WorldWideScience

Sample records for strong hydrogen-bond interactions

  1. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    Science.gov (United States)

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  2. Strong and weak hydrogen bonds in drug–DNA complexes

    Indian Academy of Sciences (India)

    The dataset was extracted from the protein data bank (PDB). The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O−H···O and N−H···O, the ubiquitous presence of weak hydrogen bonds such as C−H···O is implicated in molecular ...

  3. The role of London dispersion interactions in strong and moderate intermolecular hydrogen bonds in the crystal and in the gas phase

    Science.gov (United States)

    Katsyuba, Sergey A.; Vener, Mikhail V.; Zvereva, Elena E.; Brandenburg, J. Gerit

    2017-03-01

    Two variants of density functional theory computations have been applied to characterization of hydrogen bonds of the 1-(2-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]), i.e. with and without inclusion of dispersion interactions. A comparison of the results demonstrates that London dispersion interactions have very little impact on the energetical, geometrical, infrared spectroscopic and electron density parameters of charge-assisted intermolecular hydrogen bonds functioning both in the crystal of the [C2OHmim][OAc] and in the isolated [C2OHmim]+ [OAc]- ion pairs.

  4. Hydrogen-bond interactions in morpholinium bromide

    Directory of Open Access Journals (Sweden)

    Alvaro S. de Sousa

    2011-10-01

    Full Text Available In the title compound, C4H10NO+·Br−, which was synthesized by dehydration of diethanolamine with HBr, morpholinium and bromide ions are linked into chains by N—H...Br hydrogen bonds describing a C21(4 graph-set motif. Weaker bifurcated N—H...Br interactions join centrosymmetrically related chains through alternating binary graph-set R42(8 and R22(4 motifs, to form ladders along [100]. In addition, C—H...O interactions between centrosymmetric morpholinium cations link ladders, via R^2_2(8 motifs, to yield sheets parallel to (101, which in turn are crosslinked by weak C—H...O interactions, related across a glide plane, to form a three-dimensional network.

  5. NMR and IR investigations of strong intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Spanget-Larsen, Jens

    2017-01-01

    For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, vOH, and OH chemical shifts, dOH (in the latter case after correction for ring current effects). Limits for O–H···Y systems are taken as 2800 > vOH > 1800 ...

  6. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  7. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O−H···O and N−H···O, the ubiquitous presence of weak hydrogen bonds such as C−H···O is implicated in molecular recognition. On an average, there are 1.4 weak hydrogen bonds.

  8. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  9. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    Science.gov (United States)

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. Copyright (c) 2006 Wiley Periodicals, Inc.

  10. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Poul Erik Hansen

    2017-03-01

    Full Text Available For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects. Limits for O–H···Y systems are taken as 2800 > νOH > 1800 cm−1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O–H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.

  11. Rectangular grids formed by hydrogen-bonding interactions ...

    Indian Academy of Sciences (India)

    Administrator

    Rectangular grids formed by hydrogen-bonding interactions between successive chains of linear polymers. [Co(II)-4,4¢-bpy-Co(II)]n and their inclusion properties: Synthesis and single crystal investigations. E SURESH 1 and MOHAN M BHADBHADE 2. 1Silicates and Catalysis Division, Central Salt & Marine Chemicals ...

  12. Intramolecular interactions in dimedone and phenalen-1,3-dione adducts of 2(4)-pyridinecarboxaldehyde: Enol-enol and ring-chain tautomerism, strong hydrogen bonding, zwitterions

    Science.gov (United States)

    Sigalov, Mark; Shainyan, Bagrat; Krief, Pnina; Ushakov, Igor; Chipanina, Nina; Oznobikhina, Larisa

    2011-12-01

    The 2:1 adducts of dimedone and phenalen-1,3-dione with 2- and 4-pyridine carboxaldehyde, in spite of similar chemical behavior of their diketone precursors, have quite different tautomeric structure both in solid state and in solution. 2,2'-(Pyridin-2-ylmethanediyl)-bis(5,5-dimethyl-cyclohexane-1,3-dione) 5 exists as an equilibrium mixture of its dienol tautomer 5а' with two intramolecular H-bonds ОН⋯О dbnd С and OH ⋯N and the epimeric products of its reversible cyclization, that is, 4a-hydroxy-9-(pyridin-2-yl)-2,3,4,4a,6,7,9,9a-octahydro-5-H-xanthene-1,8-diones 5b (major) and 5c (minor), the latter appears only in polar media like DMSO. 2,2'-(Pyridin-4-ylmethanediyl)bis(5,5-dimethylcyclohexane-1,3-dione) 4, like other 2:1 dimedone-aldehyde adducts, both in solution and in solid state exists as dienol with two intramolecular H-bonds ОН ⋯О dbnd С. 4-[Bis(1H-phenalen-1,3(2H)-dione)methyl]pyridine 6 in nonpolar media like chloroform exists as dienol, but crystallizes from this solvent as zwitter-ion 6b with one very strong ionic hydrogen bond O sbnd H ⋯O sbnd and protonated pyridine nitrogen. The same zwitterion is formed in polar media (DMSO). For 2-[bis(1H-phenalen-1,3(2H)-dione)-methyl]-pyridine 7, fast exchange between its dienol tautomer 7a and zwitter-ion 7b occurs even in CD2Cl2, whereas in DMSO the equilibrium shifts towards zwitter-ion 7b.

  13. NMR studies of solid pentachlorophenol-4-methylpyridine complexes exhibiting strong OHN hydrogen bonds: geometric H/D isotope effects and hydrogen bond coupling cause isotopic polymorphism.

    Science.gov (United States)

    Ip, Brenda C K; Shenderovich, Ilya G; Tolstoy, Peter M; Frydel, Jaroslaw; Denisov, Gleb S; Buntkowsky, Gerd; Limbach, Hans-Heinrich

    2012-11-26

    We have studied the hydrogen bond interactions of (15)N labeled 4-methylpyridine (4-MP) with pentachlorophenol (PCP) in the solid state and in polar solution using various NMR techniques. Previous spectroscopic, X-ray, and neutron crystallographic studies showed that the triclinic 1:1 complex (4-MPPCP) exhibits the strongest known intermolecular OHN hydrogen bond in the solid state. By contrast, deuteration of the hydrogen bond gives rise to the formation of a monoclinic structure exhibiting a weaker hydrogen bond. By performing NMR experiments at different deuterium fractions and taking advantage of dipolar (1)H-(15)N recoupling under combined fast MAS and (1)H decoupling, we provide an explanation of the origin of the isotopic polymorphism of 4-MPPCP and improve previous chemical shift correlations for OHN hydrogen bonds. Because of anharmonic ground state vibrations, an ODN hydrogen bond in the triclinic form exhibits a shorter oxygen-hydron and a longer oxygen-nitrogen distance as compared to surrounding OHN hydrogen bonds, which also implies a reduction of the local dipole moment. The dipole-dipole interaction between adjacent coupled OHN hydrogen bonds which determines the structure of triclinic 4-MPPCP is then reduced by deuteration, and other interactions become dominant, leading to the monoclinic form. Finally, the observation of stronger OHN hydrogen bonds by (1)H NMR in polar solution as compared to the solid state is discussed.

  14. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    The metrics for strong hydrogen bonds are consistent with established trends. The geometries are variable for weak hydrogen bonds. .... 'moderate'. Jeffrey's terminology is in keeping with the biological literature where bonds such ... to minimization keeping the heavy atoms rigid. This was carried out in MOE with the MMFFx ...

  15. Short, strong hydrogen bonds on enzymes: NMR and mechanistic studies

    Science.gov (United States)

    Mildvan, A. S.; Massiah, M. A.; Harris, T. K.; Marks, G. T.; Harrison, D. H. T.; Viragh, C.; Reddy, P. M.; Kovach, I. M.

    2002-09-01

    The lengths of short, strong hydrogen bonds (SSHBs) on enzymes have been determined with high precision (±0.05 Å) from the chemical shifts ( δ), and independently from the D/ H fractionation factors ( φ) of the highly deshielded protons involved. These H-bond lengths agree well with each other and with those found by protein X-ray crystallography, within the larger errors of the latter method (±0.2 to±0.8 Å) [Proteins 35 (1999) 275]. A model dihydroxynaphthalene compound shows a SSHB of 2.54±0.04 Å based on δ=17.7 ppm and φ=0.56±0.04, in agreement with the high resolution X-ray distance of 2.55±0.06 Å. On ketosteroid isomerase, a SSHB is found (2.50±0.02 Å), based on δ=18.2 ppm and φ=0.34, from Tyr-14 to the 3-O - of estradiol, an analog of the enolate intermediate. Its strength is ˜7 kcal/mol. On triosephosphate isomerase, SSHBs are found from Glu-165 to the 1-NOH of phosphoglycolohydroxamic acid (PGH), an analog of the enolic intermediate (2.55±0.05 Å), and from His-95 to the enolic-O - of PGH (2.62±0.02 Å). In the methylglyoxal synthase-PGH complex, a SSHB (2.51±0.02 Å) forms between Asp-71 and the NOH of PGH with a strength of ≥4.7 kcal/mol. When serine proteases bind mechanism-based inhibitors which form tetrahedral Ser-adducts analogous to the tetrahedral intermediates in catalysis, the Asp⋯His H-bond of the catalytic triad becomes a SSHB [Proc. Natl Acad. Sci. USA 95 (1998) 14664], 2.49-2.63 Å in length. Similarly, on the serine-esterase, butyrylcholinesterase complexed with the mechanism-based inhibitor m-( N, N, N-trimethylammonio)-2,2,2-trifluoroacetophenone, a SSHB forms between Glu-327 and His-438 of the catalytic triad, 2.61±0.04 Å in length, based on δ=18.1 ppm and φ=0.65±0.10. Very similar results are obtained with (human) acetylcholinesterase. The strength of this SSHB is at least 4.9 kcal/mol.

  16. Phonon driven proton transfer in crystals with short strong hydrogen bonds

    NARCIS (Netherlands)

    Fontaine-Vive, F.; Johnson, M.R.; Kearley, G.J.; Cowan, J.A.; Howard, J.A.K.; Parker, S.F.

    2006-01-01

    Recent work on understanding why protons migrate with increasing temperature in short, strong hydrogen bonds is extended here to three more organic, crystalline systems. Inelastic neutron scattering and density functional theory based simulations are used to investigate structure, vibrations, and

  17. NMR studies of strong hydrogen bonds in enzymes and in a model compound

    Science.gov (United States)

    Harris, T. K.; Zhao, Q.; Mildvan, A. S.

    2000-09-01

    Hydrogen bond lengths on enzymes have been derived with high precision (≤±0.05 Å) from both the proton chemical shifts (δ) and the fractionation factors (φ) of the proton involved and were compared with those obtained from protein X-ray crystallography. Hydrogen bond lengths derived from proton chemical shifts were obtained from a correlation of 59 O-H⋯O hydrogen bond lengths, measured by small molecule high resolution X-ray crystallography, with chemical shifts determined by solid-state NMR in the same crystals [A. McDermott, C.F. Ridenour, Encyclopedia of NMR, Wiley, Sussex, England, 1996, 3820pp]. Hydrogen bond lengths were independently obtained from fractionation factors which yield distances between the two proton wells in quartic double minimum potential functions [M.M. Kreevoy, T.M. Liang, J. Am. Chem. Soc. 102 (1980) 3315]. The high precision hydrogen bond lengths derived from their corresponding NMR-measured proton chemical shifts and fractionation factors agree well with each other and with those reported in protein X-ray structures within the larger errors (±0.2-0.8 Å) in lengths obtained by protein X-ray crystallography. The increased precision in measurements of hydrogen bond lengths by NMR has provided insight into the contributions of short, strong hydrogen bonds to catalysis for several enzymes including ketosteroid isomerase, triosephosphate isomerase, and serine proteases. The O-H⋯O hydrogen bond length derived from the proton chemical shift in a model dihydroxy-naphthalene compound in aqueous solution agreed well with lengths of such hydrogen bonds determined by high resolution, small molecule X-ray diffraction.

  18. Layered vanadyl (IV) nitroprusside: Magnetic interaction through a network of hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Gil, D.M. [Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN San Miguel de Tucumán (Argentina); Osiry, H. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México (Mexico); Pomiro, F.; Varetti, E.L. [CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata (Argentina); Carbonio, R.E. [INFIQC – CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq, Medina Allende, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Alejandro, R.R. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México (Mexico); Ben Altabef, A. [INQUINOA-UNT-CONICET, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN San Miguel de Tucumán (Argentina); and others

    2016-07-15

    The hydrogen bond and π-π stacking are two non-covalent interactions able to support cooperative magnetic ordering between paramagnetic centers. This contribution reports the crystal structure and related magnetic properties for VO[Fe(CN){sub 5}NO]·2H{sub 2}O, which has a layered structure. This solid crystallizes with an orthorhombic unit cell, in the Pna2{sub 1} space group, with cell parameters a=14.1804(2), b=10.4935(1), c=7.1722(8) Å and four molecules per unit cell (Z=4). Its crystal structure was solved and refined from powder X-ray diffraction data. Neighboring layers remain linked through a network of hydrogen bonds involving a water molecule coordinated to the axial position for the V atom and the unbridged axial NO and CN ligands. An uncoordinated water molecule is found forming a triple bridge between these last two ligands and the coordinated water molecule. The magnetic measurements, recorded down to 2 K, shows a ferromagnetic interaction between V atoms located at neighboring layers, with a Curie-Weiss constant of 3.14 K. Such ferromagnetic behavior was interpreted as resulting from a superexchange interaction through the network of strong OH····O{sub H2O}, OH····N{sub CN}, and OH····O{sub NO} hydrogen bonds that connects neighboring layers. The interaction within the layer must be of antiferromagnetic nature and it was detected close to 2 K. - Graphical abstract: Coordination environment for the metals in vanadyl (II) nitroprusside dihydrate. Display Omitted - Highlights: • Crystal structure of vanadyl nitroprusside dehydrate. • Network of hydrogen bonds. • Magnetic interactions through a network of hydrogen bonds. • Layered transition metal nitroprussides.

