WorldWideScience

Sample records for strong infrared absorption

  1. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    Evans, D.K.; McAlpine, R.D.

    1984-01-01

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  2. Strong far-infrared intersubband absorption under normal incidence in heavily n-type doped nonalloy GaSb-AlSb superlattices

    Science.gov (United States)

    Samoska, L. A.; Brar, Berinder; Kroemer, H.

    1993-01-01

    We report on long-wavelength intersubband absorption under normal incidence in heavily doped binary-binary GaSb-AlSb superlattices. Due to a small energy difference between the ellipsoidal L valleys in GaSb and the low-density-of-states Gamma minimum, electrons spill over from the first Gamma subband into the higher-energy L subband in GaSb wells, where they are allowed to make an intersubband transition under normally incident radiation. A peak fractional absorption per quantum well of 6.8 x 10 exp 3 (absorption coefficient alpha of about 8500/cm) is observed at about 15 microns wavelength for a sheet concentration of 1.6 x 10 exp 12 sq cm/well.

  3. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  4. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  5. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  6. Thermal Infrared Anomalies of Several Strong Earthquakes

    Directory of Open Access Journals (Sweden)

    Congxin Wei

    2013-01-01

    Full Text Available In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1 There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2 There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3 Thermal radiation anomalies are closely related to the geological structure. (4 Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  7. Thermal Infrared Anomalies of Several Strong Earthquakes

    Science.gov (United States)

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  8. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  9. Strong saturable absorption of black titanium oxide nanoparticle films

    Science.gov (United States)

    Zhang, Rong-Fang; Guo, Deng-Zhu; Zhang, Geng-Min

    2017-12-01

    Nonlinear optical materials with strong saturable absorption (SA) properties play an essential role in passive mode-locking generation of ultrafast lasers. Here we report black TiO2-x nanoparticles are promising candidate for such an application. Black TiO2-x nanoparticles are synthesized by using cathodic plasma electrolysis, and nanoparticle films are deposited on optical glass plates via natural sedimentation and post annealing. Characterization of the samples with TEM, SEM, XRD and XPS reveal that nanoparticles have diameters of 8-70 nm, and are in polycrystalline structure and co-existence of anatase, rutile and abundant oxygen-deficient phases. Optical transmittance and reflectance measurements with a UV/VIS/NIR spectrophotometer evidence an excellent wide-spectral optical absorption property. The nonlinear optical properties of the samples were measured by using open-aperture Z-scan technique with picosecond 532-nm laser, and verified by direct transmission measurements using nanosecond 1064-nm laser. Strong SA behavior was detected, and the nonlinear absorption coefficient is as high as β = - 4.9 × 10-8 m/W, at least two orders larger than most previous reports on ordinary TiO2. The strong SA behaviors are ascribed to the existence of plenty surface states and defect states within bandgap, and the relaxation rates of electrons from upper energy levels to lower ones are much slower than excitation rates.

  10. Infrared Absorption in Acetanilide by Solitons

    DEFF Research Database (Denmark)

    Careri, G.; Buontempo, U.; Carta, F.

    1983-01-01

    The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those...

  11. Infrared absorption spectroscopy with color center lasers

    Science.gov (United States)

    Carrick, P. G.; Curl, R. F.; Tittel, F. K.; Koester, E.; Pfeiffer, J.; Kasper, J. V. V.

    Results are presented of the application of a computer controlled color center laser combined with Stark modulation and magnetic rotation effect modulation for obtaining high resolution spectra of molecular species. The lowest electronic transition of the C2H free radical, of interest in astrophysics, is observed near 3772/cm and the high resolution spectra of methanol and hydroxylamine in the OH stretching region are obtained. It is concluded that color center laser absorption spectroscopy combined with sensitivy enhancement through modulation techniques is a sensitive and versatile means of determining the spectra of free radicals and transient molecules in the infared region.

  12. Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen

    OpenAIRE

    Souza, Ivo; Martin, Richard M.

    1998-01-01

    Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase transition accompanied by a dramatic rise in infra-red absorption in the vibron frequency range. We use the Berry's phase approach to calculate the electric polarization in several candidate structures finding large, anisotropic dynamic charges and strongly IR-active vibron modes. The polarization is shown to be greatly affected by the overlap between the molecules in the crystal, so that the commonly used Clausius-Mossot...

  13. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field

    Science.gov (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.

    2017-03-01

    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  14. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... S VEERABUTHIRAN, M K JINDAL and R K SHARMA. Lidar and Beam Diagnostics Division, Laser Science & Technology Centre, Delhi ... was tested successfully with diethyl ether (DEE) (a toxic industrial chemical (TIC)) and differential absorption signals at λon (strong absorption, 9R16) and λoff (weak ...

  15. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  16. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  17. Theory of the Infrared Absorption in the Ordered Solid Hydrogen

    OpenAIRE

    Jun-ichi, IGARASHI; Department of Physics, Osaka University

    1982-01-01

    The infrared absorption coefficient in the ordered solid orthohydrogen is calculated by making use of our anharmonic theory for libron (J=1 excitation) and roton (J=3 excitation). The momentum dependence of the transition amplitudes has properly been taken into account in conformity with our formalism. The shape of vibrational bands including J=1,3 rotational excitations is figured out in good agreement with the experiment by Boggs, Clouter and Welsh. A similar study has also been done for th...

  18. Infra-red absorption in rare-gas mixtures

    International Nuclear Information System (INIS)

    Weiss, S.

    1980-01-01

    Infrared absorption in rare-gas mixtures has been studied extensively, so that by now the spectra at room temperature of almost all pairs are available. Turning attention first to the gas phase, it is shown that the considerable mass of experimental results can be reduced to yield a relatively simple picture. Having reviewed the experimental facts, the interpretation and extraction of information is discussed. (KBE)

  19. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  20. Infrared Absorption Band Assignment in Benzanilide and Some of its p

    African Journals Online (AJOL)

    MBI

    2014-07-10

    nitrobenzanilide only. However, no absorption band(s) that can be readily attributed to Amide VI mode was observed for all the benzanilides. Keywords: Benzanilide, IR Absorption Band. INTRODUCTION. The infrared absorption spectra ...

  1. Infrared absorption studies of the annealing of irradiated diamonds

    International Nuclear Information System (INIS)

    Woods, G.S.

    1984-01-01

    Natural (types Ia and IIa) and synthetic (type Ib) diamonds have been irradiated with energetic electrons and neutrons and then heated at temperatures up to 1400 deg C. Attendant changes in the infrared absorption spectra, especially above the Raman frequency (1332 cm -1 ), have been monitored. The most prominent absorption to develop in the infrared region proper, on annealing both type Ia and type Ib specimens, whether electron- or neutron-irradiated is the H1a line at 1450 cm -1 . Measurements taken of neutron-irradiated type Ia specimens show that the strength of this line is specimen-dependent, and that it is a linear function of radiation dose. Isochronal annealing studies show that the onset of the line occurs during heating at 250 deg C for type Ia specimens and at 650 deg C for type Ib specimens. The absorption begins to weaken during heating at 1100 deg C, but it is very persistent, surviving an anneal of 4 hours at 1400 deg C, albeit with diminished intensity. Three other weaker lines at 1438, 1358 and 1355 cm -1 develop with the 1450 cm -1 line, but differ from it and from each other in subsequent annealing behaviour. Other lines were observed; these are reported and discussed. (author)

  2. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    Science.gov (United States)

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  3. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    Science.gov (United States)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  4. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool

    2011-07-13

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical electrostatic model, which is based on the dielectric function of bulk PbSe but without any free-carrier contribution. Good agreement between the measured and calculated spectra indicates that resonances in the local field factors underlie the measured spectra. © 2011 American Chemical Society.

  5. Coherence and quasistable states in a strong infrared field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, F.

    2016-03-01

    We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.

  6. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  7. Infrared absorption spectra of nanosized silica with organic additives

    Directory of Open Access Journals (Sweden)

    Мaria О. Savchenko

    2014-12-01

    Full Text Available The prospects of using of silica nanoparticles modified with urea-formaldehyde polymers which is obtained by sulfuric acid sol-gel technology are shown. The aim is a detailed research on the infrared absorption spectra of nanodispersed silica modified with urea-formaldehyde polymers with identification of the absorption bands of the spectrum. The method of infrared spectroscopy is used to research spectral characteristics of nanosized silica, urea-formaldehyde polymer and nanodispersed silica modified with urea-formaldehyde polymers in different ratio. It is found that interaction of initial ingredients occurs at the stage of phase formation in solutions in colloidal silica products containing urea-formaldehyde polymers. Organic components are localized on the surface of the globules and in the interglobular space. This result of such interaction is the physical and structural transformation of globular surfaces of silica and new chemical compounds formation. This allows to give to final product a variety of properties required for practical use in many industries.

  8. Probing infrared detectors through energy-absorption interferometry

    Science.gov (United States)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.

    2017-08-01

    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  9. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  10. SiC absorption of near-infrared laser radiation at high temperatures

    Science.gov (United States)

    Adelmann, B.; Hellmann, R.

    2016-07-01

    We report on a theoretical and experimental investigation of the temperature-dependent optical absorption of nitrogen-doped 4H-SiC for a temperature range between room temperature and the decomposition point. The theoretical model is based on free carrier absorption including the temperature dependence of the electron mobility. With respect to laser material processing of silicon carbide, the analysis focusses on a near-infrared wavelength range. At room temperature, the calculated absorption is in excellent agreement to transmission and reflection measurements. For the experimental study of the absorption at higher temperatures induced by intense 1070-nm laser irradiation, a two-color pyrometer is employed with the thermal emission of the laser interaction zone being collected coaxial to the impinging laser. Exemplarily, the simulated temperature-dependent absorption is used to determine the heating of a 0.4-mm-thick 4H-SiC specimen during laser irradiation and compared to the experimentally determined temperature. In an initial time domain of the irradiation with an attained temperature below 1350 K, the simulated and measured temperatures are in good agreement. Above 1350 K, however, the measured temperature reveals a sharp and fast increase up to 2100 K which is not predicted by the model. This discrepancy is attributed to a strong additional absorption mechanism caused by carbonization at the surface which is confirmed by EDX analysis.

  11. Infrared absorption spectra of selenate compounds of indium (3)

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Kadoshnikova, N.V.; Tananaev, I.V.

    1979-01-01

    Obtained and discussed are infrared absorption spectra (400-4000 cm -1 ) of the following indium selenates: In 2 (SeO 4 ) 3 x5H 2 O, In 2 (SeO 4 ) 3 x9H 2 O, NaIn(SeO 4 ) 2 x6H 2 O, NaIn(SeO 4 ) 2 xH 2 O, MIn(SeO 4 ) 2 x4H 2 O (M=NH 4 , K, Rb), CsIn(SeO 4 ) 2 x2H 2 O, Na 3 In(SeO 4 ) 3 x7H 2 O, MIn(SeO 4 ) 2 (M=NH 4 , Na, K, Rb, Cs), M 2 InOH(SeO 4 ) 2 xyH 2 O (M=NH 4 , Na, K, Rb) and K 2 InOD(SeO 4 ) 2 xyD 2 O

  12. Raman and Infrared Absorption Study of Indigoid-based Pigments

    Science.gov (United States)

    Manciu, Felicia; Durrer, William; Reza, Layra; Ramirez, Alejandra; Chianelli, Russell

    2009-04-01

    A fascinating aspect of Maya pigments is that despite the environmentally harsh humidity and high temperatures they resist fading and they have unprecedented stability. In this investigation, we address the question of how organic dye binds to inorganic palygorskite to form pigments. Our analysis by Raman and infrared absorption spectroscopies proves that different processes are taking place for the indigo-palygorskite system as compared with the thioindigo-palygorskite complex. While partial elimination of the selection rules for the centrosymmetric indigo and disappearance of the indigo N-H bonding, with conversion to dehydroindigo, is observed for the first compound, the latter shows no evident structure modification. The interaction between indigo and palygorskite is likely through oxygen and nitrogen. Only oxygen plays this role for the thioindigo-palygorskite complex.

  13. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    Science.gov (United States)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  14. Infrared and UV-visible absorption measurement at Syowa Station (abstract)

    OpenAIRE

    Murata,Isao; Kita,Kazuyuki; Iwagami,Naomoto; Ogawa ,Toshihiro

    1993-01-01

    Vertical column contents of some trace gases were observed by solar infrared and UV-visible absorption techniques at Syowa Station, to study the dynamics and chemistry of Antarctic ozone. HCl, HF, N_2O, OCS, CO and C_2H_6 column contents were measured by infrared absorption spectroscopy in the 3-5

  15. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  16. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)

    2016-11-15

    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  17. Infrared absorption spectroscopy and chemical kinetics of free radicals

    International Nuclear Information System (INIS)

    Curl, R.F.; Glass, G.P.

    1991-01-01

    A new channel producing ketenyl radical (HCCO) was discovered in the flash photolysis of ketene at 193 nm. H 2 CCO + hν(193 nm) → H + HCCO by observation near 2020 cm -1 of the infrared fundamental of ketenyl corresponding to the antisymmetric motion of the heavy atoms. This band has been partially rotationally analyzed and the rate constant for the reaction of ketenyl with NO has been determined. The OH stretching fundamental of hydroxymethyl radical (CH 2 OH) has been observed near 3600 cm -1 producing the radical either by the excimer flash photolysis of acetol (CH 3 COCH 2 OH) or by Cl atom abstraction of a methyl hydrogen from methanol. The assignment of the spectrum to CH 2 OH was confirmed by the agreement of the rate constant for the reaction of the species with O 2 with the literature value. The mechanism of the reaction of C 2 H with O 2 has been explored. There appear to be two channels producing CO product: a fast, direct one producing highly vibrationally excited CO up to v = 6 at the same rate C 2 H disappears and a slow, indirect one producing primarily ground state CO on a much longer timescale than the disappearance of C 2 H. The rate constants for the reactions of C 2 H with CH 4 , C 2 H 6 , C 2 H 4 , D 2 , and CO were determined by following the time decay of a C 2 H infrared transient absorption line originating from the ground vibronic state using diode laser spectroscopy creating the C 2 H by excimer laser flash photolysis (ArF, 193 nm) of CF 3 CCH. The branching ratio into OH of the reaction between NH 2 , and NO, which is the channel thought to propagate the radical chain of the Thermal deNOx process, has been measured up to 925 degree C. The OH yield thus obtained appears to be too small to maintain the process. 5 refs., 3 figs

  18. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  19. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  20. Brown carbon absorption in the red and near-infrared spectral region

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2017-06-01

    Full Text Available Black carbon (BC aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  1. Infrared absorption spectroscopic study of Nd 3+ substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show ...

  2. Infrared absorption spectroscopic study of Nd 3 substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show ...

  3. Near-infrared light absorption by brown carbon in the ambient atmosphere

    Science.gov (United States)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  4. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Unknown

    results from IR absorption study can be used to interpret the electrical and magnetic properties of the ferrites. (Braber 1969). The absorption bands, from which the details regarding functional groups and their linkages can be explored, are found to be dependent on atomic mass, cationic radius, cation–anion bond distances, ...

  5. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  6. Observation of strong magnetic effects in visible-infrared sum frequency generation from magnetic structures

    NARCIS (Netherlands)

    Kirilyuk, A.; Knippels, G.M.H.; van der Meer, A. F. G.; Renard, S.; Rasing, T.; Heskamp, I. R.; Lodder, J. C.

    2000-01-01

    We have observed very strong magnetization-induced changes of the infrared-visible sum-frequency generation (SFG) intensity from thin magnetic films using a free electron laser as a tunable infrared source. With the help of a magnetic grating a clear resonance is observed due to the excitation of

  7. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  8. Infrared absorption and Raman scattering spectroscopic studies of condensed ions

    International Nuclear Information System (INIS)

    Dao, N.Q.; Knidiri, M.

    1975-01-01

    Infrared and Raman spectra of the complex K 5 (UO 2 ) 2 F 9 were recorded in the region 4000 to 80 cm -1 . Factor group analysis was used to classify the internal vibrations of the binuclear ion (UO 2 ) 2 F 9 5- . Infrared and Raman spectra were assigned and splitting of the internal modes of the (UO 2 ) 2 F 9 5- anion interpreted. (author)

  9. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)

    2014-02-14

    ) carbon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed and ...

  10. Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating.

    Science.gov (United States)

    Kang, Guoguo; Vartiainen, Ismo; Bai, Benfeng; Turunen, Jari

    2011-01-17

    The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively.

  11. Infrared absorption spectroscopy of single particles using photophoresis

    International Nuclear Information System (INIS)

    Lin, H.

    1985-01-01

    In situ absorption spectroscopy was performed on a single suspended salt particle using photophoresis. The charged ammonium sulfate particle was levitated in an electric-quadrpole field and illuminated by a CO 2 laser. The size-dependent absorption spectrum of ammonium sulfate particles was observed for the first time to our knowledge at 930-1080 cm -1 . The effects of gas pressure and laser power were also determined. For particles approximately 10 μm in diameter, the photophoretic force was observed to be negative

  12. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Science.gov (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  13. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... Abstract. A compact trolley-mounted pulsed transverse electric atmospheric pressure (TEA) car- bon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed ...

  14. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique...

  15. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2004-01-01

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the SCALE-4.4a code system application with the use of Dancoff factor determined by the VEGA2DAN code. Experimental methodology consists of the irradiated foils activity measurement, and foil averaged neutron absorption cross-section determination via mentioned SCALE- 4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author) [sr

  16. Photoluminescence and infrared absorption spectra of aminated nanocrystalline diamond surface

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Kozak, Halyna; Babchenko, Oleg; Ukraintsev, Egor; Kromka, Alexander

    2013-01-01

    Roč. 5, č. 6 (2013), s. 515-518 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP205/12/P331; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * infrared spectroscopy * photoluminescence * fluorescamine Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  18. A mid-infrared absorption diagnostic for acetylene detection

    KAUST Repository

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  19. ISO-SWS observations of infrared absorption bands of the diffuse interstellar medium : The 6.2 mu m feature of aromatic compounds

    NARCIS (Netherlands)

    Schutte, WA; van der Hucht, KA; Whittet, DCB; Boogert, ACA; Tielens, AGGM; Morris, PW; Greenberg, JM; Williams, PM; van Dishoeck, EF; Chiar, JE; de Graauw, T

    We present ISO-SWS spectroscopy of eight strong infrared sources with large extinction through the diffuse interstellar medium. These are five late-type Wolf-Rayet stars, the blue hypergiant Cyg OB2 #12 and the Galactic Center Sources 3 and 4. The spectra show a number of absorption features that

  20. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  1. Brown carbon absorption in the red and near-infrared spectral region

    OpenAIRE

    A. Hoffer; Á. Tóth; M. Pósfai; C. E. Chung; A. Gelencsér; A. Gelencsér

    2017-01-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these pa...

  2. The use of infrared absorption to determine density of liquid hydrogen.

    Science.gov (United States)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  3. Near-infrared absorption fiber-optic sensors for ultra-sensitive CO2 detection

    Science.gov (United States)

    Chong, Xinyuan; Kim, Ki-Joong; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2015-05-01

    We present a fiber-optic sensor working at near-infrared (NIR) wavelength (~1.57μm) for CO2 detection. In order to increase the NIR absorption, we utilize functional sensor materials metalorganic framework (MOF) on the surface of the core of a multimode-fiber with the cladding layer etched away. The selected functional materials demonstrated excellent adsorption capacity of CO2 and significantly increased the detection sensitivity down to 500 ppm with only 8-centimeter absorption length.

  4. C3H2 : A wide-band-gap semiconductor with strong optical absorption

    Science.gov (United States)

    Lu, Hong-Yan; Cuamba, Armindo S.; Geng, Lei; Hao, Lei; Qi, Yu-Min; Ting, C. S.

    2017-10-01

    Using first-principles calculations, we predict a new type of partially hydrogenated graphene system, C3H2 , which turns out to be a semiconductor with a band gap of 3.56 eV. The bands are rather flat at the band edges and thus lead to a large density of states, which further results in strong optical absorption between the valence band and the conduction band. Particularly, it shows strong optical absorption at about 4.5 eV for the light polarized along the lines connecting the nearest unhydrogenated carbon atoms. Thus, the predicted C3H2 system may have potential applications for a polarizer as well as other high-efficiency optical devices in the near ultraviolet region.

  5. Using Thermal Infrared Absorption and Emission to Determine Trace Gases

    Science.gov (United States)

    Clerbaux, Cathy; Drummond, James R.; Flaud, Jean-Marie; Orphal, Johannes

    The light emerging from the top of the atmosphere in the greater part of the infrared region is thermal radiation from the Earth's surface. The resultant spectra obtained depend on the temperature difference between the emitting feature and absorbing gas. In this region the greenhouse gases, carbon dioxide, CO2, methane, CH4, ozone, O3, and water, H2O, are observed as well as carbon monoxide, CO, a product indicative of fossil fuel combustion, methanol, CH3OH, from biomass burning, and ammonia, NH3, from agriclulture. Chapter 3 describes the techniques for retrieving atmospheric abundances of these and other species from a number of satellite instruments, and concludes with suggestions for future developments.

  6. Page 1 Mgo Crystal Structure and Its Infra-Red Absorption Spectrum ...

    Indian Academy of Sciences (India)

    Mgo Crystal Structure and Its Infra-Red Absorption Spectrum–II 227 for each of the possible modes of vibration deduced from the geometry of º the structure. Their solution would give us the frequencies of those modes of vibration. -. The forces acting on an atom which determine its movements are those arising from the ...

  7. Infrared absorption spectra of various doping states in cuprate superconductors

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs

  8. Infrared Light Absorption Computed Tomography Measurements for Gaseous Hydrocarbon Fuel Concentration

    Science.gov (United States)

    Kawazoe, Hiromitsu; Emi, Yasuyuki; Nakamura, Yoshiaki

    A system to measure gaseous fuel distribution was devised, which is based on infra-red light absorption by carbon-hydrogen stretch mode of vibration and the computed tomography method (IR-CT method). Since the incident light intensity from an infra-red laser fluctuated temporally, the effect was diminished by dividing the beam to two, one of which was monitored for better measurement accuracy. It was found that the error due to the laser fluctuation was within 0.8% and the feasibility of the IR-CT method was confirmed by applying the system to the measurements of the methane fuel concentration in an internal combustion engine model and a burner with diffusion flame. Furthermore, calibration to determine absorptivity was undertaken, which was used for the conversions from the measured line absorption coefficients to spatial fuel concentration in the combustion field.

  9. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  10. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films.

    Science.gov (United States)

    Li, Guifeng; Morita, Shigeaki; Ye, Shen; Tanaka, Masaru; Osawa, Masatoshi

    2004-02-01

    The absorption process of bisphenol A (BPA) in a number of poly(acrylate) thin films, such as poly(2-methoxyethyl acrylate) (PMEA), poly(ethyl acrylate) (PEA), poly(n-butyl methacrylate) (PBMA), and poly(methyl methacrylate) (PMMA), has been investigated by quartz crystal microbalance (QCM) and infrared reflection absorption spectroscopy (IRRAS) measurements. Both QCM and IRRAS measurements show that the BPA molecules absorb in PMEA, PEA, and PBMA thin films but not in PMMA thin film. The differences in the BPA absorption behavior are mainly attributed to the difference in the glass transition temperature (T(g)) between these polymers. This absorption behavior also depends on the BPA concentration and polymer film thickness. Furthermore, IRRAS characterization demonstrates that the hydrogen bonding is formed between the hydroxyl group in BPA and the carbonyl group in the poly(acrylate) thin films. BPA molecule absorbed in these polymer thin films can be removed by ethanol rinse treatment. By optimizing experimental conditions for the QCM electrode modified by PMEA thin film, detection limitation of approximately 1 ppb for BPA can be realized by the in situ QCM measurement. This method is expected to be a sensitive in situ detection way for trace BPA in the environmental study.

  11. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  12. Visible and infrared absorption spectra of covering materials for solar collectors

    International Nuclear Information System (INIS)

    Pelece, I.

    2008-01-01

    Use of solar energy increases every year. In Latvia, solar energy is used mainly by solar collectors. The main part of the solar collector is the absorber, but not less important is the covering material which protects the absorber from the cooling impact of the wind. This cover must be transparent for solar radiation, but opaque for thermal radiation of the absorber, which is at greater wavelengths. Therefore it is important to measure absorption spectra of possible covering materials at visible and infrared wavelength ranges. Absorption spectra have been measured for several materials: glass, polythene, Plexiglas, and cells Plexiglas. Absorption spectra for all these materials are measured in three ranges: ultraviolet-visible (UV-VIS): 250-1000 nm; near infrared (NIR): 700-110 nm; infrared (IR): 1200-8000 nm. UV-VIS spectra with the 'Ocean Optics' device HR-4000 have been measured, but NIR and IR - with 'Bruker' Furje spectrometer EQUINOX 55. Evaluation of absorption spectra showed that the most suitable material (from the considered) for covering of solar collectors is Plexiglas

  13. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  14. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  15. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    Science.gov (United States)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  16. Surface-enhanced infrared absorption studies towards a new optical biosensor

    Directory of Open Access Journals (Sweden)

    Lothar Leidner

    2016-11-01

    Full Text Available Reflectometric interference spectroscopy (RIfS, which is well-established in the visual regime, measures the optical thickness change of a sensitive layer caused, e.g., by binding an analyte. When operated in the mid-infrared range the sensor provides additional information via weak absorption spectra (fingerprints. The originally poor spectra are magnified by surface-enhanced infrared absorption (SEIRA. This is demonstrated using the broad complex fluid water band at 3300 cm−1, which is caused by superposition of symmetric, antisymmetric stretching vibration, and the first overtone of the bending vibration under the influence of H-bonds and Fermi resonance effect. The results are compared with a similar experiment performed with an ATR (attenuated total reflectance set-up.

  17. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between....... The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans....

  18. Surface Texturing Investigated for a High Solar Absorptance Low Infrared Emittance Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.

    2001-01-01

    The objective of this work was to design, build, and vacuum test a high solar absorptance, low infrared emittance solar collector for heat engine and thermal switching applications. Mini-satellites proposed by the Applied Physics Laboratory for operation in environments that are subject to radiation threat may utilize a heat engine for power and a thermal bus for thermal control. To achieve this goal, a surface having high solar absorptance and low infrared emittance is needed. At the NASA Glenn Research Center, one concept being pursued to achieve this goal is texturing high thermal conductivity graphite epoxy composites using a directed atomic oxygen beam and then coating the textured surface with a reflective metallic coating. Coupons were successfully textured, coated, and evaluated. A variety of texturing conditions were explored, and textures were documented by scanning electron microscopy. Copper, gold, silver, iridium, and aluminum coatings were applied, and the highest solar absorptance to infrared emittance ratio was found to be 1.3. A full-sized solar collector was manufactured with this ratio, and the amount of heat collected was observed using an Inconel calorimeter installed in a bench-top vacuum chamber equipped with a solar simulator. Results to date indicate good heat flow through the system, with 9 W of heat flow measured by the calorimeter.

  19. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  20. Mid-infrared reflectance of silicone resin coating on metal substrates: Effect of polymeric binders' absorption

    Science.gov (United States)

    Ho, Wen-Dar; Ma, Chen-Chi M.

    1997-04-01

    This study examines the infrared reflectance of polymeric coatings of silicone resin, silicone modified alkyd resin, and alkyd resin on aluminum substrates. The Kubelka-Munk's two constants theory is applied to calculate the reflectance while considering the surface reflection. An integrating sphere, infrared spectroradiometer and blackbody source are utilized as the measurement systems. The extinction coefficients are determined and used to calculate the reflectances of coatings on aluminum. Coefficients in the mid-infrared region display the quantitative difference between the polymers' structure. Silicone content enhances the absorptance of the coating in the mid-IR region. The coefficients of miscible silicone resin/alkyd resin blends are determined as well. Comparing the measured and calculated reflectances reveals that the discrepancies in thinner coatings or at the IR transparent wavelength are higher and around 0.1. Such a discrepancy is owing to the polymers' non-scattering with absorption properties which affect the validity of the values involving internal reflectances considered in the model. The internal reflectance can be assigned a negligible value in the high absorption region and is also a variable depending on thickness and transparency.

  1. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    Science.gov (United States)

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  2. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  3. Comparison of near-infrared absorption and photoresponse of silicon doped with Se and Te via fs-laser irradiation

    Science.gov (United States)

    Du, Lingyan; Wu, Zhiming; Shi, Yuanlin; Li, Siyu; Jiang, Yadong

    2017-12-01

    We compare the surface morphology, optical properties and infrared photoresponse of Se- and Te-doped silicon prepared by femtosecond-laser irradiation of Si coated with dopant thin films. Both the two samples show similar column structures and strong sub-band gap light absorption. Annealing the doped silicon leads to attenuation of the sub-band gap absorption. However, the attenuation degree of the Se-doped silicon is greater in comparison with that of Te-doped silicon. To explain the cause of the difference in the attenuation, we fit the attenuation of experimental absorption coefficient using an equation. Thermal activation energy and pre-exponential factor in the equation are considered to be associated with metastability of chalcogen-Si bonds and dopant diffusivity, respectively. We extract the thermal activation energy and pre-exponential factor of Se- and Te-doped silicon from the fitted data, and the results suggest that it is different dopant diffusivity instead of different chalcogens-Si bond energy causes difference in the attenuation. Furthermore, Te-doped silicon photodiode exhibits higher photocurrent response, which makes it possible to be more valuable candidate for fabricating Si-based photoelectric detector.

  4. Nanostructured diode for infrared photodetection through nondegenerate two-photon absorption

    Science.gov (United States)

    Fix, Baptiste; Jaeck, Julien; Vest, Benjamin; Verdun, Michaël; Beaudoin, Grégoire; Sagnes, Isabelle; Pelouard, Jean-Luc; Haïdar, Riad

    2017-07-01

    We investigate infrared detection at room temperature using non-degenerate two-photon absorption in a nanostructured indium phosphide photodiode. We designed the detector structure to achieve a good nonlinear absorption by combining three major ideas: first, we use the non-degenerate two-photon absorption process, which is known to be more efficient than the previously used degenerate two-photon absorption. Second, we ensured a correct spatial overlap of our pump field with our signal field. Third, we optimized the nanostructuration to increase the signal field amplitude locally within the active medium of the device. The resulting device consists of a PIN junction embedded between a back-reflecting gold mirror and a top grating. We experimentally characterized our diode with regard to reflectivity and two-photon absorption generated photocurrent for a continuous-wave pump and a nanosecond pulsed signal of around 3.39 μm. Owing to the nanostructuration, the generated photocurrent shows a gain of 24 with respect to the bulk response of InP.

