    1984-01-01

    The unsteady flow of a two-dimensional ramjet inlet is studied numerically by solving the Navier-Stokes equation with a two-equation turbulence model. Unsteadiness is introduced by prescribing the pressure disturbance at the inlet exit plane. The case with a sinusoidal exit plane pressure fluctuation of 20 percent of the steady exit pressure is considered. The resulting flow field exhibits a complicated interaction between the terminal shock, separation pockets and core flow. The exit plane properties feature a non-linear response to the imposed sinusoidal pressure variation.

  4. Effects of inlet conditions on dynamics of a thermal pulse combustor

    Science.gov (United States)

    Mondal, Sirshendu; Mukhopadhyay, Achintya; Sen, Swarnendu

    2012-02-01

    To increase the pulse combustor load, a higher amount of fuel-air mixture has to be supplied. This increases the flow rate or equivalently, the flow time is reduced. However, an increase in flow rate leads to an early extinction. This implies that obtaining pulsating combustion is difficult at higher loads. The objective of the present work is to explore the possibility of extending the regime of pulsating combustion at higher flow rates by preheating and diluting the reactants. In this work, the effects of preheating and dilution are examined by varying the inlet temperature and inlet fuel mass fraction. Varying these parameters, a map, presenting regime of pulsating combustion from steady combustion to extinction for each value of flow time considered, has been made. Lastly, Hopf bifurcation points of the system have been investigated by determining the eigenvalues of Jacobian matrix of the coupled non-linear system at the fixed point using a specialised package for bifurcation analysis, MATCONT. It has been found that at higher load, pulsating combustion can be achieved at higher inlet temperature and lower inlet fuel mass fraction. Comparing the Hopf points with mapping, it is found that existence of Hopf bifurcation agrees with the birth and death of pulsating combustion. The results indicate that altering the mixture condition at the inlet can be used for controlling chaos and stabilising periodic solutions in thermal pulse combustors and thus increase the range of pulsating combustion to higher power regimes.

  5. Experimental Investigation of a Forward Swept Rotor in a Multistage Fan with Inlet Distortion

    Directory of Open Access Journals (Sweden)

    Aspi R. Wadia

    2011-01-01

    Full Text Available Previous studies of transonic swept rotors in single stage fans have demonstrated the potential of significant improvements in both efficiency and stall margin with forward swept blading. This paper extends the assessment of the payoff derived from forward sweep to multistage configurations. The experimental investigation compare two builds of an advanced two-stage fan configuration tested alternately with a radial and a forward swept stage 1 blade. In the two-stage evaluations, the testing was extended to include the effect on inlet flow distortion. While the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1, this configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion. Having obtained already low distortion sensitivity with the radial rotor 1 configuration relative to current production military fan standards, the sensitivity to inlet distortion was halved with the forward swept rotor 1 configuration. In the case of the 180-degree one-per-rev distortion pattern, the two-stage configuration was evaluated both with and without inlet guide vanes (IGVs. The presence of the inlet guide vanes had a profound impact in lowering the two-stage fan's sensitivity with inlet distortion.

  6. A free-surface hydrodynamic model for density-stratified flow in the weakly to strongly non-hydrostatic regime

    International Nuclear Information System (INIS)

    Shen, Colin Y.; Evans, Thomas E.

    2004-01-01

    A non-hydrostatic density-stratified hydrodynamic model with a free surface has been developed from the vorticity equations rather than the usual momentum equations. This approach has enabled the model to be obtained in two different forms, weakly non-hydrostatic and fully non-hydrostatic, with the computationally efficient weakly non-hydrostatic form applicable to motions having horizontal scales greater than the local water depth. The hydrodynamic model in both its weakly and fully non-hydrostatic forms is validated numerically using exact nonlinear non-hydrostatic solutions given by the Dubriel-Jacotin-Long equation for periodic internal gravity waves, internal solitary waves, and flow over a ridge. The numerical code is developed based on a semi-Lagrangian scheme and higher order finite-difference spatial differentiation and interpolation. To demonstrate the applicability of the model to coastal ocean situations, the problem of tidal generation of internal solitary waves at a shelf-break is considered. Simulations carried out with the model obtain the evolution of solitary wave generation and propagation consistent with past results. Moreover, the weakly non-hydrostatic simulation is shown to compare favorably with the fully non-hydrostatic simulation. The capability of the present model to simulate efficiently relatively large scale non-hydrostatic motions suggests that the weakly non-hydrostatic form of the model may be suitable for application in a large-area domain while the computationally intensive fully non-hydrostatic form of the model may be used in an embedded sub-domain where higher resolution is needed

  7. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  8. Test results of the reactor inlet coolant temperature control system of HTTR

    International Nuclear Information System (INIS)

    Saito, Kenji; Nakagawa, Shigeaki; Hirato, Yoji

    2004-04-01

    The reactor control system of HTTR is composed of the reactor power control system, the reactor inlet coolant temperature control system, the primary coolant flow rate control system and so on. The reactor control system of HTTR achieves reactor power 30 MW, reactor outlet coolant temperature 850degC, reactor inlet coolant temperature 395degC under the condition that primary coolant flow rate is fixed. In the Rise-to-Power Test, the performance test of the reactor inlet coolant temperature control system was carried out in order to confirm the control capability of this control system. This report shows the test results of performance test. As a result, the control parameters, which can control the reactor inlet coolant temperature stably during the reactor operation, were successfully selected. And it was confirmed that the reactor inlet coolant temperature control system has the capability of controlling the reactor inlet coolant temperature stably against any disturbances on the basis of operational condition of HTTR. (author)

  9. Adaptation to a seasonally varying environment: a strong latitudinal cline in reproductive diapause combined with high gene flow in Drosophila montana.

    Science.gov (United States)

    Tyukmaeva, Venera I; Salminen, Tiina S; Kankare, Maaria; Knott, K Emily; Hoikkala, Anneli

    2011-10-01

    Adaptation to seasonal changes in the northern hemisphere includes an ability to predict the forthcoming cold season from gradual changes in environmental cues early enough to prepare for the harsh winter conditions. The magnitude and speed of changes in these cues vary between the latitudes, which induces strong selection pressures for local adaptation.We studied adaptation to seasonal changes in Drosophila montana, a northern maltfly, by defining the photoperiodic conditions leading to adult reproductive diapause along a latitudinal cline in Finland and by measuring genetic differentiation and the amount of gene flow between the sampling sites with microsatellites. Our data revealed a clear correlation between the latitude and the critical day length (CDL), in which half of the females of different cline populations enter photoperiodic reproductive diapause. There was no sign of limited gene flow between the cline populations, even though these populations showed isolation by distance. Our results show that local adaptation may occur even in the presence of high gene flow, when selection for locally adaptive life-history traits is strong. A wide range of variation in the CDLs of the fly strains within and between the cline populations may be partly due to gene flow and partly due to the opposing selection pressures for fly reproduction and overwinter survival. This variation in the timing of diapause will enhance populations' survival over the years that differ in the severity of the winter and in the length of the warm period and may also help them respond to long-term changes in environmental conditions.

  10. Comparing Two Numerical Models in Simulating Hydrodynamics and Sediment Transport at a Dual Inlet System, West-Central Florida

    Science.gov (United States)

    2015-05-15

    Pass, the Willmott skill was 0.989 for CMS and 0.938 for DELFT3D. Qualitatively, as compared to flow field measurements using a ship- mounted ADCP , both...offshore, providing boundary conditions for the numerical models. Several methods were used to measure the flow field. An upward-looking ADCP was...deployed in the main channel of each inlet to measured current profiles. A side-looking ADCP was deployed at each inlet to measured cross-channel

  11. Influence of outlet geometry on the swirling flow in a simplfied model of a large two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Haider, Sajjad; Schnipper, Teis; Meyer, Knud Erik

    -like and flow reversal is observed on the cylinder axis, close to the inlet. Downstream, the flow reversal disappears and instead a localized jet develops. The corresponding tangential velocity profiles show a concentrated vortex with decreasing width along the downstream direction. By placing a concentric...... dummy-valve at the cylinder outlet, the magnitude of reverse flow at the inlet increases, the strong swirl is diminished and the axial jet disappears. We compare these findings with previous measurements in vortex chambers and discuss the relevance of these results with respect to development of marine...

  12. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    Science.gov (United States)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  13. Inlet Distortion Generation for a Transonic Compressor

    National Research Council Canada - National Science Library

    Papamarkos, Ioannis

    2004-01-01

    ... (and therefore engine) stall. Auxiliary injection was examined as a technique for generating distortion in inlet stagnation pressure, or temperature, or to simulate the more complex effects of engine, steam ingestion from a catapult launch...

  14. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  15. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  16. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  17. 77 FR 420 - Drawbridge Operation Regulation; Corson Inlet, Stathmere, NJ

    Science.gov (United States)

    2012-01-05

    ... Operation Regulation; Corson Inlet, Stathmere, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... Corson Inlet, mile 0.9 in Strathmere, NJ. The deviation is necessary to facilitate the replacement of the... provided. The Corson Inlet Bridge (CR-619) at mile 0.9, across Corson Inlet in Strathmere, NJ has a...

  18. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)

    2016-01-01

    A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.

  19. CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Noroozi, S.; Hashemabadi, S.H. [Computational Fluid Dynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2009-12-15

    An Eulerian-Eulerian three-dimensional CFD model was developed to study the effect of different inlet designs on deoiling hydrocyclone separation efficiency. Reynolds averaged Navier Stokes and continuity equations were applied to solve steady turbulent flow through the cyclone with the Reynolds stress model. In addition, the modified drag correlation for liquid-liquid emulsion with respect to the Reynolds number range and viscosity ratio of two phases was used and the simulation results were compared with those predicted by the Schiller-Naumann correlation. Pressure profile, tangential and axial velocities and separation efficiency of the deoiling hydrocyclone were calculated for four different inlet designs and compared with the standard design. The simulation results for the standard design demonstrate an acceptable agreement with reported experimental data. The results show that all new four inlet designs offer higher efficiencies compared to the standard design. The difference between the efficiency of the LLHC, of the new inlets and the standard design can be improved by increasing the inlet velocity. Furthermore, the simulations show that the separation efficiency can be improved by about 10 % when using a helical form of inlet. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. 2D CFD description of the kinematic effects of movable inlet and outlet die wall transport motion and punch shape geometry on the dynamics of viscous flow during ECAE through Segal 2θ-dies for a range of channel angles

    Directory of Open Access Journals (Sweden)

    Alexander V. Perig

    2017-11-01

    Full Text Available Minimization of the dead zone (DZA in the process of material forming is a materials science problem. Geometric and kinematic approaches to the minimization of the DZA during Equal Channel Angular Extrusion (ECAE have been proposed, developed, analyzed, and documented. The present article is focused on a 2D Computational Fluid Dynamics (CFD description of the kinematic effects of punch shape geometry and inlet (IDW and outlet (ODW die wall motion on the DZA during ECAE of Viscous Incompressible Continuum (VIC through a Segal 2θ-die for a range of channel angles 60° ≤ 2θ ≤ 135°. Due attention has been given to the independent alternating transport motions of the IDW and ODW. Punch shape geometry and the kinematic modes of IDW and ODW motions for DZA minimization have been determined with a numerical solution of the boundary value problem for the Navier-Stokes equations in curl transfer form for VIC. Experimental verification was accomplished with an introduction of initial circular gridlines-based physical simulation techniques. For the first time, experimental verification of CFD-derived results was made through an additional superposition of empirically-derived digital photos with deformed elliptical gridlines in the channel intersection deformation zones and correspondent 2D numerical plots with CFD-derived flow lines and full flow velocities. An empirical DZA localization was experimentally determined as the location of minimally-deformed near circular markers. The computational DZA localization was numerically determined as a flow-lines-free zone (the first hypothesis or as a zone with near-zero values of full flow velocities (the second hypothesis. The relative DZA was estimated as a ratio of the measured DZA with respect to the area of the deformation zone in the channel intersection region. A good agreement was obtained between DZA values obtained with the first hypothesis and experimental results.

  1. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  2. Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets

    Directory of Open Access Journals (Sweden)

    Jifei WANG

    2017-08-01

    Full Text Available In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition (CST and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical.

  3. Development of cooling techniques for induction heating stress improvement of reactor recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Takahashi, Shirou; Shiina, Kouji; Nihei, Kenichi; Kanno, Satoshi; Hayashi, Shoji; Ootaka, Minoru

    2007-01-01

    Induction heating stress improvement (IHSI) has been used in nuclear power plants to reduce residual stress in welded sections of pipes by generating temperature differences between the inner and outer surfaces of the pipes. The outer metal surface is heated by induction heating, and the inner surface is cooled by flowing water. However, it is difficult to obtain a sufficient temperature gradient in the places where the flow stagnates and the heat transfer cannot be enhanced. In the present study, we developed cooling techniques for a reactor recirculation inlet nozzle with a closed end and very narrow annular channel. Computational fluid dynamics (CFD) analyses, half-scale tests, and full-scale tests were conducted to investigate the flow and cooling characteristics. One million grids of a reactor recirculation inlet nozzle model were used for the CFD analysis. Detached eddy simulation (DES) was used as the turbulence model to evaluate the unsteady phenomena of the jet flow and temperature distribution. The experimental apparatuses used for the half-scale tests were made of acryl to visualize the flow, and heat transfer coefficients were measured at the welded portions. In the full-scale tests, the temperature differences between the inner and outer surface of the recirculation inlet nozzle were measured, and reduction of the residual stress was verified. It was confirmed that the jet flow moved up and down when to jet nozzles were arranged symmetrically. The turbulence due to self-sustained jet fluctuation was effective for uniform cooling in the reactor recirculation inlet nozzle. The flow did not stagnate around the welded portion. The heat transfer coefficients at the welded portion were evaluated using an equation with Reynolds and Nusselt numbers in half-scale tests. It was also verified in full scale tests that the temperature difference between the inner and outer surfaces of the recirculation inlet nozzle was approximately 490degC, which satisfied the

  4. A Comparison of Hybrid Reynolds Averaged Navier Stokes/Large Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable Speed Power Turbine Blade Operating with Low Inlet Turbulence Levels

    Science.gov (United States)

    2017-10-01

    Transition, separation, and complex flow physics occur with the variable-speed power-turbine (VSPT) due to operation at low Reynolds numbers and a...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) October 2017 2. REPORT TYPE...Turbulence Levels 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David T Booth 5d. PROJECT NUMBER 5e. TASK

  5. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  6. Residual water transport in the Marsdiep tidal inlet inferred from observations and a numerical model

    NARCIS (Netherlands)

    Sassi, M.G.; Gerkema, T.; Duran-Matute, M.; Nauw, J.J.

    2016-01-01

    At tidal inlets, large amounts of water are exchanged with the adjacent sea during the tidal cycle.The residual flows, the net effect of ebb and flood, are generally small compared with the gross flux;they vary in magnitude and sign from one tidal period to the other; and their long-term mean

  7. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  8. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  9. Three-dimensional Navier-Stokes analysis and redesign of an imbedded bellmouth nozzle in a turbine cascade inlet section

    Science.gov (United States)

    VanFossen, G. J.; Lopez, L.; Giel, P. W.; Sirbaugh, J. R.

    1996-01-01

    Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow non-uniformity. A three-dimensional, Navier-Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow non-uniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier-Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry which eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow non-uniformity has indeed been eliminated.

  10. Effects of inlet/outlet configurations on the electrostatic capture of airborne nanoparticles and viruses

    International Nuclear Information System (INIS)

    Jang, Jaesung; Akin, Demir; Bashir, Rashid

    2008-01-01

    Motivated by capture and detection of airborne biological agents in real time with a cantilever biosensor without introducing the agents into liquids, we present the effects of inlet/outlet configurations of a homemade particle collector on the electrostatic capture of airborne 100 nm diameter nanoparticles under swirling gas flows. This particle collector has three different inlet/outlet configurations: forward inlet/outlet (FO), backward inlet/outlet (BO) and straight inlet/outlet (SO) configurations. We also present the electrostatic capture of Vaccinia viruses using the same particle collector and compare these virus measurements with the nanoparticle cases. The most particles were collected in the FO configuration. The numbers of particles captured in the BO and SO configurations were close within their standard deviations. For all the three configurations tested, the number of particles captured in the center electrode C was much smaller than those captured in the other electrodes at a flow rate of 1.1 l min −1 and an applied potential of 2 kV. Using a commercial CFD code FLUENT, we also simulated the effects of the three inlet/outlet configurations on the particle capture in terms of particle trajectories, velocities and travel times. This simulation was in a good agreement with measurements that the FO configuration is the most favorable to particle capture among the tested configurations at a flow rate of 1.1 l min −1 . The effects of particle diameters on the capture will also be discussed. This collector can be used for real-time monitoring of bioaerosols along with cantilever biosensors

  11. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    Science.gov (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  12. Diode Laser Sensor for Scramjet Inlets

    Science.gov (United States)

    2011-06-03

    configuration The FLUENT solver was set to implicitly solve the density-based form of the compressible Navier - Stokes equations, assuming perfect gas...Report Stock Number 003-017-00323-0, US Government Printing Office, Washington DC, USA. Smart, M. (2001), ‘Experimental testing of a hypersonic inlet

  13. Observations of Seafloor Roughness in a Tidally Modulated Inlet

    Science.gov (United States)

    Lippmann, T. C.; Hunt, J.

    2014-12-01

    The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet

  14. Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska

    Science.gov (United States)

    Mackiewicz, N.E.; Powell, R.D.; Carlson, P.R.; Molnia, B.F.