  19. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    ... in the list of 70 complexes mentioned above, and 19 inhibitors for which the drug–DNA complex crystal structures are unknown. The virtual geometries so generated correlate well with published activities for these 26 inhibitors, justifying our assumption that strong and weak hydrogen bonds are optimized in the active site.

  20. A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol.

    Science.gov (United States)

    Zheng, Yan-Zhen; Xu, Jing; Liang, Qin; Chen, Da-Fu; Guo, Rui; Fu, Zhong-Min

    2017-08-01

    Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin - CH 3 CH 2 OH complex. The binding distance of X - H···O, and the bond length, vibrational frequency, and electron density changes of X - H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2', H5', and H6', CH 3 CH 2 OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH 3 CH 2 OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3' - H3'···O in structure A, while the weakest one is the C3 - H3···O in structure E; (4) the hydrogen bonds of O3' - H3'···O, O - H···O4, O - H···O3' and O - H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.

  1. Quantification of Hydrogen Bond Strength Based on Interaction Coordinates: A New Approach.

    Science.gov (United States)

    Pandey, Sarvesh Kumar; Manogaran, Dhivya; Manogaran, Sadasivam; Schaefer, Henry F

    2017-08-17

    A new approach to quantify hydrogen bond strengths based on interaction coordinates (HBSBIC) is proposed and is very promising. In this research, it is assumed that the projected force field of the fictitious three atoms fragment (DHA) where D is the proton donor and A is the proton acceptor from the full molecular force field of the H-bonded complex characterizes the hydrogen bond. The "interaction coordinate (IC)" derived from the internal compliance matrix elements of this three-atom fragment measures how the DH covalent bond (its electron density) responds to constrained optimization when the HA hydrogen bond is stretched by a known amount (its electron density is perturbed by a specified amount). This response of the DH bond, based on how the IC depends on the electron density along the HA bond, is a measure of the hydrogen bond strength. The inter- and intramolecular hydrogen bond strengths for a variety of chemical and biological systems are reported. When defined and evaluated using the IC approach, the HBSBIC index leads to satisfactory results. Because this involves only a three-atom fragment for each hydrogen bond, the approach should open up new directions in the study of "appropriate small fragments" in large biomolecules.

  2. Hydrogen-bonding interactions in T-2 toxin studied using solution and solid-state NMR.

    Science.gov (United States)

    Chaudhary, Praveen; Shank, Roxanne A; Montina, Tony; Goettel, James T; Foroud, Nora A; Hazendonk, Paul; Eudes, François

    2011-10-01

    The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR) studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity. In order to study these interactions, the structure of T-2 toxin was compared in both the solution- and solid-state using NMR Spectroscopy. It was determined that the solution- and solid-state structure differ dramatically, as indicated by differences in their carbon chemical shifts, these observations are further supported by solution proton spectral parameters and exchange behavior. The slow chemical exchange process and cross-relaxation dynamics with water observed between the hydroxyl hydrogen on C-3 and water supports the existence of a preferential hydrogen bonding interaction on the opposite side of the molecule from the epoxide ring, which is known to be essential for trichothecene toxicity. This result implies that these hydrogen-bonding interactions could play an important role in the biological function of T-2 toxin and posits towards a possible interaction for the trichothecene class of toxins and the ribosome. These findings clearly illustrate the importance of utilizing solid-state NMR for the study of biological compounds, and suggest that a more detailed study of this whole class of toxins, namely trichothecenes, should be pursued using this methodology.

  3. Supramolecular assembly of Yin(IV) porphyrin cations stabilized by ionic hydrogen bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwa Jin; Kim, Sung Hyun; Kim, Hee Joon [Dept. of Applied Chemistry, Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2015-09-15

    Our concern for hydrogen-bonded supramolecular assembly with metalloporphyrins led us to exploiting ionic hydrogen bonds, a special class of hydrogen bonds formed between ions and molecules. Because these interactions have up to a third of the strength of covalent bonds, they are expected to be very useful in self-assembly in supramolecular chemistry and molecular crystals. Here we report the preparation and supramolecular assembly of highly charged tin(IV) porphyrin cations stabilized by ionic hydrogen-bonding interactions. We demonstrated that tin(IV) porphyrin cations such as [Sn(OH{sub 2}){sub 2}(T{sup H}PyP)]{sup 6+} can be a useful three-dimensional building block for the construction of porous porphyrin materials. Our X-ray structural analysis revealed that [Sn(OH{sub 2}){sub 2}(T{sup H}PyP)]{sup 6+} cations act as ionic hydrogen-bonding donors possessing electro-deficient six protons from the two axially coordinated aqua ligands and the four equatorial pyridinium peripheral groups.

  4. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    Science.gov (United States)

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-03

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  5. Unusual intramolecular CHO hydrogen bonding interaction between a sterically bulky amide and uranyl oxygen.

    Science.gov (United States)

    Kannan, Shanmugaperumal; Kumar, Mukesh; Sadhu, Biswajit; Jaccob, Madhavan; Sundararajan, Mahesh

    2017-12-12

    The selective separation of toxic heavy metals such as uranyl can be accomplished using ligands with stereognostic hydrogen bonding interactions to the uranyl oxo group, as proposed by Raymond and co-workers (T. S. Franczyk, K. R. Czerwinski and K. N. Raymond, J. Am. Chem. Soc., 1992, 114, 8138-8146). Recently, several ligands possessing this weak interaction have been proposed involving the hydrogen bonding of NH and OH based moieties with uranyl oxygen. We herein report the structurally and spectroscopically characterized CHO hydrogen bonding using a sterically bulky amide based ligand. In conjunction with experiments, electronic structure calculations are carried out to understand the structure, binding and the strength of the CHO hydrogen bonding interactions. This weak interaction is mainly due to the steric effect caused by a bulky substituent around the donor group which has direct relevance in designing novel ligands in nuclear waste management processes. Although the kinetics are very slow, the ligand is also highly selective to uranyl in the presence of other interfering ions such as lanthanides.

  6. Solid-State17O NMR Reveals Hydrogen-Bonding Energetics: Not All Low-Barrier Hydrogen Bonds Are Strong.

    Science.gov (United States)

    Lu, Jiasheng; Hung, Ivan; Brinkmann, Andreas; Gan, Zhehong; Kong, Xianqi; Wu, Gang

    2017-05-22

    While NMR and IR spectroscopic signatures and structural characteristics of low-barrier hydrogen bond (LBHB) formation are well documented in the literature, direct measurement of the LBHB energy is difficult. Here, we show that solid-state 17 O NMR spectroscopy can provide unique information about the energy required to break a LBHB. Our solid-state 17 O NMR data show that the HB enthalpy of the O⋅⋅⋅H⋅⋅⋅N LBHB formed in crystalline nicotinic acid is only 7.7±0.5 kcal mol -1 , suggesting that not all LBHBs are particularly strong. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogen-Bonding Interactions in T-2 Toxin Studied Using Solution and Solid-State NMR

    Directory of Open Access Journals (Sweden)

    Paul Hazendonk

    2011-10-01

    Full Text Available The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity. In order to study these interactions, the structure of T-2 toxin was compared in both the solution- and solid-state using NMR Spectroscopy. It was determined that the solution- and solid-state structure differ dramatically, as indicated by differences in their carbon chemical shifts, these observations are further supported by solution proton spectral parameters and exchange behavior. The slow chemical exchange process and cross-relaxation dynamics with water observed between the hydroxyl hydrogen on C-3 and water supports the existence of a preferential hydrogen bonding interaction on the opposite side of the molecule from the epoxide ring, which is known to be essential for trichothecene toxicity. This result implies that these hydrogen-bonding interactions could play an important role in the biological function of T-2 toxin and posits towards a possible interaction for the trichothecene class of toxins and the ribosome. These findings clearly illustrate the importance of utilizing solid-state NMR for the study of biological compounds, and suggest that a more detailed study of this whole class of toxins, namely trichothecenes, should be pursued using this methodology.

  8. Hydrogen Bonding Interactions and Enthalpy Relaxation in Sugar/Protein Glasses.

    Science.gov (United States)

    Sydykov, Bulat; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2017-03-01

    In this study, hydrogen bonding interactions and enthalpy relaxation phenomena of sugar and sugar/protein glasses have been studied using Fourier transform infrared spectroscopy and differential scanning calorimetry. The sugar OH band in Fourier transform infrared spectra was used to derive the glass transition temperature, T g , and the wavenumber-temperature coefficient (WTC) of the OH band. A study on mixtures of sucrose and albumin revealed that the glass transition temperature and strength of hydrogen bonds increased with increasing percentages of albumin. WTC g and T g derived from sucrose/albumin glasses showed a negative linear correlation. The Lu-Weiss equation was used to fit T g data of sucrose/albumin mixtures. An inflection point was observed at a 1:1 mass ratio, which coincided with an inflection of the OH-stretching band denoting a change in hydrogen bonding interactions. Enthalpy relaxation, which is seen as an endothermic event superimposed on the glass transition in differential scanning calorimetry thermograms, increases with increasing storage temperature. Activation energies of enthalpy relaxation of sucrose and sucrose/albumin glasses were determined to be 332 and 236 kJ mol -1 , respectively. Addition of albumin to sucrose increases the T g , average strength of hydrogen bonding, heterogeneity, and the enthalpy relaxation time, making the glass more stable during storage at room temperature. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Engineering Hydrogen Bonding Interaction and Charge Separation in Bio-Polymers for Green Lubrication.

    Science.gov (United States)

    Mu, Liwen; Shi, Yijun; Hua, Jing; Zhuang, Wei; Zhu, Jiahua

    2017-06-08

    Synthetic additives are widely used in lubricants nowadays to upgrade lubrication properties. The potential of integrating sustainable components in modern lubricants has rarely been studied yet. In this work, two sustainable resources lignin and gelatin have been synergistically incorporated into ethylene glycol (EG), and their tribological properties were systematically investigated. The abundant hydrogen bonding sites in lignin and gelatin as well as their interchain interaction via hydrogen bonding play the dominating roles in tuning the physicochemical properties of the mixture and improving lubricating properties. Moreover, the synergistic combination of lignin and gelatin induces charge separation of gelatin that enables its preferable adsorption on the friction surface through electrostatic force and forms a robust lubrication layer. This layer will be strengthened by lignin through the interpolymer chain hydrogen bonding. At an optimized lignin:gelatin mass ratio of 1:1 and 19 wt % loading of each in EG, the friction coefficient can be greatly stabilized and the wear loss was reduced by 89% compared to pure EG. This work presents a unique synergistic phenomenon between gelatin and lignin, where hydrogen bonding and change separation are revealed as the key factor that bridges the individual components and improves overall lubricating properties.

  10. Hydrogen Bonding to Alkanes: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which...... are stronger in adducts of isobutane and in adducts of stronger acids. Intramolecular hydrogen bonding in protonated long-chain alcohols manifests itself in the same manner as intermolecular hydrogen bonding and can be equally strong. Udgivelsesdato: 12 juni 2009...

  11. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy

    Science.gov (United States)

    Hachuła, Barbara

    2018-01-01

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOsbnd H band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293 K and 77 K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.

  12. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  13. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  14. Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology.

    Science.gov (United States)

    Jaishankar, Aditya; Wee, May; Matia-Merino, Lara; Goh, Kelvin K T; McKinley, Gareth H

    2015-06-05

    Mamaku gum is a polysaccharide extracted from the fronds of the black tree fern found in New Zealand. The cooked pith has traditionally been used for various medicinal purposes and as a food source by the Maori people of New Zealand. It has potential applications as a thickener in the food industry and as a palliative for patients with dysphagia. Studies on the shear rheology of Mamaku gum have revealed that the gum exhibits shear thickening at a critical shear rate due to a transition from intra- to inter-molecular chain interactions upon shear-induced chain elongation. In this paper, we demonstrate that these interactions are primarily due to hydrogen bonding. We perform extensional rheology on mixtures of Mamaku gum and urea (a known disruptor of hydrogen bonds) to quantify the nature of these interactions. Capillary Breakup Extensional Rheometry (CaBER) performed on the pure Mamaku gum solutions yield plateau values of the Trouton ratio as high as ∼10(4), showing that the viscoelasticity of the gum in uniaxial elongation is much higher than in shear. For all Mamaku concentrations tested, the extensional viscosity decreases upon increasing urea concentration. Furthermore, the relaxation time decreases exponentially with increasing urea concentration. This exponential relationship is independent of the Mamaku concentration, and is identical to the relationships between urea concentration and characteristic timescales measured in nonlinear shear rheology. We show using the sticky reptation model for polymers with multiple sticker groups along the backbone how such a relationship is consistent with a linear decrease in the free energy for hydrogen bond dissociation. We then demonstrate that a time-concentration superposition principle can be used to collapse the viscoelastic properties of the Mamaku-gum/urea mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The role of hydrogen bonds in the melting points of sulfonate-based protic organic salts

    DEFF Research Database (Denmark)

    Luo, Jiangshui

    2016-01-01

    there is evidence of bond formation [6]. Hydrogen bonds in the solid state fall into the classification of strong, moderate, and weak hydrogen bonds [7]. In molecular systems like H2O (vs. H2S) or NH3 (vs. PH3), strong hydrogen bonds lead to higher melting points. However, in organic salts, the situation may......There are three main types of interactions inside organic salts - electrostatic interaction, hydrogen bonding and van der Waals force [1-4]. While van der Waals force is relatively weak, it is hydrogen bonding and particularly electrostatic interaction that determine the lattice energies of ionic...