  5. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    International Nuclear Information System (INIS)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-01-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 μm spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations

  6. An infrared metamaterial selective absorber with emitter considering atmospheric absorption for low observability (Conference Presentation)

    Science.gov (United States)

    Kim, Jagyeong; Han, Kiwook; Hahn, Jae W.

    2016-09-01

    Advancement in stealth technology is very crucial for the protection from enemy. Detection of IR electromagnetic wave is performed by detecting the IR radiation from aircraft fuselage or reflected laser by using laser guided missile. In this research, we designed the metamaterial selective absorber with emitter considering atmospheric absorption to minimize observability from these detecting system. The model is designed as T-asymmetric structure for dual-band absorption or emission, and these two parts can be independently tuned. One part is designed as emitter which emit the radiation in the wavelength region where atmospheric absorption is strong. In order to select the target wavelength region, we used the MODTRAN database to calculate the molecular absorption in the atmosphere and strong absorptions occurs at 2μm, 4μm and 5-8μm wavelength regions. The other part is designed as an absorber which absorbs the IR signal from laser guided missile at 1.064μm. Selective emission or absorption at these wavelength region can be achieved by tuning the geometry of the structure. These mechanisms suppose the thermal equilibrium state so that the Kirchhoff law is satisfied. FDTD simulations of the designed structure was conducted to confirm the electromagnetic resonance. Also, we calculated the detected energy from the designed structure and compared with that from conventional aircraft surface. According to the calculation results, the measured signal from the suggested structure decreases to 1/10 of the signal from conventional surface.

  7. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M. [Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Institute of Physics, Torun (Poland)

    2014-11-11

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 10{sup 14}-10{sup 17} cm{sup -3}. (orig.)

  8. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines......, three groups for the 5637 human bladder carcinoma cell line (5637A, 5637B and 5637C), and another one for the HeLa human cervix carcinoma cell line. The vibrational modes can be assigned to specific bands involving characteristic motions of the protein backbone. This work shows that infrared vibrational...

  9. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  10. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  11. TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  12. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  13. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption

    Science.gov (United States)

    Siegmund, Bernhard; Mischok, Andreas; Benduhn, Johannes; Zeika, Olaf; Ullbrich, Sascha; Nehm, Frederik; Böhm, Matthias; Spoltore, Donato; Fröb, Hartmut; Körner, Christian; Leo, Karl; Vandewal, Koen

    2017-06-01

    Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.

  14. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  15. Hydrogen peroxide vapor cross sections: A flow cell study using laser absorption in the near infrared

    Science.gov (United States)

    Rhodes, B. L.; Ronney, P. D.; DeSain, J. D.

    2018-01-01

    The absorption spectra of vapors of concentrated hydrogen peroxide/water mixtures (without a carrier gas) were characterized at wavelengths from 1390 to 1470 nm utilizing a near-infrared diode laser. Low pressures were employed to examine these spectral features near the Doppler-broadened limit. An advantageous portion of the spectra near 1420 nm containing several distinct H2O2 peaks and one well-known H2O peak (for calibration) was identified and the cross-sections of these peaks determined. These cross section values can be employed to measure vapor-phase concentrations of H2O2 in propulsion, atmospheric chemistry, and sterilization applications.

  16. The velocity distribution of interstellar gas observed in strong UV absorption lines

    Science.gov (United States)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  17. Absorption Spectroscopy in Hollow-Glass Waveguides Using Infrared Diode Lasers[4817-25

    International Nuclear Information System (INIS)

    Blake, Thomas A.; Kelly, James F.; Stewart, Timothy L.; Hartman, John S.; Sharpe, Steven W.; Sams, Robert L.; Alan Fried

    2002-01-01

    Near- and mid-infrared diode lasers combined with flexible, hollow waveguides hold the promise of light weight, field portable, fast response gas sensors. The advantages of using the waveguides compared to White or Herriott multireflection cells include a small gas volume, a high photon fill factor in the waveguide, which increases molecule-light interactions, and reduction or elimination of optical fringing, which usually sets the practical limit of detectivity in absorption spectroscopy. Though hollow waveguides have been commercially available for several years, relatively few results have been reported in the literature. We present here results from our laboratory where we have injected infrared laser light into straight and coiled lengths of hollow waveguides and performed direct and wavelength modulated absorption spectroscopy on nitrous oxide, ethylene, and nitric oxide. Using a 1 mm bore, 3 meter long coiled waveguide coated for the near infrared, nitrous oxide transitions near 6595 cm-1 were observed under flowing conditions. Signal-to-noise ratios on the order of 1500:1 with RMS noise equal to 2 X 10-5 were measured. In the mid-infrared light from either a 10.1 or 5.3 micron lead salt diode laser was injected into a three meter length of 1 mm bore hollow waveguide coated for the mid-infrared. The waveguide was coiled with one loop at a diameter of 52 cm. Ethylene transitions were observed in the vicinity of 985 cm-1 with a static fill of 0.2 Torr of pure ethylene in the waveguide and nitric oxide transitions were observed in the vicinity of 1906 cm-1 using either a flow or a static fill of 1 ppm NO in nitrogen. In direct absorption the NO transitions are observed to have a signal-to-noise of approximately 5:1 for transitions with absorbances on the order of 10-3. Using wavelength modulated techniques the signal-to-noise ratio improves at least an order of magnitude. These encouraging results indicate that waveguides can be used for in situ gas monitoring

  18. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow - I. Synchrotron absorption of strong electromagnetic waves

    Science.gov (United States)

    Lyubarsky, Yuri

    2018-02-01

    This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.

  19. Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.

    Science.gov (United States)

    Le, Thu H H; Tanaka, Takuo

    2017-10-24

    One of the most attractive potentials of plasmonic metamaterials is the amplification of intrinsically weak signals such as molecular infrared absorption or Raman scattering for detection applications. This effect, however, is only effective when target molecules are located at the enhanced electromagnetic field of the plasmonic structures (i.e., hot-spots). It is thus of significance to control the spatial overlapping of molecules and hot-spots, yet it is a long-standing challenge, since it involves the handling of molecules in nanoscale spaces. Here a metamaterial consisting of a nanofluidic channel with a depth of several tens of nanometers sandwiched between plasmonic resonators and a metal film enables the controllable delivery of small molecules into the most enhanced field arising from the quadrupole mode of the structures, forming a plasmon-molecular coupled system. It offers an ultrasensitive platform for detection of IR absorption and molecular sensing. Notably, the precise handling of molecules in a fixed and ultrasmall (10-100 nm) gap also addressed some critical issues in IR spectroscopy such as quantitative measurement and measurement in aqueous solution. Moreover, a drastic change in the reflectance characteristic resulting from the strong coupling between molecules and plasmonic structures indicates that molecules can also be utilized as triggers for actively switching the optical property of metamaterials.

  20. A mid-infrared carbon monoxide sensor system using wideband absorption spectroscopy and a single-reflection spherical optical chamber

    Science.gov (United States)

    Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Song, Fang; Wang, Yiding

    2017-09-01

    A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 μm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55-4.65 μm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000 → 0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.

  1. Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics

    Science.gov (United States)

    Lloyd, David T.; O'Keeffe, Kevin; Wyatt, Adam S.; Anderson, Patrick N.; Treacher, Daniel; Hooker, Simon M.

    2017-02-01

    We report the operation of an optical parametric amplifier (OPA) capable of producing gigawatt peak-power laser pulses with tunable wavelength in either the visible or near-infrared spectrum. The OPA has two distinct operation modes (i) generation of > 350 μJ, sub 100 fs pulses, tunable between 1250 - 1550 nm; (ii) generation of > 170 μJ, sub 150 fs pulses tunable between 490 - 530 nm. We have recorded high-order harmonic spectra over a wide range of driving wavelengths. This flexible source of femtosecond pulses presents a useful tool for exploring the wavelength-dependence of strong-field phenomena, in both the multi-photon and tunnel ionization regimes.

  2. Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin

    Directory of Open Access Journals (Sweden)

    Xiaoping Li

    2010-01-01

    Full Text Available Collision-induced absorption by hydrogen and helium in the stellar atmospheres of cool white dwarfs causes the emission spectra to differ significantly from the expected blackbody spectra of the cores. For detailed modeling of radiative processes at temperatures up to 7000 K, the existing H2–H2 induced dipole and potential energy surfaces of high quality must be supplemented by calculations with the H2 bonds stretched or compressed far from the equilibrium length. In this work, we describe new dipole and energy surfaces, based on more than 20 000 ab initio calculations for H2–H2. Our results agree well with previous ab initio work (where those data exist; the calculated rototranslational absorption spectrum at 297.5 K matches experiment similarly well. We further report the calculated absorption spectra of H2–H2 for frequencies from the far infrared to 20 000 cm−1, at temperatures of 600 K, 1000 K, and 2000 K, for which there are no experimental data.

  3. STRONG MAGNETIC-X-RAY DICHROISM IN 2P ABSORPTION-SPECTRA OF 3D TRANSITION-METAL IONS

    NARCIS (Netherlands)

    VANDERLAAN, G; THOLE, BT

    1991-01-01

    From atomic calculations in crystal-field symmetry we find a very strong circular and linear dichroism in the 2p x-ray absorption edges of magnetically ordered 3d transition-metal ions. The spectral shape changes drastically with the character of the ground state, which is determined by the presence

  4. Single and Double Infrared Transitions in Rapid Vapor Deposited Parahydrogen Solids: Application to Sample Thickness Determination and Quantitative Infrared Absorption Spectroscopy

    National Research Council Canada - National Science Library

    Tam, Simon

    2001-01-01

    ...) solid from its infrared (IR) absorption spectrum. Millimeters-thick pH2 solids of exceptional optical clarity can be produced by the rapid vapor deposition method M.E. Fajardo and S. Tam, J. Chem. Phys. 108, 4237 (1998...

  5. Infrared exponents and the strong-coupling limit in lattice Landau gauge

    International Nuclear Information System (INIS)

    Sternbeck, Andre; Smekal, Lorenz von

    2010-01-01

    We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)

  6. High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Panah, Mohammad Esmail Aryaee

    2018-01-01

    Mid-infrared spectroscopy offers unique sensing schemes to detect target molecules thanks to the absorption of infrared light at specific wavelengths unique to chemical compositions. Due to the mismatch of the mid-infrared light wavelength on the order of micron and nanometer size molecules, the ...... may serve as a highly sensitive bio- and chemo-sensing platform for mid-infrared absorption spectroscopy....

  7. Strong near-infrared luminescence in BaSnO3.

    Science.gov (United States)

    Mizoguchi, Hiroshi; Woodward, Patrick M; Park, Cheol-Hee; Keszler, Douglas A

    2004-08-11

    Powdered samples of the perovskite BaSnO(3) exhibit strong near-infrared (NIR) luminescence at room temperature, following band-gap excitation at 380 nm (3.26 eV). The emission spectrum is characterized by a broad band centered at 905 nm (1.4 eV), tailing on the high-energy side to approximately 760 nm. The Stokes shift is 1.9 eV, and measured lifetimes in the range 7-18 ms depend on preparative conditions. These extraordinary long values indicate that the luminescence involves a defect state(s). At low temperatures, both a sharp peak and a broad band appear in the visible portion of the luminescence spectrum at approximately 595 nm. Upon cooling, the intensity of the NIR emission decreases, while the integrated intensities of the visible emission features increase to approximately 40% of the NIR intensity at 77 K. Room-temperature photoluminescence (PL) is observed across the Ba(1-x)Sr(x)SnO(3) series. As the strontium content increases, the excitation maximum and band gap shift further into the UV, while the intensity of the NIR emission peak decreases and shifts further into the infrared. This combination leads to an unexpectedly large increase in the Stokes shift. The unusual NIR PL in BaSnO(3) may originate from recombination of a photogenerated valence-band hole and an occupied donor level, probably associated with a Sn(2+) ion situated roughly 1.4 eV above the valence-band edge.

  8. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  9. Surface-enhanced infrared absorption (SEIRA) of adsorbates on copper nanoparticles synthesized by galvanic displacement.

    Science.gov (United States)

    Fasasi, Ayuba; Griffiths, Peter R; Scudiero, Louis

    2011-07-01

    Copper nanoparticles (Cu NPs) were made by electroless deposition on Ge disks as substrates for surface-enhanced infrared absorption (SEIRA). Previous X-ray photoelectron spectra had shown that elemental copper is deposited on the Ge substrate and that the nanoparticulate film remains resistant to oxidation even after several days of air exposure at room temperature. SEIRA spectra of p-nitrothiophenol (p-NTP) adsorbed on the copper nanoparticles were measured. Freshly made substrates made by electroless deposition gave higher enhancements than both the 12-day-old oxidized substrates and substrates made by physical vapor deposition. The intensity of the antisymmetric NO(2) stretching band of p-NTP relative to that of the symmetric stretch was significantly higher for p-NTP adsorbed on copper than on silver nanofilms, indicating that the C(2) axis of the aromatic ring is tilted with respect to the copper surface.

  10. AN INFRARED EXCESS IDENTIFIED IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    DiPompeo, M. A.; Runnoe, J. C.; Brotherton, M. S.; Myers, A. D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 East University, Laramie, WY 82071 (United States)

    2013-01-10

    If broad absorption line (BAL) quasars represent a high-covering-fraction evolutionary state (even if this is not the sole factor governing the presence of BALs), it is expected that they should show an excess of mid-infrared radiation compared to normal quasars. Some previous studies have suggested that this is not the case. We perform the first analysis of the IR properties of radio-loud BAL quasars, using IR data from WISE and optical (rest-frame ultraviolet) data from SDSS, and compare the BAL quasar sample with a well-matched sample of unabsorbed quasars. We find a statistically significant excess in the mid- to near-infrared luminosities of BAL quasars, particularly at rest-frame wavelengths of 1.5 and 4 {mu}m. Our sample was previously used to show that BALs are observed along many lines of sight toward quasars, but with an overabundance of more edge-on sources, suggesting that orientation factors into the appearance of BALs. The evidence here-of a difference in IR luminosities between BAL quasars and unabsorbed quasars-can be ascribed to evolution. This suggests that a merging of the current BAL paradigms is needed to fully describe the class.

  11. Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe

    Science.gov (United States)

    McGaugh, Stacy S.

    2018-03-01

    The recently reported detection of redshifted 21cm absorption at $z \\approx 17$ is a significant advance in the exploration of the cosmic dark ages. The observed signal ($T_{\\mathrm{21}} \\approx -0.5$ K with the limit $T_{\\mathrm{21}} universe.

  12. Absorption in Music: Development of a Scale to Identify Individuals with Strong Emotional Responses to Music

    Science.gov (United States)

    Sandstrom, Gillian M.; Russo, Frank A.

    2013-01-01

    Despite the rise in research investigating music and emotion over the last decade, there are no validated measures of individual differences in emotional responses to music. We created the Absorption in Music Scale (AIMS), a 34-item measure of individuals' ability and willingness to allow music to draw them into an emotional experience. It was…

  13. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guandong Zhang

    2012-01-01

    Full Text Available Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs with controllable optical absorption in the near infrared (NIR region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS, O-carboxymethyl chitosan (CMCS, and a blend of CS and CMCS for utilizations in physiologic conditions. The surface properties, optical stability, and photothermal ablation efficiency on hepatocellular carcinoma cells (HepG2 and human dermal fibroblast cells (HDF demonstrate that these gold nanocomposites have great potential as a therapeutic agent in in vitro tests. The CS-coated nanocomposites show the highest efficiency for the photo-ablation on the HepG2 cells, and the CS and CMCS blended coated particles show the best discrimination between the cancer cell and normal cells. The well-controlled NIR absorption and the biocompatible surface of these nanocomposites allow low-power NIR laser activation and low-dosage particle injection for the cancer cell treatment.

  14. Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy

    International Nuclear Information System (INIS)

    Chu, Li-Kang; Han, Hui-Ling; Lee, Yuan-Pern

    2007-01-01

    A transient infrared absorption spectrum of gaseous ClCS was detected with a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. ClCS was produced upon irradiating a flowing mixture of Cl 2 CS and N 2 or CO 2 with a KrF excimer laser at 248 nm. A transient band in the region of 1160-1220 cm -1 , which diminished on prolonged reaction, is assigned to the C-S stretching (ν 1 ) mode of ClCS. Calculations with density-functional theory (B3P86 and B3LYP/aug-cc-pVTZ) predict the geometry, vibrational wave numbers, and rotational parameters of ClCS. The rotational contour of the spectrum of ClCS simulated based on predicted rotational parameters agrees satisfactorily with experimental observation; from spectral simulation, the band origin is determined to be at 1194.4 cm -1 . Reaction kinetics involving ClCS, CS, and CS 2 are discussed

  15. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum

    Science.gov (United States)

    Scribano, Yohann; Leforestier, Claude

    2007-06-01

    We present a rigorous calculation of the contribution of water dimers to the absorption coefficient α(ν¯,T ) in the millimeter and far infrared domains, over a wide range (276-310K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C. Leforestier et al., J. Chem. Phys. 117, 8710 (2002)], and which was recently further validated by the good agreement obtained for the calculated equilibrium constant Kp(T) with experimental data [Y. Scribano et al., J. Phys. Chem. A. 110, 5411 (2006)]. Transition dipole matrix elements were computed between all rovibrational states up to an excitation energy of 750cm-1, and J =K=5 rotational quantum numbers. It was shown by explicit calculations that these matrix elements could be extrapolated to much higher J values (J=30). Transitions to vibrational states located higher in energy were obtained from interpolation of computed matrix elements between a set of initial states spanning the 0-750cm-1 range and all vibrational states up to the dissociation limit (˜1200cm-1). We compare our calculations with available experimental measurements of the water continuum absorption in the considered range. It appears that water dimers account for an important fraction of the observed continuum absorption in the millimeter region (0-10cm-1). As frequency increases, their relative contribution decreases, becoming small (˜3%) at the highest frequency considered ν¯=944cm-1.

  16. Far-infrared reflection-absorption spectroscopy of amorphous and polycrystalline gallium arsenide films

    International Nuclear Information System (INIS)

    Gregory, J.R.

    1992-01-01

    We have reported far-infrared reflection absorption spectra (30-320CM -1 ) at 30 and 310K for nine films of non-stoichiometric GaAs. The FIRRAS measurements were performed using the grazing incidence FIR double-modulation spectroscopy technique first described by DaCosta and Coleman. The films were fabricated by molecular beam deposition on metallized substrates for two As/Ga molecular beam flux ratios. The films were characterized by depth profilometry, IRAS, XRD, and x-ray microprobe analysis. Film thicknesses ranged from 800 to 5800 angstrom and compositions were 45-50% As for a MB flux ratio of 0.29 and 60-70% As for a ratio of 1.12. FIRRAS measurements were made and characterizations performed for as-deposited films and for 5 hour anneals at 473, 573, 673 and 723 degrees C. Vibrational spectra of the crystallized films were interpreted in terms of the exact reflectivity of a thin dielectric film on a conducting substrate, using a classical Lorentzian dielectric function for the response of the film. Resonances appearing in the open-quote forbidden close-quote region between the TO and LO frequencies were modelled with an effective medium approximation and are interpreted as arising from small-scale surface roughness. The behavior of the amorphous film spectra were examined within two models. The effective force constant model describes the variation of the reflection-absorption maxima with measured crystallite size in terms of the effective vibration frequency of 1-D atomic chains having force constants distributed according to the parameters of the crystalline-to-amorphous relaxation length and the crystalline to amorphous force constant ratio. The dielectric function continuum model uses the relaxation of the crystal momentum selection rule to calculate the reflection-absorption spectrum based on a dielectric function in which the oscillator strength is the normalized product of a constant dipole strength and the smoothed vibrational density of states

  17. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    Science.gov (United States)

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc.

  18. Coherence and quasi-stable states in a strong infrared field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, Francis

    2016-05-01

    We study the quasi-stability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV-pulse-train relative to the IR laser. The UV-pulse-train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence which can be explained classically. When the two frequencies are one IR-photon apart, the angular symmetry of the quasi-stable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012193.

  19. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals

    Science.gov (United States)

    He, Tingchao; Li, Junzi; Ren, Can; Xiao, Shuyu; Li, Yiwen; Chen, Rui; Lin, Xiaodong

    2017-11-01

    Emerging CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) have been demonstrated to be efficient emitters with a high fluorescence quantum yield, making these materials interesting for optical applications as well as for fundamental physics. Interestingly, doping with transition metal ions has been extensively explored as a way of introducing new optical, electronic, and magnetic properties, making perovskite NCs much more functional than their undoped counterparts. However, there have been no reports regarding the nonlinear optical properties of transition metal ion doped perovskite NCs. Herein, by using femtosecond-transient absorption spectroscopy, we have determined the one-photon linear absorption cross-section (˜1.42 × 10-14 cm2) of Mn-doped CsPbCl3 NCs (˜11.7 ± 1.8 nm size, ˜0.2% doping concentration, and ˜600 nm emission wavelength). More importantly, their nonlinear optical properties—in particular, the two-photon absorption (TPA) and resultant emission—were investigated. Notably, the NCs exhibit wavelength-dependent TPA with a maximum value up to ˜3.18 × 105 GM at a wavelength of 720 nm. Our results indicate that Mn-doped CsPbCl3 NCs show promise in nonlinear optical devices and multiphoton fluorescence lifetime imaging.

  20. Collision-Induced Infrared Absorption by Collisional Complexes in Dense Hydrogen-Helium Gas Mixtures at Thousands of Kelvin

    Science.gov (United States)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010

  1. Effect of hydrogen bonding on the infrared absorption intensity of OH stretch vibrations

    Science.gov (United States)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.; McKenzie, Ross H.

    2017-05-01

    We consider how the infrared intensity of a hydrogen-bonded OH stretch varies from weak to strong H-bonds using a theoretical model. We obtain trends for the fundamental and overtone transition intensities as a function of the donor-acceptor distance, a common measure of H-bond strength. Building upon our earlier work using a two-diabatic state model, we introduce a Mecke function-based dipole moment for the H-bond and calculate transition moments using one-dimensional vibrational eigenstates along the H-atom transfer coordinate. The fundamental intensity is found to be over 20-fold enhanced for strong H-bonds, where non-Condon effects are significant. We analyse isotope effects, including the secondary geometric isotope effect. The first overtone intensity varies non-monotonically with H-bond strength; suppression occurs for weak bonds but strong enhancements are possible for strong H-bonds. We also study how these trends are affected by Mecke parameter variations. For a few specific dimers, we compare our results with earlier works.

  2. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    Directory of Open Access Journals (Sweden)

    A. Totterdill

    2016-09-01

    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  3. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pięta, Ewa, E-mail: Ewa.Pieta@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Paluszkiewicz, Czesława [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Oćwieja, Magdalena [J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow (Poland); Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-05-15

    Highlights: • Molecular fragments involved in the adsorption process were determined. • Formation of hydrogen bonds with the negatively charged gold substrates was observed. • Indole moiety strongly interacts with gold nanosensors. • The synthesized sensors are characterized by high stability and reproducibility. • Chemical mechanism plays a crucial role in the enhancement of the Raman signal. - Abstract: An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface–enhanced Raman scattering (SERS) spectroscopic investigations of N–acetyl–5–methoxytryptamine (melatonin) and α–methyl–DL–tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6–311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  4. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  5. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  6. Analytical modeling of light transport in scattering materials with strong absorption

    NARCIS (Netherlands)

    Meretska, M. L.; Uppu, R.; Vissenberg, Gilles; Lagendijk, A.; Ijzerman, W. L.; Vos, W. L.

    2017-01-01

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength

  7. Infrared absorption and visible transparency in heavily doped p-type BaSnO3

    Science.gov (United States)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-01

    The recent experimental work shows that perovskite BaSnO3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightly negative, but very small reflecting the heavier valence bands relative to the conduction bands.

  8. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  9. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  10. Influence of Water Activated by Far infrared Porous Ceramics on Nitrogen Absorption in the Pig Feed.

    Science.gov (United States)

    Meng, Junping; Liu, Jie; Liang, Jinsheng; Zhang, Hongchen; Ding, Yan

    2016-04-01

    Under modern and, intensive feeding livestock and poultry density has increased, and brought a deterioration of the farm environment. The livestock and their excrement generate harmful gases such as ammonia, etc. which restricted the sustainable development and improvement of production efficiency of animal husbandry. In this paper, a new kind of far infrared porous ceramics was prepared to activate, the animal drinking water. The activated water and common water were then supplied to pigs, and the fresh pig feces of experimental group and:control group were collected on a regular basis. The residual protein content in feces was tested by Kjeldahl nitrogen method to study the influence law of the porous ceramics on absorbing nitrogen element in animal feces. The results showed that compared with the control group, the protein content in the experimental group decreased on average by 39.2%. The activated drinking water was conducive to the absorption of nitrogen in pig feed. The clusters of water molecules became smaller under the action of the porous ceramics. Hence, they were easy to pass through the water protein channel on the cell membrane for speeding up the metabolism.

  11. Preparation of a Near-Infrared Ray Absorption Film from N-Phenylthiocarbamoyl Chitosan Derivative

    Directory of Open Access Journals (Sweden)

    Shouko Nishida

    2015-12-01

    Full Text Available We recently observed that the decanoylation of N-phenylthiocarbamoyl chitosan (2 with a mixture of decanoic anhydride and pyridine at 60 °C for 24 h afforded N,N-(decanoylphenythiocarbamoyl-/2-isothiocynato chitosan decanoate (3b rather than the expected product N,N-(decanoylphenylthiocarbamoyl chitosan decanoate (3a. This result suggested that some of the N,N-(decanoylphenylthiocarmbamoyl groups had been converted to isothiocyanate groups during the decanoylation process. The subsequent reaction of compound 3b with aniline gave N,N-(decanoylphenylthiocarbamoyl/N-phenylthiocarbamoyl chitosan decanoate (4 in high yield. A solution of compound 4 in CHCl3 was then added to a solution of copper decanoate (5 in the same solvent, and the resulting mixture was cast onto a glass plate to give a cast film. The film was annealed at 200 °C in an oven to give a greenish film, which showed good near-infrared absorption characteristic in the range of 800–2200 nm.

  12. Oxygen diluted hexamethyldisiloxane plasmas investigated by means of in situ infrared absorption spectroscopy and mass spectrometry

    Science.gov (United States)

    Magni, D.; Deschenaux, Ch; Hollenstein, Ch; Creatore, A.; Fayet, P.

    2001-01-01

    The gas phase species produced in rf plasmas of hexamethyldisiloxane (HMDSO), Si2O(CH3)6, diluted with oxygen, have been investigated. The complementarity of Fourier transform infrared absorption spectroscopy and mass spectrometry allows the determination of the most abundant neutral components present in the discharge. The measurements reveal that methyl groups (CH3), abundantly formed by the dissociation of the HMDSO molecule, are the precursor for the most abundant species which stem from two kinds of reaction. The first kind of reaction is combustion of CH3 by oxygen-producing formaldehyde (COH2), formic acid (CO2H2), carbon monoxide (CO), carbon dioxide (CO2) and water. It is shown that high mass carbonated radicals, such as SixOyCzHt, first diffuse to the surface and then the carbon is removed by oxygen etching to form CO2. The second is hydrocarbon chemistry promoted by CH3, producing mainly hydrogen (H2), methane (CH4) and acetylene (C2H2).

  13. Free-free absorption of infrared radiation in collisions of electrons with neutral rare-gas atoms

    Science.gov (United States)

    Stallcop, J. R.

    1974-01-01

    A relationship between the inverse bremsstrahlung absorption cross section and the electron neutral momentum transfer cross section has been utilized to determine the infrared free-free continuum absorption coefficient for the negative ions of helium, neon, argon, krypton, and xenon. The values of the momentum transfer cross section for this calculation have been obtained from experimental measurements. Analytical expressions for the absorption coefficient have also been developed. From the results of this calculation, it is possible to determine the absorption coefficient per unit electron density per neutral atom for temperatures in the range from 2500 to 25,000 K. The results are compared with those from tabulations of previous calculations and those computed from theoretical values of the phase shifts for the elastic scattering of electrons by neutral atoms.

  14. Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields

    Science.gov (United States)

    Chakraborty, A.; Mishra, S. R.

    2018-01-01

    Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.

  15. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    Science.gov (United States)

    Garland, Nancy L.; Medhurst, Laura J.; Nelson, H. H.

    1993-12-01

    We measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF2OCHF2 (E 134), k(T) = (5.4 ± 3.5) × 10-13 cm3 s-1 exp [(-3.1 ± 0.4 kcal mol-1)/RT]; CF3CH2CF3 (FC 236fa), k(T) = (2.0 ± 1.0) × 10-14 cm3 s-1 exp [(-1.8 ± 0.3 kcal mol-1)/RT]; CF3CHFCHF2 (FC 236ea), k(T) = (2.0 ± 0.9) × 10-13 cm3 s-1 exp [(-2.0 ± 0.3 kcal mol-1)/RT]; and CF3CF2CH2F (FC 236cb), k(T)= (2.6 ± 1.6) × 10-13 cm3 s-1 exp [(-2.2 ± 0.4 kcal mol-1)/RT]. The measured activation energies (2-3 kcal mol-1) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm-1 suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not.

  16. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  17. Strong-field induced dissociation dynamics in 1,2-dibromoethane traced by femtosecond XUV transient absorption spectroscopy

    Science.gov (United States)

    Chatterley, A. S.; Lackner, F.; Neumark, D. M.; Leone, S. R.; Gessner, O.