    1984-01-01

    Muir Inlet in Glacier Bay, Alaska, is a glacial fjord receiving a tremendous volume of sediment annually. The rate of sediment accumulation is greatest proximal to Muir Glacier (about 9 m yr-1) and decreases away from the glacier. The primary sediment sources are meltwater streams discharging at subglacial and ice-marginal positions to form overflows, interflows, and underflows (continuous turbidity currents). Overflows and interflows interact with diurnal tidal currents and their volume and sediment concentration varies diurnally and annually with meltwater discharge. These effects produce cyclic deposits of a thin fine-grained sand or silt lamina that grades normally to a thicker poorly to very poorly sorted mud lamina. This lamina couplet is termed a cyclopel. Underflows are suggested to occur in this glacimarine environment because of conditions unique to subglacial fluvial systems. Underflow deposits occur only in proximal positions (177 ??m) is ubiquitous, though low (Muir Inlet produce interlaminated sand/silt/clay that characterizes sediment proximal to a glacier and fines seaward to mud. Sediment is classified into one of three sediment types: 1. (1) Type I sediment is very fine grained (mean 8.65-7.17 ??), low in sand (0.1-11.2%), and very poorly to poorly sorted. It is the dominant sediment type in Muir Inlet, and is transported by plumes and deposited by suspension settling. 2. (2) Type II sediment is fine- to coarse-grained (mean 6.70-3.12 ??), low to high in sand (5.1-86.6%), and very poorly to moderately sorted. It represents reworked sediment, proximal plume deposits, or coarse-grained laminae of cyclopels. 3. (3) Type III sediment is coarse-grained (mean 3.89-2.38 ??), high in sand (58.0-100.0%), and poorly to well sorted. It is deposited by sediment gravity flows or underflows. ?? 1984.

  15. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  16. Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary

    International Nuclear Information System (INIS)

    Tao, Y.B.; He, Y.L.

    2011-01-01

    Highlights: → Based on the unstable solar radiation, a model was established for phase change process under unsteady boundary. → The PCM melting time decreases with the initial inlet temperature increase under the same average inlet temperature. → The melting time reduces about 51.9% with the initial inlet temperature increase from 30 o C to 90 o C. → The melting time decreases with the initial inlet mass flow rate increase under the same average inlet mass flow rate. → The melting time reduces about 36.5% with the initial inlet mass flow rate increase from 2.0 x 10 -4 kg/s to 8.0 x 10 -4 kg/s. -- Abstract: Due to the solar radiation intensity variation over time, the outlet temperature or mass flow rate of heat transfer fluid (HTF) presents non-steady-state characteristics for solar collector. So, in the phase change thermal energy storage (PCTES) unit which is connected to solar collector, the phase change process occurs under the non-steady-state inlet boundary condition. In present paper, regarding the non-steady-state boundary, based on enthalpy method, a two dimensional physical and mathematical model for a shell-and-tube PCTES unit was established and the simulation code was self-developed. The effects of the non-steady-state inlet condition of HTF on the thermal performance of the PCTES unit were numerically analyzed. The results show that when the average HTF inlet temperature in an hour is fixed at a constant value, the melting time (time required for PCM completely melting) decreases with the increase of initial inlet temperature. When the initial inlet temperature increases from 30 o C to 90 o C, the melting time will decrease from 42.75 min to 20.58 min. However, the total TES capacity in an hour reduces from 338.9 kJ/kg to 211.5 kJ/kg. When the average inlet mass flow rate in an hour is fixed at a constant value, with the initial HTF inlet mass flow rate increasing, the melting time of PCM decreases. The initial inlet mass flow rate

  17. Inlet and Outlet Casings of the Turbojet Engines – Design and Experiment

    Directory of Open Access Journals (Sweden)

    D. Hanus

    2000-01-01

    Full Text Available The paper presents special design method for three-dimensional design of the inlet and outlet channels of the turboprop engines. The method is based on the solution of indirect problem in internal aerodynamics, which is realised by mechanical construction of the flow field between inlet and outlet sections of the designed channel. The flow field is represented by number of flow tubes made of special plastic material, of optimised geometrical shape and their course in the space. The method was applied on the design of inlet channel of the three-shaft turboprop engine Walter M 602 and the aircraft L 610 and on the outlet channel of the two-shaft turboprop engine Walter M 601. Both channels have been manufactured and proved excellent aerodynamic properties. The channels have satisfied the airworthiness requirements and have been certified by the Czech Aviation Administration and by Federal Aviation Administration of the U.S.A. as well. The application of the new outlet channel have contributed to considerable improvement of the performance of the engine of more than 3 % at the same absolute fuel consumption and at 5 °C lower temperature of the gases at the inlet section of the turbine. The mass of the new channel is of 1 kg lower than the original one.

  18. Biases in Ion Transmission Through an Electrospray Ionization-Mass Spectrometry Capillary Inlet

    Energy Technology Data Exchange (ETDEWEB)

    Page, Jason S.; Marginean, Ioan; Baker, Erin Shammel; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2009-12-01

    The standard heated capillary inlet of an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow electrosprays. The primary finding of the study was a large bias towards higher mobility species in the electrospray current losses to the inside walls of the inlet. The transmission efficiency increased with decreasing capillary length due to reduced losses along the capillary. A decrease in transmission efficiency was also confirmed for electrosprays of higher conductivity solvents. A direct correlation between mass spectrometry sensitivity and the transmitted electrospray current was not observed as some analytes showed little to no increase in sensitivity while others showed as high as a 15 – fold increase. The variation was shown to at least be partially dependent on the analytes’ mobilities. Higher mobility analytes demonstrated a larger increase in sensitivity when shorter inlets were used. The results indicate that considerable biases against higher mobility species can be produced by the use of long capillary inlets in the ESI-MS interface and strategies are provided to minimize the bias against higher mobility species for efficient ion transmission through the heated capillary interface.

  19. A Study on the Nonmetallic Inclusion Motions in a Swirling Flow Submerged Entry Nozzle in a New Cylindrical Tundish Design

    Science.gov (United States)

    Ni, Peiyuan; Ersson, Mikael; Jonsson, Lage Tord Ingemar; Jönsson, Pär Göran

    2018-04-01

    Different sizes and shapes of nonmetallic inclusions in a swirling flow submerged entry nozzle (SEN) placed in a new tundish design were investigated by using a Lagrangian particle tracking scheme. The results show that inclusions in the current cylindrical tundish have difficulties remaining in the top tundish region, since a strong rotational steel flow exists in this region. This high rotational flow of 0.7 m/s provides the required momentum for the formation of a strong swirling flow inside the SEN. The results show that inclusions larger than 40 µm were found to deposit to a smaller extent on the SEN wall compared to smaller inclusions. The reason is that these large inclusions have Separation number values larger than 1. Thus, the swirling flow causes these large size inclusions to move toward the SEN center. For the nonspherical inclusions, large size inclusions were found to be deposited on the SEN wall to a larger extent, compared to spherical inclusions. More specifically, the difference of the deposited inclusion number is around 27 pct. Overall, it was found that the swirling flow contains three regions, namely, the isotropic core region, the anisotropic turbulence region and the near-wall region. Therefore, anisotropic turbulent fluctuations should be taken into account when the inclusion motion was tracked in this complex flow. In addition, many inclusions were found to deposit at the SEN inlet region. The plotted velocity distribution shows that the inlet flow is very chaotic. A high turbulent kinetic energy value of around 0.08 m2/s2 exists in this region, and a recirculating flow was also found here. These flow characteristics are harmful since they increase the inclusion transport toward the wall. Therefore, a new design of the SEN inlet should be developed in the future, with the aim to modify the inlet flow so that the inclusion deposition is reduced.

  20. 76 FR 63840 - Drawbridge Operation Regulation; Corson Inlet, Strathmere, NJ

    Science.gov (United States)

    2011-10-14

    ... Operation Regulation; Corson Inlet, Strathmere, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... mile 0.9, across Corson Inlet, in Strathmere, NJ. The deviation is necessary to facilitate the..., across Corson Inlet in Strathmere, NJ has a vertical clearance in the closed position to vessels of 15...

  1. Brazos Santiago Inlet, Texas, Shoaling Study

    Science.gov (United States)

    2018-02-01

    Field data collection and numerical modeling using the Coastal Modeling System were performed to gain insight into the complex circulation, wave action ...and sediment deposition patterns. Structural changes to the system as well as dredging modifications are presented as potential alternative...solutions to reduce inlet shoaling. Results show the potential benefits of an in-channel sediment trap and alterations to the structure of the jetty

  2. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  3. Effect of inlet conditions for numerical modelling of the urban boundary layer

    Science.gov (United States)

    Gnatowska, Renata

    2018-01-01

    The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.

  4. Effects of water inlet configuration in a service reservoir applying CFD modelling

    Directory of Open Access Journals (Sweden)

    Carolina Montoya Pachongo

    2016-01-01

    Full Text Available This study investigated the state of a service reservoir of a drinking water distribution network. Numerical simulation was applied to establish its flow pattern, mixing conditions, and free residual chlorine decay. The influence of the change in the water inlet configuration on these characteristics was evaluated. Four scenarios were established with different water level and flow rate as the differences between the first three scenarios. The fourth scenario was evaluated to assess the influence of the inlet configuration, momentum flow and water level on hydrodynamic conditions within the service reservoir. The distribution of four nozzles of 152.4mm diameter was identified as a viable measure to preserve the water quality in this type of hydraulic structures.

  5. Evolution and Impacts of a New Inlet Formed in Fire Island National Park by Superstorm Sandy (Invited)

    Science.gov (United States)

    Flood, R. D.; Flagg, C. N.; Goff, J. A.; Austin, J. A.; Schwab, W. C.; Denny, J. F.; Christensen, B. A.; Browne, C. M.; Saustrup, S.

    2013-12-01

    Superstorm Sandy impacted the New York / New Jersey area on October 29, 2012 and brought a storm surge of 1.5 to 2.5 m and waves with a significant wave height of 9.5 m to the south shore of Long Island, New York. The storm cut three inlets across Fire Island barrier islands. Two of the inlets were closed mechanically, but the third inlet, cut through a wilderness area of the Fire Island National Seashore, remains open and provides a rare opportunity to study the evolution and dynamics of an unmanaged inlet. This new inlet formed where Fire Island is narrow and is near the site of an earlier inlet that closed in 1825. Great South Bay (GSB) is located between Fire Island and the Long Island mainland. The salinity in GSB increased by 5 salinity units following the breach and has remained high. GSB has had chronic water quality issues associated with a high population density that may be moderated by flow related to the new inlet. Water flow through the new inlet is controlled by the difference between offshore tide and GSB tide, but GSB tide does not appear to have been altered by flow through the inlet. This is different from the traditional view of inlet dynamics where a balance is sought between channel cross-sectional area, tidal prism (which together give channel velocity) and longshore sediment transport. At SoMAS we have been monitoring the evolution of the new inlet since its formation. We have conducted overflights at 1 to 3 week intervals to track the changing inlet geometry and the location of flood-tidal and ebb-tidal deltas. We have also done small-boat bathymetric surveys of the channel itself every 3 to 5 weeks to track the shape and cross-sectional area of the channel. The channel was quite small shortly after the breach with a depth of about 2 m. The channel grew fast as it cut into underlying fine-grain sediments, reaching a depth of over 6 m following several late winter storms. The inlet channel initially migrated quickly to the west, but its

  6. Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system

    Science.gov (United States)

    Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.

    2011-01-01

    The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.

  7. Yearly to decennial beach morphodynamics south the Arcachon inlet, France from satellite observations

    Science.gov (United States)

    Dehouck, Aurelie; Sénéchal, Nadia; Lafon, Virginie; Almar, Rafael; Castelle, Bruno; Froidefond, Jean-Marie

    2010-05-01

    Historical shoreline oscillations along adjacent beaches south the Arcachon tidal inlet (south-west France) have been directly controled by sediment inputs carried through the inlet by the littoral drift. In parallell, field observations aiming at understanding high frequency processes governing short-term beach morphodynamics are conducted on a very few local beach sites, among them the beach of Biscarrosse located 12 km south the inlet where video cameras are implemented. It have been suggested that Biscarrosse Beach was recently affected by nearshore large-scale sandy structures propagating southward and originating from the inlet. But, basic information about the space and time dynamics of these bodies is actually missing. In addition, there is a spatial gap in knowledge concerning the hydro and morphodynamics particularities along the south-Gironde coast, i.e. between the ebb-delta and adjacent beaches which have been subject to intense monitoring and the beach of Biscarrosse. In fact, this is a complex area where beaches are dominated by channeled tidal flows on one hand, while typical swell-dominated beaches extend for several tens of kilometers on the other hand, characterized by rhythmic crescentic outer bar patterns and oblique bar-and-rip inner bar. So, large-scale observations are needed to fill the spatial gap in order to provide a comprehensive understanding of nearshore sandbar morphodynamics. To achieve this objective, we benefited from satellite remote sensing timeseries that were recently made available by the CNES, the French Space Agency, through the Kalideos database. It encompasses SPOT high resolution (10-m and 20-m pixels) multispectral imagery from 1986 to 2009. The method is based on a semi-empirical algorithm using seawater optical properties to invert satellite reflectance at the sea level into water depth (Lee et al., 1998; Lafon et al., 2002). The algorithm was calibrated with in situ reflectance measurements collected in the nearshore

  8. Turbulent velocity and concentration measurements in a macro-scale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael

    2013-11-01

    Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.

  9. Magnetic refrigeration system with separated inlet and outlet flow

    Science.gov (United States)

    Auringer, Jon Jay; Boeder, Andre Michael; Chell, Jeremy Jonathan; Leonard, John Paul; Zimm, Carl Bruno

    2017-06-14

    An active magnetic regenerative (AMR) refrigerator apparatus can include at least one AMR bed with a first end and a second end and a first heat exchanger (HEX) with a first end and a second end. The AMR refrigerator can also include a first pipe that fluidly connects the first end of the first HEX to the first end of the AMR bed and a second pipe that fluidly connects the second end of the first HEX to the first end of the AMR bed. The first pipe can divide into two or more sub-passages at the AMR bed. The second pipe can divide into two or more sub-passages at the AMR bed. The sub-passages of the first pipe and the second pipe can interleave at the AMR bed.

  10. Evaluation of effect of inlet distortion on aerodynamic performance of helium gas compressor for gas turbine high temperature reactor (GTHTR300). Contract research

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kurokouchi, Naohiro; Kunitomi, Kazuhiko

    2006-02-01

    Because the main pipe is connected perpendicular to the flow direction inside the distributing header in the inlet casing of the helium gas compressor design of GTHTR300, the main flow flowing into the header tends to separate from the header wall and to cause reverse flow, which increases flow resistance in the header. This phenomenon increases the total pressure loss in the header and inlet distortion, which is considered to deteriorate the aerodynamic performance of the compressor. Tests were carried out to evaluate the effects of inlet distortion on aerodynamic performance of compressor by using a 1/3-scale helium gas compressor model by varying a level of inlet distortion. Flow was injected from the wall of header to make circumferential velocities uniform before and after the reverse flow region to dissipate the separation and reverse flow. At the design point, inlet distortion was reduced by 2-3% by injection, which resulted in increasing adiabatic efficiency of blade section by 0.5%. A modified flow rate at surge point was lowered from 10.0 kg/s to 9.6 kg/s. At the same time, pressure loss of the inlet casing was reduced by 3-5 kPa, which is equivalent to adiabatic efficiency improvement around 0.8%. By setting orifice at the inlet of the inlet casing, the level of inlet distortion became 3% higher and the adiabatic efficiency of blade section became 1% higher at the design point. The modified flow rate at surge point increased from 10.6 to 10.9 kg/s. A new correlation between inlet distortion and adiabatic efficiency of blade section at the rated flow rate was derived based on compressor-in-parallel model and fitted to the test results. An overall adiabatic efficiency of full-scale compressor was predicted 90.2% based on the test results of efficiency and Reynolds number correlation, which was close to 89.7% that was predicted by test calibrated design through-flow code. (author)

  11. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...... between the energy tapped in one storage volume and the energy content in the tank before the tapping is measured. Afterwards the mixing factor, corresponding to the measured ratio, can be determined. It is proposed that the mixing factor is taken into consideration when the governmental subsidy for SDHW...

  12. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  13. Observation and modeling of the evolution of an ephemeral storm-induced inlet: Pea Island Breach, North Carolina, USA

    Science.gov (United States)

    Velasquez Montoya, Liliana; Sciaudone, Elizabeth J.; Mitasova, Helena; Overton, Margery F.

    2018-03-01

    The Outer Banks of North Carolina is a wave-dominated barrier island system that has experienced the opening and closure of numerous inlets in the last four centuries. The most recent of those inlets formed after the breaching of Pea Island during Hurricane Irene in 2011. The Pea Island Breach experienced a rapid evolution including episodic curvature of the main channel, rotation of the ebb channel, shoaling, widening by Hurricane Sandy in 2012, and finally closing before the summer of 2013. Studying the life cycle of Pea Island Breach contributes to understanding the behavior of ephemeral inlets in breaching-prone regions. This topic has gained relevance due to rising sea levels, a phenomenon that increases the chances of ephemeral inlet formation during extreme events. This study explores the spatiotemporal effects of tides, waves, and storms on flow velocities and morphology of the breach by means of remotely sensed data, geospatial metrics, and a numerical model. The combined use of observations and results from modeling experiments allowed building a conceptual model to explain the life cycle of Pea Island Breach. Wave seasonality dominated the morphological evolution of the inlet by controlling the magnitude and direction of the longshore current that continuously built transient spits at both sides of the breach. Sensitivity analysis to external forcings indicates that ocean waves can modify water levels and velocities in the back barrier. Sound-side storm surge regulates overall growth rate, duration, and decay of peak water levels entering the inlet during extreme events.