  16. A Relativity Enhanced, Medium-Strong Au(I)···H-N Hydrogen Bond in a Protonated Phenylpyridine-Gold(I) Thiolate.

    Science.gov (United States)

    Berger, Raphael J F; Schoiber, Jürgen; Monkowius, Uwe

    2017-01-17

    Gold is an electron-rich metal with a high electronegativity comparable to that of sulfur. Hence, hydrogen bonds of the Au(I)···H-E (E = electronegative element) type should be possible, but their existence is still under debate. Experimental results are scarce and often contradictory. As guidance for possible preparative work, we have theoretically investigated (ppyH)Au(SPh) (ppy = 2-phenylpyridine) bearing two monoanionic ligands which are not strongly electronegative at the same time to further increase the charge density on the gold(I) atom. The protonated pyridine nitrogen atom in ppy is geometrically ideally suited to place a proton in close proximity to the gold atom in a favorable geometry for a classical hydrogen bond arrangement. Indeed, the results of the calculations indicate that the hydrogen bonded conformation of (ppyH)Au(SPh) represents a minimum geometry with bond metrics in the expected range for medium-strong hydrogen bonds [r(N-H) = 1.043 Å, r(H···Au) = 2.060 Å, a(N-H···Au) = 141.4°]. The energy difference between the conformer containing the H···Au bond and another conformer without a hydrogen bond amounts to 7.8 kcal mol -1 , which might serve as an estimate of the hydrogen bond strength. Spectroscopic properties were calculated, yielding further characteristics of such hydrogen bonded gold species.

  17. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies.

    Science.gov (United States)

    Maurya, Neha; Maurya, Jitendra Kumar; Kumari, Meena; Khan, Abbul Bashar; Dohare, Ravins; Patel, Rajan

    2017-05-01

    Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.

  18. COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures.

    Science.gov (United States)

    Firdaus-Raih, Mohd; Hamdani, Hazrina Yusof; Nadzirin, Nurul; Ramlan, Effirul Ikhwan; Willett, Peter; Artymiuk, Peter J

    2014-07-01

    Hydrogen bonds are crucial factors that stabilize a complex ribonucleic acid (RNA) molecule's three-dimensional (3D) structure. Minute conformational changes can result in variations in the hydrogen bond interactions in a particular structure. Furthermore, networks of hydrogen bonds, especially those found in tight clusters, may be important elements in structure stabilization or function and can therefore be regarded as potential tertiary motifs. In this paper, we describe a graph theoretical algorithm implemented as a web server that is able to search for unbroken networks of hydrogen-bonded base interactions and thus provide an accounting of such interactions in RNA 3D structures. This server, COGNAC (COnnection tables Graphs for Nucleic ACids), is also able to compare the hydrogen bond networks between two structures and from such annotations enable the mapping of atomic level differences that may have resulted from conformational changes due to mutations or binding events. The COGNAC server can be accessed at http://mfrlab.org/grafss/cognac. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flakus, Henryk T., E-mail: flakus@ich.us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland); Tyl, Aleksandra; Jablonska, Magdalena [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland)

    2009-10-16

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d{sub 2}, d{sub 8} and d{sub 10} deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the {nu}{sub O-H} and the {nu}{sub O-D} bands. The two-branch fine structure pattern of the {nu}{sub O-H} and {nu}{sub O-D} bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic 'self-organization' effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  20. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Science.gov (United States)

    Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena

    2009-10-01

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  1. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  2. A computational approach for the annotation of hydrogen-bonded base interactions in crystallographic structures of the ribozymes

    Science.gov (United States)

    Hamdani, Hazrina Yusof; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2015-09-01

    A fundamental understanding of the atomic level interactions in ribonucleic acid (RNA) and how they contribute towards RNA architecture is an important knowledge platform to develop through the discovery of motifs from simple arrangements base pairs, to more complex arrangements such as triples and larger patterns involving non-standard interactions. The network of hydrogen bond interactions is important in connecting bases to form potential tertiary motifs. Therefore, there is an urgent need for the development of automated methods for annotating RNA 3D structures based on hydrogen bond interactions. COnnection tables Graphs for Nucleic ACids (COGNAC) is automated annotation system using graph theoretical approaches that has been developed for the identification of RNA 3D motifs. This program searches for patterns in the unbroken networks of hydrogen bonds for RNA structures and capable of annotating base pairs and higher-order base interactions, which ranges from triples to sextuples. COGNAC was able to discover 22 out of 32 quadruples occurrences of the Haloarcula marismortui large ribosomal subunit (PDB ID: 1FFK) and two out of three occurrences of quintuple interaction reported by the non-canonical interactions in RNA (NCIR) database. These and several other interactions of interest will be discussed in this paper. These examples demonstrate that the COGNAC program can serve as an automated annotation system that can be used to annotate conserved base-base interactions and could be added as additional information to established RNA secondary structure prediction methods.

  3. A computational approach for the annotation of hydrogen-bonded base interactions in crystallographic structures of the ribozymes

    International Nuclear Information System (INIS)

    Hamdani, Hazrina Yusof; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2015-01-01

    A fundamental understanding of the atomic level interactions in ribonucleic acid (RNA) and how they contribute towards RNA architecture is an important knowledge platform to develop through the discovery of motifs from simple arrangements base pairs, to more complex arrangements such as triples and larger patterns involving non-standard interactions. The network of hydrogen bond interactions is important in connecting bases to form potential tertiary motifs. Therefore, there is an urgent need for the development of automated methods for annotating RNA 3D structures based on hydrogen bond interactions. COnnection tables Graphs for Nucleic ACids (COGNAC) is automated annotation system using graph theoretical approaches that has been developed for the identification of RNA 3D motifs. This program searches for patterns in the unbroken networks of hydrogen bonds for RNA structures and capable of annotating base pairs and higher-order base interactions, which ranges from triples to sextuples. COGNAC was able to discover 22 out of 32 quadruples occurrences of the Haloarcula marismortui large ribosomal subunit (PDB ID: 1FFK) and two out of three occurrences of quintuple interaction reported by the non-canonical interactions in RNA (NCIR) database. These and several other interactions of interest will be discussed in this paper. These examples demonstrate that the COGNAC program can serve as an automated annotation system that can be used to annotate conserved base-base interactions and could be added as additional information to established RNA secondary structure prediction methods

  4. A computational approach for the annotation of hydrogen-bonded base interactions in crystallographic structures of the ribozymes

    Energy Technology Data Exchange (ETDEWEB)

    Hamdani, Hazrina Yusof, E-mail: hazrina@mfrlab.org [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas (Malaysia); Artymiuk, Peter J., E-mail: p.artymiuk@sheffield.ac.uk [Dept. of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, S10 T2N Sheffield (United Kingdom); Firdaus-Raih, Mohd, E-mail: firdaus@mfrlab.org [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi (Malaysia)

    2015-09-25

    A fundamental understanding of the atomic level interactions in ribonucleic acid (RNA) and how they contribute towards RNA architecture is an important knowledge platform to develop through the discovery of motifs from simple arrangements base pairs, to more complex arrangements such as triples and larger patterns involving non-standard interactions. The network of hydrogen bond interactions is important in connecting bases to form potential tertiary motifs. Therefore, there is an urgent need for the development of automated methods for annotating RNA 3D structures based on hydrogen bond interactions. COnnection tables Graphs for Nucleic ACids (COGNAC) is automated annotation system using graph theoretical approaches that has been developed for the identification of RNA 3D motifs. This program searches for patterns in the unbroken networks of hydrogen bonds for RNA structures and capable of annotating base pairs and higher-order base interactions, which ranges from triples to sextuples. COGNAC was able to discover 22 out of 32 quadruples occurrences of the Haloarcula marismortui large ribosomal subunit (PDB ID: 1FFK) and two out of three occurrences of quintuple interaction reported by the non-canonical interactions in RNA (NCIR) database. These and several other interactions of interest will be discussed in this paper. These examples demonstrate that the COGNAC program can serve as an automated annotation system that can be used to annotate conserved base-base interactions and could be added as additional information to established RNA secondary structure prediction methods.

  5. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    NARCIS (Netherlands)

    Li, X. H.; Oomens, J.; Eyler, J. R.; Moore, D. T.; Iyengar, S. S.

    2010-01-01

    We investigate and analyze the vibrational properties, including hydrogen/deuterium isotope effects, in a fundamental organic hydrogen bonded system using multiple experimental (infrared multiple photon dissociation and argon-tagged action spectroscopy) and computational techniques. We note a

  6. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    Science.gov (United States)

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  7. NMR Study on the Interaction of Trehalose with Lactose and Its Effect on the Hydrogen Bond Interaction in Lactose

    Directory of Open Access Journals (Sweden)

    Eric Morssing Vilén

    2013-08-01

    Full Text Available Trehalose, a well-known stress-protector of biomolecules, has been investigated for its effect on the mobility, hydration and hydrogen bond interaction of lactose using diffusion-ordered NMR spectroscopy and NMR of hydroxy protons. In ternary mixtures of trehalose, lactose and water, the two sugars have the same rate of diffusion. The chemical shifts, temperature coefficients, vicinal coupling constants and ROE of the hydroxy protons in trehalose, lactose and sucrose were measured for the disaccharides alone in water/acetone-d6 solutions as well as in mixtures. The data indicated that addition of trehalose did not change significantly the strength of the hydrogen bond interaction between GlcOH3 and GalO5' in lactose. Small upfield shifts were however measured for all hydroxy protons when the sugar concentration was increased. The chemical shift of the GlcOH3 signal in lactose showed less change, attributed to the spatial proximity to GalO5'. Chemical exchange between hydroxy protons of lactose and trehalose was observed in the ROESY NMR spectra. Similar effects were observed with sucrose indicating no specific effect of trehalose at the concentrations investigated (73 to 763 mg/mL and suggesting that it is the concentration of hydroxy groups more than the type of sugars which is guiding intermolecular interactions.

  8. The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions.

    Science.gov (United States)

    Kothari, Khushboo; Ragoonanan, Vishard; Suryanarayanan, Raj

    2015-01-05

    We investigated the influence of drug-polymer hydrogen bonding interactions on molecular mobility and the physical stability in solid dispersions of nifedipine with each of the polymers polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMCAS), and poly(acrylic acid) (PAA). The drug-polymer interactions were monitored by FT-IR spectroscopy, the molecular mobility was characterized using broadband dielectric spectroscopy, and the crystallization kinetics was evaluated by powder X-ray diffractometry. The strength of drug-polymer hydrogen bonding, the structural relaxation time, and the crystallization kinetics were rank ordered as PVP > HPMCAS > PAA. At a fixed polymer concentration, the fraction of the drug bonded to the polymer was the highest with PVP. Addition of 20% w/w polymer resulted in ∼65-fold increase in the relaxation time in the PVP dispersion and only ∼5-fold increase in HPMCAS dispersion. In the PAA dispersions, there was no evidence of drug-polymer interactions and the polymer addition did not influence the relaxation time. Thus, the strongest drug-polymer hydrogen bonding interactions in PVP solid dispersions translated to the longest structural relaxation times and the highest resistance to drug crystallization.

  9. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  10. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

    Science.gov (United States)

    Anithaa, V S; Vijayakumar, S; Sudha, M; Shankar, R

    2017-11-06

    The interaction of diketo and keto-enol form of thymine and uracil tautomers with acridine (Acr), phenazine (Phen), benzo[c]cinnoline (Ben), 1,10-phenanthroline (1,10-Phe), and 4,7-phenenthroline (4,7-Phe) intercalating drug molecules was studied using density functional theory at B3LYP/6-311++G** and M05-2×/6-311++G** levels of theory. From the interaction energy, it is found that keto-enol form tautomers have stronger interaction with intercalators than diketone form tautomers. On complex formation of thymine and uracil tautomers with benzo[c]cinnoline the drug molecules have high interaction energy values of -20.14 (BenT3) and -20.55 (BenU3) kcal mol -1 , while phenazine has the least interaction energy values of -6.52 (PhenT2) and -6.67 (PhenU2) kcal mol -1 . The closed shell intermolecular type interaction between the molecules with minimum elliptical value of 0.018 and 0.019 a.u at both levels of theory has been found from topological analysis. The benzo[c]cinnoline drug molecule with thymine and uracil tautomers has short range intermolecular N-H…N, C-H…O, and O-H...N hydrogen bonds (H-bonds) resulting in higher stability than other drug molecules. The proper hydrogen bonds N-H..N and O-H..N have the frequency shifted toward the lower side (red shifted) with the elongation in their bond length while the improper hydrogen bond C-H...O has the frequency shifted toward the higher side (blue shifted) of the spectral region with the contraction in their bond length. Further, the charge transfer between proton acceptor and donor along with stability of the bond is studied using natural bond orbital (NBO) analysis. Graphical abstract Hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

  11. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...