    2016-05-01

    Strong field induced dissociation dynamics of the small haloalkane 1,2-dibromoethane (DBE) have been explored using femtosecond XUV transient absorption spectroscopy. Dynamics are initiated by a near IR pump pulse with intensities between 75 and 220 TW cm-2, and are probed by the atomic site specific XUV absorption of the Br 3d levels. Immediately upon ionization, the spectral signatures of molecular ions appear. These molecular peaks decay in tandem with the appearance of atomic Br peaks in charge states of 0, + 1 and + 2, which are all monitored simultaneously. Neutral Br atoms are eliminated in 300 fs, presumably from statistical dissociation of vibrationally hot DBE+ ions, Br+ ions are eliminated in 70 fs from a more energetic dissociative ionization pathway, and Br++ ions are eliminated within the duration of the 35 fs pump pulse. The simultaneous recording of multiple parent molecule and fragment ion traces enables new insight into predominant dissociation pathways induced by strong field ionization of organic molecules.

  18. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    Science.gov (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-12-01

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  19. Direct Determination of the Absorption of Graphene Mono- and Multi-layers in the Visible and Near-Infrared

    Science.gov (United States)

    Wu, Yang; Mak, Kin Fai; Lui, Chun Hung; Maultzsch, Janina; Heinz, Tony

    2008-03-01

    Single-crystal mono- and multi-layer graphene samples were prepared by mechanical exfoliation on quartz substrates. The absorption spectra of samples of 1 -- 8 monolayer thickness were measured in the optical and near-infrared range. The absorption coefficient was found to be largely independent of photon energy and linear in the number of graphene layers. Such absorption measurements can thus be used to determine the thickness of mesoscopic graphite to monolayer accuracy, as already demonstrated in the context of Rayleigh scattering [Casiraghi et al. Nano Letters 2007]. By analysis of the optical transmission problem for a thin film at the air-quartz interface, we deduced an absorption of 2.3% per layer. The magnitude of the monolayer absorption agrees with the value of πα, where α is the fine-structure constant, and corresponds the result obtained from a tight-binding model of the graphene electronic structure [Gusynin et al. PRL 2006]. The predicted (and measured) optical absorption, we note, is equivalent to a constant optical conductance ofπe^22h=6.09x10-5φ-1.

  20. Strong electron-phonon interaction in the high-Tc superconductors: Evidence from the infrared

    International Nuclear Information System (INIS)

    Timusk, T.; Porter, C.D.; Tanner, D.B.

    1991-01-01

    We show that low-frequency structure in the infrared reflectance of the high-temperature superconductor YBa 2 Cu 3 O 7 results from the electron-phonon interaction. Characteristic antiresonant line shapes are seen in the phonon region of the spectrum and the frequency-dependent scattering rate of the mid-infrared electronic continuum has peaks at 150 cm -1 (19 meV) and at 360 cm -1 (45 meV) in good agreement with phonon density-of-states peaks in neutron time-of-flight spectra that develop in superconducting samples. The interaction between the phonons and the charge carriers can be understood in terms of a charged-phonon model

  1. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: mmp@lco.cl [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  2. Strong two-photon absorption and its saturation of a self-organized dimer of an ethynylene-linked porphyrin tandem.

    Science.gov (United States)

    Kamada, Kenji; Hara, Chihiro; Ogawa, Kazuya; Ohta, Koji; Kobuke, Yoshiaki

    2012-08-18

    The two-photon absorption properties of a self-organized dimer of a free-base and zinc(II) porphyrins tandem linked with an ethynylene group and terminated by imidazolyl and phenylethynyl groups were investigated. The self-organized dimer was found to exhibit strong two-photon absorption and furthermore the saturation of the two-photon absorption owing to the intense transition.

  3. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency.

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-02

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO 3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  4. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  5. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    Science.gov (United States)

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  6. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    Directory of Open Access Journals (Sweden)

    Y. W. Sun

    2013-08-01

    Full Text Available In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  7. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  8. Thermochromic VO2 thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies

    Science.gov (United States)

    Rajeswaran, Bharathi; Pradhan, Jitendra K.; Anantha Ramakrishna, S.; Umarji, Arun M.

    2017-10-01

    Thin films of vanadium dioxide (VO2) are deposited on indium tin oxide (ITO), stainless steel (SS), and glass substrates using chemical vapour deposition. X-ray diffraction and Raman spectroscopy measurements confirmed the single phase nature of the VO2, which showed a phase transition from a low conducting state at low temperature(68 °C). This was confirmed by electrical conductance and infra-red reflectance measurements. X-ray photoelectron spectroscopy was used to measure the charge states of vanadium species. The optical constants of VO2 were determined using visible and near-infra red(NIR) reflectivity and show that the VO2 film on ITO has a lowered plasma frequency compared with VO2 on glass substrates. The thin films of VO2 enable a broadband of ultra-high absorption at mid-wave infra-red frequencies due to a Fabry-Pérot (F-P) like resonance due to the dielectric properties of ITO, SS, or glass. The tunability of this absorption band via VO2 thickness and the switchability by temperature makes the system attractive for absorptive coatings with controllable emissivity.

  9. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    Science.gov (United States)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  10. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    Science.gov (United States)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  11. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  12. Development of a differential infrared absorption method to measure the deuterium content of natural water

    International Nuclear Information System (INIS)

    D'Alessio, Enrique; Bonadeo, Hernan; Karaianev de Del Carril, Stiliana.

    1975-07-01

    A system to measure the deuterium content of natural water using differential infrared spectroscopy is described. Parameters conducing to an optimized design are analyzed, and the construction of the system is described. A Perkin Elmer 225 infrared spectrometer, to which a scale expansion system has been added, is used. Sample and reference waters are alternatively introduced by a pneumatical-mechanical system into a unique F Ca thermostatized infrared cell. Results and calibration curves shown prove that the system is capable of measuring deuterium content with a precision of 1 part per million. (author)

  13. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M; Harren, Frans J M; Mandon, Julien

    2014-06-01

    We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250  cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000  cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

  14. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Kunimatsu, Keiji; Senzaki, Takahiro; Samjeske, Gabor; Tsushima, Minoru; Osawa, Masatoshi

    2007-01-01

    Hydrogen evolution reaction (HER) on a polycrystalline Pt electrode has been investigated in Ar-purged acids by surface-enhanced infrared absorption spectroscopy and electrochemical kinetic analysis (Tafel plot). A vibrational mode characteristic to H atom adsorbed at atop sites (terminal H) was observed at 2080-2095 cm -1 . This band appears at 0.1 V (RHE) and grows at more negative potentials in parallel to the increase in hydrogen evolution current. Good signal-to-noise ratio of the spectra enabled us to establish the quantitative relation between the band intensity (equivalently, coverage) of terminal H and the kinetics of HER, from which we conclude that terminal H atom is the reaction intermediate in HER and the recombination of two terminal H atoms is the rate-determining step. The quantitative analysis of the infrared data also revealed that the adsorption of terminal H follows the Frumkin isotherm with repulsive interaction

  15. CO adsorption on Pd(100) studied by multimodal ambient pressure X-ray photoelectron and infrared reflection absorption spectroscopies

    Science.gov (United States)

    Head, Ashley R.; Karslıoǧlu, Osman; Gerber, Timm; Yu, Yi; Trotochaud, Lena; Raso, Joseph; Kerger, Philipp; Bluhm, Hendrik

    2017-11-01

    The adsorption of CO on Pd(100) was investigated using simultaneous ambient pressure X-ray photoelectron spectroscopy (APXPS) and infrared reflection absorption infrared spectroscopy (IRRAS). The measurements were performed as a function of CO partial pressures from ultra-high vacuum to 0.5 Torr. Total CO coverages estimated from the complementary APXPS and IRRAS measurements are in good agreement. A signal for atop CO, which is uncommon for Pd(100), was observed in the IRRAS data and was used to identify the C 1 s binding energy of this species. Discerning this binding configuration of CO on the Pd(100) surface at elevated pressures has significance for catalytic reactions involving CO, where bridging CO is often the only configuration considered. We also detail the combined APXPS/IRRAS instrumentation and discuss ways to improve these multimodal measurements, which should have wide applicability across many areas of surface and interface science.

  16. Vapor-Phase Infrared Absorptivity Coefficient of 2-ChlorovinylDichloroarsine (LEWISITE)

    National Research Council Canada - National Science Library

    Williams, Barry R; Hulet, Melissa S; Samuels, Alan C; Miles, Jr., Ronald W; Berg, Frederic J; McMahon, Leslie; Durst, H. D

    2009-01-01

    ...) in the mid-infrared (4000-550/cm) at a spectral resolution of 0.125/cm. The Lewisite used in the feedstock was purified by fractional distillation and analyzed by nuclear magnetic resonance to verify its purity...

  17. Temperatures and Species Concentration in Propellant Dark Zones via Fitting Infrared (IR) Spectral Absorption Data

    National Research Council Canada - National Science Library

    Vanderhoff, J

    1997-01-01

    In a continuing investigation of the dark zone of double-base and nitramine propellants during self-sustained combustion, least-squares fitting has been developed and updated simulations of infrared (IR...

  18. Increasing detectivity of polarization modulation infrared reflection-absorption spectroscopy for the study of ultrathin films deposited on various substrates.

    Science.gov (United States)

    Saccani, J; Buffeteau, T; Desbat, B; Blaudez, D

    2003-10-01

    In this paper, we present a simple way to increase the sensitivity of polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) for the study of ultrathin films deposited on dielectric and semiconductor substrates. The enhancement of the absorption band intensity is obtained by reducing the signal arising from the substrate. This is achieved by adding a polarizer after the sample in order to balance the polarized reflectivities of the sample. As a consequence, the contribution of the film to the PM-IRRAS signal is increased relative to that of the substrate. An enhancement factor of about 10 has been obtained for ultrathin organic films deposited on glass and spread at the air-water interface. This method has also allowed the study of the very thin native oxide layer present on silicon without the need for the reference spectrum of bare silicon.

  19. On-line monitoring of odorant in natural gas mixtures of different composition by the infrared absorption spectroscopy method

    Science.gov (United States)

    Kireev, S. V.; Shnyrev, S. L.

    2018-03-01

    This paper reports on the results of research aimed at solving the problem of on-line monitoring of odorant in natural gas mixtures in order to make the odorization process effective and ensure the safety of main gas pipeline exploitation. Our results show that using the infrared absorption spectroscopy method is promising for this purpose. Using radiation sources operating in the spectral range 6–15 µm allows us to obtain an odorant detection sensitivity of approximately 5 ppm in gas mixtures of different composition.

  20. Intersubband absorption in annealed InAs/GaAs quantum dots: a case for polarization-sensitive infrared detection

    International Nuclear Information System (INIS)

    Chakrabarti, S; Bhattacharya, P; Stiff-Roberts, A D; Lin, Y Y; Singh, J; Lei, Y; Browning, N

    2003-01-01

    We have studied the characteristics of intersubband absorption of polarized infrared (IR) radiation in as-grown and annealed self-organized InAs/GaAs quantum dots. It is observed that with the increase of annealing time and temperature, the dots tend to flatten and behave more like quantum wells. As a result, their sensitivity to TE (in-plane)-polarized light decreases and that to TM (out-of-plane)-polarized light increases. The effect could be utilized for the realization of polarization-sensitive IR detectors

  1. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  2. Brown carbon absorption in the red and near infrared spectral region

    OpenAIRE

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Chung, Chul Eddy; Gelencsér, András

    2017-01-01

    Black carbon aerosols (BC) have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. ...

  3. Brown carbon absorption in the red and near infrared spectral region

    OpenAIRE

    Hoffer, A.; Tóth, A.; Pósfai, M.; Chung, C. E.; Gelencsér, A.

    2016-01-01

    Black carbon aerosols have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. The a...

  4. Strong restriction on inflationary vacua from the local gauge invariance III: Infrared regularity of graviton loops

    International Nuclear Information System (INIS)

    Tanaka, Takahiro; Urakawa, Yuko

    2014-01-01

    It has been claimed that the super-Hubble modes of the graviton generated during inflation can make loop corrections diverge. Even if we introduce an infrared (IR) cutoff at a comoving scale as an ad hoc but practical method of regularization, we encounter secular growth, which may lead to the breakdown of perturbative expansion for a sufficiently long-lasting inflation. In this paper, we show that the IR pathology concerning the graviton can be attributed to the presence of residual gauge degrees of freedom in the local observable universe, as in the case of the adiabatic curvature perturbation. We will show that choosing the Euclidean vacuum as the initial state ensures invariance under the above-mentioned residual gauge transformations. We will also show that, as long as we consider a gauge invariant quantity in the local universe, we encounter neither IR divergence nor secular growth. The argument in this paper applies to general single-field models of inflation up to a sufficiently high order in perturbation

  5. Highly efficient absorption of visible and near infrared light in convex gold and nickel grooves

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Beermann, Jonas; Søndergaard, Thomas

    The realization of nonresonant light absorption with nanostructured metal surfaces by making practical use of nanofocusing optical energy in tapered plasmonic waveguides, is of one of the most fascinating and fundamental phenomena in plasmonics [1,2]. We recently realized broadband light absorption...... in gold via adiabatic nanofocusing of gap surface plasmon modes in well-defined geometries of ultra-sharp convex grooves and being excited by scattering off subwavelength-sized wedges [3]....

  6. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.

    Science.gov (United States)

    Stare, Jernej; Panek, Jarosław; Eckert, Juergen; Grdadolnik, Joze; Mavri, Janez; Hadzi, Dusan

    2008-02-21

    Infrared, Raman and INS spectra of picolinic acid N-oxide (PANO) were recorded and examined for the location of the hydronic modes, particularly O-H stretching and COH bending. PANO is representative of strong chelate hydrogen bonds (H-bonds) with its short O...O distance (2.425 A). H-bonding is possibly well-characterized by diffraction, NMR and NQR data and calculated potential energy functions. The analysis of the spectra is assisted by DFT frequency calculations both in the gas phase and in the solid state. The Car-Parrinello quantum mechanical solid-state method is also used for the proton dynamics simulation; it shows the hydron to be located about 99% of time in the energy minimum near the carboxylic oxygen; jumps to the N-O acceptor are rare. The infrared spectrum excels by an extended absorption (Zundel's continuum) interrupted by numerous Evans transmissions. The model proton potential functions on which the theories of continuum formation are based do not correspond to the experimental and computed characteristics of the hydrogen bond in PANO, therefore a novel approach has been developed; it is based on crystal dynamics driven hydronium potential fluctuation. The envelope of one hundred 0 --> 1 OH stretching transitions generated by molecular dynamics simulation exhibits a maximum at 1400 cm-1 and a minor hump at approximately 1600 cm-1. These positions square well with ones predicted for the COH bending and OH stretching frequencies derived from various one- and two-dimensional model potentials. The coincidences with experimental features have to be considered with caution because the CPMD transition envelope is based solely on the OH stretching coordinate while the observed infrared bands correspond to heavily mixed modes as was previously shown by the normal coordinate analysis of the IR spectrum of argon matrix isolated PANO, the present CPMD frequency calculation and the empirical analysis of spectra. The experimental infrared spectra show some

  7. Strong Focusing Wiggler for SASE and FEL in the Far-Infrared Region at ISIR, Osaka University

    CERN Document Server

    Kashiwagi, S; Kato, R; Noda, N

    2005-01-01

    We apply the edge-focusing scheme to the wiggler for FEL and SASE in the far-infrared region at ISIR, Osaka University in order to make the gain length of SASE shorter by keeping the beam size small along the wiggler. As the electron beam energy is 10-30 MeV and the magnetic field of the wiggler is up to 0.4 T, the natural focusing force in the vertical direction is strong in the wiggler and it is strongly dependent on the electron energy and the wiggler gap. The focusing forces should be compatible to or higher than the strong natural focusing force, equally in the horizontal and vertical directions over the wide range of the electron beam energy and the wiggler gap. In order to meet this requirement, we adopt the strong focusing scheme using the EF wiggler. The wiggler consists of 4 FODO cells in the 1.938 m long (32 periods, period length: 60mm). A focusing element and defocusing element are incorporate with single wiggler periods with edge angles of +5 and -5 degrees, respectively, and they are separated ...

  8. Infrared absorption spectra of t-HNOH radicals generated on VUV irradiation of NO in solid hydrogen.

    Science.gov (United States)

    Wu, Yu-Jong; Lin, Meng-Yeh; Hsu, Sheng-Chuan; Cheng, Bing-Ming

    2009-04-14

    Photoproduct signature: Irradiation of solid hydrogen near 3 K containing NO with vacuum-UV light from synchrotron radiation yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1) (see figure). These new lines are assigned to vibrational modes of t-HNOH. This photoproduct is formed from electronically excited NO reacting with neighboring hydrogen in the solid sample.Irradiation of solid H(2) near 3 K containing NO with vacuum-ultraviolet light from a synchrotron yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1). The structures of four possible structural isomers: H(2)NO, t-HNOH, c-HNOH and NOH(2), their vibrational wavenumbers, IR intensities and D-isotopic shifts are calculated with density-functional theory according to B3LYP and PW91PW91/aug-cc-pVTZ methods. Based on the results of those calculations and of experiments with deuterium labeling, we assign the new lines to nu(4) (cis bending), nu(5) (N==O stretching) and nu(6) (out-of-plane deformation) modes, respectively, of t-HNOH. This photoproduct is formed through reaction of electronically excited NO with neighboring H(2) in the solid sample.

  9. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  10. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    Science.gov (United States)

    Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2017-10-01

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.

  11. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    Science.gov (United States)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  12. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    Science.gov (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  13. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  14. The infrared optical absorption spectra of the functionalized nanocrystalline diamond surface

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Kromka, Alexander; Kozak, Halyna; Vaněček, Milan; Haenen, K.; Wenmackers, S.

    2009-01-01

    Roč. 18, 5-8 (2009), s. 772-775 ISSN 0925-9635 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100623 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * photochemical functionalization * spin coating * polymer * infrared spectroscopy * fluorescence microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  15. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  16. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  17. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    Science.gov (United States)

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  19. Experimental determination of the absolute infrared absorption intensities of formyl radical HCO.

    Science.gov (United States)

    Ryazantsev, Sergey V; Tyurin, Daniil A; Feldman, Vladimir I

    2017-12-05

    Formyl radical HCO is an important reactive intermediate in combustion, atmospheric and extraterrestrial chemistry. Like in the case of other transients, the lack of knowledge of the absolute IR intensities limits the quantitative spectroscopic studies on this species. We report the first experimental determination of the absorption intensities for the fundamental vibrational bands of HCO. The measurements have been performed using matrix-isolation FTIR spectroscopy. Determination of the values was based on the repeated photodissociation and thermal recovery of the HCO radical using the known value of the absorption coefficient of CO. The experimentally determined values (93.2±6.0, 67.2±4.5, and 109.2±6.6kmmol -1 for the ν 1 , ν 2 , and ν 3 modes, respectively) have been compared to the calculated IR intensities obtained by DFT and UCCSD(T) computations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Magnetic feature and near-infrared absorption of a [Pt(mnt)2]-based H-bond supramolecular crystal

    International Nuclear Information System (INIS)

    Li, Cui-Ping; Nie, Li; Pei, Wen-Bo; Li, Li; Tian, Zheng-Fang; Liu, Jian-Lan; Gao, Xu-Sheng; Ren, Xiao-Ming

    2016-01-01

    A new salt [H 2 DABCO][Pt(mnt) 2 ] 2 (1) (mnt 2- =maleonitriledithiolate and H 2 DABCO 2+ is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt) 2 ] - anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt) 2 ] 2 2- π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence of strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H 2 DABCO][Pt(mnt) 2 ] 2 shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.

  1. Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared

    CERN Document Server

    Rakov, N; Da Rocha, G B; Simas, A M; Athayde-Filho, P A F; Miller, J

    2000-01-01

    Intensity dependent transmission and laser-induced fluorescence were observed in liquid solutions of mesoionic compounds (MIC) pumped with nanosecond lasers operating at 1064, 604, and 570 nm. The results indicate that two-photon absorption (TPA) is the dominant mechanism which causes the observed behavior. The TPA cross-sections measured have values from 0.33*10/sup -20/ cm/sup 4//GW to 0.43*10/sup -18/ cm /sup 4//GW. (20 refs).

  2. A MEMS Infrared Thermopile Fabricated from Silicon-On-Insulator with Phononic Crystal Structures and Carbon Nanotube Absorption Layer

    Science.gov (United States)

    Gray, Kory Forrest

    The goal of this project was to examine the possibility of creating a novel thermal infrared detector based on silicon CMOS technology that has been enhanced by the latest nano-engineering discoveries. Silicon typically is not thought as an efficient thermoelectric material. However recent advancements in nanotechnology have improved the potential for a highly sensitive infrared detector based on nano-structured silicon. The thermal conductivity of silicon has been shown to be reduced from 150 W/mK down to 60 W/mK just by decreasing the scale of the silicon from bulk down to the sub-micron scale. Further reduction of the thermal conductivity has been shown by patterning silicon with a phonon crystal structure which has been reported to have thermal conductivities down to 10 W/mK. The phonon crystal structure consists of a 2D array of holes that are etched into the silicon. The size and pitch of the holes are on the order of the mean free path of the phonons in silicon which is approximately 200-500nm. This particular device had 200nm holes on a 400nm pitch. The Seebeck coefficient of silicon can also be enhanced by the reduction of the material from the bulk to sub-micron scale and with degenerate level doping. The combination of decreased thermal conductivity and increased Seebeck coefficient allow silicon to be a promising material for thermoelectric infrared detectors. The highly doped silicon is desired to reduce the electrical resistance of the device. The low electrical resistance is required to reduce the Johnson noise of the device which is the dominant noise source for most thermal detectors. This project designed a MEMS thermopile using a silicon-on-insulator substrate, and a CMOS compatible process. The basic thermopile consists of a silicon dioxide membrane with phononic crystal patterned silicon thermocouples around the edges of the membrane. Vertical aligned, multi-walled, carbon nanotubes were used as the infrared absorption layer. A MEMS

  3. High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths

    OpenAIRE

    Benten, Hiroaki; Nishida, Takaya; Mori, Daisuke; Xu, Huajun; Ohkita, Hideo; Ito, Shinzaburo

    2016-01-01

    We developed high-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths. A power conversion efficiency of 6.7% was obtained with an external quantum efficiency over 60% both in the visible and near-infrared regions. Our results demonstrate that the ternary blend all-polymer systems open a new avenue for accelerating improvement in the efficiency of non-fullerene thin-film polymer solar cells.

  4. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.

    Science.gov (United States)

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong

    2017-12-27

    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  5. Carbon dioxide adsorption on a ZnO(101[combining macron]0) substrate studied by infrared reflection absorption spectroscopy.

    Science.gov (United States)

    Buchholz, Maria; Weidler, Peter G; Bebensee, Fabian; Nefedov, Alexei; Wöll, Christof

    2014-01-28

    The adsorption of carbon dioxide on the mixed-terminated ZnO(101[combining macron]0) surface of a bulk single crystal was studied by UHV Infrared Reflection Absorption Spectroscopy (IRRAS). In contrast to metals, the classic surface selection rule for IRRAS does not apply to bulk oxide crystals, and hence vibrational bands can also be observed for s-polarized light. Although this fact substantially complicates data interpretation, a careful analysis allows for a direct determination of the adsorbate geometry. Here, we demonstrate the huge potential of IR-spectroscopy for investigations on oxide single crystal surfaces by considering all three components of the incident polarized light separately. We find that the tridentate (surface) carbonate is aligned along the [0001] direction. A comparison to data reported previously for CO2 adsorbed on the surfaces of ZnO nanoparticles provides important insight into the role of defects in the surface chemistry of powder particles.

  6. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  7. Investigating Langmuir films at the air-water interface using a planar array infrared reflection-absorption spectrograph

    Science.gov (United States)

    Kim, Young Shin

    In this work, a new planar array infrared reflection-absorption spectrograph (PA-IRRAS) was developed to investigate a broad range of Langmuir films at the air-water interface. This instrument is capable of recording sample and reference spectra simultaneously with an optical setup that is the same as that of a single-beam instrument but splits the incident infrared beam into two sections on a plane mirror (H) or a water trough. With this design, the instrument could accommodate large infrared accessories, such as a water trough. In addition, water bands were subtracted to obtain a high quality spectrum for a poly(lactic acid) (PLA) Langmuir film on the water subphase with a resolution of about 8 cm-1 in 10.8 sec. With this instrument, two types of monolayer systems were studied; polymeric and lipid Langmuir films at the air-water interface. For the polymeric monolayer system, PA-IRRAS was used as a probe to follow the real-time conformational changes associated with intermolecular interactions of the polymer chains during the compression of the monolayers. It was found that the mixture of poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) (D/L) formed a stereocomplex when the mixed solution developed the two-dimensional monolayer at the air-water interface. The stereocomplexation occurred before film compression, indicating that there is no direct correlation between film compression and stereocomplexation. For the lipid monolayer system, PA-IRRAS was also used as a probe to investigate the origin of the disruption of a lipid monolayer upon protein adsorption at the air-water interface. Analysis of the time-resolved PA-IRRAS spectra revealed that Cu(II) ion-chelated DSIDA lipid monolayer (Cu 2+-DSIDA) was readily disrupted by myoglobin adsorption as demonstrated by a blue shift of 1.7 cm-1 and a lower intensity in the vas(CH2) stretch mode of the lipid monolayer over a period of five hours. To find the origin of the disruption of the lipid monolayer, a

  8. Polyhedral shaped gold nanoparticles with outstanding near-infrared light absorption

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral, Alvaro; Vazquez-Duran, Alma; Barron, Hector; Jose-Yacaman, Miguel [University of Texas, San Antonio (United States). Department of Physics and Astronomy

    2009-10-15

    Au/Ag nanoparticles which absorb radiation near the infrared zone have been synthesized with the expectation that they will be employed in photothermal cancer diagnosis and treatment. The material exhibited two main morphologies, triangular shapes and nanostars, which in both cases presented two extra very bright peaks ending in a triangular face in a plane parallel to the electron beam direction. The particles have been characterized by weak beam dark field (WBDF) transmission electron microscopy, STEM-HAADF, SEM, and the composition was confirmed by point EDX analysis. HRTEM was used to analyze the defects observed in the microstructure. (orig.)

  9. Polyhedral shaped gold nanoparticles with outstanding near-infrared light absorption

    Science.gov (United States)

    Mayoral, Alvaro; Vazquez-Duran, Alma; Barron, Hector; Jose-Yacaman, Miguel

    2009-10-01

    Au/Ag nanoparticles which absorb radiation near the infrared zone have been synthesized with the expectation that they will be employed in photothermal cancer diagnosis and treatment. The material exhibited two main morphologies, triangular shapes and nanostars, which in both cases presented two extra very bright peaks ending in a triangular face in a plane parallel to the electron beam direction. The particles have been characterized by weak beam dark field (WBDF) transmission electron microscopy, STEM-HAADF, SEM, and the composition was confirmed by point EDX analysis. HRTEM was used to analyze the defects observed in the microstructure.

  10. A Method of Polymer Design and Synthesis for Selective Infrared Energy Absorption.

    Science.gov (United States)

    1982-06-18

    AD-AL17 485 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) SCHAMPAIGN IL F/6 7/3 A METHOD OF POLYMER OESIGN AND SYNTHESIS FOR SELECTIVE INFRARED--ETC(U...JUN A2 A SM ITH ULASSIFIED N 11111 .0 ;11L.5I 1111.2 1.25 11.4 MICROCOPY RESOLUTION TEST CHART SM1ITH N A METHOD OF IPOLYU DESIGN AND SYNTHESIS FOR...nuclear magnetic resonanes The translations of vibrational or rotational energy via mas dis- placement occur as bond stretching (symetric and asymetric

  11. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  12. An infrared view of high Tc superconductors

    International Nuclear Information System (INIS)

    Tanner, D.B.; Timusk, T.; McMaster Univ., Hamilton, ON

    1989-01-01

    Studies of the infrared properties of the high T c superconductors are reviewed, with particular emphasis on attempts to determine the energy gap by far infrared spectroscopy and on the properties of the strong absorption that occurs in the mid infrared. The authors argue that this mid-infrared absorption is a direct particle-hole excitation rather than a Holstein emission process. In addition, they conclude that although the energy gap is not easily observed, several recent experiments place it in the weak to moderate strong coupling range

  13. Temperature dependence of mid-infrared intersubband absorption in AlGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Teruhisa, E-mail: tkotani@iis.u-tokyo.ac.jp [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567 (Japan); Arita, Munetaka [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Hoshino, Katsuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Arakawa, Yasuhiko [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2016-02-01

    The temperature dependence of the mid-infrared intersubband (ISB) absorption in non-polar (m-plane) and polar (c-plane) AlGaN/GaN quantum wells (QWs) is studied. The ISB absorption shifts to higher energy as the temperature is reduced from 300 K to below 10 K. Both m-plane and c-plane QWs show a small energy shift (1.6–2.6 meV) compared to AlGaAs/GaAs (3.5–5.2 meV) and AlSb/InAs (6.2 and 12 meV) QWs. Theoretical calculations considering the temperature induced material constant changes show good agreement with the experimental results. These results suggest that ISB transition energies in AlGaN/GaN QWs are more stable against temperature change mainly because of the heavy effective masses and small nonparabolicities.

  14. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NARCIS (Netherlands)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsala, M.; Hoekstra, S.; Halonen, L.

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to

  15. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.; Rich, J. A.; Xu, C. K. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Lisenfeld, U. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada (Spain); Bitsakis, T. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Guillard, P. [Institut d' Astrophysique Spatiale, Université Paris-Sud XI, F-91405 Orsay Cedex (France); Charmandaris, V. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece); Cluver, M.; Jarrett, T. [Astrophysics Cosmology and Gravity Centre, Dept of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701, Republic of South Africa (South Africa); Dopita, M. A.; Kewley, L. J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Freeland, E. [The Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Rasmussen, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Verdes-Montenegro, L. [Departamento Astronomía Extragaláctica, Instituto Astrofísica Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Yun, M., E-mail: kalatalo@ipac.caltech.edu [University of Massachusetts, Astronomy Department, Amherst, MA 01003 (United States)

    2014-11-10

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L {sub FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H{sub 2} emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  16. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    International Nuclear Information System (INIS)

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.; Rich, J. A.; Xu, C. K.; Lisenfeld, U.; Bitsakis, T.; Guillard, P.; Charmandaris, V.; Cluver, M.; Jarrett, T.; Dopita, M. A.; Kewley, L. J.; Freeland, E.; Rasmussen, J.; Verdes-Montenegro, L.; Yun, M.