  14. Numerical study of density-stratified flow past two 3D hills : aligned in tandem

    International Nuclear Information System (INIS)

    Choi, Choon Bum; Yang, Kyung Soo

    2006-01-01

    In this paper, a parametric study using an immersed boundary method has been carried out to investigate the effects of stable density stratification on the wakes past two identical three-dimensional hills aligned in tandem. The Reynolds number based on the uniform inlet velocity and twice the hill height was fixed at Re=300 while the Froude number based on the inlet velocity and the hill height was retained at Fr=0.2. Neutral flow without density stratification was also computed for comparison. Under a strong stratification, vertical motion of fluid particles over the three-dimensional hills is suppressed and the wake structures behind the hills become planar. Depending on the distance between the two hills, the flow pattern of each wake is significantly affected by the stratification. There is a critical hill distance at which flow characteristics drastically change. Qualitative and quantitative features of the wake interaction are reported

  15. Phase separation and pressure drop of two-phase flow in vertical manifolds

    International Nuclear Information System (INIS)

    Zetzmann, K.

    1982-01-01

    The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de

  16. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    Science.gov (United States)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.

  17. Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components

    Science.gov (United States)

    Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.

    1999-01-01

    This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will

  18. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  19. Flow regime, void fraction and interfacial area transport and characteristics of co-current downward two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2016-10-15

    Highlights: • Downward flow regime maps and models were studied for 25.4 to 101.6 mm pipe diameters. • Effect of flow inlet on flow transition, void & interfacial area profile were studied. • Bubble void profiles were associated with the interfacial forces for downward flow. • Flow regime pressure drop and interfacial friction factor were studied. • The most applicable and accurate downward drift-flux correlation was determined. - Abstract: Downward two-phase flow is observed in light water reactor accident scenarios such as loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) due to loss of feed water or a secondary pipe break. Hence, a comprehensive literature review has been performed for the co-current downward two-phase flow with information on the flow regime transitions and flow characteristics for each regime in the downward flow. The review compares the experimental data of the flow regime map and the current available transition models. Objectivity of the data varies on the method utilized as a certain degree of subjectivity is still present in the most objective method. Nevertheless, experimental data through subjective methods such as direct visualization or analysis of a wire mesh sensor (WMS) data were still studied in this review. Despite the wide range of flow regime data for numerous pipe sizes, a consensus was not reached for the effect of pipe sizes on flow regime transition. However, it is known that a larger pipe results in greater degree of coalescence at lower gas flow rates (Hibiki et al., 2004). The introduction of a flow straightener at the inlet led to less coring and fluid rotation and inevitably, reduced bubble coalescence. This also resulted in the disappearance of the kinematic shock wave phenomenon, contrary to an inlet without a flow straightener. The effect of flow inlet, flow location, pipe diameter and bubble interfacial forces on the radial distribution as well as bubble coalescence and breakup rate

  20. Ground vortex flow field investigation

    Science.gov (United States)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  1. Use of Vortex Generators to Reduce Distortion for Mach 1.6 Streamline-Traced Supersonic Inlets

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank; Slater, John W.; Trefny, Chuck

    2016-01-01

    Reduce the total pressure distortion at the engine-fan face due to low-momentum flow caused by the interaction of an external terminal shock at the turbulent boundary layer along a streamline-traced external-compression (STEX) inlet for Mach 1.6.

  2. LDV measurements of the velocity field on the inlet section of a pumped storage equipped with a symmetrical suction elbow for variable discharge values

    International Nuclear Information System (INIS)

    Drǎghici, I; Bosioc, A I; Anton, L E; Muntean, S

    2014-01-01

    The storage pumps are equipped with various types of inlet casings. The flow nonuniformity is generated by the suction elbows being ingested by the impeller leading to unsteady phenomena and worse cavitational behaviour. A symmetrical suction elbow model corresponding to the double flux storage pump was manufactured and installed on the test rig in order to assess the flow field at the pump inlet. The experimental investigations are performed for 9 discharge values from 0.5 to 1.3 of nominal discharge. LDV measurements are performed on the annular section of the pump inlet in order to quantify the flow non-uniformity generated by the symmetrical suction elbow. Both axial and circumferential velocity components are simultaneously measured on the half plane (180°) of the annular inlet section along to 19 survey axis with 62 points on each. The flow field on the next half plane is determined tacking into account the symmetry. As a result, the flow map on the pump inlet annular section is reconstructed revealing a significant variation of the circumferential velocity component. The absolute flow angle is computed showing a significant variation of ±38°

  3. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation.

    Science.gov (United States)

    Alexander, Brittany E; Mueller, Benjamin; Vermeij, Mark J A; van der Geest, Harm H G; de Goeij, Jasper M

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  4. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-12-01

    Full Text Available Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community. This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  5. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  6. Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Lei Tan

    2014-02-01

    Full Text Available The influence of prewhirl regulation by inlet guide vanes (IGVs on a centrifugal pump performance is investigated experimentally and numerically. The experimental results show that IGVs can obviously change the head and increase the efficiency of the tested centrifugal pump over a wide range of flow rates. Although the cavitation performance is degraded, the variation of the cavitation critical point is less than 0.5 m. Movement of the computed three-dimensional streamlines in suction pipe and impeller are analyzed in order to reveal the mechanism how the IGVs realize the prewhirl regulation. The calculated results show that the influence of IGVs on the cavitation performance of centrifugal pump is limited by a maximum total pressure drop of 1777 Pa, about 7.6% of the total pressure at the suction pipe inlet for a prewhirl angle of 24°.

  7. Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot

    Science.gov (United States)

    Powell, A. G.; Welge, H. R.; Trefny, C. J.

    1985-01-01

    The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.

  8. Investigation of side wall effects on an inward scramjet inlet at Mach number 8.6

    Science.gov (United States)

    Rolim, Tiago Cavalcanti

    Experimental and computational studies were conducted to evaluate the performance of a scramjet inlet as the side cowl length is changed. A slender inward turning inlet of a total length of 304.8 mm, a span of 50.8 mm with the compression at 11.54 deg and CR = 4.79 was used. The side cowl lengths were of 0, 50.8 and 76.2 mm. The UTA Hypersonic Shock Tunnel facility was used in the reflected mode. The model was instrumented with nine piezoelectric pressure transducers, for static and total pressure measurements. A wedge was mounted at the rear of the inlet in order to accommodate a Pitot pressure rake. The driven tube was instrumented with three pressure transducers. Two of them were used to measure the incident shock wave speed, and a third one was used for stagnation pressure measurements during a test. Furthermore, a Pitot probe was installed below the model in order to measure the impact pressure on each run, this reading along with the driven sensor readings, allowed us for the calculation of freestream properties. During the experiments, nominal stagnation enthalpy of 0.67 MJ/kg and stagnation pressure of 3.67 MPa were achieved. Freestream conditions were Mach number 8.6 and Reynolds number of 1.94 million per m. Test times were 300 - 500 microseconds. Numerical simulations using RANS with the Wilcox K-w turbulence model were performed using ANSYS Fluent. The results from the static pressure measurements presented a good agreement with CFD predictions. Moreover, the uniformity at the inlet exit was achieved within the experimental precision. The experiments showed that the cowl length has a pronounced effect in the pressure distribution on the inlet and a minor effect in the exit flow Mach number. The numerical results confirmed these trends and showed that a complex flow structure is formed in the cowl-ramp corners; a non-uniform transverse shock structure was found to be related to the cowl leading edge position. Cross flow due to the side expansion

  9. Inlet and outlet boundary conditions for the discrete velocity direction model

    Science.gov (United States)

    Zhang, Zhenyu; Zhao, Wei; Zhao, Qingjun; Lu, Guojing; Xu, Jianzhong

    2018-02-01

    The discrete velocity direction model is an approximate method to the Boltzmann equation, which is an optional kinetic method to microgas flow and heat transfer. In this paper, the treatment of the inlet and outlet boundary conditions for the model is proposed. In the computation strategy, the microscopic molecular speed distribution functions at inlet and outlet are indirectly determined by the macroscopic gas pressure, mass flux and temperature, which are all measurable parameters in microgas flow and heat transfer. The discrete velocity direction model with the pressure correction boundary conditions was applied into the plane Poiseuille flow in microscales and the calculations cover all flow regimes. The numerical results agree well with the data of the NS equation near the continuum regime and the date of linearized Boltzmann equation and the DSMC method in the transition regime and free molecular flow. The Knudsen paradox and the nonlinear pressure distributions have been accurately captured by the discrete velocity direction model with the present boundary conditions.

  10. Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    Directory of Open Access Journals (Sweden)

    T. Shingler

    2012-06-01

    Full Text Available A new counterflow virtual impactor (CVI inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE. The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i negligible organic contamination; (ii a significant sample flow rate to downstream instruments (∼15 l min−1 that reduces the need for dilution; and (iii a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7–13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  11. Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature

    Directory of Open Access Journals (Sweden)

    Fouzi Benmoussa

    2017-09-01

    Full Text Available This work presents a numerical study of the thermal behavior of shell-and-tube latent thermal energy storage (LTES unit using two phase change materials (PCMs. The heat transfer fluid (HTF flow through the inner tube and transfer the heat to PCMs. First, a mathematical model is developed based on the enthalpy formulation and solved through the governing equations. Second, the effects of HTF inlet temperature on the unsteady temperature evolution of PCMs, the total energy stored evolution as well as the total melting time is studied. Numerical results show that for all HTF inlet temperature, melting rate of PCM1 is the fastest and that of PCM2 is the slowest; increasing the HTF inlet temperature considerably increases the temperature evolution of PCMs. The maximum energy stored is observed in PCM2 with high melting temperature and high specific heat; heat storage capacity is large for high HTF inlet temperature. When the HTF inlet temperature increases from 338 K to 353 K, decreasing degree of melting time of PCM2 is the biggest from 1870 s to 490 s, which reduces about 73.8%; decreasing degree of melting time of PCM1 is the smallest from 530 s to 270 s, which reduces about 49.1%.

  12. Numerical simulation of internal flow in mixed-flow waterjet propulsion

    International Nuclear Information System (INIS)

    Wu, T T; Pan, Z Y; Zhang, D Q; Jia, Y Y

    2012-01-01

    In order to reveal the internal flow characteristic of a mixed-flow waterjet propulsion, a mixed-flow waterjet propulsion under different conditions was simulated based on multi-reference frame(MRF), the standard k − ε turbulent model and SIMPLEC algorithm. The relationship between pump performance instability and internal flow was obtained. The numerical results showed that characteristic instability occurred at 0.65-0.67Q BEP , the reason is that the backflow on the vaned diffuser hub-side blocks the downstream flow from the impeller. Therefore, the flow separates on the pressure surface of the impeller outlet and a strong vortex is generated, then the characteristic instability appeared due to the instability of internal flow. Backflow was found in diffuser passage at 0.65 Q BEP and 0.85 Q BEP , as flow rate decreases, the backflow region and velocity increases. Pressure fluctuation at diffuser inlet and diffuser passages was severe at at 0.65 Q BEP . According to the numerical simulation, the mixed-flow waterjet propulsion has characteristic instability at partial flow rate condition.

  13. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  14. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2016-04-01

    One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle

  15. Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft

    Science.gov (United States)

    Trefny, Charles J.; Hirt, Stefanie M.; Anderson, Bernhard H.; Fink, Lawrence E.; Magee, Todd E.

    2014-01-01

    Development of commercial supersonic aircraft has been hindered by many related factors including fuel-efficiency, economics, and sonic-boom signatures that have prevented over-land flight. Materials, propulsion, and flight control technologies have developed to the point where, if over-land flight were made possible, a commercial supersonic transport could be economically viable. Computational fluid dynamics, and modern optimization techniques enable designers to reduce the boom signature of candidate aircraft configurations to acceptable levels. However, propulsion systems must be carefully integrated with these low-boom configurations in order that the signatures remain acceptable. One technique to minimize the downward propagation of waves is to mount the propulsion systems above the wing, such that the wing provides shielding from shock waves generated by the inlet and nacelle. This topmounted approach introduces a number of issues with inlet design and performance especially with the highly-swept wing configurations common to low-boom designs. A 1.79%-scale aircraft model was built and tested at the NASA Glenn Research Center's 8-by 6-Foot Supersonic Wind Tunnel (8x6 SWT) to validate the configuration's sonic boom signature. In order to evaluate performance of the top-mounted inlets, the starboard flow-through nacelle on the aerodynamic model was replaced by a 2.3%-scale operational inlet model. This integrated configuration was tested at the 8x6 SWT from Mach 0.25 to 1.8 over a wide range of angles-of-attack and yaw. The inlet was also tested in an isolated configuration over a smaller range of angles-of-attack and yaw. A number of boundary-layer bleed configurations were investigated and found to provide a substantial positive impact on pressure recovery and distortion. Installed inlet performance in terms of mass capture, pressure recovery, and distortion over the Mach number range at the design angle-of-attack of 4-degrees is presented herein and compared

  16. Mathematical Modeling of Flow in Human Vocal Tract

    Science.gov (United States)

    Pořízková, Petra; Kozel, Karel; Horáček, Jaromír

    This study deals with the numerical solution of a 2D unsteady flow of a compressible viscous fluid in a channel for low inlet airflow velocity. The unsteadiness is caused by a prescribed periodic motion of the channel wall. Unsteady flow fields for inlet Mach number M ∞ = 0. 012 and frequency 100 Hz are presented.

  17. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  18. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    Science.gov (United States)

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  19. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    Science.gov (United States)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully)embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. A three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is applied to analyze and corroborate fan performance with clean inlet flow. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a loosely-coupled approach, is modified to include a tightly-coupled aeroelastic simulation capability, and then loosely-coupled and tightly-coupled methods arecompared in their evaluation of flutter stability in distorted in-flows.

  20. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    Science.gov (United States)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  1. Multiple steady fluid flows in a slot-ventilated enclosure

    International Nuclear Information System (INIS)

    Zhao Fuyun; Liu Di; Tang Guangfa

    2008-01-01

    Present work numerically investigates three-dimensional non-linear aerodynamic structures of airflow in a slot-ventilated compartment with three ports. A numerical code based on Reynolds average Navier-Stokes equations and Reynolds stress turbulence model was validated, and successfully conducted for simulating the airflow in the studied room. Numerical results are particularly presented to illustrate the effects of the inlet airflow velocity, enclosure width, supplying ports elevation and Reynolds number on the multiple flow patterns and the associated ventilation flow rate and blowing-axial momentum decay for equal-magnitude opposite jet flows. It is shown that the room airflow rate and the shift of jet flow interface can be promoted or inhibited, depending strongly on the jet velocity, enclosure width and elevation of supplying ports

  2. Supersonic propulsion simulation by incorporating component models in the large perturbation inlet (LAPIN) computer code

    Science.gov (United States)

    Cole, Gary L.; Richard, Jacques C.

    1991-01-01

    An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.

  3. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.

    1989-01-01

    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  4. Performance modeling of industrial gas turbines with inlet air filtration system

    Directory of Open Access Journals (Sweden)

    Samuel O. Effiom

    2015-03-01

    Full Text Available The effect of inlet air filtration on the performance of two industrial gas turbines (GT is presented. Two GTs were modeled similar to GE LM2500+ and Alstom GT13 E2-2012, using TURBOMATCH and chosen to operate at environmental conditions of Usan offshore oilfield and Maiduguri dessert in Nigeria. The inlet pressure recovered (Precov from the selected filters used in Usan offshore, and Maiduguri ranged between 98.36≤Precov≤99.51% and 98.67≤Precov≤99.56% respectively. At reduced inlet Precov by 98.36% (1.66 kPa and, at a temperature above 15 °C (ISA, a reduction of 16.9%, and 7.3% of power output and efficiency was obtained using GT13 E2-2012, while a decrease of 14.8% and 4.7% exist for power output and efficiency with GE LM2500+. In addition, a reduction in mass flow rate of air and fuel under the same condition was between 4.3≤mair≤10.6% and 10.4≤mfuel≤11.5% for GT13 E2-2012 and GE LM2500+, correspondingly. However, the GE LM2500+ was more predisposed to intake pressure drops since it functioned at a higher overall pressure ratio. The results obtained were found worthwhile and could be the basis for filter selection and efficient compressor housing design in the locations concerned.

  5. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  6. Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...

  7. Cook Inlet and Kenai Peninsula, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  8. AFSC/REFM: Cook Inlet Beluga Whale Economic Survey 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project was to collect data to understand the publics preferences for protecting the Cook Inlet beluga whale (CIBW), a distinct population...

  9. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  10. Engineering Study of Inlet Entrance Hydrodynamics: Grays Harbor, Washington, USA

    National Research Council Canada - National Science Library

    Cialone, Mary A; Kraus, Nicholas C

    2001-01-01

    .... The influence of the tidal current and water level on wave transformation was also examined. Ebb current produces the greatest change at the inlet entrance, increasing wave heights by as much as 0.5-1.5 m...

  11. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  12. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  13. Energy efficient air inlet humidity control; Energiezuinige inblaasvochtregeling

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2005-03-15

    This project report describes the results of research conducted on the control of the inlet, humidification and dehumidification, based on the air inlet humidity rate. The project was carried out at a mushroom cultivation business in Heijen, the Netherlands [Dutch] Deze projectrapportage geeft de resultaten van het onderzoek naar het regelen van de luchtklep, bevochtiging en ontvochtiging, op basis van het inblaasvochtgehalte. Het project werd uitgevoerd op een champignonkwekerij in Heijen.

  14. Parametric Geometry, Structured Grid Generation, and Initial Design Study for REST-Class Hypersonic Inlets

    Science.gov (United States)

    Ferlemann, Paul G.; Gollan, Rowan J.