  12. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  13. Hydrogen bond assisted interaction of glutamine with chromium (III) complex of 8-hydroxyquinoline: Experimental and theoretical studies

    Science.gov (United States)

    Narayanan, Jayanthi; Carlos-Alberto, Aguilar H.; Arturo, Lazarini M.; Höpfl, Herbert; Enrique-Fernando, Velazquez C.; Fernando, Rocha A.; Fernando-Toyohiko, Wakida K.; Velazquez-Lopez, José E.; Lesli, Arroyo O.

    2018-03-01

    Chromium (III) complex [Cr (hq)3;C2H5OH] of 8-hydroxyquinoline (hq) was prepared and its structure was resolved by X-ray diffraction analysis at low-temperature, showing that Cr3+ ion presents in distorted octahedral geometry, and it is consistent with the DFT optimized structure. It was observed that solvent ethanol is involved a hydrogen bond with 8-hydroxyquinoline anion. Furthermore, the molecular orbital contributions to spectral bands observed for the complex were determined by TD-DFT. The interaction of [Cr (hq)3;C2H5OH] with glutamine (Gln) or asparagine (Asn) shows that the complex binds effectively with glutamine through hydrogen bonding (H2N+-HṡṡṡOethanol) to form a possible stable adduct [Cr (hq)3;C2H5OH)Gln], yielding its binding constant 10,000 times greater (1.4315 M-1) than that for Asn (5.0 × 10-4 M-1). This is apparently due to the formation of stable secondary coordination sphere through the hydrogen bond between the metal complex with Gln. This observation is good agreement with the total molecular energy as well as with the molecular orbital study, i.e. in the DFT calculation, a lower total molecular energy (-8299,549.441 kcal/mmol) for [Cr (hq)3;C2H5OH) Gln] was obtained than that resulted for [Cr (hq)3;C2H5OH)Asn] (-8194,799.867 kcal/mmol), establishing ethanol effectively stabilizes the interaction between glutamine and the complex. Finally, antibacterial properties of [Cr (hq)3;C2H5OH] against Gram positive Bacillus cereus and Gram negative Escherichia coli was also studied, and compared its bacterial growths for its adducts of glutamine or of asparagine.

  14. Hydrogen-bonding interactions in thiosemicarbazones of carboxylic acids: Structure of 2-ketobutyric acid thiosemicarbazone hemihydrate

    International Nuclear Information System (INIS)

    Sonawane, P.; Chikate, R.; Kumbhar, A.; Padhye, S.; Doedens, R.J.

    1991-01-01

    2-Thiosemicarbazonobutanoic acid hemihydrate, C 5 H 9 N 3 O 2 S.0.5H 2 O, M r =184.22, triclinic, Panti 1, a=8.163(2), b=8.868(2), c=12.438(2) A, α=72.99(2), β=79.47(2), γ=84.06(2)deg, V=845.3(3) A 3 , Z=4, D x =1.447 Mg m -3 , λ(Mo Kα)=0.71073 A, μ=0.332 mm -1 , F(000)=392, T=296 K, R=0.038 for 3830 independent reflections with I>3σ(I). Three hydrogen bonds link the two crystallographically independent molecules in a pairwise fashion. The two molecules both have E configurations about each C-N and N-N bond, but differ by nearly 180deg in the orientation of the -COOH group. (orig.)

  15. Substituent Effects in CH Hydrogen Bond Interactions: Linear Free Energy Relationships and Influence of Anions.

    Science.gov (United States)

    Tresca, Blakely W; Hansen, Ryan J; Chau, Calvin V; Hay, Benjamin P; Zakharov, Lev N; Haley, Michael M; Johnson, Darren W

    2015-12-02

    Aryl CH hydrogen bonds (HBs) are now commonly recognized as important factors in a number of fields, including molecular biology, stereoselective catalysis, and anion supramolecular chemistry. As the utility of CH HBs has grown, so to has the need to understand the structure-activity relationship for tuning both their strength and selectivity. Although there has been significant computational effort in this area, an experimental study of the substituent effects on CH HBs has not been previously undertaken. Herein we disclose a systematic study of a single CH HB by using traditional urea donors as directing groups in a supramolecular binding cavity. Experimentally determined association constants are examined by a combination of computational (electrostatic potential) and empirical (σm and σp) values for substituent effects. The dominance of electrostatic parameters, as observed in a computational DFT study, is consistent with current CH HB theory; however, a novel anion dependence of the substituent effects is revealed in solution.

  16. Solvation of apolar compounds in protic ionic liquids: the non-synergistic effect of electrostatic interactions and hydrogen bonds.

    Science.gov (United States)

    Sedov, I A; Magsumov, T I; Salikov, T M; Solomonov, B N

    2017-09-27

    The solvation properties of protic ionic liquids such as alkylammonium salts are still virtually uncharacterized. Both electrostatic interactions between charged particles and hydrogen bond networks in a solvent are known to hinder the solubility of apolar species. Protic ionic liquids can be a priori expected to dissolve hydrocarbons worse than aprotic ionic liquids which do not form hydrogen bonds between the ions. We measured the limiting activity coefficients of several alkanes and alkylbenzenes in propylammonium and butylammonium nitrates at 298 K. Surprisingly, we observed the tendency of higher solubility than for the same compounds in aprotic ionic liquids with a similar molar volume. The calculations of the excess Gibbs free energies using test particle insertions into the snapshots of molecular dynamics trajectories reproduced lower values in protic rather than in aprotic ionic liquids for both methane molecules and hard sphere solutes. This can be explained by the favorable solvation of apolar species in the apolar domain of nanostructured PILs. For the first time, we point out at the essential difference between the solvation properties of two types of ionic liquids and prove that it arises from the cavity formation term.

  17. Evaluating hydrogen bond interactions in enzymes containing Mn(III)-histidine complexation using manganese-imidazole complexes.

    Science.gov (United States)

    Rajendiran, M; Caudle, T; Kirk, Martin L; Setyawati, Ika; Kampf, Jeff W; Pecoraro, Vincent L

    2003-02-01

    It is often difficult to control hydrogen bond interactions in small molecule compounds that model metalloenzyme active sites. The imidazole-containing ligands 4,5-dicarboxyimidazole (H(3)DCBI) and 4,5-dicarboxy- N-methylimidazole (H(2)MeDCBI) allow examination of the effects of internal hydrogen bonding between carboxylate and imidazole nitrogen atoms. A new series of mononuclear manganese imidazole complexes have been prepared using these ligands: Mn(III)(salpn)(H(2)DCBI)(DMF) (1), Mn(III)(salpn)(HMeDCBI) (2), Mn(III)(dtsalpn)(HMeDCBI) (3), [Mn(IV)(dtsalpn)(HMeDCBI)]PF(6) (4), Mn(III)(salpn)(H(2)DCBI) (5), Mn(III)(dtsalpn)(H(2)DCBI) (6), and Mn(IV)(dtsalpn)(H(2)DCBI)PF(6) (8). Complexes 1, 2, 3, 5, and 6 have been prepared by direct reaction of salpn [salpn=(salicylideneaminato)-1,3-diaminopropane)] or dtsalpn [dtsalpn=(3,5-di- t-butylsalicylideneaminato)-1,3-diaminopropane)] and H(3)DCBI and H(2)MeDCBI with Mn(III) acetate, while complexes 4 and 8 were made by bulk electrolysis of complex 3 or 6 in dichloromethane. Complexes 1, 2, and 6 were characterized by X-ray diffraction. The impact of hydrogen bonding interactions of the complexes has been demonstrated by X-ray diffraction, cyclic voltammetry, and EPR spectroscopy. In all complexes the central metal ion is present in a six-coordinate geometry. Magnetic susceptibility measurements confirm the spin and oxidation states of the complexes. The cyclic voltammograms of 3 and 6 in dichloromethane reveal single, reversible redox waves with E(1/2)=600 mV and 690 mV, respectively. The X-band EPR spectrum of 4 shows a broad signal around g=4.4, and the corresponding complex 8 possesses a broad signal at slightly lower field ( g=5.5) than 4. These studies demonstrate that even small changes in the effective charge of the imidazole ligand can have a profound impact on the structure, spectroscopy, and magnetism of manganese(IV) complexes. We use these observations to present a model that may explain the origin of the g=4

  18. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  19. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol.

    Science.gov (United States)

    Slater, S J; Ho, C; Taddeo, F J; Kelly, M B; Stubbs, C D

    1993-04-13

    It is proposed that increased phospholipid unsaturation in membranes and perturbation by agents such as ethanol weaken interlipid hydrogen bonding involving water and that the process is independent of effects on lipid order. To investigate this, the rates of phospholipid desorption, as a measure of the strength of interlipid interactions, from "donor" lipid vesicles was determined. This was accomplished using (7-nitrobenzo-2-oxa-1,3-diazole-4-yl)aminohexanoate (C6-NBD) labeled phospholipids, the rate of desorption being followed from changes in fluorescence with time. The rates of desorption of the NBD-phospholipids from phosphatidylcholine (PC) donor vesicles was in the order phosphatidylcholine (PC) > phosphatidylserine (PS) > phosphatidylethanolamine (PE), the slower rates in the PS and PE reflecting direct interlipid hydrogen bonding. For PC, the interlipid hydrogen bonding was restricted to the "hydration layer", the network of hydrogen-bonded water molecules extending between phospholipid head groups. The rate of C6-NBD-PC desorption was elevated with higher levels of donor PC sn-2 unsaturation, due the increased head group spacing weakening the lipid-lipid interactions that occur via the hydration layer. Ethanol also increased the rate of NBD-phospholipid desorption from donor PC vesicles in the order PC > PS > PE, showing that PC interactions, here limited to the weaker hydrogen-bonded water molecule network, were more susceptible compared to stronger, direct interlipid hydrogen bonds involving PE and PS. The relative magnitude of the ethanol-induced increase in the desorption rate was amplified with higher levels of donor lipid sn-2 unsaturation. Cholesterol had little effect on the rate of phospholipid desorption.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    for an interaction to be characterized as a hydro- gen bond but does not provide any rationale for the same. This article reports a rationale for limiting the angle, based on the electron density topology using the quantum theory of atoms in molecules. Electron density topol- ogy for common hydrogen bond donors HF, HCl, ...

  1. X hydrogen bonds

    Indian Academy of Sciences (India)

    sigma electrons, can be hydrogen bond acceptors.11–14. The recent IUPAC report and recommendation on hydro gen bond have recognised the diverse nature of hydro- gen bond donors and acceptors.13,14. Unlike methane, hydrogen bonding by higher alkanes has not received much attention. One of the earlier works.

  2. Hydrogen bond interactions in sulfamerazine: DFT study of the O-17, N-14, and H-2 electric field gradient tensors

    International Nuclear Information System (INIS)

    Aghazadeh, Mustafa; Mirzaei, Mahmoud

    2008-01-01

    Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (η Q ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N-H...N and N-H...O types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program

  3. Modeling liquid-vapor equilibria with an equation of state taking into account dipolar interactions and association by hydrogen bonding

    International Nuclear Information System (INIS)

    Perfetti, E.

    2006-11-01

    Modelling fluid-rock interactions as well as mixing and unmixing phenomena in geological processes requires robust equations of state (EOS) which must be applicable to systems containing water, gases over a broad range of temperatures and pressures. Cubic equations of state based on the Van der Waals theory (e. g. Soave-Redlich-Kwong or Peng-Robinson) allow simple modelling from the critical parameters of the studied fluid components. However, the accuracy of such equations becomes poor when water is a major component of the fluid since neither association trough hydrogen bonding nor dipolar interactions are accounted for. The Helmholtz energy of a fluid may be written as the sum of different energetic contributions by factorization of partition function. The model developed in this thesis for the pure H 2 O and H 2 S considers three contributions. The first contribution represents the reference Van der Waals fluid which is modelled by the SRK cubic EOS. The second contribution accounts for association through hydrogen bonding and is modelled by a term derived from Cubic Plus Association (CPA) theory. The third contribution corresponds to the dipolar interactions and is modelled by the Mean Spherical Approximation (MSA) theory. The resulting CPAMSA equation has six adjustable parameters, which three represent physical terms whose values are close to their experimental counterpart. This equation results in a better reproduction of the thermodynamic properties of pure water than obtained using the classical CPA equation along the vapour-liquid equilibrium. In addition, extrapolation to higher temperatures and pressure is satisfactory. Similarly, taking into account dipolar interactions together with the SRK cubic equation of state for calculating molar volume of H 2 S as a function of pressure and temperature results in a significant improvement compared to the SRK equation alone. Simple mixing rules between dipolar molecules are proposed to model the H 2 O-H 2 S

  4. Theoretical Study on Effects of Hydrogen-Bonding and Molecule-Cation Interactions on the Sensitivity of HMX.

    Science.gov (United States)

    Li, Yunlu; Wu, Junpeng; Cao, Duanlin; Wang, Jianlong

    2016-10-04

    To assess the effects of weak interactions on the sensitivity of HMX, eleven complexes of HMX (where six of them are hydrogen-bonding complexes, and the other five are molecular-cation complexes) have been studied via quantum chemical treatment. The geometric and electronic structures were determined using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df, 2p) and aug-cc-pVTZ basis sets. The changes of the bond dissociation energy (BDE) of the trigger bond (N-NO2 in HMX) and nitro group charge have been computed on the detail consideration to access the sensitivity changes of HMX. The results indicate that upon complex forming, the BDE increases and the charge of nitro group turns more negative in complexes, suggesting that the strength of the N-NO2 trigger bond is enhanced then the sensitivity of HMX is reduced. Atom-in-molecules analysis have also been carried to understand the nature of intermolecular interactions and the strength of trigger bonds.