    2014-01-01

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L FIR and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H 2 emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  17. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  18. Computational design of small organic dyes with strong visible absorption by controlled quinoidization of the thiophene unit

    Science.gov (United States)

    Tan, Yi Yin; Tu, Wei Han; Manzhos, Sergei

    2014-02-01

    We present rational design of phenothiazine dyes by controlled quinoidization of the thiophene unit. We systematically study the effect of electron-withdrawing functional groups including pseudo- and super-halogens. We propose a new dye where a fumaronitrile unit induces an increase in the bond length alternation and a concurrent red shift in the absorption spectrum vs. the parent dye. The visible absorption peak is predicted at 520 nm, in CH2Cl2 vs. 450 nm for the parent dye. The LUMO and HOMO levels of the new dye are suitable for injection into TiO2 and regeneration by available redox shuttles, respectively.

  19. Characterization by time-resolved UV/Vis and infrared absorption spectroscopy of an intramolecular charge-transfer state in an organic electron-donor-bridge-acceptor system

    NARCIS (Netherlands)

    Hviid, L.; Verhoeven, J.W.; Brouwer, A.M.; Paddon-Row, M.N.; Yang, J.

    2004-01-01

    A long-lived intramolecular charge-separated state in an electron-donor-acceptor molecule is characterized by time-resolved visible and infrared absorption spectroscopy. Bands that can be assigned to the negatively charged acceptor chromophore can be clearly observed in the time-resolved IR

  20. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2016-09-01

    Full Text Available Quantitative knowledge of water vapor radiative processes in the atmosphere throughout the terrestrial and solar infrared spectrum is still incomplete even though this is crucial input to the radiation codes forming the core of both remote sensing methods and climate simulations. Beside laboratory spectroscopy, ground-based remote sensing field studies in the context of so-called radiative closure experiments are a powerful approach because this is the only way to quantify water absorption under cold atmospheric conditions. For this purpose, we have set up at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l. a long-term radiative closure experiment designed to cover the infrared spectrum between 400 and 7800 cm−1 (1.28–25 µm. As a benefit for such experiments, the atmospheric states at the Zugspitze frequently comprise very low integrated water vapor (IWV; minimum  =  0.1 mm, median  =  2.3 mm and very low aerosol optical depth (AOD  =  0.0024–0.0032 at 7800 cm−1 at air mass 1. All instruments for radiance measurements and atmospheric-state measurements are described along with their measurement uncertainties. Based on all parameter uncertainties and the corresponding radiance Jacobians, a systematic residual radiance uncertainty budget has been set up to characterize the sensitivity of the radiative closure over the whole infrared spectral range. The dominant uncertainty contribution in the spectral windows used for far-infrared (FIR continuum quantification is from IWV uncertainties, while T profile uncertainties dominate in the mid-infrared (MIR. Uncertainty contributions to near-infrared (NIR radiance residuals are dominated by water vapor line parameters in the vicinity of the strong water vapor bands. The window regions in between these bands are dominated by solar Fourier transform infrared (FTIR calibration uncertainties at low NIR wavenumbers, while uncertainties due to AOD become an

  1. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-11-01

    Full Text Available Sulfur hexafluoride (SF6 gas-insulated electrical equipment is widely used in high-voltage (HV and extra-high-voltage (EHV power systems. Partial discharge (PD and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES and infrared (IR spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  2. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Science.gov (United States)

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  3. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Michael; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei V., E-mail: michael.rey@univ-reims.fr [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, SB RAS, 634055 Tomsk (Russian Federation)

    2017-10-01

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high- T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of {sup 12}CH{sub 4} in the infrared range 0–13,400 cm{sup −1} up to T {sub max} = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm{sup −1} and intensity cutoff down to 10{sup −33} cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001–0.01 cm{sup −1}. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high- T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.

  4. Infrared Absorption Intensity Analysis as a New Tool for Investigation of Salt Effect on Proteins

    Science.gov (United States)

    Li, Heng; Xu, Yan-yan; Weng, Yu-xiang

    2009-12-01

    The native protein structures in buffer solution are maintained by the electrostatic force as well as the hydrophobic force, salt ions play an important role in maintaining the protein native structures, and their effect on the protein stability has attracted tremendous interests. Infrared spectroscopy has been generally used in molecular structure analysis due to its fingerprint resolution for different species including macromolecules as proteins. However spectral intensities have received much less attention than the vibrational frequencies. Here we report that the spectral intensities of protein amide I band, the finger prints for the protein secondary structures, are very sensitive to the local electric field known as Onsager reaction field caused by salt ions. IR absorbance thermal titrations have been conducted for a series of samples including simple water soluble amino acids, water soluble monomeric protein cytochrome c and dimeric protein DsbC and its single-site mutant G49R. We found that at lower temperature range (10-20 °C), there exists a thermal activated salting-in process, where the IR intensity increases with a rise in the temperature, corresponding to the ions binding of the hydrophobic surface of protein. This process is absent for the amino acids. When further raising the temperature, the IR intensity decreases, this is interpreted as the thermal activated breaking of the ion-protein surface binding. Applying Van't Hoff plot to the thermal titration curves, the thermodynamic parameters such as ΔH and ΔS for salting-in and ion unbinding processes can be derived for various protein secondary structural components, revealing quantitatively the extent of hydrophobic interaction as well as the strength of the ion-protein binding.

  5. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  6. Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection–Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Christian Schwieger

    2017-11-01

    Full Text Available Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein–protein and protein–lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII. The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS, we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH. The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.

  7. Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment.

    Science.gov (United States)

    Wang, Jianing; Zheng, Lingjiao; Niu, Xintao; Zheng, Chuantao; Wang, Yiding; Tittel, Frank K

    2016-09-01

    A mid-infrared carbon dioxide (CO2) sensor was experimentally demonstrated for application in a greenhouse farm environment. An optical module was developed using a lamp source, a dual-channel pyre-electrical detector, and a spherical mirror. A multi-pass gas chamber and a dual-channel detection method were adopted to effectively enhance light collection efficiency and suppress environmental influences. The moisture-proof function realized by a breathable waterproof chamber was specially designed for the application of such a sensor in a greenhouse with high humidity. Sensor structure of the optical part and electrical part were described, respectively, and related experiments were carried out to evaluate the sensor performance on CO2 concentration. The limit of detection of the sensor is 30 ppm with an absorption length of 30 cm. The relative detection error is less than 5% within the measurement range of 30-5000 ppm. The fluctuations for the long-term (10 h) stability measurements on a 500 ppm CO2 sample and a 2000 ppm CO2 sample are 1.08% and 3.6%, respectively, indicating a good stability of the sensor. A wireless sensor network-based automatic monitoring system was implemented for greenhouse application using multiple mid-infrared CO2 sensor nodes. A monitor software based on LabVIEW was realized via a laptop for real-time environmental data display, storage, and website sharing capabilities. A field experiment of the sensor network was carried out in the town of Shelin in Jilin Province, China, which proved that the whole monitoring system possesses stable sensing performance for practical application under the circumstances of a greenhouse.

  8. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. X-Raying the Ultraluminous Infrared Starburst Galaxy and Broad Absorption Line QSO Markarian 231 with Chandra

    Science.gov (United States)

    Gallagher, S. C.; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Sambruna, R. M.

    2002-01-01

    With 40 ks of Clzandra ACIS-S3 exposure, new information on both the starburst and QSO components of the X-ray emission of Markarian 231, an ultraluminous infrared galaxy and broad absorption line QSO, has been obtained. The bulk of the X-ray luminosity is emitted from an unresolved nuclear point source, and the spectrum is remarkably hard, with the majority of the flux emitted above 2 keV. Most notably, significant nuclear variability (a decrease of -45% in approximately 6 hr) at energies above 2 keV indicates that Chuizdra has probed within light-hours of the central black hole. Although we concur with Maloney & Reynolds that the direct continuum is not observed, this variability coupled with the 188 eV upper limit on the equivalent width of the Fe K o emission line argues against the reflection-dominated model put forth by these authors based on their ASCA data. Instead, we favor a model in which a small, Compton-thick absorber blocks the direct X-rays, and only indirect, scattered X-rays from multiple lines of sight can reach the observer. Extended soft, thermal emission encompasses the optical extent of the galaxy and exhibits resolved structure. An off-nuclear X-ray source with a 0.35-8.0 keV luminosity of Lx = 7 x 10 sup39 ergs s sup -1 , consistent with the ultraluminous X-ray sources in other nearby starbursts, is detected. We also present an unpublished Faint Object Spectrograph spectrum from the Hirhhle Spuce Telescope archive showing the broad C IV absorption.

  10. Strong Impact of an Axial Ligand on the Absorption by Chlorophyll a and b Pigments Determined by Gas-Phase Ion Spectroscopy Experiments

    DEFF Research Database (Denmark)

    Kjaer, Christina; Stockett, Mark H.; Pedersen, Bjarke Møller

    2016-01-01

    The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects......), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here...

  11. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    Science.gov (United States)

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  12. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  13. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    Science.gov (United States)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  14. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  15. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements

    Science.gov (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.

    1998-11-01

    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  16. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    Science.gov (United States)

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  17. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    Science.gov (United States)

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  18. Tight beta-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects

    Czech Academy of Sciences Publication Activity Database

    Kim, J.; Kapitán, Josef; Lakhani, A.; Bouř, Petr; Keiderling, T. A.

    2008-01-01

    Roč. 119, 1/3 (2008), s. 81-97 ISSN 1432-881X R&D Projects: GA ČR GA203/06/0420 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide beta -turn * density functional theory * infrared absorption * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.370, year: 2008

  19. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption

    Science.gov (United States)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.

    2015-07-01

    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  20. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg

    2005-01-01

    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  1. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu–Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu–Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2–18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than ‑19 dB in 2–18 GHz, and the maximum of ‑23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu–Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu–Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  2. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  3. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)

    OpenAIRE

    Lotter, Andreas

    2006-01-01

    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  4. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  5. Two-colour mid-infrared absorption in an InAs/GaSb-based type II and broken-gap quantum well

    International Nuclear Information System (INIS)

    Wei, X F; Xu, W; Zeng, Z

    2007-01-01

    We examine contributions from different transition channels to optical absorption in an InAs/GaSb-based type II and broken-gap quantum well (QW). In such a structure, because both electron and hole subbands are occupied by the conducting carriers, new channels open up for electronic transition via intra- and inter-layer scattering mechanisms. We find that two absorption peaks can be observed through inter-subband transitions within the same material layer. The absorption induced by the inter-layer transition is rather weak due to a small overlap of electron and hole wavefunctions. The results suggest that InAs/GaSb-based type II and broken-gap QWs can be employed as two-colour photodetectors working at mid-infrared bandwidth at relatively high temperatures up to room-temperature

  6. Infrared absorption spectrum of free carriers in polar semiconductors. Progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Jensen, B.

    1980-02-01

    The Drude Zener theory of the absorption of high frequency radiation by free carriers (inverse bremsstrahlung) has been extended into the quantum region (h-bar omega > k 0 T) in terms of a frequency dependent relaxation time which predicts the dc mobility in the quasiclassical limit. Numerical calculations of the frequency and concentration dependent electron scattering rate have been completed for InP, InAs, Ga 0 47 In 0 53 As, and previous results for GaAs extended to high carrier concentrations. When starting from a quantum statistical theory, the fact that n/sub q/oh-bar omega → k 0 T at low frequencies can be used to prevent the divergence of the coulomb scattering rate without inclusion of a screening radius. A result containing no adjustable parameters is found which predicts a mobility for uncompensated samples that decreases strongly at high concentrations. This has been observed in GaAs, and is not accounted for by the usual dc calculation which assumes h-bar omega = 0 and a screening parameter. Calculated results for GaAs are in good agreement with experimental measurements of the mobility which are found to be independent of a wide variety of conditions of material preparation. This indicates that disagreement with previous theoretical calculations was not due to compensation. Calculations for ZnSe and further investigation of the modification of the optical constants by the presence of an intense laser field and by a static magnetic field are currently planned

  7. Strong spin-phonon coupling in infrared and Raman spectra of SrMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Goian, Veronica; Skoromets, Volodymyr; Hejtmánek, Jiří; Bovtun, Viktor; Kempa, Martin; Borodavka, Fedir; Vaněk, Přemysl; Belik, A.A.; Lee, J.H.; Pacherová, Oliva; Rabe, K.M.

    2014-01-01

    Roč. 89, č. 6 (2014), "064308-1"-"064308-9" ISSN 1098-0121 R&D Projects: GA MŠk LH13048; GA ČR GAP204/12/1163; GA MŠk LD12026; GA ČR GP14-14122P Institutional support: RVO:68378271 Keywords : multiferroics * spin-phonon coupling * infrared and Raman spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  8. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  9. Infrared absorption spectra of gaseous HD. II. Collision-induced fundamental band of HD in HD--Ne and HD--Ar mixtures at room temperature

    International Nuclear Information System (INIS)

    Prasad, R.D.G.; Reddy, S.P.

    1976-01-01

    The collision-induced infrared absorption spectra of the fundamental band of HD in binary mixtures of HD with Ne and Ar at room temperature have been studied with an absorption path length of 105.2 cm for different base densities of HD in the range 8--20 amagat and a number of total gas densities up to 175 amagat. The observed features of the profiles of the enhancement of absorption in these mixtures resemble closely those of the corresponding profiles of the fundamental band of H 2 in binary mixtures with Ne and Ar. The binary absorption coefficients of the band obtained from the measured integrated intensities are (1.84 +- 0.06) x 10 -35 and (4.41 +- 0.06) x 10 -35 cm 6 s -1 for HD--Ne and HD--Ar, respectively. The characteristic half-width parameters, delta/subd/ and delta/subc/ of the overlap transitions and delta/subq/ (and delta/subq//sub prime/) of the quadrupolar transitions, are obtained from an analysis of the profiles of the enhancement of absorption in both these mixtures. The quantity delta/subc/ which is the half-width of the intercollisional interference dip of the Q branch increases with the density of the perturbing gas Ne or Ar, and for HD--Ne it varies in a manner similar to that for HD--He as described in Paper I of this series

  10. Removal of Thin Cirrus Path Radiances in the 0.4-1.0 micron Spectral Region Using the 1.375-micron Strong Water Vapor Absorption Channel

    Science.gov (United States)

    Gao, Bo-Cai; Kaufman, Yoram J.; Han, Wei; Wiscombe, Warren J.

    1998-01-01

    Through analysis of spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during several field programs, it was found that narrow channels near the center of the strong 1.38-micron water vapor band are very sensitive in detecting thin cirrus clouds. Based on this observation from AVIRIS data, a channel centered at 1.375 microns with a width of 30 nm was selected for the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micron MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, a larger fraction of the satellite data will likely be identified as containing cirrus clouds. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. We have developed an empirical approach for removing/correcting thin cirrus effects in the 0.4 - 1.0 micron region using channels near 1.375 microns. This algorithm will be incorporated into the present MODIS atmospheric correction algorithms for ocean color and land applications and will yield improved MODIS atmospheric aerosol, land surface, and ocean color products.

  11. A strong adaptable autofocusing approach of off-axis infrared digital holography under different quality conditions of holograms

    Science.gov (United States)

    Liu, Ning; Yang, Chao

    2017-01-01

    In this paper, we present an innovative autofocusing criterion for the reconstruction of infrared digital holograms. This criterion has the advantages of fast, efficient and precision when determining the reconstruction distance of off-axis digital holography. This criterion is a mean-free high frequency calculation process. We focus on the problem of mean value drifting found in previous published methods and design our new approach to solve it. Unlike the previous methods perform well only with high quality holograms, our method is effective for both high and low quality holograms. Even when hologram is degraded by destructive interference, our method still performs well. This method helps to automatically determine the precise reconstruction distance, and we are sure that this technology can be applied in industrial applications in the future.

  12. Birge-Sponer Estimation of the C-H Bond Dissociation Energy in Chloroform Using Infrared, Near-Infrared, and Visible Absorption Spectroscopy: An Experiment in Physical Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A. A.; Priore, R. J.; Scaffidi, J.; Andreatta, Danielle; Colavita, Paula

    2008-01-01

    The fundamental and overtone vibrational absorption spectroscopy of the C-H unit in CHCl[subscript 3] is measured for transitions from the v = 0 energy level to v = 1 through v = 5 energy levels. The energies of the transitions exhibit a linearly-decreasing spacing between adjacent vibrational levels as the vibrational quantum number increases.…

  13. Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity

    Science.gov (United States)

    Greve, Tanja Maria; Kamp, Søren; Jemec, Gregor B. E.

    2013-03-01

    Accurate documentation of disease severity is a prerequisite for clinical research and the practice of evidence-based medicine. The quantification of skin diseases such as psoriasis currently relies heavily on clinical scores. Although these clinical scoring methods are well established and very useful in quantifying disease severity, they require an extensive clinical experience and carry a risk of subjectivity. We explore the opportunity to use in vivo near-infrared (NIR) spectra as an objective and noninvasive method for local disease severity assessment in 31 psoriasis patients in whom selected plaques were scored clinically. A partial least squares (PLS) regression model was used to analyze and predict the severity scores on the NIR spectra of psoriatic and uninvolved skin. The correlation between predicted and clinically assigned scores was R=0.94 (RMSE=0.96), suggesting that in vivo NIR provides accurate clinical quantification of psoriatic plaques. Hence, NIR may be a practical solution to clinical severity assessment of psoriasis, providing a continuous, linear, numerical value of severity.

  14. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.

    Science.gov (United States)

    Adjili, Salim; Favier, Arnaud; Fargier, Guillaume; Thomas, Audrey; Massin, Julien; Monier, Karine; Favard, Cyril; Vanbelle, Christophe; Bruneau, Sylvia; Peyriéras, Nadine; Andraud, Chantal; Muriaux, Delphine; Charreyre, Marie-Thérèse

    2015-04-01

    Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 μm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 μm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Facile synthesis of CuSe nanoparticles and high-quality single-crystal two-dimensional hexagonal nanoplatelets with tunable near-infrared optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Korolkov, Ilia [Laboratory of Glasses and Ceramics, Institute of Chemistry, CNRS-Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France); Qiao, Xvsheng [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Xianghua [Laboratory of Glasses and Ceramics, Institute of Chemistry, CNRS-Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France); Wan, Jun; Fan, Xianping [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-06-15

    A rapid injection approach is used to synthesize the copper selenide nanoparticles and two-dimensional single crystal nanoplates. This technique excludes the use of toxic or expensive materials, increasing the availability of two-dimensional binary chalcogenide semiconductors. The structure of the nanocrystals has been studied and the possible formation mechanism of the nanoplates has been proposed. The optical absorption showed that the nanoplates demonstrated wide and tuneable absorption band in the visible and near infrared region. These nanoplates could be interesting for converting solar energy and for nanophotonic devices operating in the near infrared. - Graphical abstract: TEM images of the copper selenides nanoparticles and nanoplates synthesized at 180 °C for 0 min, 10 min, 60 min. And the growth mechanism of the copper selenide nanoplates via the “oriented attachment”. Display Omitted - Highlights: • CuSe nanoparticles and nanoplates are synthesized by a rapid injection approach. • CuSe band gap can be widely tuned simply by modifying the synthesized time. • Al{sup 3+} ions have a significant impact on the growth rate of the nanoplates. • Growth mechanism of the CuSe nanoplates is based on the “oriented attachment”.

  16. Infrared Spectroscopy of CO Ro-vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    OpenAIRE

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, T. R.

    2012-01-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ~ 270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (~ 700 K) component, which is highly redshifted (+100 km s-1), is also dete...

  17. Qualification of a Multi-Channel Infrared Laser Absorption Spectrometer for Monitoring CO, HCl, HCN, HF, and CO2 Aboard Manned Spacecraft

    Science.gov (United States)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.

    2015-01-01

    Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.

  18. Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption

    Science.gov (United States)

    Nadiarnykh, Oleg; Thomas, Giju; Van Voskuilen, Johan; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2012-11-01

    Nonlinear optical imaging modalities (multiphoton excited fluorescence, second and third harmonic generation) applied in vivo are increasingly promising for clinical diagnostics and the monitoring of cancer and other disorders, as they can probe tissue with high diffraction-limited resolution at near-infrared (IR) wavelengths. However, high peak intensity of femtosecond laser pulses required for two-photon processes causes formation of cyclobutane-pyrimidine-dimers (CPDs) in cellular deoxyribonucleic acid (DNA) similar to damage from exposure to solar ultraviolet (UV) light. Inaccurate repair of subsequent mutations increases the risk of carcinogenesis. In this study, we investigate CPD damage that results in Chinese hamster ovary cells in vitro from imaging them with two-photon excited autofluorescence. The CPD levels are quantified by immunofluorescent staining. We further evaluate the extent of CPD damage with respect to varied wavelength, pulse width at focal plane, and pixel dwell time as compared with more pronounced damage from UV sources. While CPD damage has been expected to result from three-photon absorption, our results reveal that CPDs are induced by competing two- and three-photon absorption processes, where the former accesses UVA absorption band. This finding is independently confirmed by nonlinear dependencies of damage on laser power, wavelength, and pulse width.

  19. Near-Infrared Diode Laser Absorption Diagnostic for Temperature and Water Vapor in a Scramjet Combustor (Postprint)

    National Research Council Canada - National Science Library

    Liu, Jonathan T. C; Rieker, Gregory B; Jeffries, Jay B; Gruber, Mark R; Carter, Campbell D; Mathur, Tarun; Hanson, Ronald K

    2005-01-01

    ... to 1.47 mum spectral region (2v1 and v1 + v3 overtone bands). Ratio thermometry was performed using direct absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate...

  20. Near-Infrared Absorption and Scattering Separated by Extended Inverted Signal Correction (EISC): Analysis of Near-Infrared Transmittance Spectra of Single Wheat Seeds

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Martens, Harald; Pram Nielsen, Jesper

    2002-01-01

    A new extended method for separating, e.g., scattering from absorbance in spectroscopic measurements, extended inverted signal correction (EISC), is presented and compared to multiplicative signal correction (MSC) and existing modiŽ cations of this. EISC preprocessing is applied to near-infrared...... transmittance (NIT) spectra of single wheat kernels with the aim of improving the multivariate calibration for protein content by partial least-squares regression (PLSR). The primary justiŽ cation of the EISC method is to facilitate removal of spectral artifacts and interferences that are uncorrelated to target...... of the EISC was found to be comparable to a more complex dual-transformation model obtained by Ž rst calculating the second derivative NIT spectra followed by MSC. The calibration model based on EISC preprocessing performed better than models based on the raw data, second derivatives, MSC, and MSC followed...

  1. Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy.

    Science.gov (United States)

    Penido, Ciro A F O; Pacheco, Marcos Tadeu T; Zângaro, Renato A; Silveira, Landulfo

    2015-01-01

    Identification of cocaine and subsequent quantification immediately after seizure are problems for the police in developing countries such as Brazil. This work proposes a comparison between the Raman and FT-IR techniques as methods to identify cocaine, the adulterants used to increase volume, and possible degradation products in samples seized by the police. Near-infrared Raman spectra (785 nm excitation, 10 sec exposure time) and FT-IR-ATR spectra were obtained from different samples of street cocaine and some substances commonly used as adulterants. Freebase powder, hydrochloride powder, and crack rock can be distinguished by both Raman and FT-IR spectroscopies, revealing differences in their chemical structure. Most of the samples showed characteristic peaks of degradation products such as benzoylecgonine and benzoic acid, and some presented evidence of adulteration with aluminum sulfate and sodium carbonate. Raman spectroscopy is better than FT-IR for identifying benzoic acid and inorganic adulterants in cocaine. © 2014 American Academy of Forensic Sciences.

  2. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    Science.gov (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  3. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  4. Magnetic feature and near-infrared absorption of a [Pt(mnt){sub 2}]{sup -}based H-bond supramolecular crystal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cui-Ping; Nie, Li [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Pei, Wen-Bo, E-mail: peiwenbo@163.com [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Li, Li [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Tian, Zheng-Fang [Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Liu, Jian-Lan [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Gao, Xu-Sheng [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Ren, Xiao-Ming, E-mail: xmren@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2016-11-15

    A new salt [H{sub 2}DABCO][Pt(mnt){sub 2}]{sub 2} (1) (mnt{sup 2-}=maleonitriledithiolate and H{sub 2}DABCO{sup 2+} is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt){sub 2}]{sup -} anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt){sub 2}]{sub 2}{sup 2-} π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence of strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H{sub 2}DABCO][Pt(mnt){sub 2}]{sub 2} shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.

  5. Detection of cancerous biological tissue areas by means of infrared absorption and SERS spectroscopy of intercellular fluid

    Science.gov (United States)

    Velicka, M.; Urboniene, V.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.

    2015-08-01

    We present a novel approach to the detection of cancerous kidney tissue areas by measuring vibrational spectra (IR absorption or SERS) of intercellular fluid taken from the tissue. The method is based on spectral analysis of cancerous and normal tissue areas in order to find specific spectral markers. The samples were prepared by sliding the kidney tissue over a substrate - surface of diamond ATR crystal in case of IR absorption or calcium fluoride optical window in case of SERS. For producing the SERS signal the dried fluid film was covered by silver nanoparticle colloidal solution. In order to suppress fluorescence background the measurements were performed in the NIR spectral region with the excitation wavelength of 1064 nm. The most significant spectral differences - spectral markers - were found in the region between 400 and 1800 cm-1, where spectral bands related to various vibrations of fatty acids, glycolipids and carbohydrates are located. Spectral markers in the IR and SERS spectra are different and the methods can complement each other. Both of them have potential to be used directly during surgery. Additionally, IR absorption spectroscopy in ATR mode can be combined with waveguide probe what makes this method usable in vivo.

  6. Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: four-color upconversion emissions with strong red and near-infrared bands

    Science.gov (United States)

    Wang, Hao; Hong, Xiaodong; Han, Renlu; Shi, Junhui; Liu, Zongjun; Liu, Shujuan; Wang, You; Gan, Yang

    2015-11-01

    Triple-doped (Yb3+/Er3+/Tm3+) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two “optical windows” for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions.

  7. High temperature infrared absorption cross sections of methane near 3.4 μm in Ar and CO2 mixtures

    Science.gov (United States)

    Koroglu, Batikan; Neupane, Sneha; Pryor, Owen; Peale, Robert E.; Vasu, Subith S.

    2018-02-01

    The absorption cross-sections of CH4 at two wavelengths in the mid-IR region: λpeak = 3403.4 nm and λvalley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH4/Ar/CO2 between 700 methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the line shapes in various bath gasses (Ar, CO2, and N2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO2, O2, and Ar. Current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.

  8. Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy.

    Science.gov (United States)

    Mohlenhoff, Brian; Romeo, Melissa; Diem, Max; Wood, Bayden R

    2005-05-01

    We report infrared microspectral features of nuclei in a completely inactive and contracted (pyknotic) state, and of nuclei of actively dividing cells. For pyknotic nuclei, the very high local concentration of DNA leads to opaqueness of the chromatin and, consequently, the absence of DNA signals in the IR spectra of very small nuclei. However, these nuclei can be detected by their scattering properties, which can be described by the Mie theory of scattering from dielectric spheres. This scattering depends on the size of the nucleus; consequently, quite different scattering cross-sections are calculated and observed for pyknotic and mitotic nuclei.

  9. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    Science.gov (United States)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  10. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    Science.gov (United States)

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  11. Infrared Spectroscopy of CO Ro-Vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    Science.gov (United States)

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, Thomas R.

    2013-02-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J ≤ 17). The velocity profiles reveal three distinct components, the strongest and broadest (Δυ > 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ˜270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (˜700 K) component, which is highly redshifted (+100 km s-1), is also detected, in addition to a cold (˜20 K) component centered at the systemic velocity of the galaxy. On the assumption of local thermodynamic equilibrium, the column density of CO in the 270 K component is NCO ˜4.5 × 1018 cm-2, which in fully molecular gas corresponds to an H2 column density of NH2 ˜ 2.5 × 1022 cm-2. The thermal excitation of CO up to the observed high rotational levels requires a density greater than nc (H2) > 2 × 107cm-3, implying that the thickness of the warm absorbing layer is extremely small (Δd warm components, as well as their temperatures, indicate that they originate in molecular clouds near the central engine of the AGN.

  12. Measurement of the quantity of water in organic solvents by infrared absorption an measurement of the dielectric constants

    International Nuclear Information System (INIS)

    Desnoyer, M.

    1959-06-01

    Some chemical methods for the analysis of the quantity of water in solvents are first described, their object being the determination of the maximum error for cases where the water content is less than 1 per cent. - The first part of the work consists in describing infrared spectrometry as applied to the analysis of water in carbon tetrachloride, chloroform aniline, acetone and dioxane. A method based on isotopic exchange between heavy and light water is used on the one hand for determining the solubility of water in carbon tetrachloride and on the other hand for establishing standard solutions (sensitivity of the method). - In the second part the dielectric constant of water solvent solutions is measured. A table is presented giving the precision obtained by the two principal methods. These are comparable and further than that the appearance of the spectra suggests an interpretation of the anomalies observed in calibration curves obtained by the dielectric constant method. (author) [fr

  13. X-ray absorption of N{sub 2} accompanied by infrared-induced transitions between the ungerade and gerade core levels

    Energy Technology Data Exchange (ETDEWEB)

    Velkov, Yasen; Liu Jicai; Wang Chuankui; Gel' mukhanov, Faris [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm (Sweden)], E-mail: yasve@theochem.kth.se

    2008-07-28

    We study a two-colour pump-probe scheme of x-ray absorption accompanied by core-hole hopping in the field of a strong IR laser. The process is exemplified for fixed-in-space and randomly oriented homonuclear diatomic molecules N{sub 2} near the 1{sigma}{sub u} {yields} 1{pi}{sub g} x-ray absorption transition. The laser field mixes the core holes of opposite parities and causes Rabi splitting of the core-excited states. The IR field results in spectral broadening and shifts of the x-ray resonances as well as decrease of x-ray photoabsorption. The Stark broadening of the x-ray absorption spectrum depends on the orientation of the molecule and the angle between the polarization vectors of the x-ray and IR fields. The spectral changes caused by the IR field are weaker for randomly oriented molecules in comparison with fixed-in-space molecules.