    2010-01-01

    Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.

  15. Numerical Simulation of 3D Viscous MHD Flows

    National Research Council Canada - National Science Library

    Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M

    2003-01-01

    .... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...

  16. Experimental study on low pressure flow instability

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Wu Shaorong; Bo Jinhai; Zhang Youjie

    1997-05-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The flow behavior for a wide range of inlet subcooling, in which the flow undergoes from single phase to two phase, is described in a natural circulation system at low pressure (p = 0.1, 0.24 MPa). Several kinds of flow instability, e.g. subcooled boiling instability, subcooled boiling induced flashing instability, pure flashing instability as well as flashing coupled density wave instability and high frequency flow oscillation, are investigated. The mechanism of flashing and flashing concerned flow instability, which has never been studied well in this field, is especially interpreted. The experimental results show that, firstly, for a low pressure natural circulation system the two phase flow is unstable in most of inlet subcooling conditions, the two phase stable flow can only be reached at very low inlet subcooling; secondly, at high inlet subcooling the flow instability is dominated by subcooled boiling in the heated section, and at middle inlet subcooling is dominated by void flashing in the adiabatic long riser; thirdly, in two phase stable flow region the condition for boiling out of the core, namely, single phase flow in the heated section, two phase flow in the riser due to vapor flashing, can be realized. The experimental results are very important for the design and accident analysis of the vessel and swimming pool type natural circulation nuclear heating reactor. (7 refs., 10 figs., 1 tab.)

  17. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, J.A.E.; Foden, P.; Taylor, K.; McKeown, J.; Desa, E.

    The performance of a pressure transducer, with its inlet attached to differing hydromechanical front ends, has been evaluated in flow flume and wave flume experiments in which laminar and turbulent flows, and regular progressive gravity waves...

  18. A master-follower type distributed scheme for reactor inlet temperature control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Dean, E.M.; Vilim, R.B.

    1995-01-01

    This paper describes the implementation of a computer-based controller for regulating reactor inlet temperature in a pool-type power plant. The elements of the control system are organized in a master-follower hierarchical architecture that takes advantage of existing in-plant hardware and software to minimize the need for plant modifications. Low level control algorithms are executed on existing local digital controllers (followers) with the high level algorithms executed on a new plant supervisory computer (master). A distributed computing strategy provides integration of the existing and additional computer platforms. The control system operates by having the master controller first estimate the secondary sodium flow needed to achieve a given reactor inlet temperature. The estimated flow is then used as a setpoint by the follower controller to regulate sodium flow using a motor-generator pump set. The control system has been implemented in a Hardware-In-the-Loop (FM) setup and qualified for operation in the Experimental Breader reactor 11 of Argonne National Laboratory. Some HIL results are provided

  19. Design-of-experiments to Reduce Life-cycle Costs in Combat Aircraft Inlets

    Science.gov (United States)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design- of-Experiments (DOE), to arrive at micro-secondary flow control installation designs that achieve optimal inlet performance for different mission strategies. These statistical design concepts were used to investigate the properties of "low unit strength" micro-effector installation. "Low unit strength" micro-effectors are micro-vanes, set a very low angle-of incidence, with very long chord lengths. They are designed to influence the neat wall inlet flow over an extended streamwise distance. In this study, however, the long chord lengths were replicated by a series of short chord length effectors arranged in series over multiple bands of effectors. In order to properly evaluate the performance differences between the single band extended chord length installation designs and the segmented multiband short chord length designs, both sets of installations must be optimal. Critical to achieving optimal micro-secondary flow control installation designs is the understanding of the factor interactions that occur between the multiple bands of micro-scale vane effectors. These factor interactions are best understood and brought together in an optimal manner through a structured DOE process, or more specifically Response Surface Methods (RSM).

  20. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Hassan Athari

    2015-01-01

    Full Text Available Biomass energy and especially biofuels produced by biomass gasification are clean and renewable options for power plants. Also, on hot days the performance of gas turbines decreases substantially, a problem that can be mitigated by fog cooling. In the present paper, a biomass-integrated fogging steam injected gas turbine cycle is analyzed with energy and exergy methods. It is observed that (1 increasing the compressor pressure ratio raises the air flow rate in the plant but reduces the biomass flow rate; (2 increasing the gas turbine inlet temperature decreases the air and biomass flow rates; (3 increasing the compressor pressure ratio raises the energy and exergy efficiencies, especially at lower pressure ratios; (4 increasing the gas turbine inlet temperature raises both efficiencies; and (5 overspray increases the energy efficiency and net cycle power slightly. The gas turbine exhibits the highest exergy efficiency of the cycle components and the combustor the lowest. A comparison of the cycle with similar cycles fired by natural gas and differently configured cycles fueled by biomass shows that the cycle with natural gas firing has an energy efficiency 18 percentage points above the biomass fired cycle, and that steam injection increases the energy efficiency about five percentage points relative to the cycle without steam injection. Also, the influence of steam injection on energy efficiency is more significant than fog cooling.

  1. Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, L.M.C. [Department of Mechanical Engineering, Escola Superior de Tecnologia de Setubal, Polytechnic Institute of Setubal, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal); Gato, L.M.C.; Falcao, A.F.O. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal)

    2010-09-15

    The paper presents a fast design method for the inlet guide vanes of low-cost mini hydraulic bulb turbines. The guide vanes are positioned between two conical surfaces with a common vertex and have constant thickness distribution, except close to the leading and the trailing edges. The conical-walled inlet guide vane row is designed using a quasi-three-dimensional calculation method, by prescribing the angular-momentum distribution along the span at the outlet section of the guide vanes. The meridional through-flow is computed by a streamline curvature method and the blade-to-blade flow by a singularity surface method. The stagger angle and the vane camber are computed to fulfil the required design circulation and zero-incidence flow at the leading edge. The final vane shape is a single-curvature surface with straight leading and trailing edges. To validate the design method, a conical-walled inlet guide vane row nozzle-model with six fixed vanes was designed, manufactured and tested in an airflow rig. Traversing measurements along the circumferential and radial directions were made with a five-hole probe. The experimental results are compared with the prescribed design conditions and with numerical results from the three-dimensional inviscid and viscous flow computed with the FLUENT code. (author)

  2. Adaptive unstructured simulations of diaphragm rupture and perforation opening to start hypersonic air inlets

    International Nuclear Information System (INIS)

    Timofeev, E.V.; Tahir, R.B.; Voinovich, P.A.; Moelder, S.

    2004-01-01

    The concept of 'twin' grid nodes is discussed in the context of unstructured, adaptive meshes that are suitable for highly unsteady flows. The concept is applicable to internal boundary contours (within the computational domain) where the boundary conditions may need to be changed dynamically; for instance, an impermeable solid wall segment can be redefined as a fully permeable invisible boundary segment during the course of the simulation. This can be used to simulate unsteady gas flows with internal boundaries where the flow conditions may change rapidly and drastically. As a demonstration, the idea is applied to study the starting process in hypersonic air inlets by rupturing a diaphragm or by opening wall-perforations. (author)

  3. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  4. Investigation on countercurrent flow characteristics in vertical tubes

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2001-01-01

    It is found in the experiment that for different air inlet the flooding may be occurred in air inlet or outlet in two-phase countercurrent flow. Since the positions of flooding are difference, the correlation between water flow rate and air flow rate for onset of flooding is difference. This result is of significant meaning for studying the mechanism of onset of flooding. The reason for this difference is analyzed based on two-phase flow characteristics. It is proposed that different correlation should be used to calculate the inlet flooding and outlet flooding

  5. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  6. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    Science.gov (United States)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  7. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    Science.gov (United States)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  8. Bathymetric survey of the Cayuga Inlet flood-control channel and selected tributaries in Ithaca, New York, 2016

    Science.gov (United States)

    Wernly, John F.; Nystrom, Elizabeth A.; Coon, William F.

    2017-09-08

    From July 14 to July 20, 2016, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, surveyed the bathymetry of the Cayuga Inlet flood-control channel and the mouths of selected tributaries to Cayuga Inlet and Cayuga Lake in Ithaca, N.Y. The flood-control channel, built by the U.S. Army Corps of Engineers between 1965 and 1970, was designed to convey flood flows from the Cayuga Inlet watershed through the City of Ithaca and minimize possible flood damages. Since that time, the channel has infrequently been maintained by dredging, and sediment accumulation and resultant shoaling have greatly decreased the conveyance of the channel and its navigational capability.U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. The survey produced a dense dataset of water depths that were converted to bottom elevations. These elevations were then used to generate a geographic information system bathymetric surface. The bathymetric data and resultant bathymetric surface show the current condition of the channel and provide the information that governmental agencies charged with maintaining the Cayuga Inlet for flood-control and navigational purposes need to make informed decisions regarding future maintenance measures.

  9. Effects of gravity and inlet/outlet location on a two-phase cocurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2011-01-01

    We introduce 2D numerical investigations of the problem of gravity and inlet/outlet location effects of water-oil two-phase cocurrent imbibition in a porous medium. Three different cases of side-, top-, and bottom-inlet location are considered. Two-dimensional computations are carried out using the finite element method. Intensive comparisons are done between considering and neglecting gravity effect on water saturation, pressures of water and oil as well as water velocity. Results are introduced either in curves or as 2D visualization graphs. The results indicate that the buoyancy effects due to gravity force take place depending on inlet location. So, the buoyancy force in the momentum equations of the co-current imbibition model cannot be neglected as done by several previous studies. Also, we note that the 2D zero gravity model has a uniform flow and may be represented as 1D flow unlike the 2D nonzero gravity model showing a nonuniform flow. Copyright 2011 M. F. El-Amin and Shuyu Sun.

  10. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors

    Science.gov (United States)

    Gui, Xingmin; Zhu, Fang; Wan, Ke; Jin, Donghai

    2013-10-01

    Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr. Wennerstrom in the 1980s. However, some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency, vibration and reliability. Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation (CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade. The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper. The results show that the CF source items which originate from design parameters, such as the spanwise distributions of the loading and blading geometries, contribute to the changing of averaged incidence spanwise distribution, and further more affect the performance of axial fans/compressors with swept blades.

  11. Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system

    Science.gov (United States)

    Żmudka, Zbigniew; Postrzednik, Stefan; Przybyła, Grzegorz

    2014-09-01

    The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.

  12. Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system

    Directory of Open Access Journals (Sweden)

    Żmudka Zbigniew

    2014-09-01

    Full Text Available The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.

  13. Bedform evolution in a tidal inlet referred from wavelet analysis

    DEFF Research Database (Denmark)

    Fraccascia, Serena; Winter, Christian; Ernstsen, Verner Brandbyge

    2011-01-01

    Bedforms are common morphological features in subaqueous and aeolian environments and their characterization is commonly the first step to better understand forcing factors acting in the system. The aim of this study was to investigate the spectral characteristics of compound bedforms in a tidal...... inlet and evaluate how they changed over consecutive years, when morphology was modified and bedforms migrated. High resolution bathymetric data from the Grådyb tidal inlet channel (Danish Wadden Sea) from seven years from 2002 to 2009 (not in 2004) were analyzed. Continuous wavelet transform of bed...

  14. Tangential inlet supersonic separators: a novel apparatus for gas purification

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yang, Yan

    2016-01-01

    A novel supersonic separator with a tangential inlet is designed to remove the condensable components from gas mixtures. The dynamic parameters of natural gas in the supersonic separation process are numerically calculated using the Reynolds stress turbulence model with the Peng-Robinson real gas...... be generated by the tangential inlet, and it increases to the maximum of 200 m/s at the nozzle throat due to decrease of the nozzle area of the converging part. The tangential velocity can maintain the value of about 160 m/s at the nozzle exit, and correspondingly generates the centrifugal acceleration of 3...

  15. Sources and sinks of filtered total mercury and concentrations of total mercury of solids and of filtered methylmercury, Sinclair Inlet, Kitsap County, Washington, 2007-10

    Science.gov (United States)

    Paulson, Anthony J.; Dinicola, Richard S.; Noble, Marlene A.; Wagner, Richard J.; Huffman, Raegan L.; Moran, Patrick W.; DeWild, John F.

    2012-01-01

    The majority of filtered total mercury in the marine water of Sinclair Inlet originates from salt water flowing from Puget Sound. About 420 grams of filtered total mercury are added to Sinclair Inlet each year from atmospheric, terrestrial, and sedimentary sources, which has increased filtered total mercury concentrations in Sinclair Inlet (0.33 nanograms per liter) to concentrations greater than those of the Puget Sound (0.2 nanograms per liter). The category with the largest loading of filtered total mercury to Sinclair Inlet included diffusion of porewaters from marine sediment to the water column of Sinclair Inlet and discharge through the largest stormwater drain on the Bremerton naval complex, Bremerton, Washington. However, few data are available to estimate porewater and stormwater releases with any certainty. The release from the stormwater drain does not originate from overland flow of stormwater. Rather total mercury on soils is extracted by the chloride ions in seawater as the stormwater is drained and adjacent soils are flushed with seawater by tidal pumping. Filtered total mercury released by an unknown freshwater mechanism also was observed in the stormwater flowing through this drain. Direct atmospheric deposition on the Sinclair Inlet, freshwater discharge from creek and stormwater basins draining into Sinclair Inlet, and saline discharges from the dry dock sumps of the naval complex are included in the next largest loading category of sources of filtered total mercury. Individual discharges from a municipal wastewater treatment plant and from the industrial steam plant of the naval complex constituted the loading category with the third largest loadings. Stormwater discharge from the shipyard portion of the naval complex and groundwater discharge from the base are included in the loading category with the smallest loading of filtered total mercury. Presently, the origins of the solids depositing to the sediment of Sinclair Inlet are uncertain, and

  16. Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea

    NARCIS (Netherlands)

    Duran-Matute, M.; Gerkema, T.; Sassi, M.

    2016-01-01

    In multiple-inlet coastal systems like the western Dutch Wadden Sea, the tides (and their interaction with the bathymetry), the fresh water discharge, and the wind drive a residual flow through the system. In the current paper, we study the effect of the wind on the residual volume transport through

  17. Inlet design studies for a Mach 2.2 advanced supersonic cruise vehicle

    Science.gov (United States)

    Shimabukuro, K. M.; Welge, H. R.; Lee, A. C.

    1979-01-01

    Various inlet-engine combinations have been studied to find a preferred inlet concept for integration with an advanced technology Mach 2.2 cruise vehicle having a cruise lift-to-drag ratio of 9.6. For the purposes of this study, the range capability for a fixed takeoff gross weight was used to assess the various inlet-engine combinations. Inlet concept selection studies are described which indicated that an axisymmetric, mixed compression inlet was preferred. This study considered four inlet and three engine cycle combinations where the engine airflow was tailored to the inlet airflow delivery capability. Detailed design studies of two mixed compression inlet types are discussed. These were a translating centerbody inlet and a collapsing centerbody bicone inlet. The aerodynamic and mechanical design of each inlet is described. These inlets were also matched to different engine cycles tailored to the inlet airflow capability. The range increments favored the bicone inlet concept primarily because of lighter weight, reduced bleed air, and greater transonic airflow/thrust capability.

  18. Simple mathematical model of sacroiliac screws safe-zone-Easy to implement by pelvic inlet and outlet views.

    Science.gov (United States)

    Herman, Amir; Keener, Emily; Dubose, Candice; Lowe, Jason A

    2017-07-01

    Percutaneous sacral screw fixation is the mainstay of posterior pelvic ring fixation. This study quantifies the accuracy of fluoroscopic screw placement using post-operative CT scans and redefines the fluoroscopic safe zone using a mathematical calculation obtained from Inlet and outlet images. The authors hypothesized that a mathematical calculation of screw placement within the ala will improve accuracy of screw placement. A retrospective review of consecutive patients admitted to a level 1 trauma center with pelvic fractures fixed with iliosacral screws from January 2011 to December 2014 was performed. Accuracy of screw placement was determined by comparing fluoroscopy to post-operative CT scans. A mathematical calculation of screw position within the sacral ala was applied to determine assess screw position and compared to CT findings. Ninety-four patients with 156 screws met inclusion criteria, of which 50 (32.0%) had a cortical breech on CT. The sensitivity and specificity of the inlet-outlet safe zone using mathematical calculation were 97.1% and 84.0%, respectively. The positive and negative predictive values were 92.7% and 93.3%, respectively. Overall accuracies of the radiographic inlet-outlet and lateral safe zones were 92.9% and 70.0%, respectively (p-value = 0.004). Sacral dysmorphism was not found to be associated with sacral cortical breech. A Simple mathematical calculation (screw position relative to percentage of bone width) on the inlet-outlet provides an accurate way to predict the accuracy of sacroiliac screws. The method is easy to implement, part of the surgery work-flow, and provides higher accuracy than relying on subjective interpretation of inlet, outlet, and lateral images. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1478-1484, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.

    2008-01-01

    Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK

  20. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  1. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Science.gov (United States)

    2010-01-01

    ... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would require..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both...), and exhaust must be shown to function properly under all operating conditions for which approval is...

  2. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given ...

  3. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given...