  5. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.

    Science.gov (United States)

    Stare, Jernej; Panek, Jarosław; Eckert, Juergen; Grdadolnik, Joze; Mavri, Janez; Hadzi, Dusan

    2008-02-21

    Infrared, Raman and INS spectra of picolinic acid N-oxide (PANO) were recorded and examined for the location of the hydronic modes, particularly O-H stretching and COH bending. PANO is representative of strong chelate hydrogen bonds (H-bonds) with its short O...O distance (2.425 A). H-bonding is possibly well-characterized by diffraction, NMR and NQR data and calculated potential energy functions. The analysis of the spectra is assisted by DFT frequency calculations both in the gas phase and in the solid state. The Car-Parrinello quantum mechanical solid-state method is also used for the proton dynamics simulation; it shows the hydron to be located about 99% of time in the energy minimum near the carboxylic oxygen; jumps to the N-O acceptor are rare. The infrared spectrum excels by an extended absorption (Zundel's continuum) interrupted by numerous Evans transmissions. The model proton potential functions on which the theories of continuum formation are based do not correspond to the experimental and computed characteristics of the hydrogen bond in PANO, therefore a novel approach has been developed; it is based on crystal dynamics driven hydronium potential fluctuation. The envelope of one hundred 0 --> 1 OH stretching transitions generated by molecular dynamics simulation exhibits a maximum at 1400 cm-1 and a minor hump at approximately 1600 cm-1. These positions square well with ones predicted for the COH bending and OH stretching frequencies derived from various one- and two-dimensional model potentials. The coincidences with experimental features have to be considered with caution because the CPMD transition envelope is based solely on the OH stretching coordinate while the observed infrared bands correspond to heavily mixed modes as was previously shown by the normal coordinate analysis of the IR spectrum of argon matrix isolated PANO, the present CPMD frequency calculation and the empirical analysis of spectra. The experimental infrared spectra show some

  6. Electrostatically enhanced FF interactions through hydrogen bonding, halogen bonding and metal coordination: an ab initio study.

    Science.gov (United States)

    Bauzá, Antonio; Frontera, Antonio

    2016-07-27

    In this manuscript the ability of hydrogen and halogen bonding interactions, as well as metal coordination to enhance FF interactions involving fluorine substituted aromatic rings has been studied at the RI-MP2/def2-TZVPD level of theory. We have used 4-fluoropyridine, 4-fluorobenzonitrile, 3-(4-fluorophenyl)propiolonitrile and their respective meta derivatives as aromatic compounds. In addition, we have used HF and IF as hydrogen and halogen bond donors, respectively, and Ag(i) as the coordination metal. Furthermore, we have also used HF as an electron rich fluorine donor entity, thus establishing FF interactions with the above mentioned aromatic systems. Moreover, a CSD (Cambridge Structural Database) search has been carried out and some interesting examples have been found, highlighting the impact of FF interactions involving aromatic fluorine atoms in solid state chemistry. Finally, cooperativity effects between FF interactions and both hydrogen and halogen bonding interactions have been analyzed and compared. We have also used Bader's theory of "atoms in molecules" to further describe the cooperative effects.

  7. Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films.

    Science.gov (United States)

    Yang, Jinhui; Tang, Kangkang; Qin, Guoqiang; Chen, Yanxue; Peng, Ling; Wan, Xia; Xiao, Huining; Xia, Qiuyang

    2017-06-15

    The molecular dynamics (MD) simulation method was used to investigate the hydrogen bonding energy of starch/glycerol system under different temperatures (range from 90°C to 120°C) and different glycerol contents (range from 20% to 40%, based on dry starch weight). These effects on the hydrogen bonding energy (including the total hydrogen bonding energy, hydrogen bonding energy of starch/starch, glycerol/glycerol, and starch/glycerol) were analyzed in detail. Meanwhile, glycerol plasticized starch films were prepared using casting method. The relationship between the hydrogen bonding energy and the performances of thermoplastic starch film (TPSF), such as crystallinity, mechanical properties and water uptake determined experimentally, were revealed and discussed. The results indicated that glycerol/starch film contained strong hydrogen bonding interaction which could be increased by decreasing the temperature or increasing the glycerol content. The hydrogen bonding interaction is the key factor for the preparation of the plasticized starch material, and the plasticized mechanism can be interpreted according to the analytical results of the simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrogen-Bonding Interactions in Luminescent Quinoline-Triazoles with Dominant 1D Crystals

    Directory of Open Access Journals (Sweden)

    Shi-Qiang Bai

    2017-09-01

    Full Text Available Quinoline-triazoles 2-((4-(diethoxymethyl-1H-1,2,3-triazol-1-ylmethylquinoline (1, 2-((4-(m-tolyl-1H-1,2,3-triazol-1-ylmethylquinoline (2 and 2-((4-(p-tolyl-1H-1,2,3-triazol-1-ylmethylquinoline (3 have been prepared with CuAAC click reactions and used as a model series to probe the relationship between lattice H-bonding interaction and crystal direction of growth. Crystals of 1–3 are 1D tape and prism shapes that correlate with their intermolecular and solvent 1D lattice H-bonding interactions. All compounds were thermally stable up to about 200 C and blue-green emissive in solution.

  9. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  10. [FHF]−—The Strongest Hydrogen Bond under the Influence of External Interactions

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2015-12-01

    Full Text Available A search through the Cambridge Structural Database (CSD for crystal structures containing the [FHF]− anion was carried out. Forty five hydrogen bifluoride structures were found mainly with the H-atom moved from the mid-point of the F…F distance. However several [FHF]− systems characterized by D∞h symmetry were found, the same as this anion possesses in the gas phase. The analysis of CSD results as well as the analysis of results of ab initio calculations on the complexes of [FHF]− with Lewis acid moieties show that the movement of the H-atom from the central position depends on the strength of interaction of this anion with external species. The analysis of the electron charge density distribution in complexes of [FHF]− was performed with the use of the Quantum Theory of Atoms in Molecules (QTAIM approach and the Natural Bond Orbitals (NBO method.

  11. Probing the nature of hydrogen bonds in DNA base pairs.

    Science.gov (United States)

    Mo, Yirong

    2006-07-01

    Energy decomposition analyses based on the block-localized wave-function (BLW-ED) method are conducted to explore the nature of the hydrogen bonds in DNA base pairs in terms of deformation, Heitler-London, polarization, electron-transfer and dispersion-energy terms, where the Heitler-London energy term is composed of electrostatic and Pauli-exchange interactions. A modest electron-transfer effect is found in the Watson-Crick adenine-thymine (AT), guanine-cytosine (GC) and Hoogsteen adenine-thymine (H-AT) pairs, confirming the weak covalence in the hydrogen bonds. The electrostatic attraction and polarization effects account for most of the binding energies, particularly in the GC pair. Both theoretical and experimental data show that the GC pair has a binding energy (-25.4 kcal mol(-1) at the MP2/6-31G** level) twice that of the AT (-12.4 kcal mol(-1)) and H-AT (-12.8 kcal mol(-1)) pairs, compared with three conventional N-H...O(N) hydrogen bonds in the GC pair and two in the AT or H-AT pair. Although the remarkably strong binding between the guanine and cytosine bases benefits from the opposite orientations of the dipole moments in these two bases assisted by the pi-electron delocalization from the amine groups to the carbonyl groups, model calculations demonstrate that pi-resonance has very limited influence on the covalence of the hydrogen bonds. Thus, the often adopted terminology "resonance-assisted hydrogen bonding (RHAB)" may be replaced with "resonance-assisted binding" which highlights the electrostatic rather than electron-transfer nature of the enhanced stabilization, as hydrogen bonds are usually regarded as weak covalent bonds.

  12. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-01-01

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  13. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  14. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  15. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  16. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions.

    Science.gov (United States)

    Bartocci, Silvia; Berrocal, José Augusto; Guarracino, Paola; Grillaud, Maxime; Franco, Lorenzo; Mba, Miriam

    2018-02-26

    The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and 1 H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Can Csbnd H⋯Fsbnd C hydrogen bonds alter crystal packing features in the presence of Nsbnd H⋯Odbnd C hydrogen bond?

    Science.gov (United States)

    Yadav, Hare Ram; Choudhury, Angshuman Roy

    2017-12-01

    Intermolecular interactions involving organic fluorine have been the contemporary field of research in the area of organic solid state chemistry. While a group of researchers had refuted the importance of "organic fluorine" in guiding crystal structures, others have provided evidences for in favor of fluorine mediated interactions in the solid state. Many systematic studies have indicated that the "organic fluorine" is capable of offering weak hydrogen bonds through various supramolecular synthons, mostly in the absence of other stronger hydrogen bonds. Analysis of fluorine mediated interaction in the presence of strong hydrogen bonds has not been highlighted in detail. Hence a thorough structural investigation is needed to understand the role of "organic fluorine" in crystal engineering of small organic fluorinated molecules having the possibility of strong hydrogen bond formation in the solution and in the solid state. To fulfil this aim, we have synthesized a series of fluorinated amides using 3-methoxyphenylacetic acid and fluorinated anilines and studied their structural properties through single crystal and powder X-ray diffraction methods. Our results indicated that the "organic fluorine" plays a significant role in altering the packing characteristics of the molecule in building specific crystal lattices even in the presence of strong hydrogen bond.

  18. Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): the case of charge-assisted hydrogen bonding.

    Science.gov (United States)

    Bankiewicz, Barbara; Matczak, Piotr; Palusiak, Marcin

    2012-01-12

    Charge-assisted hydrogen bonds (CAHBs) of N-H···Cl, N-H···Br, and P-H···Cl type were investigated using advanced computational approach (MP2/aug-cc-pVTZ level of theory). The properties of electron density function defined in the framework of Quantum Theory of Atoms in Molecules (QTAIM) were estimated as a function of distance in H-bridges. Additionally, the interaction energy decomposition was performed for H-bonded complexes with different H-bond lengths using the Symmetry-Adapted Perturbation Theory (SAPT). In this way both QTAIM parameters and SAPT energy components could be expressed as a function of the same variable, that is, the distance in H-bridge. A detailed analysis of the changes in QTAIM and SAPT parameters due to the changes in H···A distance revealed that, over some ranges of H···A distances, electrostatic, inductive and dispersive components of the SAPT interaction energy show a linear correlation with the value of the electron density at H-BCP ρ(BCP). The linear relation between the induction component, E(ind), and ρ(BCP) confirms numerically the intuitive expectation that the ρ(BCP) reflects directly the effects connected with the sharing of electron density between interacting centers. These conclusions are important in view of charge density studies performed for crystals in which the distance between atoms results not only from effects connected with the interaction between atomic centers directly involved in bonding, but also from packing effects which may strongly influence the length of the H-bond.

  19. Hydrogen-bonding directed crystal engineering of some molecular solids

    Science.gov (United States)

    Xue, Feng

    2000-10-01

    The design of crystalline clathrates and microporous solids is a contemporary goal in crystal engineering, in which hydrogen bonds play a central role because of their strength, directionality and flexibility. We have constructed various layer- and channel-type host structures by using hydrogen-bonding interactions. A novel hydrogen-bonded supramolecular rosette structure is generated from guanidinium and hydrogen carbonate ions in (1) and ( 2). The rosettes are fused into linear ribbons, which are cross-linked by terephthalate or 4-nitrobenzoate ions functioning as hydrogen-bond acceptors, resulting in anionic host layers with tetra-n-butylammonium guest species sandwiched between them. In (3) ˜ (6), new crystalline adducts of tetraalkylammonium terephthalate/trimesate with urea and water molecules result from hydrogen-bond directed assembly of complementary acceptors and donors that generate anionic channel- and layer-type host lattices for the accommodation of bulky hydrophobic cations. Some 4,4'-disubstituted biphenyls manifest their robustness and flexibility as supramolecular building blocks to construct host structures. 4,4'-biphenyl dicarboxylate ion has a strong tendency in generating ladder-type structure in (7) ˜ (10) due to its rigidity and effectiveness as a bifunctional hydrogen-bond acceptor. In (11) ˜ (15), 4,4 '-dicyanobiphenyl, 4,4'-bipyridine-N,N '-dioxide and 4,4'-dinitrobiphenyl exhibit a constructive interplay of strong and weak hydrogen bond functionalities that generate robust synthons. 4-Tritylbenzoic acid crystallizes via the carboxyl dimer supramolecular synthon to produce a wheel-and-axle host lattice that includes different aromatic solvents in its microporous framework in (16) ˜ (25 ), in which the host architecture is robust and yet adaptive. Based on the trigonal symmetry of 2,4,6-tris-4-(halo-phenoxy)-1,3,5-triazines (halo = chloro, bromo) and the Br3 or Cl3 supramolecular synthon, a new hexagonal host lattice has been designed

  20. The role of weak hydrogen bonds in chiral recognition.

    Science.gov (United States)

    Scuderi, Debora; Le Barbu-Debus, Katia; Zehnacker, A

    2011-10-28

    Chiral recognition has been studied in neutral or ionic weakly bound complexes isolated in the gas phase by combining laser spectroscopy and quantum chemical calculations. Neutral complexes of the two enantiomers of lactic ester derivatives with chiral chromophores have been formed in a supersonic expansion. Their structure has been elucidated by means of IR-UV double resonance spectroscopy in the 3 μm region. In both systems described here, the main interaction ensuring the cohesion of the complex is a strong hydrogen bond between the chromophore and methyl-lactate. However, an additional hydrogen bond of much weaker strength plays a discriminative role between the two enantiomers. For example, the 1:1 heterochiral complex between R-(+)-2-naphthyl-ethanol and S-(+) methyl-lactate is observed, in contrast with the 1:1 homochiral complex which lacks this additional hydrogen bond. On the other hand, the same kind of insertion structures is formed for the complex between S-(±)-cis-1-amino-indan-2-ol and the two enantiomers of methyl-lactate, but an additional addition complex is formed for R-methyl-lactate only. This selectivity rests on the formation of a weak CHπ interaction which is not possible for the other enantiomer. The protonated dimers of Cinchona alkaloids, namely quinine, quinidine, cinchonine and cinchonidine, have been isolated in an ion trap and studied by IRMPD spectroscopy in the region of the ν(OH) and ν(NH) stretch modes. The protonation site is located on the alkaloid nitrogen which acts as a strong hydrogen bond donor in all the dimers studied. While the nature of the intermolecular hydrogen bond is similar in the homochiral and heterochiral complexes, the heterochiral complex displays an additional weak CHO hydrogen bond located on its neutral part, which results in slightly different spectroscopic fingerprints in the ν(OH) stretch region. This first spectroscopic evidence of chiral recognition in protonated dimers opens the way to the

  1. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.