  14. Accurate Laser Measurements of the Water Vapor Self-Continuum Absorption in Four Near Infrared Atmospheric Windows. a Test of the MT_CKD Model.

    Science.gov (United States)

    Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon

    2017-06-01

    The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.

  15. Mid-Infrared Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  16. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fanzhang@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Claesson, Per Martin [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Brinck, Tore [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Physical Chemistry, Division of Physical Chemistry, Teknikringen 36, SE-10044 Stockholm (Sweden)

    2012-10-01

    Electrochemical measurements, in situ and ex situ atomic force microscopy (AFM) experiments and infrared reflection absorption spectroscopy (IRAS) analysis were performed to investigate the formation and stability as well as corrosion protection properties of mussel adhesive protein (Mefp-1) films on carbon steel, and the influence of cross-linking by NaIO{sub 4} oxidation. The in situ AFM measurements show flake-like adsorbed protein aggregates in the film formed at pH 9. The ex situ AFM images indicate multilayer-like films and that the film becomes more compact and stable in NaCl solution after the cross-linking. The IRAS results reveal the absorption bands of Mefp-1 on carbon steel before and after NaIO{sub 4} induced oxidation of the pre-adsorbed protein. Within a short exposure time, a certain corrosion protection effect was noted for the pre-formed Mefp-1 film in 0.1 M NaCl solution. Cross-linking the pre-adsorbed film by NaIO{sub 4} oxidation significantly enhanced the protection efficiency by up to 80%. - Highlights: Black-Right-Pointing-Pointer Mussel protein was tested as 'green' corrosion protection strategy for steel. Black-Right-Pointing-Pointer At pH 9, the protein adsorbs on carbon steel and forms a multilayer-like film. Black-Right-Pointing-Pointer NaIO{sub 4} leads to structural changes and cross-linking of the protein film. Black-Right-Pointing-Pointer Cross-linking results in a dense and compact film with increased stability. Black-Right-Pointing-Pointer Cross-linking of preformed film significantly enhances the corrosion protection.

  17. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  18. Ultrafast Coherent Absorption in Diamond Metamaterials.

    Science.gov (United States)

    Karvounis, Artemios; Nalla, Venkatram; MacDonald, Kevin F; Zheludev, Nikolay I

    2018-02-27

    Diamond is introduced as a material platform for visible/near-infrared photonic metamaterials, with a nanostructured polycrystalline diamond metasurface only 170 nm thick providing an experimental demonstration of coherent light-by-light modulation at few-optical-cycle (6 fs) pulse durations. "Coherent control" of absorption in planar (subwavelength-thickness) materials has emerged recently as a mechanism for high-contrast all-optical gating, with a speed of response that is limited only by the spectral width of the absorption line. It is shown here that a free-standing diamond membrane structured by focused ion beam milling can provide strong, spectrally near-flat absorption over a visible to near-infrared wavelength range that is wide enough (wider than is characteristically achievable in plasmonic metal metasurfaces) to facilitate coherent modulation of ultrashort optical pulses comprising only a few oscillations of electromagnetic field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Science.gov (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  20. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  1. Vibrational study by inelastic neutron scattering, infrared absorption and Raman scattering of potassium, rubidium and cesium dihydrogenarsenate crystals: Comparison with thallium dihydrogenarsenate

    Science.gov (United States)

    Le Calvé, Nicole; Pasquier, Bernadette; Ouafik, Zahra

    1997-10-01

    The vibrational study of polycrystalline potassium, rubidium and cesium dihydrogenarsenates, KH 2AsO 4 RbH 2AsO 4 and CsH 2AsO 4, has been undertaken in the 20-4000 cm -1 range. The inelastic neutron scattering spectra obtained at 20 K allow a precise assignment of the OH vibrations. The infrared absorption and Raman scattering spectra of the paraelectric and ferroelectric phases have been analyzed. The three compounds are isomorphous with KH 2PO 4. The results are compared to those obtained for the thallium dihydrogenarsenate TlH 2AsO 4. In all compounds the proton dynamics appear weakly coupled to heavy atoms motions. The order-disorder transition at Tc is associated to relational motions of anions and protons in the tetragonal potassium, rubidium and cesium dihydrogenarsenates and to collective reorientational motions of anions in monoclinic thallium derivative. The spectroscopic features show the participation of cations K t, Rb + and Cs + to the dynamics of the three-dimensional lattice in both phases. In contrast, heavy-cation Tl + motions are decoupled from the dynamics of hydrogen bond layers. No correlation between ordering of lattice and OH stretching wavenumber is observed.

  2. A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic(III).

    Science.gov (United States)

    Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

    2014-11-17

    This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.

  3. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.

    Science.gov (United States)

    Chung, In; Song, Jung-Hwan; Im, Jino; Androulakis, John; Malliakas, Christos D; Li, Hao; Freeman, Arthur J; Kenney, John T; Kanatzidis, Mercouri G

    2012-05-23

    CsSnI(3) is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI(3) have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI(3), coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI(3). The black orthorhombic form of CsSnI(3) demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI(3) indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of ∼ 10(17) cm(-3) and a hole mobility of ∼585 cm(2) V(-1) s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise

  4. The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III-V compound semiconductors on silicon

    CERN Document Server

    Peiner, E; Wehmann, H H

    2002-01-01

    The effect of threading dislocations on the optical and electrical properties of InP and GaAs heteroepitaxial layers on (001) silicon was investigated. Charged deep states act as scattering centres for electrons, thus affecting the electron mobility at low temperatures. The electric field arising from charged dislocations causes enhanced optical absorption at wavelengths near the fundamental absorption edge. The mean charge of the threading dislocations in GaAs/Si was found to be considerably higher than that for InP/Si. A model is described relating this effect to a regular arrangement of alpha-type 60 deg. dislocations at extended twin defects which were observed in InP/Si but were absent in GaAs/Si.

  5. Absorption and Scattering by Molecules and Particles

    Science.gov (United States)

    Lenoble, Jacqueline; Mishchenko, Michael I.; Herman, Maurice

    2013-01-01

    The Earth's atmosphere absorbs, scatters, and emits electromagnetic radiation. Although air molecules are the primary actors in these processes, aerosol particles are also present ubiquitously and modify the radiation field. In fact, this modification constitutes the very physical basis of aerosol remote sensing. Whenever clouds are present, they have a much larger influence on radiation which largely overshadows the aerosol impact. Therefore, in aerosol remote sensing, one often has to limit observations to cloudless conditions and screen cloudy pixels. In the solar part of the spectrum, molecular absorption is mostly limited to ultraviolet (UV; ozone) and near-infrared (near-IR; carbon dioxide, water vapor) wavelengths and is characterized by strong and narrow oxygen bands. A brief description of atmospheric molecular absorption is presented in Section 2.2. Shortwave aerosol remote sensing is usually performed outside the absorption bands, but some instruments also have channels capturing absorption bands with the objective of quantifying gaseous components.

  6. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    Science.gov (United States)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  7. Co-adsorption of oxygen and formic acid on rutile TiO2 (110) studied by infrared reflection-absorption spectroscopy

    Science.gov (United States)

    Mattsson, Andreas; Österlund, Lars

    2017-09-01

    Adsorption of formic acid and co-adsorption with oxygen have been investigated on the rutile TiO2(110) surface using p- and s-polarized infrared reflection-absorption spectroscopy (IRRAS) at O2 exposures between 45 L to 8100 L and at temperatures between 273 K and 343 K. On the clean surface formic acid dissociates into a formate ion (formate) and a proton. Formate binds to two five-fold coordinated Ti atoms in the troughs along the [001] direction, and the proton binds to neighboring bridging O atoms. Exposure of adsorbed formate to O2 leads to a decrease in the asymmetric νas(OCO) band at 1532 cm-1 and to the concomitant formation of a new vibration band at 1516 cm-1. From the s-and p-polarized IRRAS measurements performed at different O2 exposures, surface pre-treatments and substrate temperatures, and by comparisons with previous reports, we conclude that the new species is a bidentate surface hydrogen carbonate, which is formed by reaction between formate and oxygen adatoms on the surface. The σv reflection plane of the surface hydrogen carbonate molecule is oriented along the [001] direction, i.e. the same direction as the adsorbed formate molecule. On the clean TiO2(110) surface exposed to O2 prior to formic acid adsorption, similar results are obtained. The reaction rate to form surface hydrogen carbonate from formate is found to follow first-order kinetics, with an apparent activation energy of Er=0.25 eV.

  8. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results

    Science.gov (United States)

    Vander Auwera, J.; Ngo, N. H.; El Hamzaoui, H.; Capoen, B.; Bouazaoui, M.; Ausset, P.; Boulet, C.; Hartmann, J.-M.

    2013-10-01

    Transmission spectra of gases confined (but not adsorbed) within the pores of a 1.4-cm-thick silica xerogel sample have been recorded between 2.5 and 5 μm using a high-resolution Fourier transform spectrometer. This was done for pure CO, CO2, N2O, H2O, and CH4 at room temperature and pressures of a few hectopascals. Least-squares fits of measured absorption lines provide the optical-path lengths within the confined (LC) and free (LF) gas inside the absorption cell and the half width at half maximum ΓC of the lines of the confined gases. The values of LC and LF retrieved using numerous transitions of all studied species are very consistent. Furthermore, LC is in satisfactory agreement with values obtained from independent measurements, thus showing that reliable information on the open porosity volume can be retrieved from an optical experiment. The values of ΓC, here resulting from collisions of the molecules with the inner surfaces of the xerogel pores, are practically independent of the line for each gas and inversely proportional to the square root of the probed-molecule molar mass. This is a strong indication that, for the studied transitions, a single collision of a molecule with a pore surface is sufficient to change its rotational state. A previously proposed simple model, used for the prediction of the line shape, leads to satisfactory agreement with the observations. It also enables a determination of the average pore size, bringing information complementary to that obtained from nitrogen adsorption porosimetry.

  9. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  10. Tracking of Thermal Infrared Anomaly before One Strong Earthquake-In the Case of Ms6.2 Earthquake in Zadoi, Qinghai on October 17th, 2016

    Science.gov (United States)

    Zhang, Xuan; Zhang, Yuansheng; Tian, Xiufeng; Zhang, Qiaoli; Tian, Jie

    2017-10-01

    The detection and tracking process of thermal infrared anomaly before Ms6.2 earthquake in Zadio, Qinghai on October 17th, 2016, are reviewed and analyzed; then the different characteristics of thermal infrared brightness temperature data before this earthquake is described in details. According to these characteristics, the tracking process of thermal anomaly is divided into four stages, respectively identification stage, pre-judgment stage, tracking and approaching stage and verification stage. The anomaly forms and turning signals focused in each stage can provide clear indication information for earthquake pre-judgment; finally, the prediction efficiency and technical issues of this method are illustrated and discussed.

  11. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Reichert

    2016-09-01

    Full Text Available We present a first quantification of the near-infrared (NIR water vapor continuum absorption from an atmospheric radiative closure experiment carried out at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.. Continuum quantification is achieved via radiative closure using radiometrically calibrated solar Fourier transform infrared (FTIR absorption spectra covering the 2500 to 7800 cm−1 spectral range. The dry atmospheric conditions at the Zugspitze site (IWV 1.4 to 3.3 mm enable continuum quantification even within water vapor absorption bands, while upper limits for continuum absorption can be provided in the centers of window regions. Throughout 75 % of the 2500 to 7800 cm−1 spectral range, the Zugspitze results agree within our estimated uncertainty with the widely used MT_CKD 2.5.2 model (Mlawer et al., 2012. In the wings of water vapor absorption bands, our measurements indicate about 2–5 times stronger continuum absorption than MT_CKD, namely in the 2800 to 3000 cm−1 and 4100 to 4200 cm−1 spectral ranges. The measurements are consistent with the laboratory measurements of Mondelain et al. (2015, which rely on cavity ring-down spectroscopy (CDRS, and the calorimetric–interferometric measurements of Bicknell et al. (2006. Compared to the recent FTIR laboratory studies of Ptashnik et al. (2012, 2013, our measurements are consistent within the estimated errors throughout most of the spectral range. However, in the wings of water vapor absorption bands our measurements indicate typically 2–3 times weaker continuum absorption under atmospheric conditions, namely in the 3200 to 3400, 4050 to 4200, and 6950 to 7050 cm−1 spectral regions.

  12. Structure, electrochemistry and spectroscopy of a new diacylhydrazido-bridged diruthenium complex with a strongly near-infrared absorbing RuIIIRuII intermediate

    Czech Academy of Sciences Publication Activity Database

    Jana, R.; Sarkar, B.; Bubrin, D.; Fiedler, Jan; Kaim, W.

    2010-01-01

    Roč. 13, č. 10 (2010), s. 1160-1162 ISSN 1387-7003 R&D Projects: GA MŠk OC 140; GA MŠk OC09043 Institutional research plan: CEZ:AV0Z40400503 Keywords : crystal structure * hydrazido ligand * near-infrared ruthenium Subject RIV: CG - Electrochemistry Impact factor: 1.974, year: 2010

  13. Infrared absorption of t-HOCO(+), H(+)(CO2)2, and HCO2 (-) produced in electron bombardment of CO2 in solid para-H2.

    Science.gov (United States)

    Das, Prasanta; Tsuge, Masashi; Lee, Yuan-Pern

    2016-07-07

    We have employed electron bombardment during matrix deposition of CO2 (or (13)CO2, C(18)O2) and para-hydrogen (p-H2) at 3.2 K and recorded infrared (IR) spectra of t-HOCO(+), H(+)(CO2)2, HCO2 (-), CO2 (-), t-HOCO, and other species isolated in solid p-H2. After the matrix was maintained in darkness for 13 h, intensities of absorption features of t-HOCO(+) at 2403.5 (ν1), 2369.9 (ν2), 1018.1 (ν4), and 606.5 (ν6) cm(-1) and those of H(+)(CO2)2 at 1341.1, 883.6, and 591.5 cm(-1) decreased. Corresponding lines of isotopologues were observed when (13)CO2 or C(18)O2 replaced CO2. In contrast, lines of HCO2 (-) at 2522.4 (ν1), 1616.1 (ν5), 1327.9 (ν2), and 745.6 (ν3) cm(-1) increased in intensity; corresponding lines of H(13)CO2 (-) or HC(18)O2 (-) were also observed. Lines of t-DOCO(+) and DCO2 (-) were observed in an electron bombarded CO2 /normal-deuterium (n-D2) matrix. Data of ν6 of t-HOCO(+) and all observed modes of H(18)OC(18)O(+) and HC(18)O2 (-) are new. The assignments were made according to expected chemical behavior, observed isotopic shifts, and comparisons with vibrational wavenumbers and relative intensities of previous reports and calculations with the B3PW91/aug-cc-pVQZ method. The ν1 line of t-HOCO(+) in solid p-H2 (2403.5 cm(-1)), similar to the line at 2673 cm(-1) of t-HOCO(+) tagged with an Ar atom, is significantly red-shifted from that reported for gaseous t-HOCO(+) (3375.37 cm(-1)) due to partial proton sharing between CO2 and H2 or Ar. The ν1 line of HCO2 (-) in solid p-H2 (2522.4 cm(-1)) is blue shifted from that reported for HCO2 (-) in solid Ne (2455.7 cm(-1)) and that of HCO2 (-) tagged with Ar (2449 cm(-1)); this can be explained by the varied solvation effects by Ne, Ar, or H2 on the mixing of H(+) + CO2 and H + CO2 (-) surfaces. Possible formation mechanisms of t-HOCO(+), H(+)(CO2)2, HCO2 (-), CO2 (-), t-HOCO, H2O, and t-HCOOH are discussed.

  14. Bimolecular reaction of CH3 + CO in solid p-H2: infrared absorption of acetyl radical (CH3CO) and CH3-CO complex.

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-28

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm(-1) were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm(-1) appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm(-1). The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol(-1) and internal energy ∼42 kJ mol(-1) upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ∼27 kJ mol(-1) for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  15. Infrared and X-ray Absorption Near Edge Structure Spectroscopy Analyses of the Titan Haze Simulation (THS) Aerosols Produced at Low Temperature (200 K)

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Salama, Farid

    2016-10-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames. In Titan's atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, Titan's chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (200 K). The residence time of the gas in the pulsed plasma discharge is ~3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry, by adding heavier precursors into the initial N2-CH4 gas mixture. Experiments have been performed in different gas mixtures from the simpler N2-CH4 (98:2 and 95:5), to more complex mixtures: N2-CH4-C2H2 (91:5:4 and 94.5:5:0.5), N2-CH4-C6H6 (90:5:5) and N2-CH4-C2H2-C6H6 (86:5:4:5). Both the gas and solid phases have been analyzed using a combination of in situ and ex situ diagnostics.A recent mass spectrometry analysis of the gas phase demonstrated that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry [1]. The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. The solid phase products are in the form of grains produced in volume and not from interaction on the substrate's surface. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, a finding that could have an impact on Titan haze microphysical models. We will present the latest results of the infrared and x-ray absorption near edge structure spectroscopic measurements that have been performed on all four mixtures. These results provide information on the nature of the different functional groups present in our samples as

  16. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1-4, recorded with the VUV-ionization/IR-depletion technique.

    Science.gov (United States)

    Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern

    2017-04-14

    We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as M n W, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters M n W as protonated forms M n-1 WH + . The variations in intensities of M n-1 WH + were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm -1 . IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H 2 O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm -1 , whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm -1 . For M 2 W, the free OH band of H 2 O was observed at 3721 cm -1 , whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm -1 , corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M 3 W, the free OH shifted to 3715 cm -1 , and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm -1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M 4 W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure

  17. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation.

    Science.gov (United States)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-08-26

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  18. Probing photochromic properties by correlation of UV-visible and infra-red absorption spectroscopy: a case study with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene.

    Science.gov (United States)

    Spangenberg, Arnaud; Piedras Perez, Jose Alejandro; Patra, Abhijit; Piard, Jonathan; Brosseau, Arnaud; Métivier, Rémi; Nakatani, Keitaro

    2010-02-01

    Quantification of the relative composition of the isomers in a photochromic system at any irradiation time interval is a critical issue in determining absolute quantum yields. For this purpose, we have developed a simple and convenient protocol involving combination of UV-visible and infra-red absorption spectroscopy. Photochromic cyclization reaction of cis-l,2-dicyano-l,2-bis(2,4,5-trimethyl-3-thieny1)ethene (CMTE) is analyzed to demonstrate the efficiency of the proposed methodology. This approach is based on the fact that the two isomers show distinctive infra-red bands. Detailed investigations of the UV-visible and infra-red spectra of the mixture obtained at different irradiation times in CCl(4) supported by quantum chemical computations lead to the unambiguous estimation of molar absorption coefficients of the closed isomer (epsilon(CF) = 4650 L mol(-1) cm(-1) at 512 nm). It facilitates the first determination of absolute quantum yields of this reversible photochromic reaction in CCl(4) by fitting the UV-visible spectral data (Phi(OF-->CF) = 0.41 +/- 0.05 and Phi(CF-->OF) = 0.12 +/- 0.02 at 405 nm and 546 nm, respectively).

  19. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a CuI-diimine complex captured by X-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Huang, J.; Mara, M.W.; Stickrath, A.B.

    2014-01-01

    Photophysical and structural properties of a CuI diimine complex with very strong steric hindrance, [CuI(dppS)2]+ (dppS = 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt), are investigated by optical and X-ray transient absorption (OTA and XTA) spectroscopy. The bulky phenylsulfonic...... dynamics and structures as well as those of the charge separated state resulting from the interfacial electron injection from the MLCT state to TiO2 nanoparticles (NPs). The OTA results show the absence of the sub-picosecond component previously assigned as the time constant for flattening, while the two...... of metal complex/semiconductor NP hybrids but also provide guidance for designing efficient CuI diimine complexes with optimized structures for application in solar-to-electricity conversion. This journal is...

  20. Infrared and dc conductivity in metals with strong scattering: Nonclassical behavior from a generalized Boltzmann equation containing band-mixing effects

    International Nuclear Information System (INIS)

    Allen, P.B.; Chakraborty, B.

    1981-01-01

    Metals with high resistivity (approx.100 μΩ cm) seem to show weaker variation of resistivity (as a function of temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzmann) theory (SBT). We argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband) acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity, as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder. Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared frequencies, the conductivity mostly obeys the Drude law sigma(ω)approx.sigma(0)(1-iωtau) -1 , except for one term which goes as (1-iωtau) -2

  1. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.

    Science.gov (United States)

    Fainstein, A; Lanzillotti-Kimura, N D; Jusserand, B; Perrin, B

    2013-01-18

    We show that distributed Bragg reflector GaAs/AlAs vertical cavities designed to confine photons are automatically optimal to confine phonons of the same wavelength, strongly enhancing their interaction. We study the impulsive generation of intense coherent and monochromatic acoustic phonons by following the time evolution of the elastic strain in picosecond-laser experiments. Efficient optical detection is assured by the strong phonon backaction on the high-Q optical cavity mode. Large optomechanical factors are reported (~THz/nm range). Pillar cavities based in these structures are predicted to display picogram effective masses, almost perfect sound extraction, and threshold powers for the stimulated emission of phonons in the range μW-mW, opening the way for the demonstration of phonon "lasing" by parametric instability in these devices.

  2. Step-type and step-density influences on CO adsorption probed by reflection absorption infrared spectroscopy using a curved Pt(1 1 1) surface

    NARCIS (Netherlands)

    Walsh, A. J.; van Lent, R.; Auras, S. V.; Gleeson, M. A.; Berg, O. T.; Juurlink, L. B. F.

    2017-01-01

    In comparison to flat single crystals, the continuous variation of structure provided by curved crystals offers many benefits for the study of physical and chemical processes at surfaces. However, the curvature of the surface also creates experimental challenges. For infrared spectroscopy, in

  3. NuSTAR reveals an intrinsically x-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Brandt, W. N.; Harrison, F. A.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously...

  4. AGING EFFECTS OF REPEATEDLY GLOW-DISCHARGED POLYETHYLENE - INFLUENCE ON CONTACT-ANGLE, INFRARED-ABSORPTION, ELEMENTAL SURFACE-COMPOSITION, AND SURFACE-TOPOGRAPHY

    NARCIS (Netherlands)

    VANDERMEI, HC; STOKROOS, [No Value; SCHAKENRAAD, JM; BUSSCHER, HJ

    1991-01-01

    Aging effects of repeatedly oxygen glow-discharged polyethylene surfaces were determined by water contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron (XPS) spectroscopy, and surface topography determination. Glow-discharged surfaces were stored at room temperature and in

  5. Optical Salisbury screen with design-tunable resonant absorption bands

    Science.gov (United States)

    Nath, Janardan; Smith, Evan; Maukonen, Douglas; Peale, Robert E.

    2014-05-01

    A thin-film selective absorber at visible and near infra-red wavelengths is demonstrated. The structure consists of an optically thick layer of gold, a SiO2 dielectric spacer and a partially transparent gold film on top. The optical cavity so formed traps and absorbs light at a resonance wavelength determined by the film thicknesses. Observed fundamental-resonance absorption strengths are in the range 93%-97%. The absorption red-shifts and broadens as the thickness of the top gold layer is decreased with little change in absorption strength. Thus, strong absorption with design-tunable wavelength and width is achieved easily by unstructured blanket depositions. Observed angle-dependent spectra agree well with the recent three-layer analytical model of Shu et al. [Opt. Express 21, 25307 (2013)], if effective medium approximation is used to calculate the permittivity of the top gold film when it becomes discontinuous at the lowest thicknesses.

  6. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  7. Correlation between the structure and infra-red absorption characteristics of mono-deuterated compounds: contribution to the study of organo-magnesium compounds

    International Nuclear Information System (INIS)

    Paillous, A.

    1965-10-01

    The high sensitivity of the ν (C-D) vibration to the variations brought about by the substitution of the carbon attached to the deuterium is shown in the case of organic or organo-metallic mono-deuterated molecules. In particular, syntheses of various mono-deuterated organo-magnesium compounds have been carried out; results are given concerning an infra-red spectrometric examination of these compounds in the range 2100 - 2250 cm -1 . The results show the existence of only one type of deuterated carbon, which suggests that the same carbanion is involved in various ionic associations for the different magnesium-containing compounds. (authors) [fr

  8. The Far Infrared Earth

    Science.gov (United States)

    Harries, John; Carli, Bruno; Rizzi, Rolando; Serio, Carmine; Mlynczak, Martin G.; Palchetti, Luca; Maestri, T.; Brindley, H.; Masiello, Guido

    2007-01-01

    The paper presents a review of the far infrared (FIR) properties of the Earth's atmosphere, and the role of these properties in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that, in recent years, we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of 288 K, and is due primarily to strong absorption of outgoing longwave energy by water vapour, carbon dioxide and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example the water vapour and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.

  9. Synthesis of a Near-Infrared Emitting Squaraine Dye in an Undergraduate Organic Laboratory

    Science.gov (United States)

    Marks, Patrick; Levine, Mindy

    2012-01-01

    Squaraines are a class of organic fluorophores that possess unique photophysical properties, including strong near-infrared absorption and emission. The synthesis of many squaraines involves the condensation of an electron-rich aromatic ring with squaric acid. These reactions are generally refluxed overnight in a benzene-butanol solvent mixture.…

  10. Cryo-Infrared Optical Characterization at NASA GSFC

    Science.gov (United States)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  11. Optical Properties of β-RDX Thin Films Deposited on Gold and Stainless Steel Substrates Calculated from Reflection-Absorption Infrared Spectra.

    Science.gov (United States)

    Ruiz-Caballero, José L; Aparicio-Bolaño, Joaquín A; Figueroa-Navedo, Amanda M; Pacheco-Londoño, Leonardo C; Hernandez-Rivera, Samuel P

    2017-08-01

    The optical properties for crystalline films of the highly energetic material (HEM) hexahydro-1,3,5-trinitro-s-triazine, which is also known as RDX, deposited on gold (Au) and stainless steel (SS) substrates are presented. RDX has two important stable conformational polymorphs at room temperature: α-RDX and β-RDX. The optical properties obtained in the present work correspond to thin film samples of predominantly β-RDX polymorph. The infrared spectroscopic intensities measured showed significant differences in the β-RDX crystalline films deposited on the two substrates with respect to the calculated real part of refractive index. The β-RDX/Au crystalline films have a high dynamic response, which is characterized by the asymmetric stretching mode of the axial nitro groups, whereas for the β-RDX/SS crystalline films, the dynamic response was mediated by the -N-NO 2 symmetric stretch mode. This result provides an idea of how the electric field vector propagates through the β-RDX crystalline films deposited on the two substrates.

  12. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.

    Science.gov (United States)

    Greening, Gage J; Istfan, Raeef; Higgins, Laura M; Balachandran, Kartik; Roblyer, Darren; Pierce, Mark C; Muldoon, Timothy J

    2014-01-01

    Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880 μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol-soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc.

  13. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a

    Directory of Open Access Journals (Sweden)

    Maryam Etminan

    2014-07-01

    Full Text Available CFC-113a (CF3CCl3, CFC-112 (CFCl2CFCl2 and HCFC-133a (CF3CH2Cl are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP. The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012 concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100, are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a.

  14. A radar-infrared bi-stealth structure based on metasurfaces

    Science.gov (United States)

    Zhong, Shuomin; Jiang, Wei; Xu, Peipeng; Liu, Taijun; Huang, Jifu; Ma, Yungui

    2017-02-01

    In this work, the authors proposed a thin artificial structure that could give rise to the strong reduction of both radar wave reflection and infrared thermal emission. This is realized by the subtle combination of two specifically designed metasurface layers that control the infrared emission and microwave absorption, respectively. Our measurement shows that the fabricated sample could have wideband absorption from 3-8 GHz with attenuation efficiency larger than 90% up to incident angles of 30°. In the infrared atmosphere window, it gives a very low emission value of about 0.2. These results show that our sample is practically very promising for the application of a radar-infrared bi-stealth technology.

  15. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.

    Science.gov (United States)

    Cercamondi, Colin I; Egli, Ines M; Zeder, Christophe; Hurrell, Richard F

    2014-02-01

    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.

  16. Ultrasonic absorption

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews studies of ultrasonic absorption in liquid alkali metals. The experimental methods to measure the absorption coefficients are briefly described. Experimental results reported for the liquid metals: sodium, potassium, rubidium and caesium, at medium temperatures, are presented, as well as data for liquid alloys. Absorption losses due to the presence of an external magnetic field, and the effects of viscosity on the absorption in metals, are both discussed. (U.K.)

  17. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  18. Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid para-hydrogen.

    Science.gov (United States)

    Haupa, Karolina A; Johnson, Britta A; Sibert, Edwin L; Lee, Yuan-Pern

    2017-10-21

    The investigation of partially deuterated methoxy radicals is important because the symmetry lowering from C 3v to C s provides new insights into the couplings between rovibronic states via Jahn-Teller and spin-orbit interactions. The vibrational spectrum of the partially deuterated methoxy radical CH 2 DO in a matrix of p-H 2 has been recorded. This species was prepared by irradiating a p-H 2 matrix containing deuterated d 1 -nitritomethane (CH 2 DONO) at 3.3 K with laser light at 355 nm. The identification of the radical is based on the photochemical behavior of the precursor and comparison of observed vibrational wavenumbers and infrared (IR) intensities with those predicted from a refined quartic, curvilinear, internal coordinate force field calculated with the coupled-cluster singles and doubles with perturbative triples/cc-pVTZ method. CH 2 DO reacts with H 2 with a rate coefficient (3.5 ± 1.0) × 10 -3 s -1 . Predominantly c-CHDOH and a negligibly small amount of t-CHDOH were produced. This stereoselectivity results from the reaction H + C s -CH 2 DOH, which was demonstrated by an additional experiment on irradiation of a CH 2 DOH/Cl 2 /p-H 2 matrix with ultraviolet and IR light to induce the H + CH 2 DOH reaction; only c-CHDOH was observed from this experiment. Even though the energies of transition states and products for the formation of c-CHDOH and t-CHDOH differ by only ∼10 cm -1 , the selective formation of c-CHDOH can be explained by tunneling of the hydrogen atom via an optimal tunneling path. Similarly, the vibronic spectrum for the partially deuterated specie d 2 -methoxy radical (CHD 2 O) was obtained upon irradiation of d 2 -nitritomethane (CHD 2 ONO) at 355 nm. Lines associated with the fundamental vibrational modes were observed and assigned; line positions agree with theoretically predicted vibrational wavenumbers. CHD 2 O reacts with H 2 with a rate coefficient (6.0 ± 1.4) × 10 -3 s -1 ; CD 2 OH was produced as a major product because

  19. Formation and infrared absorption of protonated naphthalenes (1-C10H9+ and 2-C10H9+) and their neutral counterparts in solid para-hydrogen.