  4. Suppression of inducer stall based on inlet recirculation in a centrifugal impeller. 1st Report. Improvement in stall limit by ring groove arrangement; Enshin haneguruma iriguchi junkanryu ni yoru inducer shissoku no yokusei. 1. kanjoko ni yoru shissoku genkai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, H.; Ishida, M.; Sakaguchi, D.; Sun, Z. [Nagasaki University, Nagasaki (Japan). Faculty of Engineering

    2000-07-25

    A ring groove arrangement is proposed to suppress unstable flow or surge in a centrifugal blower. The ring groove arrangement connects the upstream position of impeller inlet and the inducer throat tip through a bypass. The recirculation flow 'vas formed by the pressure difference between the two positions, and the recirculation flow rate was changed by increasing the ring groove widths. The inlet recirculation results in a decrease in the flow rate of unstable flow inception, and an up to 800 improvement in stall limit was obtained by the ring groove arrangement at a small expense of the delivery pressure drop. The improvement of stall limit in the present experiment seems to be mainly due to decrease in flow incidence based on the inlet recirculation flow. Tre flow incidence decreases more as the recirculation flow rate increases, thus resulting in a larger improvement in stall limit. (author)

  5. A PLIC-VOF-Based Simulation of Water-Organic Slug Flow Characteristics in a T-Shaped Microchannel

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available A water-organic slug flow in a T-shaped microchannel was numerically studied due to its importance in the microreactor system. Various factors affecting the flow mode were studied, for example, channel width, fluid viscosity, interfacial tension, and inlet velocity. The volume of fluid (VOF method was used to track the liquid-liquid interface, and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF, model and the wall adhesion boundary condition was taken into consideration. The results show that strong vortexes appear in both phases at the meeting sites of main and lateral channels where an organic slug is producing. Inlet velocity influences the slug length and flow mode greatly. The ratio between the slug lengths of two phases in the main channel is almost equal to the ratio between their inlet velocities. If the slug is produced, the interfacial tension and organic viscosity have less effect on the slug length for 200 μm microchannel. The slug producing rate is much higher in a narrow channel than that in a wide channel.

  6. New Inlet in Great South Bay: Changes in Circulation Dynamics, Residence Time, and Salt Balance in Response to Low Frequency Forcing from Observations and FCVOM Simulations

    Science.gov (United States)

    Hinrichs, C.; Flagg, C. N.; Wilson, R. E.; Flood, R. D.

    2016-02-01

    The Great South Bay is a shallow, multi-inlet estuary at the south shore of Long Island. It is sheltered from the Atlantic by its barrier island Fire Island. Sufficient freshwater input in form of river flow, runoff, and groundwater input combined with restricted ocean-bay-exchange through few narrow inlets produce significant horizontal salinity and temperature gradients. A new inlet was cut into Fire Island during Hurricane Sandy in October 2012, and thanks to the ongoing monitoring program observational data is available from before and after Sandy to investigate changes in the bay induced by this new inlet.The data show a persistent increase in salinity in the bay, and residents, fishermen and scientists report decreased turbidity, improved water quality and a healthier ecosystem in the eastern part of bay. Calculation of residence time based on the freshwater fraction method showed a decrease from 25 to ten days for Bellport Bay near the new breach. From tide gauge data we see, that while tidal range in the bay has not increased significantly with the new inlet, water level response to low frequency forcing did. In general, water levels within the bay responds to both coastal Ekman set-up/set-down and to local wind forcing over the bay itself. Data analysis shows that the relative importance of those two drivers did change with the new inlet. In concert with data analysis, the finite element model FVCOM is applied on a high-resolution Great South Bay grid to further investigate changes in salinity distribution, circulation, and bay-ocean volume-exchange induced by the new breach as well as to examine the degree of interaction between the existing inlets and the new breach.

  7. Review of Singular Cooling Inlet and Linear Pressure Drop for ITER Coils Cable in Conduit Conductor

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Cloez, H.; Decool, P.; Lacroix, B.; Lebailly, C. A.; Serries, J. P.

    2006-04-01

    New tests and measurements performed (Othello Facility, EFDA Task) on TF mock up cooling inlet and different central spirals (characteristics: hydraulic outer diameter and perforation ratio) are presented, as well as the new model of singular and linear friction factor. The ITER Coils CICC hydraulic length pressure drop is determined in operating conditions (m=8 g/s, P=0.6 MPa and T=5 K): the important result is an increase in linear pressure drop for the TF (290 Pa/m) and CS (430 Pa/m), in comparison with prototype model coils TFMC (100 Pa/m) and CSMC (180 Pa/m). The main reason is the reduction of the central spiral diameter and associated increase of friction factor and bundle to total mass flow ratio α (from 1/3 up to 2/3 typically). The ratio of singular cooling inlet to CICC linear pressure drop is estimated: TF mock up ratio (3 m) is lower than previous CS mock up tested (12 m), due to design changes. The cryogenic power necessary to compensate the CICC pressure drop is calculated for the 4 primary loop circuits: typically 2.3 kW at 5 K for TF winding system represents 40% of the whole average TF winding magnet heat loads during operation.

  8. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  9. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  10. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  11. Structure, stability, and tsunami hazard associated with a rock slope in Knight Inlet, British Columbia

    Science.gov (United States)

    van Zeyl, D. P.; Stead, D.; Sturzenegger, M.; Bornhold, B. D.; Clague, J. J.

    2015-06-01

    Rockfalls and rockslides during the past 12 000 years have deposited bouldery debris cones on the seafloor beneath massive rock slopes throughout the inner part of Knight Inlet. The 885 m high rock slope, located across from a former First Nations village destroyed in the late 1500s by a slide-induced wave, exposes the contact between a Late Cretaceous dioritic pluton and metamorphic rocks of the Upper Triassic Karmutsen Formation. The pluton margin is strongly foliated parallel to primary and secondary fabrics in the metamorphic rocks, resulting in highly persistent brittle structures. Other important structures include a set of sheeting joints and highly persistent mafic dykes and faults. Stability analysis indicates that planar and wedge rock slope failures up to about 500 000 m3 in volume could occur. We suspect that failures of this size in this setting would have the potential to generate locally hazardous waves. As several similar rock slopes fronted by large submarine debris cones exist in the inner part of Knight Inlet, it is clear that tsunami hazards should be considered in coastal infrastructure development and land-use planning in this area.

  12. 78 FR 54668 - Cook Inlet Regional Citizens' Advisory Council (CIRCAC) Charter Renewal

    Science.gov (United States)

    2013-09-05

    ... Inlet Regional Citizens' Advisory Council (CIRCAC) as an alternative voluntary advisory group for Cook... Coast Guard recertified the Cook Inlet Regional Citizen's Advisory Council through August 31, 2013... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0720] Cook Inlet Regional Citizens...

  13. 76 FR 42134 - Application for Recertification of Cook Inlet Regional Citizens' Advisory Council

    Science.gov (United States)

    2011-07-18

    ... Cook Inlet Regional Citizens' Advisory Council AGENCY: Coast Guard, DHS. ACTION: Notice of availability... application for recertification submitted by the Cook Inlet Regional Citizen's Advisory Council (CIRCAC) for... of a Regional Citizens' Advisory Council for Cook Inlet, Alaska. This advisory group monitors the...

  14. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ...] Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida AGENCY... as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES: Effective Date: May 2, 2011... U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural Area, and which...

  15. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...

  16. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo-morphological...

  17. 36 CFR 13.320 - Preference to Cook Inlet Region, Incorporated.

    Science.gov (United States)

    2010-07-01

    ... Region, Incorporated. 13.320 Section 13.320 Parks, Forests, and Public Property NATIONAL PARK SERVICE... to Cook Inlet Region, Incorporated. (a) The Cook Inlet Region, Incorporated (CIRI), in cooperation with village corporations within the Cook Inlet region when appropriate, will have a right of first...

  18. 78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL

    Science.gov (United States)

    2013-02-15

    ... 1625-AA00 Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL AGENCY... safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide for the safety of life and vessels..., dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida. These operations...

  19. Bedload transport in an inlet channel during a tidal cycle

    DEFF Research Database (Denmark)

    Ernstsen, V. B.; Becker, M.; Winter, C.

    2007-01-01

      Based on high-resolution swath bathymetry measurements at centimetre-scale precision conducted during a tidal cycle in a dune field in the Grådyb tidal inlet channel in the DanishWadden Sea, a simple tool to calculate bedload transport is presented. Bedload transport was related to simultaneous...... variations in grain-size composition of the mobilised sediment should be taken into account by sediment transport formulae....

  20. 2239 EFFECT OF INLET-AIR TEMPERATURE ON PHYSICO ...

    African Journals Online (AJOL)

    Mimi

    divided into two portions (samples A and B) and spray-dried using co-current spray dryer at a constant feed rate (20.5 ml/sec) but at air-inlet temperatures of 204oC and. 260oC, respectively ... serve as cheap but nutritious infant formula ingredients. Breakfast cereals, macaroni, spaghetti, noodles flakes and sausage binders ...

  1. Reconstruction of paleo-inlet dynamics using sedimentologic analyses, geomorphic features, and benthic foraminiferal assemblages: former ephemeral inlets of Cedar Island, Virginia, USA

    Science.gov (United States)

    McBride, R.; Wood, E. T.

    2017-12-01

    Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and

  2. Mach 6 testing of two generic three-dimensional sidewall compression scramjet inlets in tetrafluoromethane

    Science.gov (United States)

    Holland, Scott D.; Perkins, John N.

    1990-01-01

    Three-dimensional sidewall compression scramjet inlets with leading edge sweeps of 30 and 70 degrees have been tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and a ratio of specific heats of 1.2. The effects of cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices distributed on the sidewalls, baseplate, and cowl. Schlieren movies were made of each test for flow visualization of the entrance plane and cowl region. In order to obtain an approximate characterization of the flow field, a modification to two-dimensional inviscid oblique shock theory was derived to accommodate the three-dimensional effects of leading edge sweep. This theory qualitatively predicted the reflected shock structure/sidewall impingement locations and the observed increase in spillage (flow upturning) with increasing leading edge sweep. The primary effect of moving the cowl forward is capturing the flow which would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio (moving the sidewalls closer together) increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number.

  3. Shock Positioning Controls Designs for a Supersonic Inlet

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.

    2010-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The supersonic inlet design that is utilized to efficiently compress the incoming air and deliver it to the engine has many design challenges. Among those challenges is the shock positioning of internal compression inlets, which requires active control in order to maintain performance and to prevent inlet unstarts due to upstream (freestream) and downstream (engine) disturbances. In this paper a novel feedback control technique is presented, which emphasizes disturbance attenuation among other control performance criteria, while it ties the speed of the actuation system(s) to the design of the controller. In this design, the desired performance specifications for the overall control system are used to design the closed loop gain of the feedback controller and then, knowing the transfer function of the plant, the controller is calculated to achieve this performance. The innovation is that this design procedure is methodical and allows maximization of the performance of the designed control system with respect to actuator rates, while the stability of the calculated controller is guaranteed.

  4. Characterizing Interferences in an NOy Thermal Dissociation Inlet

    Science.gov (United States)

    Womack, C.; Veres, P. R.; Brock, C. A.; Neuman, J. A.; Eilerman, S. J.; Zarzana, K. J.; Dube, W. P.; Wild, R. J.; Wooldridge, P. J.; Cohen, R. C.; Brown, S. S.

    2016-12-01

    Nitrogen oxides (NOx = NO and NO2) are emitted into the troposphere by various anthropogenic and natural sources, and contribute to increased levels of ambient ozone. Reactive nitrogen species (NOy), which include nitric acid, peroxy acetyl and organic nitrates, and other species, serve as reservoirs and sinks for NOx, thus influencing O3 production. Their detection is therefore critical to understanding ozone chemistry. However, accurate measurements of NOy have proven to be difficult to obtain, and measurements of total NOy sometimes do not agree with the sum of measurements of its individual components. In recent years, quartz thermal dissociation (TD) inlets have been used to thermally convert all NOy species to NO2, followed by detection by techniques such as laser induced fluorescence (LIF) or cavity ringdown spectroscopy (CRDS). Here we discuss recent work in characterizing the NOy channel of our four-channel TD-CRDS instrument. In particular, we have examined the thermal conversion efficiency of several representative NOy species under a range of experimental conditions. We find that under certain conditions, the conversion efficiency is sensitive to inlet residence time and to the concentration of other trace gases found in ambient sampling, such as ozone. We also report the thermal dissociation curves of N2O5 and ammonium nitrate aerosol, and discuss the interferences observed when ammonia and ozone are co-sampled in the inlet.

  5. Development of an inlet pressure sensor for control in a left ventricular assist device.

    Science.gov (United States)

    Fritz, Bryan; Cysyk, Joshua; Newswanger, Ray; Weiss, William; Rosenberg, Gerson

    2010-01-01

    A Tesla type continuous flow left ventricular assist device (VAD) has been designed by Penn State and Advanced Bionics, Inc. (ABI). When a continuous flow device is used, care must be taken to limit low pressures in the ventricle, which can produce an obstruction to the inlet cannula or trigger arrhythmias. Design of an inexpensive, semiconductor strain gauge inlet pressure sensor to detect suction has been completed. The research and design analysis included finite element modeling of the sensing region. Sensitivity, step-response, temperature dependence, and hysteresis tests have been performed on prototype units. All sensors were able to withstand the maximum expected strain of 82 microm/in at 500 mm Hg internal pressure. Average sensitivity was 0.52 +/- 0.24 microV/mm Hg with 0.5 V excitation (n = 5 units). Step-response time for a 0- to 90-mm Hg step change averaged 22 msec. Hysteresis was measured by applying and holding 75 mm Hg internal pressure for 4 hours, followed by a zero pressure measurement, and ranged from -15 to 4.1 mm Hg (n = 3 units). Offset drift varied between 180 and -140 mm Hg over a 4-week period (n = 2 units). Span temperature sensitivity ranged from 18 to -21 muV/ degrees C (n = 5 units). Gain temperature sensitivity ranged from -7.4 to 4.9 muV/ degrees C (n = 5 units). With the inherent drift, it is currently not possible to use the transducer to measure actual pressures, but it can easily be used to measure pressure changes throughout the cardiac cycle. This signal can then be used in the control system to avoid ventricular suction events.

  6. The Effects of Air Preheating and Fuel/Air Inlet Diameter on the Characteristics of Vortex Flame

    Directory of Open Access Journals (Sweden)

    Mostafa Khaleghi

    2015-01-01

    Full Text Available The effects of fuel/air inlet diameter as well as air preheating on the flame stability, temperature distribution, pollutant formation, and combustion characteristics of a lab-scaled asymmetric vortex flame have been investigated. A three-dimensional steady-state finite volume solver has been used to solve the governing and energy equations. The solver uses a first-order upwind scheme to discretize the governing equations in the space. The semi-implicit method for pressure linked equations has been applied to couple the pressure to the velocity terms. Several turbulence models were applied to predict the flame temperature and it was found that k-ε RNG has given the best results in accordance with the experimental results. The results reveal that the inlet air diameter can enhance the thermal properties and reduce the NOx emission while the inlet fuel diameter has less significant impact. Increasing diameters are accompanied with a pressure drop. It was found that preheating the air and fuel would significantly affect the flame temperature and NOx emission with constant mass flow rate.

  7. The Effects of Inlet Box Aerodynamics on the Mechanical Performance of a Variable Pitch in Motion Fan

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes research involving an in-service failure of a “variable pitch in motion” fan’s blade bearing. Variable pitch in motion fans rotate at a constant speed, with the changing blade angle varying the load. A pitch-change mechanism facilitates the change in blade angle. A blade bearing supports each blade enabling it to rotate. The author observed that as the fan aerodynamic stage loading progressively increased, so did the rate of blade-bearing wear. The reported research addressed two separate, but linked, needs. First, the ongoing need to increase fan pressure development capability required an increase in fan loading. This increase was within the context of an erosive operating regime which systematically reduced fan pressure development capability. The second need was to identify the root cause of blade-bearing failures. The author addressed the linked needs using a computational analysis, improving the rotor inflow aerodynamic characteristics through an analysis of the inlet box and design of inlet guide vanes to control flow nonuniformities at the fan inlet. The results of the improvement facilitated both an increase in fan-pressure-developing capability and identification of the root cause of the blade-bearing failures.

  8. Control Volume Analysis of Boundary Layer Ingesting Propulsion Systems With or Without Shock Wave Ahead of the Inlet

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.

    2011-01-01

    The performance benefit of boundary layer or wake ingestion on marine and air vehicles has been well documented and explored. In this article, a quasi-one-dimensional boundary layer ingestion (BLI) benefit analysis for subsonic and transonic propulsion systems is performed using a control volume of a ducted propulsion system that ingests the boundary layer developed by the external airframe surface. To illustrate the BLI benefit, a relationship between the amount of BLI and the net thrust is established and analyzed for two propulsor types. One propulsor is an electric fan, and the other is a pure turbojet. These engines can be modeled as a turbofan with an infinite bypass ratio for the electric fan, and with a zero bypass ratio for the pure turbojet. The analysis considers two flow processes: a boundary layer being ingested by an aircraft inlet and a shock wave sitting in front of the inlet. Though the two processes are completely unrelated, both represent a loss of total pressure and velocity. In real applications, it is possible to have both processes occurring in front of the inlet of a transonic vehicle. Preliminary analysis indicates that the electrically driven propulsion system benefits most from the boundary layer ingestion and the presence of transonic shock waves, whereas the benefit for the turbojet engine is near zero or negative depending on the amount of total temperature rise across the engine.

  9. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  10. Modeling Interactions between Backbarrier Marshes, Tidal Inlets, Ebb-deltas, and Adjacent Barriers Exposed to Rising Sea Levels

    Science.gov (United States)

    Hanegan, K.; Georgiou, I. Y.; FitzGerald, D.