    Science.gov (United States)

    Dalvit, Claudio; Vulpetti, Anna

    2016-05-23

    It is known that strong hydrogen-bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen-bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen-bond complexes involving the fluorine moieties CH2 F, CHF2 , and CF3 , and have compared them with the well-known hydrogen-bond complex formed between acetophenone and the strong hydrogen-bond donor p-fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5-fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein (19) F NMR screening are analyzed through experiments and theoretical simulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  3. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) Studied Using (13)C Solid-State NMR.

    Science.gov (United States)

    Yuan, Xiaoda; Xiang, Tian-Xiang; Anderson, Bradley D; Munson, Eric J

    2015-12-07

    Hydrogen bonding interactions in amorphous indomethacin and amorphous solid dispersions of indomethacin with poly(vinylpyrrolidone), or PVP, and poly(vinylpyrrolidone-co-vinyl acetate), or PVP/VA, were investigated quantitatively using solid-state NMR spectroscopy. Indomethacin that was (13)C isotopically labeled at the carboxylic acid carbon was used to selectively analyze the carbonyl region of the spectrum. Deconvolution of the carboxylic acid carbon peak revealed that 59% of amorphous indomethacin molecules were hydrogen bonded through carboxylic acid cyclic dimers, 15% were in disordered carboxylic acid chains, 19% were hydrogen bonded through carboxylic acid and amide interactions, and the remaining 7% were free of hydrogen bonds. The standard dimerization enthalpy and entropy of amorphous indomethacin were estimated to be -38 kJ/mol and -91 J/(mol · K), respectively, using polystyrene as the "solvent". Polymers such as PVP and PVP/VA disrupted indomethacin self-interactions and formed hydrogen bonds with the drug. The carboxylic acid dimers were almost completely disrupted with 50% (wt) of PVP or PVP/VA. The fraction of disordered carboxylic acid chains also decreased as the polymer content increased. The solid-state NMR results were compared with molecular dynamics (MD) simulations from the literature. The present work highlights the potential of (13)C solid-state NMR to detect and quantify various hydrogen bonded species in amorphous solid dispersions as well as to serve as an experimental validation of MD simulations.

  4. Case study of hydrogen bonding in a hydrophobic cavity.

    Science.gov (United States)

    Chen, Yi-Chen; Cheng, Chao-Sheng; Tjong, Siu-Cin; Yin, Hsien-Sheng; Sue, Shih-Che

    2014-12-18

    Protein internal hydrogen bonds and hydrophobicity determine protein folding and structure stabilization, and the introduction of a hydrogen bond has been believed to represent a better interaction for consolidating protein structure. We observed an alternative example for chicken IL-1β. The native IL-1β contains a hydrogen bond between the Y157 side-chain OηH and I133 backbone CO, whereby the substitution from Tyr to Phe abolishes the connection and the mutant without the hydrogen bond is more stable. An attempt to explain the energetic view of the presence of the hydrogen bond fails when only considering the nearly identical X-ray structures. Here, we resolve the mechanism by monitoring the protein backbone dynamics and interior hydrogen bond network. IL-1β contains a hydrophobic cavity in the protein interior, and Y157 is one of the surrounding residues. The Y157 OηH group introduces an unfavorable energy in the hydrophobic cavity, therefore sequestering itself by forming a hydrogen bond with the proximate residue I133. The hydrogen bonding confines Y157 orientation but exerts a force to disrupt the hydrogen bond network surrounding the cavity. The effect propagates over the entire protein and reduces the stability, as reflected in the protein backbone dynamics observed by an NMR hydrogen-deuterium (H/D) exchange experiment. We describe the particular case in which a hydrogen bond does not necessarily confer enhanced protein stability while the disruption of hydrophobicity must be integrally considered.

  5. Effect of cooperative hydrogen bonding in azo-hydrazone tautomerism of azo dyes.

    Science.gov (United States)

    Ozen, Alimet Sema; Doruker, Pemra; Aviyente, Viktorya

    2007-12-27

    Azo-hydrazone tautomerism in azo dyes has been modeled by using density functional theory (DFT) at the B3LYP/6-31+G(d,p) level of theory. The most stable tautomer was determined both for model compounds and for azo dyes Acid Orange 7 and Solvent Yellow 14. The effects of the sulfonate group substitution and the replacement of the phenyl group with naphthyl on the tautomer stability and on the behavior in solvent have been discussed. Intramolecular hydrogen bond energies have been estimated for the azo and hydrazone tautomers to derive a relationship between the tautomer stability and the hydrogen bond strength. The transition structures for proton transfer displayed resonance assisted strong hydrogen bonding properties within the framework of the electrostatic-covalent hydrogen bond model (ECHBM). Evolution of the intramolecular hydrogen bond with changing structural and environmental factors during the tautomeric conversion process has been studied extensively by means of the atoms-in-molecules (AIM) analysis of the electron density. The bulk solvent effect was examined using the self-consistent reaction field model. Special solute-solvent interactions were further investigated by means of quantum mechanical calculations after defining the first-solvation shell by molecular dynamics simulations. The effect of cooperative hydrogen bonding with solvent molecules on the tautomer stability has been discussed.

  6. Role of hydrogen-bonding and photoinduced electron transfer (PET) on the interaction of resorcinol based acridinedione dyes with Bovine Serum Albumin (BSA) in water

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, Rajendran, E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss, Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu (India); Vanjinathan, Mahalingam [Department of Chemistry, Dwaraka Doss Goverdhan Doss, Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600106, Tamil Nadu (India); Ramamurthy, Perumal [National Centre for Ultrafast Processes, University of Madras, Taramani Campus Chennai 600113, Tamil Nadu (India)

    2015-08-15

    Resorcinol based acridinedione (ADDR) dyes are a class of laser dyes and have structural similarity with purine derivatives, nicotinamide adenine dinucleotide (NADH) analogs. These dyes are classified into photoinduced electron transfer (PET) and non-photoinduced electron transfer dyes, and the photophysical properties of family of these dyes exhibiting PET behavior are entirely different from that of non-PET dyes. The PET process in ADDR dyes is governed by the solvent polarity such that an ADDR dye exhibits PET process through space in an aprotic solvent like acetonitrile and does not exhibit the same in protic solvents like water and methanol. A comparison on the fluorescence emission, lifetime and nature of interaction of various ADDR dyes with a large globular protein like Bovine Serum Albumin (BSA) was carried out in aqueous solution. The interaction of PET based ADDR dyes with BSA in water is found to be largely hydrophobic, but hydrogen-bonding interaction of BSA with dye molecule influences the fluorescence emission of the dye and shifts the emission towards red region. Fluorescence spectral studies reveal that the excited state properties of PET based ADDR dyes are largely influenced by the addition of BSA. The microenvironment around the dye results in significant change in the fluorescence lifetime and emission. Fluorescence enhancement with a red shift in the emission results after the addition of BSA to ADDR dyes containing free amino hydrogen in the 10th position of basic acridinedione dye. The amino hydrogen (N–H) in the 10th position of ADDR dye is replaced by methyl group (N–CH{sub 3}), a significant decrease in the fluorescence intensity with no apparent shift in the emission maximum was observed after the addition of BSA. The nature of interaction between ADDR dyes with BSA is hydrogen-bonding and the dye remains unbound even at the highest concentration of BSA. Circular Dichroism (CD) studies show that the addition of dye to BSA results in

  7. Role of hydrogen-bonding and photoinduced electron transfer (PET) on the interaction of resorcinol based acridinedione dyes with Bovine Serum Albumin (BSA) in water

    International Nuclear Information System (INIS)

    Kumaran, Rajendran; Vanjinathan, Mahalingam; Ramamurthy, Perumal

    2015-01-01

    Resorcinol based acridinedione (ADDR) dyes are a class of laser dyes and have structural similarity with purine derivatives, nicotinamide adenine dinucleotide (NADH) analogs. These dyes are classified into photoinduced electron transfer (PET) and non-photoinduced electron transfer dyes, and the photophysical properties of family of these dyes exhibiting PET behavior are entirely different from that of non-PET dyes. The PET process in ADDR dyes is governed by the solvent polarity such that an ADDR dye exhibits PET process through space in an aprotic solvent like acetonitrile and does not exhibit the same in protic solvents like water and methanol. A comparison on the fluorescence emission, lifetime and nature of interaction of various ADDR dyes with a large globular protein like Bovine Serum Albumin (BSA) was carried out in aqueous solution. The interaction of PET based ADDR dyes with BSA in water is found to be largely hydrophobic, but hydrogen-bonding interaction of BSA with dye molecule influences the fluorescence emission of the dye and shifts the emission towards red region. Fluorescence spectral studies reveal that the excited state properties of PET based ADDR dyes are largely influenced by the addition of BSA. The microenvironment around the dye results in significant change in the fluorescence lifetime and emission. Fluorescence enhancement with a red shift in the emission results after the addition of BSA to ADDR dyes containing free amino hydrogen in the 10th position of basic acridinedione dye. The amino hydrogen (N–H) in the 10th position of ADDR dye is replaced by methyl group (N–CH 3 ), a significant decrease in the fluorescence intensity with no apparent shift in the emission maximum was observed after the addition of BSA. The nature of interaction between ADDR dyes with BSA is hydrogen-bonding and the dye remains unbound even at the highest concentration of BSA. Circular Dichroism (CD) studies show that the addition of dye to BSA results in a

  8. Hydrogen-bonding patterns involving a cyclic phosphate

    Indian Academy of Sciences (India)

    Administrator

    Hydrogen bonding as a structure-determinant is well-known in biology and chemistry. Phosphates, which always have electronegative oxygen atoms, bear no exception in their involvement in hydrogen bonding interactions. In biosystems the ubiquitous presence of water makes the study of structural patterns due to ...

  9. Noncovalent synthesis of nanostructures: combining coordination chemistry and hydrogen bonding

    NARCIS (Netherlands)

    Huck, W.T.S.; Huck, Wilhelm T.S.; Hulst, A.J.R.L.; Timmerman, P.; van Veggel, F.C.J.M.; Reinhoudt, David

    1997-01-01

    Rosettes that are held together by hydrogen bonds (see sketch on the right) were synthesized from metallodendrimers constructed by coordination chemistry. Two orthogonal, noncovalent interactions (metal-ligand and hydrogen bonding) were employed to build these nanosized dendrimers (M 7-28 kDa).

  10. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    Science.gov (United States)

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  11. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...

  12. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  13. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  14. Characterization of Hydrogen Bonds by IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vojta, D.

    2012-05-01

    Full Text Available In the identification and quantification of hydrogen bond, as one of the most abundant non-covalent interactions in phenomena like self-assembly and molecular recognition, IR spectrosopy has been employed as the most sensitive method. The performance of the high dilution method enables determination of the stability constant of hydrogen-bonded complex as one of the most important thermodynamic quantities used in their characterization. However, the alleged experimental simplicity of the mentioned method is loaded with errors originating not only from researcher intervention but also independent from it. The second source of error is particularly emphasized and elaborated in this paper, which is designed as the recipe for the successful characterization of hydrogen bonds. Besides the enumeration of all steps in the determination of hydrogen-bonded stability constants, the reader can be acquainted with the most important ex perimental conditions that should be fulfilled in order to minimize the naturally occurring errors in this type of investigation. In the spectral analysis, the application of both uni- and multivariate approach has been discussed. Some computer packages, considering the latter, are mentioned, described, and recommended. KUI -10/2012Received August 1, 2011Accepted October 24, 2011

  15. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory

    International Nuclear Information System (INIS)

    Nilsson, A.; Ogasawara, H.; Cavalleri, M.; Nordlund, D.; Nyberg, M.; Wernet, Ph.; Pettersson, L.G.M.