    Science.gov (United States)

    Bahou, Mohammed; Wu, Yu-Jong; Lee, Yuan-Pern

    2013-02-14

    Protonated naphthalene (C(10)H(9)(+)) and its neutral counterparts (hydronaphthyl radicals, C(10)H(9)) are important intermediates in the reactions of aromatic compounds and in understanding the unidentified infrared (IR) emissions from interstellar media. We report the IR spectra of 1-C(10)H(9)(+), 2-C(10)H(9)(+), 1-C(10)H(9), and 2-C(10)H(9) trapped in solid para-hydrogen (p-H(2)); the latter three are new. These species were produced upon electron bombardment of a mixture of naphthalene (C(10)H(8)) and p-H(2) during matrix deposition. The intensities of IR features of 1-C(10)H(9)(+) decreased after the matrix was maintained in darkness for 19 h, whereas those of 1-C(10)H(9) and 2-C(10)H(9) increased. Irradiation of this matrix sample with light at 365 nm diminished lines of 1-C(10)H(9)(+) and 2-C(10)H(9) and enhanced lines of 1-C(10)H(9) and 2-C(10)H(9)(+); the latter species was unstable and converted to 1-C(10)H(9)(+) in less than 30 min and 2-C(10)H(9) was converted to 1-C(10)H(9) at 365 nm. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++G(2d,2p) method. Compared with spectra recorded previously with IR photodissociation of Ar-tagged C(10)H(9)(+) or IR multiphoton dissociation of C(10)H(9)(+), our method has the advantages of producing high-resolution IR spectra with a wide spectral coverage, true IR intensity and excellent ratio of signal to noise; both protonated species and their neutral counterparts are produced with little interference from other fragments. With these advantages, the IR spectra of 1-C(10)H(9)(+), 2-C(10)H(9)(+), 1-C(10)H(9), and 2-C(10)H(9) are here clearly characterized.

  20. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR); Diagnostico de lesoes da tireoide pela espectroscopia de absorcao no infravermelho por transformada de Fourier - FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Albero, Felipe Guimaraes

    2009-07-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by {mu}-FTIR (between 950 . 1750 cm{sup -1}), at a nominal resolution of 4 cm{sup -1} and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm{sup -1}, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm{sup -1}) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm{sup -1}. Bands in 1409, 1412, 1414, 1578 and 1579 cm{sup -1} were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower

  1. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  2. Crude Oil Model Emulsion Characterised by means of Near Infrared Spectroscopy and Multivariate Techniques

    DEFF Research Database (Denmark)

    Kallevik, H.; Hansen, Susanne Brunsgaard; Sæther, Ø.

    2000-01-01

    Water-in-oil emulsions are investigated by means of multivariate analysis of near infrared (NIR) spectroscopic profiles in the range 1100 - 2250 nm. The oil phase is a paraffin-diluted crude oil from the Norwegian Continental Shelf. The influence of water absorption and light scattering...... of the water droplets are shown to be strong. Despite the strong influence of the water phase, the NIR technique is still capable of predicting the composition of the investigated oil phase....

  3. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9in n-hexane studied by visible/near-infrared/infrared spectroscopy.

    Science.gov (United States)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-15

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500cm -1 region were measured for methanol, methanol-d 3 , and t-butanol-d 9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V=1-4) for 0.5M methanol, 0.5M methanol‑d 3 , and 0.5M t-butanol-d 9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Polarization modulation infrared reflection absorption spectroscopy investigations of thin silica films deposited on gold. 2. Structural analysis of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer.

    Science.gov (United States)

    Zawisza, Izabella; Wittstock, Gunther; Boukherroub, Rabah; Szunerits, Sabine

    2008-04-15

    In this paper we report on the structural analysis of bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using polarization modulation infrared reflection absorption spectroscopy (PM IRRAS). The lipid bilayers were formed on SiO2|Au and Au surfaces using the Langmuir-Blodgett and Langmuir-Schaeffer techniques. As we showed in part 1 (Zawisza, I.; Wittstock, G.; Boukherroub, R.; Szunertis, S. Langmuir 2007, 23, 9303-9309), SiO2 layers of 7 nm thickness, synthesized by plasma-enhanced chemical vapor deposition on 200 nm thick gold covered glass slides, allow PM IRRAS investigations. Only minor changes in the order and structure of the lipid bilayer are observed when deposited on SiO2|Au and Au surfaces. The choline moiety in the leaflet directed toward the SiO2 surface exists in trans conformation and shows a tilt of 28 degrees with the surface normal of the CN bond. On the silica surface in the second leaflet directed toward air and in two layers deposited on the Au surface, trans and gauche isomers of the choline moiety are present and the tilt of the CN bond increases to 55 degrees with respect to the surface normal. The order and molecular orientation in the DMPC bilayers on SiO2 and Au surfaces are not affected by time. The analysis of the phosphate stretching mode on the Au surface shows slight dehydration of this group and reorientation of the phosphate moiety.

  5. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  6. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298K temperature using the infra-red tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Sharma, R C; Blitz, M; Wada, R; Seakins, P W

    2014-07-15

    Pulsed ArF excimer laser (193 nm)-CW infrared (IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl+CH3I) to the study of kinetics on reaction Cl+CH3I and the yield of (HCl). The reaction of Cl+CH3I has been studied with the support of the reaction Cl+C4H10 (100% HCl) at temperature 298 K. In the reaction Cl+CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0×10(14) molecule cm(-3). In the present work, we estimated adduct formation is very important in the reaction Cl+CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3+CH3ICl = product, and CH3I+CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00×10(14) molecule cm(-3) of [CH3I] and 24% at the concentration 4.0×10(15) molecule cm(-3) of [CH3I], at constant concentration 4.85×10(12) molecule cm(-3) of [CH3], and at 7.3×10(12) molecule cm(-3) of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3+CH3ICl = product (k = (2.75±0.35)×10(-10) s(-1)) and CH3I+CH3ICl = product2 (k = 1.90±0.15)×10(-12) s(-1). The rate coefficients of the reaction CH3+CH3ICl and CH3I+CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  8. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    Science.gov (United States)

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  9. Infrared absorption of trans-1-chloromethylallyl and trans-1-methylallyl radicals produced in photochemical reactions of trans-1,3-butadiene and Cl2 in solid para-hydrogen.

    Science.gov (United States)

    Bahou, Mohammed; Wu, Jen-Yu; Tanaka, Keiichi; Lee, Yuan-Pern

    2012-08-28

    The reactions of chlorine and hydrogen atoms with trans-1,3-butadiene in solid para-hydrogen (p-H(2)) were investigated with infrared (IR) absorption spectra. When a p-H(2) matrix containing Cl(2) and trans-1,3-butadiene was irradiated with ultraviolet light at 365 nm, intense lines at 650.3, 809.0, 962.2, 1240.6 cm(-1), and several weaker ones due to the trans-1-chloromethylallyl radical, ●(CH(2)CHCH)CH(2)Cl, appeared. Observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++g(2d, 2p) method. That the Cl atom adds primarily to the terminal carbon atom of trans-1,3-butadiene is in agreement with the path of minimum energy predicted theoretically, but in contrast to the reaction of Cl + propene in solid p-H(2) [J. Amicangelo and Y.-P. Lee, J. Phys. Chem. Lett. 1, 2956 (2010)] in which the addition of Cl to the central C atom is favored, likely through steric effects in a p-H(2) matrix. A second set of lines, intense at 781.6, 957.9, 1433.6, 2968.8, 3023.5, 3107.3 cm(-1), were observed when the UV-irradiated Cl(2)/trans-1,3-butadiene/p-H(2) matrix was further irradiated with IR light from a SiC source. These lines are assigned to the trans-1-methylallyl radical, ●(CH(2)CHCH)CH(3), produced from reaction of 1,3-butadiene with a H atom resulted from the reaction of Cl atoms with solid p-H(2) exposed to IR radiation.

  10. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  11. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  12. Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy

    Science.gov (United States)

    Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing

    2018-05-01

    Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.

  13. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. Nor...... do we fully realize how we might have changed as we return for the fictional worlds we have visited. The feeling of being absorbed is one of the most illusive and transient feelings, but also one that motivates audiences to spend considerable amounts of time in narrative worlds, and one...... that is central to our understanding of the effects of narratives on beliefs and behavior. Key specialists inform the reader of this book about the nature of the peculiar state of consciousness during episodes of absorption, the perception of absorption in history, the role of absorption in meaningful experiences...

  14. Neutron absorption constraints on the composition of 4 Vesta

    Science.gov (United States)

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-01-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  15. Enhanced absorption and cavity effects of three-photon pumped ZnO nanowires

    Science.gov (United States)

    Hollinger, Richard; Samsonova, Zhanna; Gupta, Dishiti; Spielmann, Christian; Röder, Robert; Trefflich, Lukas; Ronning, Carsten; Kartashov, Daniil

    2017-11-01

    Semiconductor nanowire (NW) lasers attract a lot of attention as potential elements of nanophotonic circuits and lab-on-a chip devices. Here, we report on the experimental investigation of stimulated near ultraviolet (NUV) emission, pumped by three-photon absorption from near infrared femtosecond laser pulses, from ZnO NW arrays of different morphologies and compare it to the bulk. The spectrally and temporally resolved measurements of the NUV emission show both strong enhancements in the absorption and emission properties of the nanowire arrays compared to bulk samples. Thus, we determine a many times higher three-photon absorption in the nanostructure morphology compared to the bulk material. Furthermore, the threshold pumping intensity for stimulated emission in a vertically oriented nanowire array is twice lower and the emission onset time is shorter than in randomly oriented arrays, revealing strong influence of the macroscopic nanowire arrangement.

  16. Probing ultrafast carrier dynamics, nonlinear absorption and ...

    Indian Academy of Sciences (India)

    diameter of about 60 nm of the core–shell silicon nanowires, (b) linear optical absorption measurement using a visible–infrared absorption spectrometer. on the nanowires and on the substrate [9]. The overall thickness of the silicon nanowire film was ∼600 nm measured independently using atomic force microscopy ...

  17. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    Science.gov (United States)

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  18. The Far-Infrared Spectrum of ARP 220

    National Research Council Canada - National Science Library

    Gonzalez-Alfonso, Eduardo; Smith, Howard A; Fischer, Jacqueline; Cernicharo, Jose

    2004-01-01

    Infrared Space Observatory Long Wavelength Spectrometer grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H2O, CH, NH, and NH3, as well as in the...

  19. Dependence of surface-enhanced infrared absorption (SEIRA) enhancement and spectral quality on the choice of underlying substrate: a closer look at silver (Ag) films prepared by physical vapor deposition (PVD).

    Science.gov (United States)

    Killian, Michelle M; Villa-Aleman, Eliel; Sun, Zhelin; Crittenden, Scott; Leverette, Chad L

    2011-03-01

    Silver (Ag) films of varying thickness were simultaneously deposited using physical vapor deposition (PVD) onto six infrared (IR) substrates (BaF(2), CaF(2), Ge, AMTIR, KRS-5, and ZnSe) in order to correlate the morphology of the deposited film with optimal SEIRA response and spectral band symmetry and quality. Significant differences were observed in the surface morphology of the deposited silver films, the degree of enhancement provided, and the spectral appearance of para-nitrobenzoic acid (PNBA) cast films for each silver-coated substrate. These differences were attributed to each substrate's chemical properties, which dictate the morphology of the Ag film and ultimately determine the spectral appearance of the adsorbed analyte and the magnitude of SEIRA enhancement. Routine SEIRA enhancement factors (EFs) for all substrates were between 5 and 150. For single-step Ag depositions, the following ranking identifies the greatest SEIRA enhancement factor and the maximum absorption of the 1345 cm(-1) spectral marker of PNBA at the optimal silver thickness for each substrate: BaF(2) (EF = 85 ± 19, 0.059 A, 10 nm Ag) > CaF(2) (EF = 75 ± 30, 0.052 A, 10 nm Ag) > Ge (EF = 45 ± 8, 0.019 A, 5 nm Ag) > AMTIR (EF = 38 ± 8, 0.024 A, 15 nm Ag) > KRS-5 (EF = 24 ± 1, 0.015 A, 12 nm Ag) > ZnSe (EF = 9 ± 5, 0.008 A, 8 nm Ag). A two-step deposition provides 59% larger EFs than single-step depositions of Ag on CaF(2). A maximum EF of 147 was calculated for a cast film of PNBA (surface coverage = 341 ng/cm(2)) on a 10 nm two-step Ag film on CaF(2) (0.102 A, 1345 cm(-1) symmetric NO(2) stretching band). The morphology of the two-step Ag film has smaller particles and greater particle density than the single-step Ag film.

  20. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.

    2008-01-01

    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  1. Quantitative mid-infrared spectra of allene and propyne from room to high temperatures

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-11-01

    Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580-3400 cm-1 spectral region at resolutions of 0.08 and 0.25 cm-1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with values derived from literature for both molecules. Integrated band intensities are also determined as a function of temperature in various spectral regions.

  2. Infrared spectra of the gaseous iodides of chromium, iron and nickel

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Booij, A.S.

    1991-11-01

    The infrared spectra of the vapours over chromium, iron and nickel di-iodide have been studied by high-temperature infrared spectroscopy. The gaseous molecules CrI 2 , FeI 2 and NiI 2 were all identified and the interpretation of the spectra is in agreement with a linear structure. Additional strong absorption bands in the spectra of the vapour phase above liquid CrI 2 and FeI 2 were assigned to dimeric (MI 2 ) 2 molecules. Valence force constants and thermodynamic quantities have been calculated. (author). 41 refs.; 4 figs.; 5 tabs

  3. Variable waveband infrared imager

    Science.gov (United States)

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  4. An outdoor investigation of the absorption degradation of single ...

    Indian Academy of Sciences (India)

    Fourier transform infrared spectroscopy (FTIR) was used for the absorption characterization. The rationale behind the outdoor deployment was to deduce a practical effect of hot spot formation on the module's absorption ability.The results show a direct correlation between localized heat and the absorption degradation.

  5. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Williams, Stephen D.; Sams, Robert L.; Johnson, Timothy J.

    2016-12-16

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-trans conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.

  6. Infrared Optical Response of Metallic Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Zigang Duan

    2010-01-01

    Full Text Available We investigate theoretically the infrared optical response characteristics of metallic armchair/zigzag-edge graphene nanoribbons (A/ZGNRs to an external longitudinally polarized electromagnetic field at low temperatures. Within the framework of linear response theory at the perturbation regime, we examine the optical infrared absorption threshold energy, absorption power, dielectric function, and electron energy loss spectra near the neutrality points of the systems. It is demonstrated that, by some numerical examples, the photon-assisted direct interband absorptions for AGNR exist with different selection rules from those for ZGNR and single-walled carbon nanotube at infrared regime. This infrared optical property dependence of GNRs on field frequency may be used to design graphene-based nanoscale optoelectronic devices for the detection of infrared electromagnetic irradiations.

  7. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  8. Fourier–transform infrared spectroscopic characterization of natu ...

    Indian Academy of Sciences (India)

    We present here the characterization of the fulgurites by Fourier transform infrared (FTIR) absorption, X-ray diffraction and X-ray fluorescence methods. The amorphous nature of the substance has been confirmed by Fourier transform infrared spectra of the fulgurites, which exhibit prominent absorption band in the region ...

  9. Mid infrared DFB interband cascade lasers

    Science.gov (United States)

    Koeth, J.; Weih, R.; Scheuermann, J.; Fischer, M.; Schade, A.; Kamp, M.; Höfling, S.

    2017-08-01

    The mid infrared spectral range (MIR) is of great interest for a variety of industrial, medical and environmental applications since numerous molecules have strong absorption lines therein. Interband cascade lasers (ICLs) have the ability to cover the entire MIR almost independently from the bandgap of the utilized semiconductors. Combined with a DFB technology which is applicable for most kinds of interband transition based semiconductor lasers the spectral range between 2.8 and 5.9 μm could be covered with application grade single mode devices with low power consumption. Recent optimizations regarding the layer design as well as the device processing yielded DFB laser chips with improved performance that will pave the way for a variety of applications that benefit from reasonable output power.

  10. Infrared spectra of carbon stars with silicate-like emission

    Science.gov (United States)

    Noguchi, Kunio; Murakami, Hiroshi; Matsuo, Hiroshi; Noda, Manabu; Hamada, Hiroyuki; Watabe, Toyoki

    1990-06-01

    Near-infrared photometry was carried out for 15 carbon stars, including three peculiar carbon stars (BM Gem, V778 Cyg, and EU And) which have a 10-micron emission feature similar to the silicate emission characteristic of oxygen-rich stars. It was found that these carbon stars with silicatelike emission have excesses at both the 12- and 25-micron bands regarding IRAS photometric data which are characteristic of M-type stars with strong silicate emission features. This fact supports the suggestion that the silicatelike emission in peculiar carbon stars is the same as the silicate emission in M-type stars. The near-infrared spectra of these three peculiar carbon stars between 1.9 micron and 4.2 microns were obtained with a grating spectrometer. The spectra of these stars show a 3-micron absorption feature characteristic of carbon stars.

  11. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  12. Laser isotope separation by multiple photon absorption

    Science.gov (United States)

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  13. Using Methane Absorption to Probe Jupiter's Atmosphere

    Science.gov (United States)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  15. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  16. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    Science.gov (United States)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  17. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    Science.gov (United States)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  18. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, CCl3CF3 (CFC-113a, and CCl2FCF3 (CFC-114a

    Directory of Open Access Journals (Sweden)

    M. E. Davis

    2016-07-01

    Full Text Available The potential impact of CCl2FCF3 (CFC-114a and the recently observed CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, and CCl3CF3 (CFC-113a chlorofluorocarbons (CFCs on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207–323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs, and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years of 63.6 (61.9–64.7, 51.5 (50.0–52.6, 55.4 (54.3–56.3, and 105.3 (102.9–107.4 for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs were estimated to be 4260 (CFC-112, 3330 (CFC-112a, 3650 (CFC-113a, and 6510 (CFC-114a for the 100-year time horizon.

  19. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  20. A Micromachined Infrared Senor for an Infrared Focal Plane Array

    Directory of Open Access Journals (Sweden)

    Seong M. Cho

    2008-04-01

    Full Text Available A micromachined infrared sensor for an infrared focal plane array has been designed and fabricated. Amorphous silicon was used as a sensing material, and silicon nitride was used as a membrane material. To get a good absorption in infrared range, the sensor structure was designed as a l/4 cavity structure. A Ni-Cr film was selected as an electrode material and mixed etching scheme was applied in the patterning process of the Ni-Cr electrode. All the processes were made in 0.5 μm iMEMS fabricated in the Electronics and Telecommunication Research Institute (ETRI. The processed MEMS sensor had a small membrane deflection less than 0.15 μm. This small deflection can be attributed to the rigorous balancing of the stresses of individual layers. The efficiency of infrared absorption was more than 75% in the wavelength range of 8 ~ 14 μm. The processed infrared sensor showed high responsivity of ~230 kV/W at 1.0V bias and 2 Hz operation condition. The time constant of the sensor was 8.6 msec, which means that the sensor is suitable to be operated in 30 Hz frame rate.

  1. <strong>PRAYER INDUCED ANALGESIAstrong>

    DEFF Research Database (Denmark)

    Jegindø, Else-Marie Elmholdt

    moderators (personality, absorption and coping) and mediators (expectations, desire for pain relief and anxiety) were included in the study design in order to explore the influence of psychological mechanisms involved in the potential analgesic effect of prayer as a coping strategy. RESULTS: TBA (it...

  2. Simulation of two-dimensional infrared spectra by numerical integration of the schrodinger equation

    NARCIS (Netherlands)

    Jansen, Thornas la Cour; Knoester, Jasper; Simos, T; Maroulis, G

    2006-01-01

    A method is presented for simulating infrared absorption and two-dimensional infrared spectra including dynamical effects as motional narrowing, population transfer and reorientation. Interactions between the considered vibrations and the surrounding bath give rise to these effects. These

  3. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    Science.gov (United States)

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  4. Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots

    Science.gov (United States)

    Han, Qiuju; Wu, Wenzhi; Liu, Weilong; Yang, Qingxin; Yang, Yanqiang

    2018-01-01

    The nonlinear optical and the upconversion luminescence (UCL) properties of CsPbX3 (X = Br or its binary mixtures with Cl, I) quantum dots (QDs) are investigated by femtosecond open-aperture (OA) Z-scan and time-resolved luminescence techniques in nonresonant spectral region. The OA Z-scan results show that CsPbX3 QDs have strong reverse saturable absorption (RSA), which is ascribed to two-photon absorption. Partially changing halide composition from Cl to Br, to I, two-photon absorption cross sections become larger at the same laser excitation intensity. The composition-tunable nonlinear absorption should be attributed to the gradual decrease of the lowest direct band gaps with the halide substitute. Moreover, the strong UCL can be observed under near infrared femtosecond laser excitation. Halide composition-tunable UCL dynamics of CsPbX3 QDs is analyzed by use of two-exponential fitting with deconvolution. When CsPbX3 QDs have similar sizes (10-13 nm), with partially changing halide composition from Cl to Br, to I, the average UCL lifetime becomes longer due to the variation of Kane energy. Our findings suggest all-inorganic perovskite QDs can be used as excellent gain medium for high-performance frequency-upconversion lasers and provide reference to engineer such QDs toward practical optoelectronic applications.

  5. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.

    1996-01-01

    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  6. Guided-mode-resonance-enhanced measurement of thin-film absorption.

    Science.gov (United States)

    Wang, Yifei; Huang, Yin; Sun, Jingxuan; Pandey, Santosh; Lu, Meng

    2015-11-02

    We present a numerical and experimental study of a guided-mode-resonance (GMR) device for detecting surface-bound light-absorbing thin films. The GMR device functions as an optical resonator at the wavelength strongly absorbed by the thin film. The GMR mode produces an evanescent field that results in enhanced optical absorption by the thin film. For a 100-nm-thick lossy thin film, the GMR device enhances its absorption coefficients over 26 × compared to a conventional glass substrate. Simulations show the clear quenching effect of the GMR when the extinction coefficient is greater than 0.01. At the resonant wavelength, the reflectance of the GMR surface correlates well with the degree of optical absorption. GMR devices are fabricated on a glass substrate using a surface-relief grating and a titanium-dioxide coating. To analyze a visible absorbing dye, the reflection coefficient of dye-coated GMR devices was measured. The GMR-based method was also applied to detecting acid gases, such as hydrochloric vapor, by monitoring the change in absorption in a thin film composed of a pH indicator, bromocresol green. This technique potentially allows absorption analysis in the visible and infrared ranges using inexpensive equipment.

  7. Low loss liquid crystal photonic bandgap fiber in the near-infrared region

    DEFF Research Database (Denmark)

    Scolari, Lara; Wei, Lei; Gauza, S.

    2010-01-01

    We infiltrate a photonic crystal fiber with a perdeuterated liquid crystal, which has a reduced infrared absorption. The lowest loss ever reported (about 1 dB) in the middle of the near-infrared bandgap is achieved.......We infiltrate a photonic crystal fiber with a perdeuterated liquid crystal, which has a reduced infrared absorption. The lowest loss ever reported (about 1 dB) in the middle of the near-infrared bandgap is achieved....

  8. Infrared Thermometer

    Science.gov (United States)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  9. Thermal behavior of J-aggregates in mixed Langmuir-Blodgett films composed of merocyanine dye and deuterated arachidic acid investigated by UV-visible and infrared absorption spectroscopy.

    Science.gov (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Ozaki, Yukihiro

    2007-06-19

    We have investigated the thermal behavior of J-aggregates in the mixed Langmuir-Blodgett (LB) films composed of the merocyanine dye (MS18)-deuterated arachidic acid (C20-d) binary system in the temperature range from 25 to 250 degrees C by means of UV-visible and IR transmission absorption spectroscopy. The temperature-dependent variations in both UV-visible and IR absorption spectra indicate that the MS18 aggregation states are linked with the MS18 intramolecular charge transfer and the behavior of the packing, orientation, conformation, and thermal mobility of the MS18 hydrocarbon chain. The J-aggregate formed at 25 degrees C in the mixed LB films dissociates in the temperature range from 25 to 110 degrees C, which is mainly ascribed to the increase in the thermal mobility of MS18 hydrocarbon chain and the dissociation of the chelation by a cadmium ion to the MS18 keto group. A thermally induced blue-shifted band appears at around 515 nm from 110 to 160 degrees C. This band is attributed to oligomeric aggregation with side-by-side alignment of the MS18 transition dipole moments on the basis of the shift to a higher-energy side, broadening, and temporary increment of the MS18 intramolecular charge transfer of the band. Consequently, the appearance of the thermally induced blue-shifted band indicates the possibility that the MS18 aggregation states can be controlled from the red shift to the blue shift by the annealing method adopted in the present study.

  10. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tolesa Fita Chala

    2017-07-01

    Full Text Available In this work, novel WO3-x/polyurethane (PU nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72 and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications.

  11. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites.

    Science.gov (United States)

    Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing

    2017-07-22

    In this work, novel WO 3- x /polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO₃ → WO 2.8 → WO 2.72 ) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780-2500 nm and excellent photothermal conversion properties. This is because the particle size of WO 3- x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO 3- x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO 2.72 /PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO₃/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO 2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications.

  12. Enhanced universal absorption of graphene in a Salisbury screen

    Science.gov (United States)

    Ying, Xiangxiao; Pu, Yang; Luo, Yi; Peng, Hao; Li, Zhe; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-01-01

    As an emerging optoelectronic material, graphene's universal absorption of about 2.3% over a broad frequency range from infrared to visible, as determined by its interband transition, presents both a new opportunity and a limitation. Here we report on a multifold enhancement of the absorption using a simple strategy, often referred to as the Salisbury screen. It consists of a graphene sheet on top of a SiO2 dielectric layer backed with a copper metallic reflector. For a monolayer graphene, peak absorptions of 9% at near normal incidence and 40% at near grazing angle are experimentally demonstrated in the near-infrared region, in good agreement with calculations using transfer matrix method. The resultant absorption enhancement suggests a great potential for graphene to be used in infrared optoelectronic components.

  13. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  14. Water dynamics of Ser-His-Glu-Cys-Asn powder and effects of moisture absorption on its chemical properties.

    Science.gov (United States)

    Lin, Songyi; Xue, Peiyu; Yang, Shuailing; Li, Xingfang; Dong, Xiuping; Chen, Feng

    2017-08-01

    This study has elucidated moisture dynamics in the soybean peptide, Ser-His-Glu-Cys-Asn (SHECN) powder by using dynamic vapor sorption (DVS) and nuclear magnetic resonance (NMR). We also tried to investigate the effects of moisture absorption on the biological activity and chemical properties of SHECN with some effective methods such as mid-infrared (MIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). DVS results showed that the moisture absorption of SHECN could reach a maximum of 33%, and the SHECN powder after synthesis actually existed in a trihydrate state of SHECN.3H 2 O. Low-field NMR revealed that three water proportions including strong combined water, binding water and bulk water were involved in SHECN moisture absorption and absored water dominantly existed in the form of combined water. Magnetic resonance imaging (MRI) and MIR spectroscopy results indicated that moisture absorption could change the morphology and structure of SHECN. After moisture absorption at 50% and 75% relative humidity, 19 volatiles were identified by GC-MS analysis. Additionally, this study showed that a part of reductive groups in SHECN was oxidized and its antioxidant ability declined significantly (P moisture absorption. Water absorbed into SHECN powder can significantly change its microstructure and cause its activity to decrease. We must prevent SHECN from absorbing moisture during storage because the water can accelerate the oxidation of samples and promote microbial reactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Simulation of the time dependent infrared nu2 mode absorptions of (oH2)n:H2O clusters in O2 doped solid hydrogen at 4.2 K.

    Science.gov (United States)

    Abouaf-Marguin, L; Vasserot, A-M; Pardanaud, C

    2009-02-07

    Using Fourier transform infrared spectroscopy, we have analyzed the time evolution of the nu(2) mode of (oH(2))(n):H(2)O clusters (n = 11 to 1) embedded in solid normal hydrogen at 4.2 K over a period of 150 h using paramagnetic O(2) to speed up the ortho to para nuclear spin conversion process. For concentrations H(2)O/O(2)/H(2) = 1/20/4000, at time t = 0 right after the solid is prepared, all the H(2)O molecules are preferentially clustered by large numbers of oH(2). With time the cluster distribution irreversibly shifts toward smaller cluster sizes and also generates freely rotating H(2)O (n = 0) which is solvated completely by pH(2) molecules. From a spectral decomposition of the nu(2) (oH(2))(n):H(2)O cluster spectra, a phenomenological simulation of the time behavior of the clusters has been developed. The time evolution is modeled using coupled rate equations in a step by step n to n-1 cluster cascade fashion and analyzed over nine successive time periods. It shows that rotating H(2)O grows only at the expense of cluster n = 1 and that the process dramatically slows down as the conversion of orthohydrogen proceeds. At the end of the conversion process, it was found that cluster n = 1 remained with a very slow decrease.

  16. Infrared reflectance spectra: effects of particle size, provenance and preparation

    Science.gov (United States)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  17. Gamma-ray constraints on the infrared background excess

    Science.gov (United States)

    Mapelli, M.; Salvaterra, R.; Ferrara, A.