    2016-02-01

    Along barrier island chains, tidal exchange between the backbarrier and the coastal ocean supports unique saltwater and brackish ecosystems and is responsible for exporting sediment and nutrients to the surrounding coast. Tidal prism, basement controls, and wave and tidal energy dictate the size and number of tidal inlets and the volume of sand sequestered in ebb-tidal deltas. The inlet tidal prism is a function of bay area, tidal range, and secondary controls, including flow inertia, basinal hypsometry, and frictional factors. Sea- level rise (SLR) is threatening coastal environments, causing mainland flooding, changes in sediment supply, and conversion of wetlands and tidal flats to open water. These factors are impacting basinal hypsometry and increasing open water area, resulting in enlarging tidal prisms, increased dimensions of tidal inlets and ebb-tidal deltas, and erosion along adjacent barrier shorelines. Although the effects of SLR on coastal morphology are difficult to study by field observations alone, physics-based numerical models provide a sophisticated means of analyzing coastal processes over decadal time-scales and linking process causation to long term development. Here, we use a numerical model that includes relevant features in the barrier/tidal basin system, linking back-barrier marsh degradation, inlet expansion, and ebb-delta growth to barrier erosion through long-term hydrodynamic and morphology simulations. Sediment exchange and process interactions are investigated using an idealized domain resembling backbarrier basins of mixed energy coasts so that the sensitivity to varying SLR rates, interior marsh loss, sediment supply, and hydrodynamic controls can be more easily analyzed. Model runs explore these processes over geologic time scales, demonstrating the vulnerability of backbarrier systems to projected SLR and marsh loss. Results demonstrate the links between changing basin morphology and shoreface sedimentation patterns that initiate

  11. New Methodology for the Estimation  of StreamVane Design Flow Profiles

    OpenAIRE

    Smith, Katherine Nicole

    2018-01-01

    Inlet distortion research has become increasingly important over the past several years as demands for aircraft flight efficiency and performance has increased. To accommodate these demands, research progression has shifted the emphasis onto airframe-engine integration and improved understanding of engine operability in less than ideal conditions. Swirl distortion, which is considered a type of non-uniform inflow inlet distortion, is characterized by the presence of swirling flow in an inlet....

  12. Electroosmotically controllable multi-flow microreactor

    NARCIS (Netherlands)

    Kohlheyer, D.; Besselink, G.A.J.; Lammertink, Rob G.H.; Schlautmann, Stefan; Unnikrishnan, S.; Schasfoort, Richardus B.M.

    2005-01-01

    An adjustable diffusion-based microfluidic reactor is presented here, which is based on electro-osmotic guiding of reagent samples. The device consists of a laminar flow chamber with two separate reagent inlets. The position and the width of the two sample streams in the flow chamber can be

  13. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  14. Go big or die out: Bifurcation and bimodality in submarine sediment flow behaviour

    Science.gov (United States)

    Talling, P.; Paull, C. K.; Lintern, G.; Gwiazda, R.; Cartigny, M.; Hughes Clarke, J. E.; Xu, J.; Clare, M. A.; Parsons, D. R.; Simmons, S.; Maier, K. L.; Gales, J. A.; Hage, S.; McGann, M.; Pope, E.; Rosenberger, K. J.; Stacey, C.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Chapplow, N.; Vendettuoli, D.

    2017-12-01

    Submarine flows of sediment (turbidity currents) flush globally significant volumes of sediment and organic carbon into deep-sea basins. These flows create the largest sediment accumulations on Earth, which hold valuable oil and gas reserves. These flows affect global carbon burial, how deep-sea ecosystems function, and pose a hazard to offshore infrastructure. Only river systems transport such large amounts of sediment across such long distances. However, there are remarkably few direct measurements from active submarine flows, which is a stark contrast to >1 million direct observations from rivers. Here we present unusually detailed information on frequency, power and runout distance of multiple submarine flows at two contrasting locations. The first data set comes from Monterey Canyon, offshore California, which is fed by littoral cells. The second site is a river-fed delta in Bute Inlet, British Columbia. In both cases, the timing and runout distance of submarine flows was documented using instruments on multiple moorings placed along the 50-km long flow pathway. A striking observation is that flow behaviour and runout is strongly bimodal in both locations. Flows tend to either dissipate rapidly, or runout through the entire mooring arrays. We thus test whether i) the character of short or long runout flows can be distinguished at the first mooring and ii) whether long and short runout flows have different triggers. It has been proposed that submarine flows have two modes of behaviour; either eroding and accelerating, or depositing and dissipating. These field data support such a view of bifurcation and bimodality in flow behaviour. However, some short runout flows resemble their longer runout cousins at the first mooring, and there is no clear relationship between flow trigger and runout. Thus, some flows reach a point where their character is no longer dependent on their initial trigger or initial structure, but on factors acting along the flow pathway.

  15. Full Scale Measurements and CFD Simulations of Diffuse Ceiling Inlet for Ventilation and Cooling of Densely Occupied Rooms

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Fan, Jianhua

    2015-01-01

    Spaces with high occupant densities result in high heat gains and need for relatively high air change rate.By means of traditional mechanical ventilation diffusers it becomes a challenge to supply large amountsof fresh air into the space without creating a local discomfort for occupants. One...... comfort numerically. Results of our investigations have shown that diffuse ceiling inlet is a suitable solution for the spaceswith high density occupancy. The results have shown that transient calculations using Large Eddy Simulation models can predict well temperatures and velocity magnitude of air flow...

  16. The Effect of the Channel Head on the Unsteady Pressure Pulsation Characteristics at the Inlet and Outlet of Reactor Coolant Pumps

    Science.gov (United States)

    Yun, Long; Junlian, Yin; Dezhong, Wang; Yaoyu, Hu

    2016-11-01

    In this paper, CFD approach was employed to analyse the inlet and outlet pressure pulsation characteristics of reactor coolant pumps with different inflows. The Reynolds- averaged Naiver-Stokes equations with the k-ɛ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The channel head induces the inlet flow non-uniform, and the non-uniformity of the inflow induces the outlet flow of the pump with channel head different from that of the straight pipe. Meanwhile, the pressure pulsation signals are analysed using RMS, Standard Deviation and Peak-to-Peak Value method. At the points of the inlet and outlet, the pressure pulsation characteristics between the channel head and straight pipe are compared, and the difference is obviously. It is evident that the two different inflows of channel head and straight pipe have significant effect on the pump unsteady pressure pulsation. Finally, it is expected that the effects of non-uniform inflow on the pump performance and unsteady pressure pulsation are absolutely different from the uniform inflow. It is very important to provide accurate input conditions for the design and safety of the reactor.

  17. Experimental study of the core grid by-pass orifices inlet pressure drop of the new core of the R A 6 reactor

    International Nuclear Information System (INIS)

    Masson, V. P; Garcia, J. C; Delmastro, D. F

    2006-01-01

    In this work the core grid by-pass orifices inlet pressure drop of the new core of the R A6 reactor are experimentally studied.The experiments are performed using a 1:1 scale mock-up of an external fuel element cell.Different gaps between fuel elements are considered in order to take into account the design allowances. Different flows are considered to take into account the normal operation flow range.Measurement uncertainties are included.The results will be used to calculate the core flow distribution [es

  18. Bedload transport in an inlet channel during a tidal cycle

    DEFF Research Database (Denmark)

    Ernstsen, V. B.; Becker, M.; Winter, C.

    2007-01-01

      Based on high-resolution swath bathymetry measurements at centimetre-scale precision conducted during a tidal cycle in a dune field in the Grådyb tidal inlet channel in the DanishWadden Sea, a simple tool to calculate bedload transport is presented. Bedload transport was related to simultaneous...... dunes being active during the ebb tide, but negligible during the flood tide. Bedload transport was also predicted using five classical and widely used formulae. These predictors were all unable to depict the temporal variation in bedload transport during the tidal cycle. It is suggested that temporal...

  19. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  20. AG TURBO, TURBOTECH II - the influence of periodic unsteady inlet flow conditions on the transition behavior of compressor cascades. Final report; AG TURBO, TURBOTECH II: Vorhaben 1.134 - Optimierung des Stroemungsverhaltens von Verdichtergittern mit CDA-Profilierung. Der Einfluss periodisch instationaerer Zustroemung auf das Transitionsverhalten von Verdichtergittern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fottner, L.; Teusch, R.; Kampitsch, M.

    2000-09-01

    For the aerodynamic design of turbomachine blades current methods generally apply steady flow theory and consider unsteady effects like blade row interaction, shock-boundary layer interaction, potential effects and secondary flow effects only by means of empirical or semi-empirical correlations. In the context of a modern, cost-oriented blade design efforts are made to increase the aerodynamic blade loading by considering these unsteady effects whereby efficiency and performance are kept constant. This results in a blade count reduction and consequently a weight reduction, but entails a highly three-dimensional and unsteady flow field, which makes great demands on numerical design codes. The primary goals of this work was to investigate the unsteady flow behavior in compressor cascades with controlled diffusion blading under the influence of upstream wakes and to obtain a detailed insight into the physics of unsteady boundary layer behavior. With the obtained data base a validation of unsteady codes should be conducted. The investigated cascades V110 and V111 are representative for the mid section of stator blades in a high pressure compressors. At the investigated low Reynolds number a loss reduction up to 20% was observed, while at the high Reynolds number a loss increase up to 30% compared to the steady flow case was noted. The numerical results obtained by the unsteady Reynolds-averaged Navier-Stokes code TRACE{sub U} which includes a transition correlation showed a very good agreement with the experimental results. Further on indications for new design criteria considering unsteady flow effects were provided. (orig.) [German] Bei der aerodynamischen Auslegung von Turbomaschinenbeschaufelungen beruecksichtigten bisherige Verfahren instationaere Stroemungseffekte wie Schaufelreihen-Interaktion, Stoss-Grenzschicht-Wechselwirkung, Einfluss des Potentialfeldes und Sekundaerstroemungseffekte nur partiell ueber empirische und halbempirische Korrelationen. Im Rahmen

  1. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  2. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    Science.gov (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  3. Investigation of a Half-Conical Scoop Inlet Mounted at Five Alternate Circumferential Locations around a Circular Fuselage Pressure-Recovery Results at a Mach Number 2.01

    Science.gov (United States)

    Hasel, Lowell E.; Lankford, John L.; Robins, A. W.

    1953-01-01

    The effects of inlet circumferential position around the fuselage on the characteristics of a half-conical scoop inlet having a 24.6deg half-angle cone have been investigated in the langley 4- by 4-foot supersonic pressure tunnel. Pressure-recovery results have been obtained at a Mach number of 2.01 for a fixed boundary-layer-bleed height which was 60 percent of the boundary-layer thickness at an angle of attack of 0deg, and for cowling position parameters of 42.4deg and 38.0deg. inlet had a capture area equal to 24.9 percent of the basic-fuselage frontal area. The angle of attack was varied from 0deg to 12deg. The most favorable pressure-recovery characteristics at angles of attack were obtained with the Inlet located on the bottom of the fuselage where the maximum recovery increased from a value of 81 percent at an angle of attack of 0deg to 87 percent at 12deg. In general, the pressure recovery decreased with increasing angle of attack for all other inlet locations. At a given angle of attack the pressure recovery decreased as the inlet location was progressively moved from the bottom to the top of the fuselage. Stable subcritical operation of the inlet with nearly constant pressure recovery was obtained for inlet mass-flow ratios from 1.0 to about 0.76 at an angle of attack of 0deg with the central body in the design position.

  4. [Ebstein's "like" anomaly ventricular double inlet. A rare association].

    Science.gov (United States)

    Muñoz Castellanos, Luis; Kuri Nivon, Magdalena

    The association of univentricular heart with double inlet and Ebstein's "like" anomaly of the common atrioventricular valve is extremely rare. Two hearts with this association are described with the segmental sequential system which determine the atrial situs, the types of atrioventricular and ventriculoarterial connections and associated anomalies. Both hearts had atrial situs solitus, and a univentricular heart with common atrioventricular valve, a foramen primum and double outlet ventricle with normal crossed great arteries. In the fiefirst heart the four leaflets of the atrioventricular valve were displaced and fused to the ventricular walls, from the atrioventricular union roward the apex with atrialization of the inlet and trabecular zones and there was stenosis in the infundibulum and in the pulmonary valve. In the second heart the proximal segment of the atrioventricular valve was displaced and fused to the ventricular whith shot atrialization and the distal segment was dysplastic with fibromixoid nodules and tendinous cords short and thick; the pulmonary artery was dilate. Both hearts are grouped in the atrioventricular univentricular connection in the segmental sequential system. The application of this method in the diagnosis of congenital heart disease demonstrates its usefulness. The associations of complex anomalies in these hearts show us the infinite spectrum of presentation of congenital heart disease which expands our knowledge of pediatric cardiology. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  5. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    Science.gov (United States)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  6. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1987-01-01

    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  7. Numerical analysis on inlet and outlet sections of a test fuel assembly for a Supercritical Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Attila, E-mail: kissa@reak.bme.hu; Vágó, Tamás; Aszódi, Attila

    2015-12-15

    discovered in the so-called flow direction changing chamber (upstream to the inlet section) which has to be avoided or at least reduced in order to ensure stable inflow conditions. On the other hand, low velocity regions were identified directly downstream to the inlet which could cause cooling deficiency at the beginning of the heated part of fuel rods. Both problems have been solved by geometrical optimization of the inlet section. The outlet section has been analysed and it graded suitable as it is.

  8. Modelling of flow with cavitation in centrifugal pump

    International Nuclear Information System (INIS)

    Homa, D; Wróblewski, W

    2014-01-01

    The paper concerns flow modelling in centrifugal pump with special consideration of cavitation phenomena. Cavitation occurs when local pressure drops below the saturation pressure according to the temperature of the flow. Vapour bubbles are created and then they flow through the areas with higher pressure. The bubbles collapse rapidly generating pressure wave, noise and vibration. Working under cavitation condition is very dangerous to a pump and can significantly shorten its lifetime. The investigated centrifugal pump consists of three two-flow rotors and stators working on a single shaft. The modelling process started with grid independence study. When the grid was chosen, the pump performance curve was obtained using the single phase fluid model. Next, using the results from pump performance curve calculations, the cavitation characteristic was obtained. The constant capacity was held when the pressure at the inlet was reduced. The two – phase model was used with Zwart cavitation model. The results indicate that the pump work in safe range of parameters. The analysis also provides wide range of information about the areas of vapour appearance. The most endangered regions are leading edges of rotor. When pressure at the inlet drops to about one third of pressure that calculations started from the cavitation cloud appears in whole rotor. The intense of vapour bubbles creation is greater near the shroud of the pump, rather than near the hub. As cavitation is strongly unsteady phenomena, the transient calculations were performed to check if the results are close to those obtained using the steady state type. The differences are not significant.

  9. Effects of a shallow flood shoal and friction on hydrodynamics of a multiple-inlet system

    Science.gov (United States)

    Orescanin, Mara M.; Elgar, Steve; Raubenheimer, Britt; Gorrell, Levi

    2017-07-01

    Prior studies have shown that frictional changes owing to evolving geometry of an inlet in a multiple inlet-bay system can affect tidally driven circulation. Here, a step between a relatively deep inlet and a shallow bay also is shown to affect tidal sea-level fluctuations in a bay connected to multiple inlets. To examine the relative importance of friction and a step, a lumped element (parameter) model is used that includes tidal reflection from the step. The model is applied to the two-inlet system of Katama Inlet (which connects Katama Bay on Martha's Vineyard, MA to the Atlantic Ocean) and Edgartown Channel (which connects the bay to Vineyard Sound). Consistent with observations and previous numerical simulations, the lumped element model suggests that the presence of a shallow flood shoal limits the influence of an inlet. In addition, the model suggests an increasing importance of friction relative to the importance of the step as an inlet shallows, narrows, and lengthens, as observed at Katama Inlet from 2011 to 2014.

  10. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    Science.gov (United States)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  11. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  12. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  13. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  14. Modification of the inlet to the tertiary air duct in the cement kiln installation

    Directory of Open Access Journals (Sweden)

    Borsuk Grzegorz

    2016-12-01

    Full Text Available Rotary kiln installation forms a very complex system, as it consists of various components which affect cement production. However, some problems with particle settling are encountered during operation of tertiary air installation. This paper reports on the results of a study into gas-particle flow in a tertiary air duct installation. This flow was calculated using Euler method for air motion and Lagrange method for particle motion. The results in this paper demonstrate that study focus on the tertiary air installation is a practical measure without the analysis of other processes in the rotary kiln. A solution to this problem offers several alternatives of modifying the inlet to the tertiary air duct. As a result of numerical calculations, we demonstrate the influence of geometry of a rotary kiln modification on the number of large particles transported in the tertiary air duct. The results indicate that in order to reduce large particles, rotary kiln head geometry needs to be modified, and a particle settler should be installed at its outlet.

  15. Computational Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Takeoff and Landing Conditions

    Science.gov (United States)

    Tompkins, Daniel M.; Sexton, Matthew R.; Mugica, Edward A.; Beyar, Michael D.; Schuh, Michael J.; Stremel, Paul M.; Deere, Karen A.; McMillin, Naomi; Carter, Melissa B.

    2016-01-01

    Due to the aft, upper surface engine location on the Hybrid Wing Body (HWB) planform, there is potential to shed vorticity and separated wakes into the engine when the vehicle is operated at off-design conditions and corners of the envelope required for engine and airplane certification. CFD simulations were performed of the full-scale reference propulsion system, operating at a range of inlet flow rates, flight speeds, altitudes, angles of attack, and angles of sideslip to identify the conditions which produce the largest distortion and lowest pressure recovery. Pretest CFD was performed by NASA and Boeing, using multiple CFD codes, with various turbulence models. These data were used to make decisions regarding model integration, characterize inlet flow distortion patterns, and help define the wind tunnel test matrix. CFD was also performed post-test; when compared with test data, it was possible to make comparisons between measured model-scale and predicted full-scale distortion levels. This paper summarizes these CFD analyses.