    2005-01-01

    We combine photoelectron and x-ray absorption spectroscopy with density functional theory to derive a molecular orbital picture of the hydrogen bond in ice. We find that the hydrogen bond involves donation and back-donation of charge between the oxygen lone pair and the O-H antibonding orbitals on neighboring molecules. Together with internal s-p rehybridization this minimizes the repulsive charge overlap of the connecting oxygen and hydrogen atoms, which is essential for a strong attractive electrostatic interaction. Our joint experimental and theoretical results demonstrate that an electrostatic model based on only charge induction from the surrounding medium fails to properly describe the internal charge redistributions upon hydrogen bonding

  16. Hydrogen bonding in tight environments

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio

    2016-01-01

    The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...

  17. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  18. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  19. On the nature of blueshifting hydrogen bonds.

    Science.gov (United States)

    Mo, Yirong; Wang, Changwei; Guan, Liangyu; Braïda, Benoît; Hiberty, Philippe C; Wu, Wei

    2014-07-01

    The block-localized wave function (BLW) method can derive the energetic, geometrical, and spectral changes with the deactivation of electron delocalization, and thus provide a unique way to elucidate the origin of improper, blueshifting hydrogen bonds versus proper, redshifting hydrogen bonds. A detailed analysis of the interactions of F(3)CH with NH(3) and OH(2) shows that blueshifting is a long-range phenomenon. Since among the various energy components contributing to hydrogen bonds, only the electrostatic interaction has long-range characteristics, we conclude that the contraction and blueshifting of a hydrogen bond is largely caused by electrostatic interactions. On the other hand, lengthening and redshifting is primarily due to the short-range n(Y)→σ*(X-H) hyperconjugation. The competition between these two opposing factors determines the final frequency change direction, for example, redshifting in F(3)CH⋅⋅⋅NH(3) and blueshifting in F(3)CH⋅⋅⋅OH(2). This mechanism works well in the series F(n)Cl(3)-n CH⋅⋅⋅Y (n=0-3, Y=NH(3), OH(2), SH(2)) and other systems. One exception is the complex of water and benzene. We observe the lengthening and redshifting of the O-H bond of water even with the electron transfer between benzene and water completely quenched. A distance-dependent analysis for this system reveals that the long-range electrostatic interaction is again responsible for the initial lengthening and redshifting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  1. Recognition of 5'-YpG-3' sequences by coupled stacking/hydrogen bonding interactions with amino acid residues.

    Science.gov (United States)

    Lamoureux, Jason S; Maynes, Jason T; Glover, J N Mark

    2004-01-09

    The combined biochemical and structural study of hundreds of protein-DNA complexes has indicated that sequence-specific interactions are mediated by two mechanisms termed direct and indirect readout. Direct readout involves direct interactions between the protein and base-specific atoms exposed in the major and minor grooves of DNA. For indirect readout, the protein recognizes DNA by sensing conformational variations in the structure dependent on nucleotide sequence, typically through interactions with the phosphodiester backbone. Based on our recent structure of Ndt80 bound to DNA in conjunction with a search of the existing PDB database, we propose a new method of sequence-specific recognition that utilizes both direct and indirect readout. In this mode, a single amino acid side-chain recognizes two consecutive base-pairs. The 3'-base is recognized by canonical direct readout, while the 5'-base is recognized through a variation of indirect readout, whereby the conformational flexibility of the particular dinucleotide step, namely a 5'-pyrimidine-purine-3' step, facilitates its recognition by the amino acid via cation-pi interactions. In most cases, this mode of DNA recognition helps explain the sequence specificity of the protein for its target DNA.

  2. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-01-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇ 2 ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems

  3. dimensional architectures via hydrogen bonds

    Indian Academy of Sciences (India)

    Administrator

    However, the utilization of hydrogen bond supramolecular syn- thons in assembling metal–organic frameworks is relatively less explored area of research. The combi- nation of these two aspects is expected to result in more control over the network geometries and there- fore the properties. The aim of the present work is to.

  4. Inversion symmetry and local vs. dispersive interactions in the nucleation of hydrogen bonded cyclic n-mer and tape of imidazolecarboxamidines

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available Substitutional changes to imidazolecarboxamidine that preserved intermolecular hydrogen bonding in the solid state were used to study the relationship between packing and the hydrogen bond motif. Various motifs competed, but the most common imidazolecarboxamidine crystalline phase was a Ci symmetric dimer that established inversion centers by associating enantiomeric tautomers. Counter to intuition, the calculated gas-phase energies per molecule of the solid state atomic coordinates of the Ci dimer motifs were higher than those of the C1 dimer, trimer, tetramer and tape motifs, while the packing densities of Ci dimers were found to be higher. This result was interpreted as an enhanced ability of the Ci dimers to pack. If other motifs competed, the hydrogen bonds and conformations should be lower in energy than the Ci dimer. The results detail the effect of packing on the conformation in these molecules. The results are interpreted as a rough measure of the energetic compromise between packing and the energies related to the coordinates involving one dihedral angle and hydrogen bonding. The results establish a connection between solution and solid phase conformation.

  5. Biased Gs Versus Gq Proteins and β-Arrestin Signaling in the NK1 Receptor Determined by Interactions in the Water Hydrogen Bond Network

    DEFF Research Database (Denmark)

    Valentin-Hansen, Louise; Frimurer, Thomas M; Mokrosinski, Jacek

    2015-01-01

    X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constella......X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical...... constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and β-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead....... It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways....

  6. Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments.

    Science.gov (United States)

    Krystkowiak, Ewa; Maciejewski, Andrzej

    2011-06-21

    Absorption spectra of 6-aminocoumarin (6AC) and 7-aminocoumarins (C120 and C151) were studied in polyfluorinated alcohols: (1,1,1,3,3,3-hexafluoroisopropanol (HFIP), 2,2,2-trifluoroethanol (TFE)), in water and in methanol, and compared to those taken in 1-chloro-n-alkanes. According to our results, the observed unusual blue-shift of a long-wavelength band in absorption spectra in strong protic solvents is direct evidence of significant weakening of a NH-O hydrogen bond. The results obtained for the aminocoumarins in HFIP, which in contrast to aliphatic alcohols does not form hydrogen bonds of the acceptor type, prove that the decrease in the energy of the NH-O hydrogen bond upon excitation to the lowest S(1)-LE state is significantly greater than the increase in the energy of hydrogen bonds made by the oxygen atom of carbonyl group OH-O. It is in contrast to theoretical calculations for C151 [Y. Liu, J. Ding, R. Liu, D. Shi and J. Sun, J. Photochem. Photobiol. A, 2009, 201, 203-207]. A comparison of the absorption spectra measured in DMSO and in 1-chloro-n-alkanes shows that the energy of two N-HO hydrogen bonds considerably increases as a result of excitation. These results are consistent with those of the theoretical calculations [Y. Liu, J. Ding, R. Liu, D. Shi and J. Sun, J. Photochem. Photobiol. A, 2009, 201, 203-207; P. Zhou, P. Song, J. Liu, K. Han and G. He, Phys. Chem. Chem. Phys., 2009, 11, 9440-9449]. In this study we applied the procedure proposed by us in J. Photochem. Photobiol. A, 2006, 184, 250-264 for the determination of changes in hydrogen bond energy as a result of electronic excitation based on analysis of the absorption spectra of the probe studied in the solvents interacting with it exclusively nonspecifically and in those forming hydrogen bonds with it.

  7. Chemical Warfare Agent Surface Adsorption: Hydrogen Bonding of Sarin and Soman to Amorphous Silica.

    Science.gov (United States)

    Davis, Erin Durke; Gordon, Wesley O; Wilmsmeyer, Amanda R; Troya, Diego; Morris, John R

    2014-04-17

    Sarin and soman are warfare nerve agents that represent some of the most toxic compounds ever synthesized. The extreme risk in handling such molecules has, until now, precluded detailed research into the surface chemistry of agents. We have developed a surface science approach to explore the fundamental nature of hydrogen bonding forces between these agents and a hydroxylated surface. Infrared spectroscopy revealed that both agents adsorb to amorphous silica through the formation of surprisingly strong hydrogen-bonding interactions with primarily isolated silanol groups (SiOH). Comparisons with previous theoretical results reveal that this bonding occurs almost exclusively through the phosphoryl oxygen (P═O) of the agent. Temperature-programmed desorption experiments determined that the activation energy for hydrogen bond rupture and desorption of sarin and soman was 50 ± 2 and 52 ± 2 kJ/mol, respectively. Together with results from previous studies involving other phosphoryl-containing molecules, we have constructed a detailed understanding of the structure-function relationship for nerve agent hydrogen bonding at the gas-surface interface.

  8. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts

    OpenAIRE

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji

    2015-01-01

    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction...

  9. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  10. Experimental and computational evidence for hydrogen bonding interaction between 2′-deoxyadenosine conjugate adduct and amino-terminated organic film on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Szwajca, A., E-mail: Anna.Szwajca@amu.edu.pl [Faculty of Chemistry, A" . Mickiewicz University, Umultowska 89 b, 61-614 Poznań (Poland); Krzywiecki, M. [Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice (Poland); Pluskota-Karwatka, D. [Faculty of Chemistry, A" . Mickiewicz University, Umultowska 89 b, 61-614 Poznań (Poland)

    2015-08-03

    A simple method for immobilization of malonaldehyde-acetaldehyde conjugate adduct with DNA base onto an amino-terminated surface of silicon from water solution is proposed. The Si(001) surface which contains OH groups was modified with 3-aminopropyltrimethoxysilane (APTMS) to serve as a linker between the silica surface and the organic adduct. The 2′-deoxyadenosine adduct was adsorbed on the APTMS/Si surface from acetonitrile/water solution. This nucleoside derivative is stable under laboratory conditions and emits a natural fluorescence, allowing for its adsorption on the APTMS/Si surface to be easily verified by fluorescence microscopy, non-contact atomic force microscopy and attenuated total reflectance Fourier transform infrared spectroscopy. The degree of surface coverage by the adduct was evaluated by X-ray photoelectron spectroscopy (XPS). Analysis of the XPS spectra revealed bands at 400.2 eV and 533.1 eV which are characteristic of a hydrogen bonded –NH{sub 2} and –OH group. This observation implies that the free electron donating –NH{sub 2} groups from the APTMS layer makes hydrogen bonds with the fluorescent adduct and immobilize it on the surface. The wetting angle of the APTMS/Si surface before and after adsorption of the nucleoside derivative does not differ significantly, which points to the involvement of an – OH group from 2′-deoxyadenosine to be involved in hydrogen bonding. These experimental results were further supported using quantum chemical calculations to demonstrate that the 2′deoxyadenosine adduct makes hydrogen bonds with the APTMS molecule. Furthermore, this hydrogen bond involves the –NH{sub 2} group from APTMS and –OH group at carbon atoms C3 and C6 from the deoxyribose ring of 2′deoxyadenosine. - Highlights: • DNA base adduct was immobilized onto amino-terminated silicon surface. • Hydrogen bonds were observed between aminosilane molecules and deoxyribose ring. • Fluorescent film was characterized by

  11. A series of Cd(II) complexes with π-π stacking and hydrogen bonding interactions: Structural diversities by varying the ligands

    International Nuclear Information System (INIS)

    Wang Xiuli; Zhang Jinxia; Liu Guocheng; Lin Hongyan

    2011-01-01

    Seven new Cd(II) complexes consisting of different phenanthroline derivatives and organic acid ligands, formulated as [Cd(PIP) 2 (dnba) 2 ] (1), [Cd(PIP)(ox)].H 2 O (2), [Cd(PIP)(1,4-bdc)(H 2 O)].4H 2 O (3), [Cd(3-PIP) 2 (H 2 O) 2 ].4H 2 O (4), [Cd 2 (3-PIP) 4 (4,4'-bpdc)(H 2 O) 2 ].5H 2 O (5), [Cd(3-PIP)(nip)(H 2 O)].H 2 O (6), [Cd 2 (TIP) 4 (4,4'-bpdc)(H 2 O) 2 ].3H 2 O (7) (PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 3-PIP=2-(3-pyridyl)imidazo[4,5-f]1,10-phenanthroline, TIP=2-(2-thienyl)imidazo[4,5-f]1,10-phenanthroline, Hdnba=3,5-dinitrobenzoic acid, H 2 ox=oxalic acid, 1,4-H 2 bdc=benzene-1,4-dicarboxylic acid, 4,4'-H 2 bpdc=biphenyl-4,4'-dicarboxylic acid, H 2 nip=5-nitroisophthalic acid) have been synthesized under hydrothermal conditions. Complexes 1 and 4 possess mononuclear structures; complexes 5 and 7 are isostructural and have dinuclear structures; complexes 2 and 3 feature 1D chain structures; complex 6 contains 1D double chain, which are further extended to a 3D supramolecular structure by π-π stacking and hydrogen bonding interactions. The N-donor ligands with extended π-system and organic acid ligands play a crucial role in the formation of the final supramolecular frameworks. Moreover, thermal properties and fluorescence of 1-7 are also investigated. -- Graphical abstract: Seven new supramolecular architectures have been successfully isolated under hydrothermal conditions by reactions of different phen derivatives and Cd(II) salts together with organic carboxylate anions auxiliary ligands. Display Omitted Research highlights: → Complexes 1-7 are 0D or 1D polymeric structure, the π-π stacking and H-bonding interactions extend the complexes into 3D supramolecular network. To our knowledge, systematic study on π-π stacking and H-bonding interactions in cadmium(II) complexes are still limited. → The structural differences among the title complexes indicate the importance of N-donor chelating ligands for the creation of molecular

  12. Reinforcing thermoplastics with hydrogen bonding bridged inorganics

    Energy Technology Data Exchange (ETDEWEB)

    Du Mingliang, E-mail: du@zstu.edu.c [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Guo Baochun, E-mail: psbcguo@scut.edu.c [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu Mingxian; Cai Xiaojia; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-01-15

    A new reinforcing strategy for thermoplastics via hydrogen bonding bridged inorganics in the matrix was proposed. The hydrogen bonds could be formed in thermoplastics matrices with the incorporation of a little organics containing hydrogen bonding functionalities. Isotactic polypropylene (PP), polyamide 6 (PA 6), and high density polyethylene (HDPE), together with specific inorganics and organics were utilized to verify the effectiveness of the strategy. The investigations suggest that the hydrogen bonding bridged inorganics led to substantially increased flexural properties. The results of attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicate the formation of hydrogen bonding among the inorganics and organics in the composites.