    2006-04-01

    Motivated by the idea that the recently detected near-infrared (1.2-4 μm) excess over the contribution of known galaxies is due to redshifted light from the first cosmic stars [MNRAS 339 (2003) 973], we have used the effect caused by photon-photon absorption on gamma-ray spectra of blazars to put constraints on extragalactic background light (EBL) from the optical to the far-IR bands. Our analysis is mainly based on the blazar H 1426+428, for which we assume a power-law unabsorbed spectrum. We find that an EBL model with no excess over known galaxies in the near-infrared background (NIRB) is in agreement with all the considered blazars; however, it implies a very peculiar intrinsic spectrum for H 1426+428. Additional data on the blazars 1ES1101-232, H 2356-309 and PKS 2155-304 exclude the existence of a strong NIRB excess consistent with Kelsall's model of zodiacal light subtraction (ZL); the COBE/DIRBE measurements, after Wright's model ZL subtraction, represent a firm NIRB upper limit. The constraints on the optical EBL are weaker, due to the fact that predictions from different optical EBL models are often comparable to the experimental errors. In the mid-infrared the SPITZER measurement of νIν = 2.7 nW m -2 sr -1 at 24 μm gives a good fit for all the considered blazars.

  18. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  19. Estudo por espectroscopia no infravermelho da interação metal-suporte em Pt/TiO2. A influência da adsorção de hidrogênio An infrared spectroscopy study of metal-support interaction on Pt/TiO2. The influence of hydrogen adsorption

    Directory of Open Access Journals (Sweden)

    Edilson V. Benvenutti

    1999-09-01

    Full Text Available The influence of the presence of hydrogen on Pt/TiO2 catalysts submitted to reduction treatment has been studied by FT-IR at room temperature. After submitting to LTR treatment, the hydrogen spillover has been detected and the presence of hydrogen at the bulk is shown to produce a strong absorption in the infrared spectral region. After HTR treatment, the hydrogen is strongly chemissorbed.

  20. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics

    Science.gov (United States)

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2018-01-01

    An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.

  1. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  2. Development of infrared water sensors based on novel light sources

    Science.gov (United States)

    Donohue, John R.; Masterson, Hugh J.; Maze, Gwenael; O'Dwyer, Kieran; MacCraith, Brian D.

    2003-03-01

    The detection and measurement of vapour-phase or liquid-phase water is important in many industrial and chemical processes. Water exhibits strong absorption bands compared to other substances in the near infrared (NIR), and for this reason NIR spectroscopy is especially well suited to moisture determination. A lack of suitable sources in the NIR, however, has impeded the application of optical sensors to water detection. We have developed a modulatable IR source for use in a moisture sensor. In the system, the luminescent emission from optically pumped rare earth doped glasses is used. Thulium doped zirconium fluoride glass, which luminesces at 1.83 mm was the material chosen. The spectral overlap with the water absorption band is significant, and the output stability matches that of the pump source, which is typically an internally modulated diode laser emitting at 685nm. The detection system uses a reference beam and a probe beam to monitor changes in absorption due to moisture or water vapour. Results illustrating the effectiveness of the novel IR source in a sensor platform to measure trace amounts of liquid water and water vapor will be presented.

  3. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  4. Infrared absorption of 1-chloro-2-methyl-2-propyl [⋅C(CH3)2CH2Cl] and 2-chloro-2-methylpropyl [⋅CH2C(CH3)2Cl] radicals produced in the addition reactions of Cl with isobutene (i-C4H8) in solid para-hydrogen.

    Science.gov (United States)

    Chou, Ching-Yin; Lee, Yuan-Pern

    2016-10-07

    The addition reactions of chlorine atom with isobutene (i-C 4 H 8 ) in solid para-hydrogen (p-H 2 ) were investigated with infrared (IR) absorption spectra. When a p-H 2 matrix containing Cl 2 and isobutene was irradiated with ultraviolet light at 365 nm, intense lines in a set at 534.5, 1001.0, 1212.9, 1366.0, 2961.6, and 2934.7 cm -1 , and several weaker others due to the 1-chloro-2-methyl-2-propyl radical, ⋅ C(CH 3 ) 2 CH 2 Cl, and those in a second set including intense ones at 642.7, 799.2, 1098.2, 1371.8, and 3027.3 cm -1 due to the 2-chloro-2-methylpropyl radical, ⋅ CH 2 C(CH 3 ) 2 Cl, appeared; the ratio of ⋅ C(CH 3 ) 2 CH 2 Cl to ⋅ CH 2 C(CH 3 ) 2 Cl was approximately (3 ± 1):1. The observed wavenumbers and relative intensities agree with the vibrational wavenumbers and IR intensities predicted with the B3PW91/aug-cc-pVTZ method. That the Cl atom adds to both carbons of the C=C bond of isobutene with the terminal site slightly favored is consistent with the energies of products predicted theoretically, but is in contrast to the reaction of Cl + propene in solid p-H 2 in which the addition of Cl to mainly the central C atom was previously reported. The role of the p-H 2 matrix in affecting the reaction paths is discussed. Absorption lines of the complex i-C 4 H 8 ⋅Cl 2 and the dichloro-product anti-1,2-dichloro-2-methylpropane, a-CH 2 ClCCl(CH 3 ) 2 , are also characterized.

  5. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  6. KIC 8462852: THE INFRARED FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Marengo, Massimo; Hulsebus, Alan [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Willis, Sarah [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-11-20

    We analyzed the warm Spitzer/IRAC data of KIC 8462852. We found no evidence of infrared excess at 3.6 μm and a small excess of 0.43 ± 0.18 mJy at 4.5 μm below the 3σ threshold necessary to claim a detection. The lack of strong infrared excess 2 years after the events responsible for the unusual light curve observed by Kepler further disfavors the scenarios involving a catastrophic collision in a KIC 8462852 asteroid belt, a giant impact disrupting a planet in the system or a population of dust-enshrouded planetesimals. The scenario invoking the fragmentation of a family of comets on a highly elliptical orbit is instead consistent with the lack of strong infrared excess found by our analysis.

  7. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model

    Science.gov (United States)

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index (RI) of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range $250\\,{\\rm nm} - 1100\\,{\\rm nm}$ using the Kramers-Kronig (KK) relations and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  8. The influence of particle size on infrared reflectance spectra

    Science.gov (United States)

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-01

    Reflectance spectra of solids are influenced by the absorption coefficient and index of refraction as well as particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upwardgoing peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample to be absorbed or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground and sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3, in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  9. NEAR-INFRARED SPECTROSCOPY OF POST-AGB STARS

    NARCIS (Netherlands)

    OUDMAIJER, RD; WATERS, LBFM; VANDERVEEN, WECJ; GEBALLE, TR

    The results of a medium resolution near-infrared spectral survey of 18 post-AGB candidate stars are presented. Most of the stars have near-infrared hydrogen lines in absorption, which is normal for their spectral types. Three stars, HD 101584, HD 179821 and HD 170756 have the CO first overtone bands

  10. Nutrition and magnesium absorption

    OpenAIRE

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium absorption was neither affected by soybean protein in the diet nor by supplemental phytate. The inhibitory influence of soybean protein and phytate on apparent magnesium absorption was found ...

  11. Fourier transform infrared (FTIR) spectromicroscopic characterization of stem-like cell populations in human esophageal normal and adenocarcinoma cell lines.

    Science.gov (United States)

    Zhao, R; Quaroni, L; Casson, A G

    2010-01-01

    We have tested an approach to identify putative cancer stem cells that involves measurement of the infrared absorption spectrum of individual cells in an aqueous environment, and their subsequent classification using multivariate data analysis techniques. Two primary esophageal cell lines were characterized: the immortalized normal esophageal epithelial cell line, Het-1A, and the esophageal adenocarcinoma cell line, OE33. In addition, we also evaluated spheroids, reflecting stem-like cell populations, which were derived from each parent cell line when grown in serum-free media. As differences in cell size appeared to be a strong discriminating factor, a correction needs to be performed to allow a reliable classification based on infrared absorption spectra. We demonstrated that stem-like cells derived from Het-1A could easily be discriminated on the basis of absorbance differences in the 1000-1200 cm(-1) spectral interval, whereas this was not possible for OE33. Furthermore, we found that changes due to aging of OE33 cells in culture dominated the infrared absorption spectra and somewhat limited the potential of this approach to identify stem-like cell populations using this in vitro model system.

  12. Unusually strong H-bonding to the heme ligand and fast geminate recombination dynamics of the carbon monoxide complex of Bacillus subtilis truncated hemoglobin.

    Science.gov (United States)

    Feis, Alessandro; Lapini, Andrea; Catacchio, Bruno; Brogioni, Silvia; Foggi, Paolo; Chiancone, Emilia; Boffi, Alberto; Smulevich, Giulietta

    2008-01-22

    The active site of the oxygen-avid truncated hemoglobin from Bacillus subtilis has been characterized by infrared absorption and resonance Raman spectroscopies, and the dynamics of CO rebinding after photolysis has been investigated by picosecond transient absorption spectroscopy. Resonance Raman experiments on the CO bound adduct revealed the presence of two Fe-CO stretching bands at 545 and 520 cm-1, respectively. Accordingly, two C-O stretching bands at 1924 and 1888 cm-1 were observed in infrared absorption and resonance Raman measurements. The very low C-O stretching frequency at 1888 cm-1 (corresponding to the extremely high RR stretching frequency at 545 cm-1) indicates unusually strong hydrogen bonding between CO and distal residues. On the basis of a comparison with other truncated hemoglobin it is envisaged that the two CO conformers are determined by specific interactions with the TrpG8 and TyrB10 residues. Mutation of TrpG8 to Leu deeply alters the hydrogen-bonding network giving rise mainly to a CO conformer characterized by a Fe-CO stretching band at 489 cm-1 and a CO stretching band at 1958 cm-1. Picosecond laser photolysis experiments carried out on the CO bound adduct revealed dynamical processes that take place within a few nanoseconds after photolysis. Picosecond dynamics is largely dominated by CO geminate rebinding and is consistent with strong H-bonding contributions of TyrB10 and TrpG8 to ligand stabilization.

  13. H-2 Ejection from Polycyclic Aromatic Hydrocarbons: Infrared Multiphoton Dissociation Study of Protonated 1,2-Dihydronaphthalene

    NARCIS (Netherlands)

    Vala, M.; Szczepanski, J.; Oomens, J.; Steill, J. D.

    2009-01-01

    1,2-Dihydronaphthalene (DHN) has been studied by matrix isolation infrared absorption spectroscopy, multiphoton infrared photodissociation (IRMPD) action spectroscopy, and density functional theory calculations. Formed by electrospray ionization, protonated 1,2-dihydronapthalene was injected into a

  14. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.

    1988-01-01

    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  15. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  16. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Jonathan Y., E-mail: j.suen@duke.edu; Padilla, Willie J. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2016-06-06

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

  17. Local Bi-O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 via temperature-dependent Raman spectra and x-ray absorption fine structure analysis.

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Guo, Xingmei; Fan, Tongxiang; Zhang, Di

    2018-03-28

    A correlation function between the Raman intensities and the nearest-neighbor mean-square relative displacement (MSRD) [Formula: see text] of local Bi-O bonds is successfully established based on x-ray absorption fine structure (XAFS) and temperature-dependent Raman spectra in the temperature range 77-300 K in amorphous and crystalline Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 . The structural symmetries of Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 are described by using [Formula: see text] of local Bi-O bonds. More importantly, Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 is found to show excellent infrared (IR) emission properties due to changes in Bi-O bonds, and the IR emission intensities are found to depend on [Formula: see text], by using temperature-dependent photoluminescence spectroscopy. The maximum emission intensity at 1533 nm is obtained when [Formula: see text] [Formula: see text] at the lowest symmetry. This work shows that temperature-dependent Raman intensities can be used effectively to analyze the local covalent bonds around absorbing atoms as well as to study the emission properties of this visible-light-activated IR luminophor.

  18. Local Bi–O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 via temperature-dependent Raman spectra and x-ray absorption fine structure analysis

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Guo, Xingmei; Fan, Tongxiang; Zhang, Di

    2018-03-01

    A correlation function between the Raman intensities and the nearest-neighbor mean-square relative displacement (MSRD) σ2 of local Bi–O bonds is successfully established based on x-ray absorption fine structure (XAFS) and temperature-dependent Raman spectra in the temperature range 77–300 K in amorphous and crystalline Gd2.95Yb0.02Bi0.02Er0.01Ga5O12. The structural symmetries of Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 are described by using σ2 of local Bi–O bonds. More importantly, Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 is found to show excellent infrared (IR) emission properties due to changes in Bi–O bonds, and the IR emission intensities are found to depend on σ2 , by using temperature-dependent photoluminescence spectroscopy. The maximum emission intensity at 1533 nm is obtained when σ^2∼0.003 {\\mathringA} at the lowest symmetry. This work shows that temperature-dependent Raman intensities can be used effectively to analyze the local covalent bonds around absorbing atoms as well as to study the emission properties of this visible-light-activated IR luminophor.

  19. In situ observation of surface reactions with synchrotron radiation induced semiconductor processes by infrared reflection absorption spectroscopy using buried metal layer substrates; Umekomi kinzokuso kiban wo mochiita sekigai hansha kyushu supekutoruho ni yoru hoshako reiki handotai process hanno no sonoba kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigoe, A.; Hirano, S. [The Graduate University for Advanced Studies, Yokohama (Japan); Mase, K.; Urisu, T. [Institute for Molecular Science, Aichi (Japan)

    1996-11-20

    It is known that infrared reflection absorption spectroscopy (IRAS) on semiconductor or insulator surfaces becomes practicable by using buried metal layer (BML) substrates, in which the metal thin film is buried order semiconductor or insulator films. In this work, IRAS has been measured for Langmuir-Blodgett films deposited on the BML substrate with SiO2/Al/Si(100) structure and the observed spectrum intensity has been quantitatively compared with the calculation assuming the ideal multilayer structure for the BML substrate. The BML-IRAS using CoSi2 has been adopted to the detection of SiHn on the Si (100) substrate during synchrotron radiation (SR) stimulated Si2H6 gas source molecular beam epitaxy. It has been found that SiH2 and SiH3 on the Si (100) surface are easily decomposed by SR, but SiH can`t be decomposed. From these experiments, it has been concluded that the BML-IRAS is an useful in situ observation technique for the photo-stimulated surface reactions. 26 refs., 9 figs.

  20. Application of visible and infrared spectroscopy for the evaluation of evolved glauconite

    Science.gov (United States)

    Chattoraj, Shovan L.; Banerjee, Santanu; van der Meer, Freek; Champati Ray, P. K.

    2018-02-01

    The Oligocene Maniyara Fort Formation in western India exhibits two distinct glauconite types with different maturation states, which are characterized by their spectral response in the visible to infrared spectrum of electromagnetic radiation. Spectral signatures of Maniyara Fort glauconites display absorption features at approximately 0.77, 1.08, 1.9, 2.3 μm in the visible-short-wave infrared (SWIR) and 2.8 and 10 μm in the mid-infrared (MIR) region which vary with K2O content of glauconite. The spectra of glauconite varies significantly as a function of its cationic contents and substitution in different sites. The maturity is found to increase in tandem with the metal-metal charge transfer (CT) and the Fe2+ dd absorption band respectively at 1.08 and 0.77 μm. H2O and OH- signatures at the NIR region reflect differences in the sensitivity of glauconites with different molecular H2O content. In the MIR region, a gradual shift of the Sisbnd O stretch at 10 μm towards lower wavelengths indicates the dominance of smectite layers in glauconites. This study demonstrates a strong correlation between the proportion of expandable layers in the glauconite structure with variations in characteristic band position, depth and symmetry in reflectance and emissivity.

  1. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Solookinejad, G., E-mail: ghsolooki@gmail.com

    2016-09-15

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  2. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  3. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: matrix infrared spectra and anharmonic frequency calculations.

    Science.gov (United States)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-28

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm(-1) region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  4. HI Absorption in Merger Remnants

    Science.gov (United States)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  5. Prospects of Mid Infrared Silicon Raman Laser

    Science.gov (United States)

    Jalali, Bahram

    2006-03-01

    Mid wave infrared (MWIR) lasers in the wavelength range of 2-5μm form an important tool for free space communications, bio-chemical detection and certain medical applications. Most organic chemicals and biological agents have unique signatures in the MWIR and can be detected using these lasers. The strong water absorption peak at 2.9μm renders such a laser attractive for surgery and dentistry. Solid state lasers comprising OPO-based nonlinear frequency converters and Raman lasers have been the popular choice for these applications. However, the low damage threshold, poor thermal conductivity and high cost limit the commercial availability of these sources. The recent demonstration of the first silicon Raman laser in 2004 combined with excellent transmission of silicon in the mid-IR suggests that silicon should be considered as a MWIR Raman crystal. In the near IR, where current silicon Raman lasers operate, free carriers that are generated by two photon absorption (TPA) create severe losses. TPA vanishes in the MWIR regime (λ > 2.25μm), hence eliminating the main problem with silicon Raman lasers. This combined with (i) the unsurpassed quality of commercial silicon crystals, (ii) the low cost and wide availability of the material, (iii) extremely high optical damage threshold of 1-4 GW/cm2 (depending on the crystal resistivity), and (iv) excellent thermal conductivity renders silicon a very attractive Raman crystal. Moreover, integrated waveguide and resonator technologies can lead to device miniaturization. This talk discusses the MWIR silicon laser and its applications.

  6. Tunable electromagnetically induced absorption based on graphene

    Science.gov (United States)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  7. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  8. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  9. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  10. Flexible optical-infrared metafilter

    Science.gov (United States)

    Brückner, Jean-Baptiste; Brissonneau, Vincent; Le Rouzo, Judikaël.; Ferchichi, Abdelkerim; Gourgon, Cécile; Dubarry, Christophe; Berginc, Gérard; Escoubas, Ludovic

    2014-02-01

    By combining the antireflective properties from gradual changes in the effective refractive index and cavity coupling from cone gratings, and the efficient optical behavior of a tungsten film, we have conceived a flexible filter showing very broad antireflective (AR) properties from the visible to short wavelength infrared region (SWIR: 0.7-1.5 μm) and simultaneously a mirror-like behavior in the mid-infrared wavelength region (MWIR: 3-5 μm) and long-infrared wavelength region (LWIR: 8 to 15 μm). Nanoimprint technology has permitted us to replicate inverted cone patterns on a large scale on a flexible polymer, afterwards coated with a thin tungsten film. This optical metafilter is of great interest in the stealth domain where optical signature reduction from the optical to SWIR region is an important matter. As it also acts as selective thermal emitter offering a good solar-absorption/ infrared-emissivity ratio, interests are found as well for solar heating applications.

  11. The infrared use on boron characterization from pegmatites ores

    International Nuclear Information System (INIS)

    Rocha Oliveiros, M.V.R.P. da; Neves, C.; Marques, J.

    1987-01-01

    The study of minerals of zoned pegmatites outcroping near of Governador Valadares, Minas Gerais State, using infrared absorption spectrometry and X-ray diffraction, allowed the identification of B proxing for Si in the tetrahedral sites of some minerals, such as muscovite, biotite, feldspars, quartz and garnets. The valence balancing was achieved with one monolayer of water in the structure as revealed by infrared absorption too. Infrared absorption is a very important research tool to disclose the proxing of B for Si in geological systems where this element occurs only at traces levels as we found in samples from the Ferreirinha pegmatite quarry. Only the mineral phases collected close to the quartz core show the absorption bands linked to the stretching of the B-O bond and to the H 2 O monolayer. (author) [pt

  12. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    Science.gov (United States)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  13. Four novel alkyl 2-cyanoacylate monomers and their use in latent fingermark detection by mid-infrared spectral imaging.

    Science.gov (United States)

    Tahtouh, Mark; Scott, Sonia A; Kalman, John R; Reedy, Brian J

    2011-04-15

    Four novel alkyl 2-cyanoacrylate monomers (alkyl=1-cyanoethyl, 2-cyanoethyl, trideuteromethyl and pentadeuteroethyl) have been tested for their ability to develop latent fingermarks that can then be visualized using mid-infrared spectral (chemical) imaging. Each of the four monomers was chosen for its potential to produce a strong, isolated infrared spectral band in its corresponding polymer (to provide spectral contrast against most backgrounds), as well as for its potential ability to be fumed onto fingermarks in the manner of conventional ethyl 2-cyanoacrylate (superglue). With the exception of the 2-cyanoethyl 2-cyanoacrylate, which had to be fumed under reduced pressure, all of the monomers were found to be sufficiently volatile to be fumed in a conventional fuming cabinet. All four monomers polymerized selectively on fingermark ridges on a variety of non-porous and semi-porous surfaces, leading to excellent development of the fingermarks. Unfortunately, although high quality mid-infrared spectral images of the fingermarks could be formed for all of the polymers at various frequencies, the new CN or CD stretching vibrations did not give rise to strong enough absorption intensities for good contrast on difficult backgrounds such as polymer banknotes. However, in the 1-cyanoethyl 2-cyanoacrylate polymer, the presence of the additional nitrile group had the unintended but desirable effect of shifting the strong CO absorption to higher frequencies, moving it away from interfering banknote absorptions. This enabled fingermark contrast to be achieved even against the intaglio printing on the banknotes. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Infrared signatures for remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.

  15. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  16. Low loss liquid crystal photonic bandgap fiber in the near-infrared region

    DEFF Research Database (Denmark)

    Scolari, Lara; Wei, Lei; Gauza, Sebastian

    2011-01-01

    We infiltrate a perdeuterated liquid crystal with a reduced infrared absorption in a photonic crystal fiber. The H atoms of this liquid crystal were substituted with D atoms in order to move the vibration bands which cause absorption loss to longer wavelengths and therefore reduce the absorption...

  17. Reststrahlen Band Optics for the Advancement of Far-Infrared Optical Architecture

    Science.gov (United States)

    Streyer, William Henderson

    . Techniques for measuring infrared reflection and thermal emission at fixed and variable angles are described. Finally, the two computational methods most commonly employed in this dissertation are outlined; namely, the transfer matrix method (TMM) and rigourous coupled wave analysis (RCWA) techniques for calculating reflection and transmission spectra for layered materials. The later technique employs the first one in a Fourier space in order to efficiently calculate spectra from layered periodic structures. Chapter 3 is the first of five to present experimental work carried out in the current course of study and describes a tunable selective thermal emitter made from a thin-film metamaterial composed of germanium deposited upon a layer of highly doped silicon. The structure is essentially an interference filter with an anti-reflection coating (the germanium film) that is significantly thinner than the typical quarter wavelength thickness used in such filters - an effect enabled by the plasmonic properties of the highly doped silicon. The strong absorption band observed in reflection measurements was shown to be selective, tunable by choice of germanium thickness, and largely independent of polarization and angle of incidence. Subsequent heating of the devices demonstrated selective, tunable thermal emission. Chapter 4 describes a different approach to achieving selective, tunable thermal emission; moreover, one that operates in the far-infrared. These devices are made of gold 1D gratings patterned atop aluminum nitride films with molybdenum ground planes beneath. These devices exhibited strong selective absorption that could be tuned by choice of gold grating width. This single parameter was shown to provide absorption resonance tuning across a wide range of the far-infrared with marginal change in the strength and quality factor of the resonance. Subsequent heating of the devices with 2D gratings demonstrated polarization independent selective thermal emission

  18. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  19. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  20. Near-infrared water vapour self-continuum at close to room temperature

    International Nuclear Information System (INIS)

    Ptashnik, I.V.; Petrova, T.M.; Ponomarev, Yu.N.; Shine, K.P.; Solodov, A.A.; Solodov, A.M.

    2013-01-01

    The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm −1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT C KD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm −1 , using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm −1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT C KD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements. -- Highlights: ► New lab measurements of the near-infrared water vapour self-continuum absorption. ► First room-temperature data on the self-continuum in the 1.6 μm window. ► In the 1.6 μm window the new data exceed MT C KD-2.5 model by 2 orders of magnitude

  1. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  2. Developing quantum dot absorptive filter array based miniaturized spectrometer for space applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to developing a miniaturized shortwave infrared (SWIR) spectrometer that is based on quantum dot absorptive filter array. The important features of the...

  3. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  4. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  5. Infrared reflection absorption study of water interaction with H ...

    Indian Academy of Sciences (India)

    Unknown

    con surface chemistry to reveal the atomic details of the surface oxidation mechanisms for controlling the SiO2 gate oxide thickness to ~ 2 nm in microelectronics (Gure- vich et al 1998; Chabal and Raghavachari 2002). The cre- ation and selective removal of thin SiO2 layers are thus important processes in semiconductor ...

  6. Infrared laser transient absorption spectroscopy of the ethyl radical

    International Nuclear Information System (INIS)

    Sears, T.J.; Johnson, P.M.; Jin, P.; Oatis, S.

    1996-01-01

    The observation and analysis of the high resolution spectrum of the CH 2 rocking fundamental of the ethyl radical, C 2 H 5 , at wavelengths close to 18.9 μm is reported. The band origin is found to be at 528.1 cm -1 . The spectrum shows evidence for a very low barrier to internal rotation, or torsion, in this species. A simple model Hamiltonian, based on an assumed structure with G 12 symmetry, qualitatively reproduces the observations and implies a torsional barrier of approximately 20 cm -1 in both the zero point and excited vibrational states. The Hamiltonian cannot reproduce the observations to the level of the experimental accuracy and the importance of several neglected terms is tested and discussed. The observed torsional splittings imply that, within the confines of the model, the a-inertial and internal rotation axes in the molecule are coincident to within 1 degree. In addition to their intrinsic interest, the spectra will be useful for future state resolved studies of the kinetics of chemical reactions involving the radical. copyright 1996 American Institute of Physics

  7. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical-vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  8. Infrared reflection absorption study of water interaction with H ...

    Indian Academy of Sciences (India)

    Unknown

    single-crystal surfaces is another area of interest in sili- con surface chemistry to reveal the atomic details of the surface oxidation mechanisms for controlling the SiO2 gate oxide thickness to ~ 2 nm in microelectronics (Gure- vich et al 1998; Chabal and Raghavachari 2002). The cre- ation and selective removal of thin SiO2 ...

  9. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2015-09-30

    tradeoff is that fluoride atom is much heavier than hydrogen atom, and may suppress the liquid crystal phase or increase the melting point...exhibits nematic phase from 7.0oC to 19.10C, which is lower than that of non-deuterated 5CB (22.5~34.20C). From gas chromatography our partially...Deuteration: Substituting hydrogen with deuterium doubles the effective mass. As a result, the molecular vibration frequency would shift toward a

  10. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Unknown

    dependent behaviour of force constant are attributed to the cation oxygen bond distances. The structural distortion in case of chromium substituted nickel ferrites was studied by Ghatage et al (1996) and the existence of fine structure is attributed to the Jahn-Teller effect. The IR spectra of Cd, Co, Mg, Ni, Zn, Cu etc containing ...

  11. Direct infrared absorption of clusters in pulsed molecular beams

    International Nuclear Information System (INIS)

    Muenter, J.S.

    1989-01-01

    This report describes accomplishments over the past year in research supported by this grant. In addition, a proposal for continued work in this area over the next three years is presented. The general goal of the proposed work is to consolidate the experimental results obtained over the past several years and to focus these results on the creation of intermolecular potential functions. The ability to construct analytic intermolecular potential functions that accurately predict the energy of interaction between small molecules will have great impact in many areas of chemistry, biochemistry, and biology. A research project which includes this theoretical development, combined with our continuing experimental program, will be described. 2 figs

  12. Vapor-Phase Infrared Absorptivity Coefficient of Cyclohexyl Isothiocyanate

    National Research Council Canada - National Science Library

    Samuels, Alan C; Miles, Jr., Ronald W; Williams, Barry R; Hulet, Melissa S

    2008-01-01

    ...)) at a spectral resolution of 0.125 cm(-1). The chemical used in the feedstock was subjected to a rigorous analysis by gas chromatography-mass spectrometry, nuclear magnetic resonance, and Karl-Fischer titration to verify its purity...

  13. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical -vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  14. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Science.gov (United States)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  15. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  16. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  17. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.; Kelley, Matthew S.; Chen, Lin X.; Schatz, George C.; Ratner, Mark A.

    2017-01-01

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.

  18. Micronutrient interactions: effects on absorption and bioavailability.

    Science.gov (United States)

    Sandström, B

    2001-05-01

    A potential risk of interactions between micronutrients affecting absorption and bioavailability has to be considered in any supplementation or fortification strategy. At levels of essential micronutrients present in foods, most micronutrients appear to utilise specific absorptive mechanisms and not be vulnerable to interactions. In aqueous solutions and at higher intake levels competition between elements with similar chemical characteristics and uptake by non-regulated processes can take place. These interactions have clearly been demonstrated in experimental absorption studies and to some extent have been confirmed in supplementation studies. Negative effects of iron supplementation on indices of zinc and copper status and of zinc supplementation on iron and copper status have been reported. In contrast, the negative effect of calcium on iron absorption has not been confirmed in long-term supplementation studies. Ascorbic acid has a strong iron absorption promoting potential and in iron deficient populations ascorbic acid supplementation improves iron status. Thus, ascorbic acid supplements or an increased intake of ascorbic acid rich foods could have important public health implications, especially in populations subsisting on a mainly plant food based diet. The effect of poor status of a given micronutrient on absorption and utilisation of other micronutrients should also be considered while developing strategies to improve micronutrient status in a population. Awareness of these interactions, combined with a balanced evaluation of the dietary intake of the population with regard to absorption promoting and inhibiting substances and the risk for multiple deficiencies, could lead to more effective strategies to improve micronutrient status.

  19. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    Science.gov (United States)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  20. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  1. Analytical modeling of mid-infrared silicon Raman lasers

    Science.gov (United States)

    Ma, J.; Fathpour, S.