  16. Comparison of the Viscous Liquids Spraying by the OIG and the Oil Configurations of an Effervescent Atomizer at Low Inlet Pressures

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2016-07-01

    Full Text Available In this work we studied the influence of the fluid injection configuration (OIG: outside-in-gas, OIL: outside-in-liquid on the internal flows and external sprays parameters. We sprayed the viscous aqueous maltodextrin solutions (μ = 60 mPa·s at a constant inlet pressure of the gas and the gas to the liquid mass flow ratio (GLR within the range 2.5 to 20%. We found that the fluids injection has a crucial influence on the internal flows. The internal flows patterns for the OIG atomizer were the slug flows, the internal flow of the OIL device was annular which led to the significant improvement of the spray quality: Smaller droplets, faster atomization, fewer pulsations.

  17. Theoretical flow investigations of an all glass evacuated tubular collector

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    Heat transfer and flow structures inside all glass evacuated tubular collectors for different operating conditions are investigated by means of computational fluid dynamics. The investigations are based on a collector design with horizontal tubes connected to a vertical 14 manifold channel. Three...... the highest efficiency, the optimal inlet flow rate was around 0.4-1 kg/min, the flow structures in the glass tubes were relatively uninfluenced by the inlet flow rate, Generally, the results showed only small variations in the efficiencies. This indicates that the collector design is well working for most...

  18. Vortex breakdown of compressible swirling flows in a pipe

    Science.gov (United States)

    Lee, Harry; Rusak, Zvi; Wang, Shixiao

    2017-11-01

    The manifold of branches of steady and axisymmetric states of compressible subsonic swirling flows in a finite-length straight circular pipe are developed. The analysis is based on Rusak et al. (2015) nonlinear partial differential equation for the solution of the flow stream function in terms of the inlet flow total enthalpy, entropy and circulation functions. This equation reflects the complicated thermo-physical interactions in the flows. The flow problem is solved numerically using a finite difference approach with a penalty procedure for identifying vortex breakdown and wall-separation states. Several types of solutions are found and used to form the bifurcation diagram of steady compressible flows with swirl as the inlet swirl level is increased at a fixed inlet Mach number. Results are compared with predictions from the global analysis approach of Rusak et al. (2015). The computed results provide theoretical predictions of the critical swirl levels for the first appearance of vortex breakdown states as a function of the inlet Mach number. The shows the delay in the appearance of breakdown with increase of the inlet axial flow Mach number in the subsonic range of operation.

  19. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  20. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  1. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    Science.gov (United States)

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  2. Moderator inlet line hanger replacement for Pickering nuclear power station

    International Nuclear Information System (INIS)

    Kirkpatrick, R.A.; Bowman, J.M.; Symmons, W.R.; El-Nesr, S.

    1988-01-01

    Ontario Hydro's Pickering Nuclear Generating Station (PNGS), Units 1 and 2 were shutdown for large scale fuel channel replacement. Other nonroutine inspection and maintenance activities were performed to determine the overall condition of the units and it was seen that a moderator inlet line hanger (identified as HR-29) had failed in both units. Subsequent inspections during planned maintenance outages of Pickering NGS Units 3 and 4 revealed that hanger HR-29 had failed and required replacement. A research program was conducted to find a suitable technique. These problems included accessing tooling through small inspection ports, manipulating tooling from a significant distance and the high radiation fields within the vault. This paper describes the program undertaken to replace hanger HR-29. (author)

  3. Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows

    Directory of Open Access Journals (Sweden)

    A. Costa

    2003-01-01

    Full Text Available Viscous heating plays an important role in the dynamics of fluids with strongly temperature-dependent viscosity because of the coupling between the energy and momentum equations. The heat generated by viscous friction produces a local temperature increase near the tube walls with a consequent decrease of the viscosity which may dramatically change the temperature and velocity profiles. These processes are mainly controlled by the Peclét number, the Nahme number, the flow rate and the thermal boundary conditions. The problem of viscous heating in fluids was investigated in the past for its practical interest in the polymer industry, and was invoked to explain some rheological behaviours of silicate melts, but was not completely applied to study magma flows. In this paper we focus on the thermal and mechanical effects caused by viscous heating in tubes of finite lengths. We find that in magma flows at high Nahme number and typical flow rates, viscous heating is responsible for the evolution from Poiseuille flow, with a uniform temperature distribution at the inlet, to a plug flow with a hotter layer near the walls. When the temperature gradients  induced by viscous heating are very pronounced, local instabilities may occur and the triggering of secondary flows is possible. For completeness, this paper also describes magma flow in infinitely long tubes both at steady state and in transient phase.

  4. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  5. Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: a small inlet can contribute towards particulate organic matter production.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2011-01-01

    Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Continuous-output terminal-shock-position sensor for mixed-compression inlets evaluated in wind tunnel tests of YF-12 aircraft inlet

    Science.gov (United States)

    Dustin, M. O.; Cole, G. L.; Neiner, G. H.

    1974-01-01

    An electronic sensor was built to measure the position of the terminal shock in a supersonic inlet. The sensor uses several static-pressure taps in the inlet wall. The sensor output is continuously proportional to shock position. When the sensor was installed in a YF-12 aircraft flight inlet during wind tunnel tests, it indicated shock position within + or - 5 percent of the total distance covered by the static-pressure-tap region. The maximum error caused by an angle of attack change of 4 deg was less than 25 percent. In the region of normal inlet operation, the angle of attack error is negligible. Frequency-response tests show the amplitude ratio is constant out to 60 Hz, and decreases to about 50 percent at 100 Hz, with a phase lag of 50 deg.

  7. North Inlet-Winyah Bay National Estuarine Research Reserve's (NERR) Estuarine Water Quality Data for the North Inlet and Winyah Bay Estuaries, Georgetown, South Carolina: 1993-2002

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of the Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve...

  8. Long-Term Ecological Research (LTER) Climate Data with Water Parameters from North Inlet Meteorological Station, North Inlet Estuary, Georgetown, South Carolina: 1982-1996.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Meteorological data with water parameters were collected on an hourly basis from June 3, 1982 through April 29, 1996 in the North Inlet Estuary, Georgetown County,...

  9. North Inlet • Winyah Bay (NIW) National Estuarine Research Reserve Meteorological Data, North Inlet Estuary, Georgetown, South Carolina: 1997 • 1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve System...

  10. Continuous-Flow Detector for Rapid Pathogen Identification

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Louise M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Skulan, Andrew J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Singh, Anup K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Cummings, Eric B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Fiechtner, Gregory J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  11. Experimental study on forced convective and subcooled flow boiling heat transfer coefficient of water-ethanol mixtures: an application in cooling of heat dissipative devices

    Science.gov (United States)

    Suhas, B. G.; Sathyabhama, A.

    2018-02-01

    The experimental study is carried out to determine forced convective and subcooled flow boiling heat transfer coefficient in conventional rectangular channels. The fluid is passed through rectangular channels of 0.01 m depth, 0.01 m width, and 0.15 m length. The parameters varied are heat flux, mass flux, inlet temperature and volume fraction of ethanol. Forced convective heat transfer coefficient increases with increase in heat flux and mass flux, but effect of mass flux is less significant. Subcooled flow boiling heat transfer increases with increase in heat flux and mass flux, but the effect of heat flux is dominant. During the subcooled flow boiling region, the effect of mass flux will not influence the heat transfer. The strong Marangoni effect will increase the heat transfer coeffient for mixture with 25% ethanol volume fraction. The results obtained for subcooled flow boiling heat transfer coefficient of water are compared with available literature correlations. It is found that Liu-Winterton equation predicts the experimental results better when compared with that of other literature correlations. An empirical correlation for subcooled flow boiling heat transfer coefficient as a function of mixture wall super heat, mass flux, volume fractions and inlet temperature is developed from the experimental results.

  12. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  13. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  14. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    Science.gov (United States)

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  15. Analytical study of suction boundary layer control for subsonic V/STOL inlets

    Science.gov (United States)

    Boles, M. A.; Ramesh, K.; Hwang, D. P.

    1984-01-01

    Analytical procedures used to evaluate the application of suction boundary-layer control (BLC) to subsonic V/STOL inlets are presented. These procedures have been used to analytically predict the optimum (minimum suction power required) location and extent for a suction slot of two different surface resistances within a subsonic V/STOL inlet. Results of this analytical study are presented.

  16. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  17. 76 FR 62428 - Cook Inlet Regional Citizens' Advisory Council (CIRCAC) Charter Renewal

    Science.gov (United States)

    2011-10-07

    ... Inlet Regional Citizens' Advisory Council (CIRCAC) as an alternative voluntary advisory group for Cook... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-0852] Cook Inlet Regional Citizens' Advisory Council (CIRCAC) Charter Renewal AGENCY: Coast Guard, DHS. ACTION: Notice of recertification...

  18. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a) Explosives...

  19. 77 FR 43513 - Olympia Harbor Days Tug Boat Races, Budd Inlet, WA

    Science.gov (United States)

    2012-07-25

    ... Harbor Days Tug Boat Races, Budd Inlet, WA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of... Races, Budd Inlet, WA from 12 p.m. through 8 p.m. on September 2, 2012. This action is necessary to restrict vessel movement within the specified race area immediately prior to, during, and immediately after...

  20. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  1. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  2. Process-Based Evidence of Coastal Accretion Adjacent to a Natural Inlet and Ebb-Tidal Delta on the North Florida Atlantic Coast

    Science.gov (United States)

    Adams, P. N.; Olabarrieta, M.; Keough, K. M.

    2015-12-01

    Physical mechanisms of tidal inlet accretion are difficult to document because of the episodic nature of sediment delivery to the coast from fluvial sources and the complex patterns of current magnitudes and directions arising from the interaction of nearshore waves with ebb-tidal delta bathymetry. Using monthly RTK-GPS field measurements of beach topography adjacent to a natural inlet, we document a shoreline change time series that illustrates a bi-directional, alongshore spreading pattern of accretion following an exceptionally high rainfall-discharge event in May 2009. Numerical modeling of wave set-up and nearshore currents in the vicinity of the inlet and ebb tidal delta produces depth-averaged flow velocity patterns consistent with our field observations of coastal accretion. Our results are in agreement with an accretion mechanism, proposed by other researchers, that involves sediment delivery to the margins of the ebb tidal delta during high velocity ebb flows that accompany large rainfall-discharge events, followed by onshore migration of swash bars during subsequent days to months, at a rate dependent upon the timing of nearshore wave energy delivery to the site.

  3. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    Energy Technology Data Exchange (ETDEWEB)

    Kolp, D.A. [Kolp Engineering, Avon, CT (United States); Flye, W.M. [Stewart and Stevenson, Houston, TX (United States); Guidotti, H.A. [Energy Services, Inc., Framington, CT (United States)

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  4. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  5. Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet

    International Nuclear Information System (INIS)

    Paramadayalan, Thiyagarajan; Pant, Atul

    2013-01-01

    A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200-400 .deg. C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip

  6. A Collector Geometry Impact on the Coolant Flow Distribution in the Reactor Model Core

    Directory of Open Access Journals (Sweden)

    A. A. Satin

    2015-01-01

    Full Text Available In creating the reactor facility for the transport and energy module of a megawatt class the important task is to optimize a coolant flow path, i.e. to provide a moderate flow resistance and uniform distribution of a coolant. A kind of the chosen collector design to supply coolant significantly contributes to hydraulic losses, in particular, the porosity of the inlet lattice which may lead to uneven coolant rate at the inlet, flow pulsations, and hydraulic losses.For the first time in domestic practice the work examines an impact of the inlet lattices geometry on the averaged and pulsating flow both in a hemispherical collector and at the core inlet to the model paths of a reactor gas-cooled coolant, and gives advices on optimization of collector paths of the coolant flow.The paper presents the results of experiments carried out on the gas dynamic model of the coolant paths containing the inlet lattices of different porosity. It offers a numerical simulation of the flow in the two-parameter model using k-ε turbulence model and ANSYS CFX v14.0 software package and demonstrates a compliance of experimental data with numerical results.The obtained results show that the inlet lattice with a porosity of 0.25 allows relative leveling of the coolant flow directly at the core inlet, which for a uniform cross-sectional energy release reduces temperature of fuel elements. The considered options of design solutions allow you to select the inlet lattice structure, and the core, as well, according to the porosity parameter to solve the problem of reducing hydraulic losses in the coolant paths, reducing pulsating components of the flow in the core and length of the initial portion of flow stabilization. References

  7. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova

    2016-01-01

    . Nevertheless, flow field differences due to the inlet conditions are largely smoothed out just a short distance downstream of the mouth inlet as a result of the complex geometry. Increasing the inhalation flowrate from sedentary to activity conditions left the mean flowfield structures largely unaffected......Understanding the multitude of factors that control pulmonary deposition is important in assessing the therapeutic or toxic effects of inhaled particles. The use of increasingly sophisticated in silico models has improved our overall understanding, but model realism remains elusive. In this work...... between particle size, electrostatic charge, and flowrate. Our results suggest that in silico models should be customized for specific applications, ensuring all relevant physical effects are accounted for in a self-consistent fashion....

  8. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  9. Experimental investigation of generic three-dimensional sidewall-compression scramjet inlets at Mach 6 in tetrafluoromethane

    Science.gov (United States)

    Holland, Scott D.

    1993-01-01

    Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and with a ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices that were distributed on the sidewalls, base plate, and cowl. Schlieren movies were made of each test for flow visualization of the effects of the internal flow spillage on the external flow field. To obtain an approximate characterization of the flow field, a modification to two-dimensional, inviscid, oblique shock theory was derived to accommodate the three-dimensional effects of leading-edge sweep. This theory qualitatively predicted the reflected shock structure (i.e., sidewall impingement locations) and the observed increase in spillage with increasing leading-edge sweep. The primary effect of moving the cowl forward was capturing the flow that would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number.

  10. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  11. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  12. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  13. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    Science.gov (United States)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  14. Study on flow instabilities in two-phase mixtures

    International Nuclear Information System (INIS)

    Ishii, M.

    1976-03-01

    Various mechanisms that can induce flow instabilities in two-phase flow systems are reviewed and their relative importance discussed. In view of their practical importance, the density-wave instabilities have been analyzed in detail based on the one-dimensional two-phase flow formulation. The dynamic response of the system to the inlet flow perturbations has been derived from the model; thus the characteristic equation that predicts the onset of instabilities has been obtained. The effects of various system parameters, such as the heat flux, subcooling, pressure, inlet velocity, inlet orificing, and exit orificing on the stability boundary have been analyzed. In addition to numerical solutions, some simple stability criteria under particular conditions have been obtained. Both results have been compared with various experimental data, and a satisfactory agreement has been demonstrated

  15. Stratification in horizontal pipes subjected to fluid temperature transient at inlet

    International Nuclear Information System (INIS)

    Dhir, V.K.; Amar, R.C.; Mills, J.C.

    1984-01-01

    A one-dimensional hydrodynamic model to predict stratification in horizontal pipes subjected to a temperature transient at the inlet of a pipe has been developed. The model is based on the relative velocity difference created by the difference in hydrostatic heads of cold and hot fluid. The lighter (hotter) fluid occupies the upper half of the pipe, while the heavier (colder) fluid tends to flow underneath the lighter fluid in the lower half of the pipe. Expressions for the time-dependent density difference causing the velocity difference are obtained for slow and fast transients and for specific durations of interest. The thermal aspect of the problem - namely, the fluid-pipe wall interaction - has also been analyzed. The fluid-wall interaction is handled by the transient lumped capacity (in the radial direction) method, which is one-dimensional in space (i.e., along the pipe length). It is shown that for a thin Pyrex pipe with water as the test fluid, the thermal effects play a minimal role. However, for thick pipes of high thermal conductivity material, this is not true

  16. The effect of particle inlet conditions on FCC riser hydrodynamics and product yields.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Zhou, C. Q.; Huntsinger, A.; Petrick, M.

    1999-10-11

    Essential to today's modern refineries and the gasoline production process are fluidized catalytic cracking units. By using a computational fluid dynamics (CFD) code developed at Argonne National Laboratory to simulate the riser, parametric and sensitivity studies were performed to determine the effect of catalyst inlet conditions on the riser hydrodynamics and on the product yields. Simulations were created on the basis of a general riser configuration and operating conditions. The results of this work are indications of riser operating conditions that will maximize specific product yields. The CFD code is a three-dimensional, multiphase, turbulent, reacting flow code with phenomenological models for particle-solid interactions, droplet evaporation, and chemical kinetics. The code has been validated against pressure, particle loading, and product yield measurements. After validation of the code, parametric studies were performed on various parameters such as the injection velocity of the catalyst, the angle of injection, and the particle size distribution. The results indicate that good mixing of the catalyst particles with the oil droplets produces a high degree of cracking in the riser.

  17. Thermal response of a turbulent premixed flame to the imposed inlet oscillating velocity

    International Nuclear Information System (INIS)

    Hajialigol, N.; Mazaheri, Kiumars

    2017-01-01

    Thermal response is known as thermal behavior of an unstable combustor. Such investigation, which has not been found in the literature, is important in terms of safety and prevention of the structural failure. In this study, the thermal response of a combustor with an inlet excitation is numerically investigated. Due to the geometry shape, two recirculating zones are found. Any change in the amplitude and frequency can affect these recirculation zones. At low fixed frequencies (below 50 Hz) and with a change in the amplitude, these two recirculation zones have no important influence on the heat release. Thus, at the low frequencies, excitation amplitude has no considerable effect on flame transfer function. For both adiabatic and convective cases, at fixed frequency, when amplitude increases, mass flow rate from cold to hot gases increases and this makes a reduction in the maximum temperature. Further, at a contestant amplitude, with increasing the frequency, the maximum temperature reduces, with a higher reduction for convective case. The physical interpretation of observed changes is sought in the relation between hydrodynamic and thermal field, relative length of combustor respect to the acoustic wavelength and so on. - Highlights: • Flame transfer function value reduces with raising amplitude. • Any change in the exciting acoustic waves can affect recirculation zones. • At low frequencies, raising amplitude has no important effect on thermal response. • Temperature reduction, caused by raising amplitude, is larger in convective cases.