    2012-01-01

    Silicon photonics has significantly matured in the near-infrared (telecommunication) wavelength range with several commercial products already in the market. More recently, the technology has been extended into the mid-infrared (mid- IR) regime with potential applications in biochemical sensing, tissue photoablation, environmental monitoring and freespace communications. The key advantage of silicon in the mid-IR, as compared with near-IR, is the absence of twophoton absorption (TPA) and free-carrier absorption (FCA). The absence of these nonlinear losses would potentially lead to high-performance nonlinear devices based on Raman and Kerr effects. Also, with the absence of TPA and FCA, the coupled-wave equations that are usually numerically solved to model these nonlinear devices lend themselves to analytical solutions in the mid-IR. In this paper, an analytical model for mid-IR silicon Raman lasers is developed. The validity of the model is confirmed by comparing it with numerical solutions of the coupled-wave equations. The developed model can be used as a versatile and efficient tool for analysis, design and optimization of mid-IR silicon Raman lasers, or to find good initial guesses for numerical methods. The effects of cavity parameters, such as cavity length and facet reflectivities, on the lasing threshold and input-output characteristics of the Raman laser are studied. For instance, for a propagation loss of 0.5 dB/cm, conversion efficiencies as high as 56% is predicted. The predicted optimum cavity (waveguide) length at 2.0 dB/cm propagation loss is { 3.4 mm. The results of this study predict strong prospects for mid-IR silicon Raman lasers for the mentioned applications.

  2. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, W.A.; McCreary, J.R. [Argonne National Lab., IL (United States); Schmalz, H. [Argonne National Lab., IL (United States)]|[Thermal Surveys, Inc., Rockford, IL (United States)

    1992-11-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  3. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, W.A.; McCreary, J.R. (Argonne National Lab., IL (United States)); Schmalz, H. (Argonne National Lab., IL (United States) Thermal Surveys, Inc., Rockford, IL (United States))

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  4. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    International Nuclear Information System (INIS)

    Mulac, W.A.; McCreary, J.R.; Schmalz, H.

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated

  5. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  6. Mid-Infrared Graphene Photoresponse

    Science.gov (United States)

    Hsu, Allen; Herring, Patrick; Shin, Yong Cheol; Kim, Ki Kang; Kong, Jing; Marcus, Charlie; Gabor, Nathaniel; Palacios, Tomas; Jarillo-Herrero, Pablo

    2013-03-01

    Graphene is a two-dimensional (2D) material that has attracted great interest for electronic devices since its discovery in 2004. Due to its zero band gap band structure, it has a broad-band optical absorption ranging from the far-infrared all the way to the visible making it potentially useful for infrared photodetectors. Electrostatically gated p-n junctions have demonstrated photocurrents in the near-IR (λ = 850nm), primarily due to hot carrier mechanisms. In order to study these mechanisms at longer wavelengths (λ = 10 μm), high quality chemically vapor grown (CVD) graphene is necessary to fabricate electrostatically controlled p-n junctions due to the longer optical length scales. Moreover, at these low energies (~ 125 meV), optical phonon scattering is suppressed and is predicted to lead to increased carrier lifetimes and enhanced photo-response. Using electrostatic gating, we are able to study the absorption mechanisms in graphene by selecting between conventional photovoltaic effects and photo-thermoelectric effects. Experiments suggest that the photocurrent signal is enhanced by electrostatic gating near the Dirac peak and reduced disorder in the graphene sample. Institute for Solder Nanotechnologies, GATE MURI, MSD Focus Center

  7. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  8. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    Science.gov (United States)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  9. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  10. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption

    Science.gov (United States)

    Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio

    2013-06-01

    Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human

  11. An outdoor investigation of the absorption degradation of single ...

    Indian Academy of Sciences (India)

    thermography was used for mapping the module temperature profile. Fourier transform infrared spectroscopy (FTIR) was used for the absorption characterization. ... The localized heating can cause structural damage which increases surface recombina- tion and reduces the mobility and lifetime of photogenerated electrons.

  12. EXACT DIAGONALIZATION RESULTS FOR MULTIMAGNON IR ABSORPTION IN THE CUPRATES

    NARCIS (Netherlands)

    Lorenzana, J.; Eder, R; Meinders, M.B J; Sawatzky, G.A

    1995-01-01

    Recent measured bands in the mid IR of parent insulating compounds of cuprate superconductors [Perkins et al. Phys. Rev. Lett. 71 1621 (1993)] are interpreted as multimagnon infrared (IR) absorption assisted by phonons. We present results for the coupling constant of light with this excitations and

  13. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  14. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  15. The Role of the Absorption in the Stop Band Tuning of Opals and Inverse Opals Through Coating of Semiconductor Materials

    Science.gov (United States)

    Manzanares-Martinez, Jesus

    2005-03-01

    In this work we report on the modeling of the optical properties of semiconductor in-filled opals and inverse opals for the visible and near infrared spectral region. The crucial influence of the absorption is theoretically investigated by using the three dimensional Transfer Matrix Method (TMM). Fine-tuning of the stop band positioning is achieved with increasing semiconductor infiltration. The red shift of the stop band can be explained by Bragg's law. However, the optical properties depend strongly on the value of the absorption that is directly related to the imaginary part of the Dielectric Constant (DC). We use a realistic model of the DC for a specific semiconductor (InSb) that takes into account the phononic contributions, intrinsic electron and hole densities. By positioning the stop band in the region of the smaller value of the imaginary part of the DC we optimize the value of the lattice constant in order to optimize tuning of the stop band with fewer losses. We also study the influence of absorption in the Fabry-Perot oscillations and in the higher energy stop bands. This work is motivated by new experimental results that show that absorption in 3D structures can be the limiting factor to obtain a useful structure for tuning.

  16. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics.

    Science.gov (United States)

    Huang, Peng; Rong, Pengfei; Lin, Jing; Li, Wanwan; Yan, Xuefeng; Zhang, Molly Gu; Nie, Liming; Niu, Gang; Lu, Jie; Wang, Wei; Chen, Xiaoyuan

    2014-06-11

    We present a novel gold bellflower (GBF) platform with multiple-branched petals, prepared by a liquid-liquid-gas triphase interface system, for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Upon near-infrared (NIR) laser irradiation, the GBFs, with strong NIR absorption, showed very strong PA response and an ultrahigh photothermal conversion efficiency (η, ∼74%) among the reported photothermal conversion agents. The excellent performance in PAI and PTT is mainly attributed to the unique features of the GBFs: (i) multiple-branched petals with an enhanced local electromagnetic field, (ii) long narrow gaps between adjacent petals that induce a strong plasmonic coupling effect, and (iii) a bell-shaped nanostructure that can effectively amplify the acoustic signals during the acoustic propagation. Besides the notable PTT and an excellent PAI effect, the NIR-absorbing GBFs may also find applications in NIR light-triggered drug delivery, catalysis, surface enhanced Raman scattering, stealth, antireflection, IR sensors, telecommunications, and the like.

  17. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  18. Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Telecommunication Wavelengths.

    Science.gov (United States)

    Xie, Zhihua; Lefier, Yannick; Suarez, Miguel Angel; Mivelle, Mathieu; Salut, Roland; Merolla, Jean-Marc; Grosjean, Thierry

    2017-04-12

    Colloidal quantum dots (CQDs) have drawn strong interest in the past for their high prospects in scientific, medical, and industrial applications. However, the full characterization of these quantum emitters is currently restricted to the visible wavelengths, and it remains a key challenge to optically probe single CQDs operating in the infrared spectral domain, which is targeted by a growing number of applications. Here, we report the first experimental detection and imaging at room temperature of single infrared CQDs operating at telecommunication wavelengths. Imaging was done with a doubly resonant bowtie nanoaperture antenna (BNA) written at the end of a fiber nanoprobe, whose resonances spectrally fit the CQD absorption and emission wavelengths. Direct near-field characterization of PbS CQDs reveal individual nanocrystals with a spatial resolution of 75 nm (λ/20) together with their intrinsic 2D dipolar free-space emission properties and exciton dynamics (blinking phenomenon). Because the doubly resonant BNA is strongly transmissive at both the CQD absorption and the emission wavelengths, we are able to perform all-fiber nanoimaging with a standard 20% efficiency InGaAs avalanche photodiode (APD). The detection efficiency is predicted to be 3000 fold larger than with a conventional circular aperture tip of the same transmission area. Double resonance BNA fiber probes thus offer the possibility of exploring extreme light-matter interaction in low band gap CQDs with current plug-and-play detection techniques, opening up new avenues in the fields of infrared light-emitting devices, photodetectors, telecommunications, bioimaging, and quantum information technology.

  19. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    Science.gov (United States)

    Smolin, Sergey Y.

    -site substitution or through oxygen vacancies, which is a surprising result. Probing the near-infrared region reveals similar nanosecond (1-3 ns) photoexcited carrier lifetimes for oxygen deficient and stoichiometric films. These results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in long lived recombination kinetics. Although this thesis represents one of the first comprehensive studies using broad band transient absorption and reflectance spectroscopy to study dynamic optoelectronic phenomena in perovskite oxides, it can also serve as a guide for the implementation and interpretation of ultrafast spectroscopy in other material systems. Moreover, the ultrafast work on perovskite oxides indicates that these materials have long nanosecond lifetimes required for light harvesting devices and should be investigated further.

  20. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  1. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  2. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning......Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...

  3. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  4. Absorption fluids data survey

    Science.gov (United States)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  5. ABSORPTION-SPECTRA OF HUMAN FETAL AND ADULT OXYHEMOGLOBIN, DE-OXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; MEEUWSENVANDERROEST, WP

    We determined the millimolar absorptivities of the four clinically relevant derivatives of fetal and adult human hemoglobin in the visible and near-infrared spectral range (450-1000 nm). As expected, spectral absorption curves of similar shape were found, but the small differences between fetal and

  6. New Opportunities in Mid-Infrared Emission Control

    Directory of Open Access Journals (Sweden)

    Peter Geiser

    2015-09-01

    Full Text Available Tunable laser absorption spectroscopy (TLAS has been well accepted as a preferred measurement technique for many industrial applications in recent years, especially for in situ applications. Previously, mainly near-infrared lasers have been used in TLAS sensors. The advent of compact mid-infrared light sources, like quantum cascade lasers and interband cascade lasers, has made it possible to detect gases with better sensitivity by utilizing fundamental absorption bands and to measure species that do not have any absorption lines in the near-infrared spectral region. This technological advancement has allowed developing new sensors for gases, such as nitric oxide and sulfur dioxide, for industrial applications. Detection limits of better than 1 ppm·m for nitric oxide and better than 10 ppm·m for sulfur dioxide are demonstrated in field experiments.

  7. [Infrared spectroscopy and XRD studies of coral fossils].

    Science.gov (United States)

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  8. Heat transfer and energy efficiency in infrared paper dryers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Magnus

    1999-11-01

    Infrared (IR) dryers are widely used in the paper industry, mainly in the production of coated paper grades. The thesis deals with various aspects of heat transfer and energy use in infrared heaters and dryers as employed in the paper industry. Both gas-fired and electric IR dryers are considered and compared. The thesis also provides an introduction to infrared heaters and infrared drying, including a review of recent literature in the field. The transport of thermal radiation inside a paper sheet was investigated and different IR dryers were compared in terms of their ability to transfer energy to the internal parts of a paper sheet. Although there were evident differences in the absorption of radiation between gas-fired and electric IR dryers, the distinction was found not to be as important as has generally been believed. The main differences appeared to be due to the choice of a one- or a two-sided dryer solution, rather than the spectral distributions emitted by the dryers. A method for evaluating the radiation efficiency of IR heaters was proposed. An electric IR heater was evaluated in the laboratory. The radiation efficiency of the heater was shown to be strongly dependent on the power level. The maximum efficiency, found at high power level, was close to 60 %. A procedure for evaluation of the total energy transfer efficiency of an infrared paper dryer was proposed and used in the evaluation of an electric IR dryer operating in an industrial coating machine. The efficiency of the dryer was roughly 40 %. A model for an electric IR heater was developed. The model includes non-grey radiative heat transfer between the different parts of the heater, as well as conduction in reflector material and convective cooling of the surfaces. Using IR module voltage as the only input, model predictions of temperatures and heat flux were found to agree well with experimental data both at steady state and under transient conditions. The model was also extended to include

  9. Static and time-resolved mid-infrared spectroscopy of Hg0.95Cd0.05Cr2Se4 spinel.

    Science.gov (United States)

    Barsaume, S; Telegin, A V; Sukhorukov, Yu P; Stavrias, N; Fedorov, V A; Menshchikova, T K; Kimel, A V

    2017-08-16

    Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg 0.95 Cd 0.05 Cr 2 Se 4 was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide-chromium complexes ([Formula: see text] Se -Cr 2+ ). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

  10. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  11. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  12. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.

    1980-03-25

    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  13. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  14. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  15. High-energy strong interactions: from `hard' to `soft'

    Science.gov (United States)

    Ryskin, M. G.; Martin, A. D.; Khoze, V. A.

    2011-04-01

    We discuss the qualitative features of the recent data on multiparticle production observed at the LHC. The tolerable agreement with Monte Carlos based on LO DGLAP evolution indicates that there is no qualitative difference between `hard' and `soft' interactions; and that a perturbative QCD approach may be extended into the soft domain. However, in order to describe the data, these Monte Carlos need an additional infrared cutoff k min with a value k min ˜2-3 GeV which is not small, and which increases with collider energy. Here we explain the physical origin of the large k min . Using an alternative model which matches the `soft' high-energy hadron interactions smoothly on to perturbative QCD at small x, we demonstrate that this effective cutoff k min is actually due to the strong absorption of low k t partons. The model embodies the main features of the BFKL approach, including the diffusion in transverse momenta, ln k t , and an intercept consistent with resummed next-to-leading log corrections. Moreover, the model uses a two-channel eikonal framework, and includes the contributions from the multi-Pomeron exchange diagrams, both non-enhanced and enhanced. The values of a small number of physically-motivated parameters are chosen to reproduce the available total, elastic and proton dissociation cross section (pre-LHC) data. Predictions are made for the LHC, and the relevance to ultra-high-energy cosmic rays is briefly discussed. The low x inclusive integrated gluon PDF, and the diffractive gluon PDF, are calculated in this framework, using the parameters which describe the high-energy pp and pbar{p} ` soft' data. Comparison with the PDFs obtained from the global parton analyses of deep inelastic and related hard scattering data and from diffractive deep inelastic data looks encouraging.

  16. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    Science.gov (United States)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  17. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  18. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  19. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  20. Infrared optical constants of liquid palm oil and palm oil biodiesel determined by the combined ellipsometry-transmission method.

    Science.gov (United States)

    Wang, C C; Tan, J Y; Ma, Y Q; Liu, L H

    2017-06-20

    The optical constants of vegetable oils and biodiesels are the basic input parameters in the study of the thermal radiation transfer and monitoring the productivity of vegetable oils converting to biodiesels. In this work, a combined ellipsometry-transmission method is presented to obtain the optical constants of palm oil and palm oil biodiesel between 20°C and 150°C in the spectral range 600-4100  cm -1 and to study the temperature effect on the optical constants. In the combined method, a modified ellipsometry method is used to measure the optical constants of palm oil and palm oil biodiesel for the whole researched wave bands. For the weak absorption regions in which the ellipsometry method cannot give precise absorption indices, the transmission method is conducted to get the absorption indices using the refractive indices obtained by the proposed ellipsometry method. Deionized water and methanol are taken as examples to verify the combined ellipsometry-transmission method. It is shown that the combined method can overcome the deficiencies of the traditional ellipsometry and transmission method, which can be used for the measurements of both strong and weak absorption wave bands. The experimental analyses indicate that temperature exerts a noticeable influence on the infrared optical constants of palm oil and palm oil biodiesel. With the increase of temperature, the refractive indices at certain wavenumbers decrease nearly linearly, and the amplitudes of dominant absorption peaks show a decreasing trend. The absorption peaks located around 3550  cm -1 show blueshift trends as temperature increases. Comparing these two kinds of oils, palm oil presents larger values in refractive indices and dominant absorption peaks.

  1. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  2. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  3. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  4. Absorber Coatings for Mid-Infrared Astrophysics

    Science.gov (United States)

    Baker, Dahlia Anne; Wollack, Edward; Rostem, Karwan

    2017-01-01

    Control over optical response is an important aspect of instrument design for astrophysical imaging. Here we consider a mid-infrared absorber coating proposed for use on HIRMES (High Resolution Mid-Infrared Spectrometer), a cryogenic spectrometer which will fly on the SOFIA (Stratospheric Observatory for Infrared Astronomy) aircraft. The aim of this effort is to develop an absorptive coating for the 20-200 microns spectral range based on a graphene loaded epoxy binder (Epotek 377H) and glass microsphere scatterers (3M K1). The coatings electromagnetic response was modeled using a Matlab script and the glass microspheres were characterized by the measured size distribution, the dielectric constant, and the filling fraction. Images of the microspheres taken by a microscope were used to determine the size distribution with an ImageJ particle analysis program. Representative test samples for optical evaluation were fabricated for characterization via infrared Fourier transform spectroscopy. The optical tests will determine the material’s absorptance and reflectance. These test results will be compared to the modeled response.

  5. Mid-infrared supercontinuum generation in the fingerprint region

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central...... the potential of fibres to emit across the mid-infrared molecular fingerprint region, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control....

  6. Military Tactical Aircraft Engine Noise Matching to Infrared Signatures

    Science.gov (United States)

    2016-12-16

    Alternating Current AFB – Air Force Base CFD – Computational Fluid Dynamics CO2 – Carbon Dioxide FY – Fiscal Year IR – Infrared KAFB – Kirtland Air...thereby rendering insignificant the absorptive effects of atmosphere. Because the plume is the primary source of acoustic emissions in situations that...N/A This report builds on theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions

  7. Study on system for extracted type infrared gas analysis

    Science.gov (United States)

    Gu, Ruirui; Yao, Jun; Li, Wei; Li, Wenzhong; Zhang, Shaohua; Liu, Zhe; Wen, Qiang

    2015-12-01

    Based on the Beer-Lambert law and the characteristic IR absorption spectrum of CO, a system for extracted type infrared gas analysis has been designed and manufactured, which utilizes different absorptive degrees infrared light gain under different concentration degrees of the gas to be measured to the value of detect CO concentration, including optical path, electric circuit and gas path. A forward and backward gas detection chamber equipped with a micro flow sensor has been used in the optical path as well as a multistage high precision amplifier and filter circuit has been used in the electric circuit. The experimental results accord with the testing standard.

  8. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  9. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  10. Infrared thermography; Thermographie infrarouge

    Energy Technology Data Exchange (ETDEWEB)

    Chrysochoos, A.; Wattrisse, B. [Montpellier-2 Univ., Lab. de Mecanique et Genie Civil, UMR 5508 CNRS (France); Feldheim, V.; Lybaert, P. [Faculte Polytechnique de Mons, Service de Thermique et Combustion, Mons (Belgium); Batsale, J.Ch.; Mourand, D. [Trefle, UMR 8508, Cellule Thermicar, UMR 8508, 33 - Talence (France)

    2005-07-01

    This session about infrared thermography gathers 3 articles dealing with: the use of thermo-mechanical measurement fields for the characterization of materials behaviour; the application of infrared thermography to the study of convective transfers; and some data processing methods for the characterization of fields of thermophysical properties of materials or for the infrared thermography analysis of thermal processes. (J.S.)

  11. Exploring process dynamics by near infrared spectroscopy in lactic fermentations

    DEFF Research Database (Denmark)

    Svendsen, Carina; Cieplak, Tomasz; van der Berg, Franciscus Winfried J

    2016-01-01

    the chemical composition, physical/textural properties and/or microbial contamination. In this study lactic fermentation batches with the starter bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are explored by in-line near infrared (NIR) spectroscopy. The dynamics obtained...... and absorption, where the scatter gives us information about the textural change happening, and the absorption gives us information about the biomass formation plus the conversion of sugar into lactic acid....

  12. Feasibility of infrared analysis of iron in zircon

    International Nuclear Information System (INIS)

    Heard, I. Jr.

    1980-05-01

    A feasibility study has concluded that quantitative infrared analysis can be employed to determine the concentration of iron in zircon. The spectral transmission curves have shown that the iron absorption band is located at 1.15 microns. These curves also revealed a second absorption band at 1.49 microns. The source of this second peak is not known; but it exhibits some features which suggest its dependance on natural α-recoil damage. 23 references, 14 figures, 2 tables

  13. Ultra-thin infrared metamaterial detector for multicolor imaging applications.

    Science.gov (United States)

    Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J

    2017-09-18

    The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

  14. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  15. Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature.

    Science.gov (United States)

    Pyun, Sung Hyun; Porter, Jason M; Jeffries, Jay B; Hanson, Ronald K; Montoya, Juan C; Allen, Mark G; Sholes, Kevin R

    2009-11-20

    A midinfrared absorption sensor for crank-angle-resolved in-cylinder measurements of gasoline concentration and gas temperature for spark-ignition internal-combustion engines is reported, and design considerations and validation testing in the controlled environments of a heated cell and shock-heated gases are discussed. Mid-IR laser light was tuned to transitions in the strong absorption bands associated with C-H stretching vibration near 3.4 microm, and time-resolved fuel vapor concentration and gas temperature were determined simultaneously from the absorption at two different wavelengths. These two infrared laser wavelengths were simultaneously produced by difference-frequency generation, which combines a near-IR signal laser with two near-IR pump lasers in a periodically poled lithium niobate crystal. Injection current modulation of the pump lasers produced intensity modulation of the mid-IR, which allowed the transmitted signals from the two laser wavelengths to be detected on a single detector and separated by frequency demultiplexing. Injection current modulation produced a wavelength modulation synchronous with the intensity modulation for each of the laser wavelengths, and accurate measurement of the gasoline absorption signal required the effects of wavelength modulation to be considered. Validation experiments were conducted for a single-component hydrocarbon fuel (2,2,4-trimethyl-pentane, commonly known as iso-octane) and a gasoline blend in a heated static cell (300 < or = T < or = 600 K) and behind planar shock waves (600 < T < 1100 K) in a shock tube. With a bandwidth of 10 kHz, the measured fuel concentrations agreed within 5% RMS and the measured temperature agreed within 3% RMS to the known values. The 10 kHz bandwidth is sufficient to resolve 1 crank-angle degree at 1600 RPM.

  16. Reversible Absorption and Emission Responses of Nile Blue and Azure A Derivatives in Extreme Acidic and Basic Conditions.

    Science.gov (United States)

    Wang, Xiu-Li; Sun, Ru; Zhu, Wei-Jin; Sha, Xin-Long; Ge, Jian-Feng

    2017-05-01

    Oxazinium derivatives have recently played an important role in bioanalysis attributing to the distinguished properties, thus a detailed study of the structure-property relationship is especially significant. Herein, pH-sensitive optical properties of Nile Blue (1a), N-monoalkyl-Nile Blue (1b) and Azure A (1c) have been carried out in extreme acid and base conditions. Dyes 1a and 1c showed colorimetric changes by the protonation of nitrogen atom in strong acidic condition (pH  7.6). Besides, their fluorescent properties were closed to ON - OFF and OFF - ON emissions at 640-820 nm under strong acidic and basic conditions. Moreover, the absorption and emission properties were reversible, and there were no remarkable optical intensity changes of dyes 1a - c under subacidic and neutral solutions (pH = 3.0-7.0). The (TD) DFT calculations were used to optimize the most stable structures of their corresponding protonated and deprotonated forms, and their absorption and emission properties were also explained. Their fluorescent properties nearly ON-OFF and OFF - ON in strong acidic and basic conditions at near-infrared region will give the possible application in pH detection for extreme conditions. Graphical abstract ᅟ.

  17. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Hawkins, Gary J.

    2015-01-01

    The ability of narrow bandpass filters to discriminatewavelengths between closely-separated gas absorption lines is crucial inmany areas of infrared spectroscopy. As improvements to the sensitivity ofinfrared detectors enables operation in uncontrolled high-temperature environments, this imposes ...

  18. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    Science.gov (United States)

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  19. Gastrointestinal absorption of plutonium

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Bhattacharyya, M.H.; Moretti, E.S.; Austin, D.J.

    1981-01-01

    An investigation has been made of the effect of the oxidation state of plutonium on its absorption from the gastrointestinal tract. For mice and rats that have been starved prior to gastrointestinal administration, there is no significant difference between the absorption factors for Pu(IV) and Pu(VI). The value obtained for Pu(VI) is an order of magnitude lower than that reported previously. The value obtained for Pu(IV) is two orders of magnitude higher than those reported previously for nitrate solutions and the same as those reported for citrate solutions

  20. Quantum Absorption Refrigerator

    Science.gov (United States)

    Levy, Amikam; Kosloff, Ronnie

    2012-02-01

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power Jc vanishes as Jc∝Tcα, when Tc→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  1. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  2. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  3. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  4. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  5. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    Science.gov (United States)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  6. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles

    Science.gov (United States)

    Chen, Cheng-Jia; Chen, Dong-Hwang

    2013-02-01

    Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt.%, the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application.

  7. Conformation resolved induced infrared activity: trans- and cis-formic acid isolated in solid molecular hydrogen.

    Science.gov (United States)

    Paulson, Leif O; Anderson, David T; Lundell, Jan; Marushkevich, Kseniya; Melavuori, Mia; Khriachtchev, Leonid

    2011-11-24

    We report combined experimental and theoretical studies of infrared absorptions induced in solid molecular hydrogen by different conformers of formic acid (HCOOH, FA). FTIR spectra recorded in the H(2) fundamental region (4120-4160 cm(-1)) reveal a number of relatively strong trans-FA induced Q-branch absorptions that are assigned by studying both FA-doped parahydrogen (pH(2)) and normal hydrogen (nH(2)) samples. The induced H(2) absorptions are also studied for HCOOD doped nH(2) crystals for both the trans and cis conformers that show resolvable differences. Samples containing >90% of the higher energy cis-HCOOD conformer are produced by in situ IR pumping of the OD stretching overtone of trans-HCOOD using narrow-band IR light. Minimum energy structures for 1:1 complexes of H(2) and FA are determined using ab initio methods. The measured differences in the cis- versus trans-HCOOD induced spectra are in qualitative agreement with the frequencies and intensities calculated for the identified cluster structures as discussed in terms of the model of specific interactions.

  8. Sensitive photo-thermal response of graphene oxide for mid-infrared detection.

    Science.gov (United States)

    Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu

    2015-10-14

    This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K(-1). In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.

  9. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  10. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.

    1991-11-01

    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  11. Synthesis and characterization of CuO nanoparticles using strong ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of CuO nanoparticles using strong base electrolyte ... Fourier transform infrared spectrum showed that the CuO ..... Hydrogen bub- bles play a key role in generation of sparks and metal removal in the electrochemical discharge process. Flower-like morphology could be attained with both the.

  12. Corrosion inhibitor for aqueous ammonia absorption system

    Science.gov (United States)

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  13. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    Science.gov (United States)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  14. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji

    2004-01-01

    Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm

  15. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    Energy Technology Data Exchange (ETDEWEB)

    Hardegree-Ullman, E. E. [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Gudipati, M. S.; Werner, M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Boogert, A. C. A. [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Lignell, H. [Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025 (United States); Allamandola, L. J. [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Stapelfeldt, K. R., E-mail: hardee@rpi.edu, E-mail: gudipati@jpl.nasa.gov [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States)

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.

  16. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    Science.gov (United States)

    Hardegree-Ullman, E.E.; Gudipati, M.S.; Boogert, A.C.A.; Lignell, H.; Allamandola, L.J.; Stapelfeldt, K. R.; Werner, M.

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10 to 20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and deuterium oxide ices. The deuterium oxide mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 micrometers. Our infrared band strengths were normalized to experimentally determined ultraviolet (UV) band strengths, and we find that they are generally approximately 50% larger than those reported by Bouwman et al. (2011) based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. (2008) to estimate the contribution of frozen PAHs to absorption in the 5 to 8 micrometer spectral region, taking into account the strength of the 3.25 micrometer CH stretching mode. It is found that frozen neutral PAHs contain 5 to 9% of the cosmic carbon budget, and account for 2 to 9% of the unidentified absorption in the 5 to 8 micrometer region.

  17. Pixel-level plasmonic microcavity infrared photodetector

    Science.gov (United States)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-05-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging.

  18. Nanocompósitos de polipropileno e argila organofílica: difração de raio X, espectroscopia de absorção na região do infravermelho e permeação ao vapor d'água Nanocomposites of polypropylene and organophilic clay: X ray diffraction, absorption infrared spectroscopy with fourier transform and water vapor permeation

    Directory of Open Access Journals (Sweden)

    Fernanda C. Morelli

    2010-06-01

    Full Text Available Neste trabalho foram preparados nanocompósitos de polipropileno, polipropileno graftizado com anidrido maleico como agente compatibilizante e argila organofílica comercial (montmorilonita de codinome Cloisite 20A em concentrações de 1,5, 2,5, 5,0 e 7,5% por meio da técnica de intercalação no estado fundido utilizando extrusora de dupla rosca. Os materiais obtidos foram caracterizados por difração de raio X, espectroscopia de absorção na região do infravermelho com transformada de Fourier e análise da permeaç��o ao vapor d'água. Os resultados de difração de raio X e da espectroscopia de absorção na região do infravermelho indicaram a formação de nanocompósitos com estruturas provavelmente esfoliadas e/ou intercaladas para as concentrações de 1,5 e 2,5% de argila organofílica, e proporcionaram uma acentuada diminuição da permeabilidade, corroborando com as demais análises.In this work nanocomposites were prepared from polypropylene, graft polypropylene with maleic anhydride as compatibilizer and organophilic montmorillonite Cloisite 20A with concentrations of 1.5, 2.5, 5.0 and 7.5% clay. The mixture was made in the melt state using a twin screw extruder. The materials were characterized by X ray diffraction, infrared spectroscopy with Fourier transform and analysis of water vapor permeation. The results of X ray diffraction and absorption infrared spectroscopy indicates the formation of nanocomposites with structures probably exfoliate and / or intercalated for concentrations of 1.5 and 2.5% clay, and provided a marked decrease in the water permeability, corroborating with other analyses.

  19. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Baker, Andrew J., E-mail: stacy.h.teng@nasa.gov [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.

  20. Electromagnetic-radiation absorption by water

    Science.gov (United States)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.