  18. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon.

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio

    2017-09-05

    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

  19. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio

    2017-09-01

    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

  20. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  1. Spray-inlet microwave plasma torch ionization tandem mass spectrometry for the direct detection of drug samples in liquid solutions.

    Science.gov (United States)

    Miao, Meng; Zhao, Gaosheng; Wang, Yaliang; Xu, Li; Dong, Junguo; Cheng, Ping

    2017-12-30

    Drug abuse or dependence results in a series of social problems, including crime and traffic accidents. Spray-inlet microwave plasma torch tandem mass spectrometry (MPT-MS/MS) was developed and used for the direct detection of such drugs in liquid solutions. Drug sample solutions were directly sprayed into the flame of an MPT by a sampling pump and the ions produced by Penning ionization and ion-molecule reactions were guided into a quadrupole time-of-flight (QTOF) tandem mass spectrometer for mass analysis. The MPT was operated at 40 W and 2.45 GHz in a 700 mL/min argon flow both for the inner and middle plasma. Intact quasi-molecular and molecular ions of various drugs were successfully characterized by spray-inlet MPT-MS/MS. The analysis of one sample was finished within 30 s. Furthermore, the method exhibited excellent efficiency, precision and sensitivity, and the limits of detection and limits of quantification of the samples in methanol were in the range of 5.25-60.0 and 17.5-200 ng g -1 , respectively. Excellent linearities with coefficients of determination (R 2 ) of 0.9627-0.9980 were verified in the range 0.05-50 μg g -1 . Four different beverages purchased locally were also analyzed with spray-inlet MPT-MS/MS, and caffeine was directly determined in two of the beverages. By adding six standard drug samples to sport drinks (each drug was 1 μg g -1 ) and Chinese spirit (each drug was 0.1 μg g -1 ), all the drugs except for caffeine were detected successfully. This study indicates that spay-inlet MPT-MS/MS is an effective method for direct and rapid identification of drug solutions, and it has substantial potential for fast and sensitive drug residue detection. Copyright © 2017 John Wiley & Sons, Ltd.

  2. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    P. Kupiszewski

    2015-08-01

    Full Text Available Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol–cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI, presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI, the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE 2013 and 2014 – two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important

  3. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    Science.gov (United States)

    Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schnaiter, M.; Bigi, A.; Gysel, M.; Rosati, B.; Toprak, E.; Mertes, S.; Baltensperger, U.

    2015-08-01

    Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 - two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a

  4. Flow sensor of the thermal type

    NARCIS (Netherlands)

    Bos, Jeroen Wouter; Hoitink, Ronald Wilhelmus Johannes; Besseling, Johannes Henricus; Lötters, Joost Conrad

    2007-01-01

    A flow sensor of the thermal type having a U-shaped sensor tube with two legs and a connecting limb with two adjoining electrical resistance elements, and with a housing. The sensor tube has an inlet side and an outlet side. The housing has a first and a second housing part of a thermally

  5. Flow sensor of the thermal type

    NARCIS (Netherlands)

    Bos, Jeroen Wouter; Hoitink, Ronald Wilhelmus Johannes; Besseling, Johannes Henricus; Lötters, Joost Conrad

    2008-01-01

    A flow sensor of the thermal type having a U-shaped sensor tube with two legs and a connecting limb with two adjoining electrical resistance elements, and with a housing. The sensor tube has an inlet side and an outlet side. The housing has a first and a second housing part of a thermally

  6. Southern Salish Sea Habitat Map Series: Admiralty Inlet

    Science.gov (United States)

    Cochrane, Guy R.; Dethier, Megan N.; Hodson, Timothy O.; Kull, Kristine K.; Golden, Nadine E.; Ritchie, Andrew C.; Moegling, Crescent; Pacunski, Robert E.; Cochrane, Guy R.

    2015-01-01

    In 2010 the Environmental Protection Agency, Region 10 initiated the Puget Sound Scientific Studies and Technical Investigations Assistance Program, designed to support research in support of implementing the Puget Sound Action Agenda. The Action Agenda was created in response to Puget Sound having been designated as one of 28 estuaries of national significance under section 320 of the U.S. Clean Water Act, and its overall goal is to restore the Puget Sound Estuary's environment by 2020. The Southern Salish Sea Mapping Project was funded by the Assistance Program request for proposals process, which also supports a large number of coastal-zone- and ocean-management issues. The issues include the recommendations of the Marine Protected Areas Work Group to the Washington State Legislature (Van Cleve and others, 2009), which endorses a Puget Sound and coast-wide marine conservation needs assessment, gap analysis of existing Marine Protected Areas (MPA) and recommendations for action. This publication is the first of four U.S. Geological Survey Scientific Investigation Maps that make up the Southern Salish Sea Mapping Project. The remaining three map blocks to be published in the future, located south of Admiralty Inlet, are shown in figure 1.

  7. Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications

    Science.gov (United States)

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil

    2015-02-01

    A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.

  8. Study on the design of inlet and exhaust system of a stationary internal combustion engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The design and operational variables of inlet and exhaust systems are decisive to determine overall engine performance. The best engine overall performance can be obtained by proper design of the engine inlet and exhaust systems and by matching the correct turbocharger to the engine. This paper presents the results of investigations to design the inlet and exhaust systems of a stationary natural gas engine family. To do this, a computational model is verified in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust systems are used. Using this engine model, the effects of the parameters of the inlet and exhaust systems on the engine performance are obtained. In particular, the following parameters are chosen: valve timing, valve diameter, valve lift profiles, diameter of the exhaust manifold, inlet and exhaust pipe lengths, and geometry of pipe junctions. Proper sizing of the inlet and exhaust pipe systems is achieved very precisely by these investigations. Also, valve timing is tuned by using the results obtained in this study. In general, a very high improvement potential for the engines studied here is presented

  9. RNL automated ultrasonic inspection of the PISC II PWR inlet nozzle (Plate 3)

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.G.

    1987-01-01

    In June 1984, Risley Nuclear Laboratories (RNL) performed an automated ultrasonic inspection of the Pressurized Water Reactor (PWR) inlet nozzle (plate 3) from the international Programme of Inspection of Steel Components (PISC II) round-robin inspection programme. High-sensitivity pulse-echo detection and predominantly time-of-flight diffraction sizing techniques were employed from the clad inner surface of the nozzle using digital data collection, analysis, and display facilities developed at RNL. RNL detected 30 out of 31 intended weld flaws, achieved one hundred per cent correct acceptance of all acceptable flaws and had a correct rejection frequency on all rejectable flaws of 0.86. The results confirm that well-conceived automated inspection procedures, similar to those used by RNL in this nozzle inspection, could form the basis of a PSI/ISI procedure for reactor pressure vessel nozzle regions. Analysis of the RNL results with regard to the influence of flaw characteristics on inspection performance lends strong support to the general conclusions drawn by the PISC Data Analysis Group. In particular, the most difficult flaws to accurately size were circular smooth and rough flaws. Examination of the RNL results on individual flaws reveals valuable information on the strengths and weaknesses of the adopted procedures and points towards procedural changes that would improve inspection performance. This report describes the procedures adopted by RNL, in the inspection, and reviews the results in the light of definitive flaw information. (author)

  10. Peracarid assemblages of Zostera meadows in an estuarine ecosystem (O Grove inlet, NW Iberian Peninsula): spatial distribution and seasonal variation

    Science.gov (United States)

    Esquete, Patricia; Moreira, Juan; Troncoso, Jesús S.

    2011-12-01

    The Galician rias are singular and complex estuarine systems of great economic importance. Seagrasses are key elements of the ecosystem and favor the maintenance of high species diversity in benthic communities. Nevertheless, the ecological role of seagrass meadows in the Galician rias has been only partially assessed. Peracarid crustaceans are an important component of soft-bottom faunas and have great importance for the structure of benthic assemblages. In this work, species diversity, patterns of distribution and seasonal fluctuations of peracarids (Crustacea, Peracarida) are studied in estuarine sediments colonized by two species of Zostera ( Z. marina and Z. noltii) at the O Grove inlet (Ría de Arousa, Galicia, NW Iberian Peninsula). The spatial distribution of peracarid assemblages was characterized by high numerical dominances due to a few species, particularly tanaidaceans. The temporal study at a Z. marina meadow showed a strongly seasonal pattern defined by great fluctuations of the amphipod population, the latter being the dominant group in abundance and number of species. The highest numbers of species and individuals were observed in September, with minimum values in March. Analyses pointed out a high correlation among the granulometric features of the studied bottoms and the faunistic attributes. Nevertheless, the presence of the seagrasses should influence in a major way the hydrodynamic and sedimentary features of the habitat and utterly the spatial and temporal patterns observed in the peracarid assemblage in the O Grove inlet.

  11. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  12. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  13. 49 CFR 195.413 - Underwater inspection and reburial of pipelines in the Gulf of Mexico and its inlets.

    Science.gov (United States)

    2010-10-01

    ... the Gulf of Mexico and its inlets. 195.413 Section 195.413 Transportation Other Regulations Relating... Maintenance § 195.413 Underwater inspection and reburial of pipelines in the Gulf of Mexico and its inlets. (a... shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in...

  14. 49 CFR 192.612 - Underwater inspection and reburial of pipelines in the Gulf of Mexico and its inlets.

    Science.gov (United States)

    2010-10-01

    ... the Gulf of Mexico and its inlets. 192.612 Section 192.612 Transportation Other Regulations Relating... Mexico and its inlets. (a) Each operator shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in waters less than 15 feet (4.6 meters) deep as measured from...

  15. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  16. High-Speed Diagnostic Measurements of Inlet and Exhaust Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of rocket-based and turbine-based combined cycle engines are a high priority for transportation into space. In order to test components and systems,...

  17. Investigation of the Compressible Flow through the Tip-Section Turbine Blade Cascade with Supersonic Inlet

    Czech Academy of Sciences Publication Activity Database

    Luxa, Martin; Příhoda, Jaromír; Šimurda, David; Straka, P.; Synáč, J.

    2016-01-01

    Roč. 25, č. 2 (2016), s. 138-144 ISSN 1003-2169 R&D Projects: GA TA ČR(CZ) TA03020277; GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : long turbine rotor blade * supersonic tip section * optical methods * transition modelling * CFD Subject RIV: BK - Fluid Dynamics Impact factor: 0.678, year: 2016

  18. High Temperature Shape Memory Alloy Technology for Inlet Flow Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in propulsion, aerodynamic, and noise technologies have led to a revived interest in supersonic cruise aircraft; however, achieving economic...

  19. Efficient Design and Optimization of a Flow Control System for Supersonic Mixed Compression Inlets, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SynGenics Corporation proposes a program that unites mathematical and statistical processes, Response Surface Methodology, and multicriterial optimization methods to...

  20. Numerical study of influence of inlet turbulence parameters on turbulence intensity in the flow domain

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk

    2007-01-01

    The prediction of cleaning in pipe-lines is important for equipment manufacturers, who wish to optimize designs with respect to hygienic performance. Degree of cleaning correlates with the level of fluctuations in the signal recorded in discrete points during wall shear stress measurements using...

  1. High Temperature Shape Memory Alloy Technology for Inlet Flow Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances have strengthened interest in supersonic cruise aircraft, though achieving economic viability for these vehicles will require dramatic improvements...

  2. Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone

    OpenAIRE

    Gyo Woo Lee; Man Young Kim

    2014-01-01

    Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with p...

  3. Feasibility Report on Navigation Improvements for Mexico Beach Inlet, Mexico Beach, Florida.

    Science.gov (United States)

    1989-03-01

    Inlet March 1989 Mexico Beach, Florida S. PERFORMING Ono. REPORT NUNSCR 7. AtjTHOR(s) 11- CONTRACT Oft GRANT NUMB5ER(.) Halter W. Burdin Kenneth P...seemed to offer a solution to some of the problems at Mexico Beach inlet. Preliminary design was performed using the principles of good jetty design...COESAM/PDFC-89/02 FEASIBILITY REPORT ON NAVIGATION IMPROVEMENTS 6.4 FOR MEXICO BEACH INLET MEXICO BEACH, FLORIDA %1 4Y 2 1 US Army Corps AMRH18 of

  4. Laser imaging in liquid-liquid flows

    Science.gov (United States)

    Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota

    2016-11-01

    In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  5. Efficiency of osmotic pipe flows

    DEFF Research Database (Denmark)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Helix Nielsen, Claus

    2013-01-01

    on the relative magnitude of radial diffusion and advection as well as the ratio of the osmotic velocity to pumping velocity, in very good agreement with experiments and with no adjustable parameters. Our analysis provides criteria that are useful for optimizing osmotic flow processes in, e.g., water purification......We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping...... efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c...

  6. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    Science.gov (United States)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  7. Prediction of flow instability during natural convection

    International Nuclear Information System (INIS)

    Farhadi, Kazem

    2005-01-01

    The occurrence of flow excursion instability during passive heat removal for Tehran Research Reactor (TRR) has been analyzed at low-pressure and low-mass rate of flow conditions without boiling taking place. Pressure drop-flow rate characteristics in the general case are determined upon a developed code for this purpose. The code takes into account variations of different pressure drop components caused by different powers as well as different core inlet temperatures. The analysis revealed the fact that the instability can actually occur in the natural convection mode for a range of powers per fuel plates at a predetermined inlet temperature with fixed geometry of the core. Low mass rate of flow and high sub-cooling are the two important conditions for the occurrence of static instability in the TRR. The calculated results are compared with the existing data in the literature. (author)

  8. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  9. Experimental investigation of the effect of inlet particle properties on the capture efficiency in an exhaust particulate filter

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Sandeep; Rothamer, David; Zelenyuk, Alla; Stewart, Mark; Bell, David

    2017-11-01

    The impact of inlet particle properties on the filtration performance of clean and particulate matter (PM) laden cordierite filter samples was evaluated using PM generated by a spark-ignition direct-injection (SIDI) engine fuelled with tier II EEE certification gasoline. Prior to the filtration experiments, a scanning mobility particle spectrometer (SMPS) was used to measure the electrical-mobility based particle size distribution (PSD) in the SIDI exhaust from distinct engine operating conditions. An advanced aerosol characterization system that comprised of a centrifugal particle mass analyser (CPMA), a differential mobility analyser (DMA), and a single particle mass spectrometer (SPLAT II) was used to obtain additional information on the SIDI particulate, including particle composition, mass, and dynamic shape factors (DSFs) in the transition () and free-molecular () flow regimes. During the filtration experiments, real-time measurements of PSDs upstream and downstream of the filter sample were used to estimate the filtration performance and the total trapped mass within the filter using an integrated particle size distribution method. The filter loading process was paused multiple times to evaluate the filtration performance in the partially loaded state. The change in vacuum aerodynamic diameter () distribution of mass-selected particles was examined for flow through the filter to identify whether preferential capture of particles of certain shapes occurred in the filter. The filter was also probed using different inlet PSDs to understand their impact on particle capture within the filter sample. Results from the filtration experiment suggest that pausing the filter loading process and subsequently performing the filter probing experiments did not impact the overall evolution of filtration performance. Within the present distribution of particle sizes, filter efficiency was independent of particle shape potentially due to the diffusion-dominant filtration

  10. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  11. Cook Inlet and Kenai Peninsula, Alaska ESI: RIPS (Rip Current Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains locations of rip currents in Cook Inlet, Alaska. Vector lines in the data set represent rip zone locations. Location-specific type and source...

  12. Scramjet Inlet Control by Off-Body Energy Addition and MHD Deceleration

    National Research Council Canada - National Science Library

    Macheret, Sergey O; Shneider, Mikhail N; Miles, Richard B; Van Wie, David

    2003-01-01

    ...; however, interelectrode arcing may limit the performance. The paper also analyzes MHD control of shock incidence, and air capture increase using energy addition (a "virtual cowl") in scramjet inlets...

  13. Miniaturized In Situ Atmospheric Probe Sampling Inlet System for Uranus or Saturn, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized in situ atmospheric probe sampling inlet system for measuring chemical and isotopic composition of the...

  14. Environmental Sensitivity Index (ESI) Atlas: Cook Inlet, Alaska, maps and geographic information systems (NODC Accession 0046027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Cook Inlet and Kenai Peninsula, Alaska. ESI data characterize estuarine environments and...

  15. Cook Inlet and Kenai Peninsula, Alaska ESI: ICE (Ice Extent Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains locations of ice extent in Cook Inlet, Alaska. Vector lines in the data set represent 50 percent ice coverage. Location-specific type and...

  16. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  17. Shinnecock Inlet, New York, Site Investigation. Report 2: Evaluation of Sand Bypass Options

    National Research Council Canada - National Science Library

    Williams, Gregory

    1998-01-01

    .... This report discusses the geologic history of the inlet and using the results of a coastal processes study, evaluates ebb shoal morphology and longshore transport processes as they relate to sand management (bypass) options...

  18. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  19. Telemetry data from satellite tags deployed on harbor seals in Cook Inlet, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between 2004 and 2006 we conducted four harbor seal tagging trips in Cook Inlet during the months of October and May. In total, we captured and released 93 harbor...

  20. AFSC/NMML: Cook Inlet Beluga Opportunistic Sightings, 1975 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As a part of National Marine Fisheries Service (NMFS) management of the endangered Cook Inlet beluga whale population, a database of opportunistic beluga whale...