  13. Excluded volume versus hydrogen bonding: complementary or incompatible concepts?

    Science.gov (United States)

    Nezbeda, Ivo; Škvor, Jiří

    2012-12-01

    An attempt has been made to assess individual effects of the repulsive and attractive interactions on the structure of associating fluids using short-range models descending from parent realistic models. It is shown that neither the excluded volume (repulsive interactions) nor the hydrogen bonding (attractive interactions) considered separately are able to produce the correct structure. However, when both these types of interactions are considered together, they faithfully reproduce the structure of water and other associating fluids. Consequently, although some properties of aqueous systems can be explained qualitatively/intuitively by hydrogen bonding only, disregarding simultaneously the excluded volume effects may be misleading.

  14. Hydrogen-bond interactions in organically-modified polysiloxane networks studied by 1D and 2D CRAMPS and double-quantum 1H MAS NMR

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Dybal, Jiří

    2002-01-01

    Roč. 35, č. 27 (2002), s. 10038-10047 ISSN 0024-9297 R&D Projects: GA ČR GA203/98/P290; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : Hydrogen bonding * polysiloxane * 1H MAS NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.751, year: 2002

  15. Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Hobza, Pavel

    2007-01-01

    Roč. 111, č. 33 (2007), s. 8257-8263 ISSN 1089-5639 R&D Projects: GA ČR GA203/05/0009; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bonded complexes * derived complexes * MP2 method Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  16. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function

    Science.gov (United States)

    Horowitz, Scott; Trievel, Raymond C.

    2012-01-01

    Carbon-oxygen (CH···O) hydrogen bonding represents an unusual category of molecular interactions first documented in biological structures over 4 decades ago. Although CH···O hydrogen bonding has remained generally underappreciated in the biochemical literature, studies over the last 15 years have begun to yield direct evidence of these interactions in biological systems. In this minireview, we provide a historical context of biological CH···O hydrogen bonding and summarize some major advancements from experimental studies over the past several years that have elucidated the importance, prevalence, and functions of these interactions. In particular, we examine the impact of CH···O bonds on protein and nucleic acid structure, molecular recognition, and enzyme catalysis and conclude by exploring overarching themes and unresolved questions regarding unconventional interactions in biomolecular structure. PMID:23048026

  17. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    Science.gov (United States)

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-04-20

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  18. Can QTAIM topological parameters be a measure of hydrogen bonding strength?

    Science.gov (United States)

    Mo, Yirong

    2012-05-31

    The block-localized wave function (BLW) method, which is the simplest variant of ab initio valence bond (VB) theory, together with the quantum theory of atoms in molecules (QTAIM) approach, have been used to probe the intramolecular hydrogen bonding interactions in a series of representative systems of resonance-assisted hydrogen bonds (RAHBs). RAHB is characteristic of the cooperativity between the π-electron delocalization and hydrogen bonding interactions and is identified in many biological systems. While the deactivation of the π resonance in these RAHB systems by the use of the BLW method is expected to considerably weaken the hydrogen bonding strength, little change on the topological properties of electron densities at hydrogen bond critical points (HBCPs) is observed. This raises a question of whether the QTAIM topological parameters can be an effective measure of hydrogen bond strength.

  19. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  20. Measurement and Theory of Hydrogen Bonding Contribution to Isosteric DNA Base Pairs

    OpenAIRE

    Khakshoor, Omid; Wheeler, Steven E.; Houk, K. N.; Kool, Eric T.

    2012-01-01

    We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions betwe...

  1. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  2. A novel tubular hydrogen-bond pattern in a new diazaphosphole oxide: a combination of X-ray crystallography and theoretical study of hydrogen bonds.

    Science.gov (United States)

    Sabbaghi, Fahimeh; Pourayoubi, Mehrdad; Farhadipour, Abolghasem; Ghorbanian, Nazila; Andreev, Pavel V

    2017-07-01

    In the structure of 2-(4-chloroanilino)-1,3,2λ 4 -diazaphosphol-2-one, C 12 H 11 ClN 3 OP, each molecule is connected with four neighbouring molecules through (N-H) 2 ...O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 3 3 (12) and R 4 3 (14) hydrogen-bond ring motifs, combined with a C(4) chain motif. The hole constructed in the tubular architecture includes a 12-atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N-H groups of the diazaphosphole ring, not co-operating in classical hydrogen bonding, takes part in an N-H...π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen-bond pattern. The energies of the N-H...O and N-H...π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen-bonded cluster of molecules as the input file for the chemical calculations. In the 1 H NMR experiment, the nitrogen-bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2 J H-P coupling constant.

  3. Hydrogen Bonding in the Electronic Excited State

    Science.gov (United States)

    Zhao, Guang-Jiu; Han, Ke-Li; DICP1101 Group Team

    2013-03-01

    Here, I will give a talk on our recent advances in electronic excited-state hydrogen-bonding dynamics and the significant role of excited-state hydrogen bonding on internal conversion (IC), electronic spectral shifts (ESS), photoinduced electron transfer (PET), fluorescence quenching (FQ), intramolecular charge transfer (ICT), and metal-to-ligand charge transfer (MLCT). The combination of various spectroscopic experiments with theoretical calculations has led to tremendous progress in excited-state hydrogen-bonding research. We first demonstrated that intermolecular hydrogen bond in excited state can be greatly strengthened or weakened for many chromophores. We have also clarified that intermolecular hydrogen-bond strengthening and weakening correspond to red-shifts and blue-shifts, respectively, in the electronic spectra. Moreover, radiationless deactivations (via IC, PET, ICT, MLCT, and so on) can be dramatically influenced by excited-state hydrogen bonding. GJZ and KLH thank the NSFC (Nos: 20903094 and 20833008) for financial support.

  4. Defining the hydrogen bond: An account (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, Pavel; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J.

    2011-01-01

    Roč. 83, č. 8 (2011), s. 1619-1636 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40550506 Keywords : bonding * electrostatic interactions * hydrogen bonding * molecular interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2011

  5. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  6. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  7. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    -proton interaction in the hydrogen bond. (ii) a harmonic coupling between the protons in adjacent hydrogen bonds, and (iii) a harmonic coupling between the nearest-neighbor heavy ions (an isolated diatomic chain with the lowest acoustic band) or instead a harmonic on-site potential for the heavy ions (a diatomic...

  8. The elusive≡ CH··· O complex in the hydrogen bonded systems of ...

    Indian Academy of Sciences (India)

    Hydrogen-bonded complexes of phenylacetylene (PhAc) with methanol (MeOH) and diethylether (DEE) were studied using matrix isolation infrared spectroscopy. This study specifically searched for the ≡CH · · ·O hydrogen bonded complex in these systems, which manifest a n-σ* interaction and which is a local minimum ...

  9. Watson-Crick hydrogen bonds : Nature and role in DNA replication

    NARCIS (Netherlands)

    Guerra, Célia Fonseca; Bickelhaupt, F. Matthias

    2006-01-01

    The hydrogen bonds in DNA Watson–Crick base pairs have long been considered predominantly electrostatic phenomena. In this chapter, we show with state-of-the-art calculations that this is not true and that electrostatic interactions and covalent contributions in these hydrogen bonds are in fact of

  10. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  11. Molecular structure and intramolecular hydrogen bonding in 2 ...

    Indian Academy of Sciences (India)

    (RCP) in the RAHB ring are valuable parameters for describing the bond. Positive values of Laplacian at .... RCP, and (d) Laplacian of total electronic density at RCP. shared interactions such as covalent bonds. In the lat- ..... ing vibrations with hydrogen bond strength have been known for a long time.53,54. The calculated.

  12. Effects of dimethyl sulfoxide on the hydrogen bonding structure

    Indian Academy of Sciences (India)

    Effects of dimethyl-sulfoxide (DMSO) on the hydrogen bonding structure and dynamics in aqueousN-methylacetamide (NMA) solution are investigated by classical molecular dynamics simulations. Themodifications of structure and interaction between water and NMA in presence of DMSO molecules are calculatedby ...

  13. Hydrogen bonding in thiobenzamide synthon and its Cadmium ...

    Indian Academy of Sciences (India)

    The molecular arrangement in the crystal structure of TBA can be described on the basis of supramolecular dimeric synthons built up by four independent TBA molecules stacked via N-H. . .S hydrogen bonds. The 3D Hirshfeld surfaces and the associated 2D fingerprint plots were investigated for intermolecular interactions.

  14. Synthesis and structure of ruthenium(IV) complexes featuring N-heterocyclic ligands with an N-H group as the hydrogen-bond donor: hydrogen interactions in solution and in the solid state.

    Science.gov (United States)

    Díez, Josefina; Gimeno, José; Merino, Isabel; Rubio, Eduardo; Suárez, Francisco J

    2011-06-06

    The synthesis and characterization of novel ruthenium(IV) complexes [Ru(η(3):η(3)-C(10)H(16))Cl(2)L] [L = 3-methylpyrazole (2b), 3,5-dimethylpyrazole (2c), 3-methyl-5-phenylpyrazole (2d), 2-(1H-pyrazol-5-yl)phenol (2e), 6-azauracile (3), and 1H-indazol-3-ol (4)] are reported. Complex 2e is converted to the chelated complex [Ru(η(3):η(3)-C(10)H(16))Cl(κ(2)-N,O-2-(1H-pyrazol-3-yl)phenoxy)] (5) by treatment with an excess of NaOH. All of the ligands feature N-H, O-H, or C═O as the potential hydrogen-bonding group. The structures of complexes 2a-2c, 2e, 3, and 5 in the solid state have been determined by X-ray diffraction. Complexes 2a-2c and 3, which contain the pyrazole N-H group, exhibit intra- and intermolecular hydrogen bonds with chloride ligands [N-H···Cl distances (Å): intramolecular, 2.30-2.78; intermolecular, 2.59-2.77]. Complexes 2e and 3 bearing respectively O-H and C═O groups also feature N-H···O interactions [intramolecular (2e), 2.27 Å; intermolecular (3), 2.00 Å]. Chelated complex 5, lacking the O-H group, only shows an intramolecular N-H···Cl hydrogen bonding of 2.42 Å. The structure of complex 3, which turns out to be a dimer in the solid state through a double intermolecular N-H···O hydrogen bonding, has also been investigated in solution (CD(2)Cl(2)) by NMR diffusion studies. Diffusion-ordered spectroscopy experiments reveal an equilibrium between monomer and dimer species in solution whose extension depends on the temperature, concentration, and coordinating properties of the solvent. Preliminary catalytic studies show that complex 3 is highly active in the redox isomerization of the allylic alcohols in an aqueous medium under very mild reaction conditions (35 °C) and in the absence of a base. © 2011 American Chemical Society

  15. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    The harmonic oscillator model of aromaticity (HOMA) index elucidated the impact of hydrogen bond- ing in the ring. Intramolecular hydrogen bonding energy has been calculated from topological study. The low wavenumber vibrational modes obtained from experimental FT-Raman spectrum also supported the presence.

  16. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    groups (hydrogen bonding acceptor sites) that stabi- lize the metal-opda cationic complex. The present contribution describes the synthesis and structural analysis of compounds [Zn(opda)2. (NO3)2] (1) and [Cd(opda)2(NO3)2] (2) emphasizing intricate supramolecular hydrogen bonding networks in their crystal structures.

  17. Genetically introduced hydrogen bond interactions reveal an asymmetric charge distribution on the radical cation of the special-pair chlorophyll P680.

    Science.gov (United States)

    Nagao, Ryo; Yamaguchi, Motoki; Nakamura, Shin; Ueoka-Nakanishi, Hanayo; Noguchi, Takumi

    2017-05-05

    The special-pair chlorophyll (Chl) P680 in photosystem II has an extremely high redox potential ( E m ) to enable water oxidation in photosynthesis. Significant positive-charge localization on one of the Chl constituents, P D1 or P D2 , in P680 + has been proposed to contribute to this high E m To identify the Chl molecule on which the charge is mainly localized, we genetically introduced a hydrogen bond to the 13 1 -keto C=O group of P D1 and P D2 by changing the nearby D1-Val-157 and D2-Val-156 residues to His, respectively. Successful hydrogen bond formation at P D1 and P D2 in the obtained D1-V157H and D2-V156H mutants, respectively, was monitored by detecting 13 1 -keto C=O vibrations in Fourier transfer infrared (FTIR) difference spectra upon oxidation of P680 and the symmetrically located redox-active tyrosines Y Z and Y D , and they were simulated by quantum-chemical calculations. Analysis of the P680 + /P680 FTIR difference spectra of D1-V157H and D2-V156H showed that upon P680 + formation, the 13 1 -keto C=O frequency upshifts by a much larger extent in P D1 (23 cm -1 ) than in P D2 (the D1-V157H mutation increased the E m of P680 to a larger extent than did the D2-V156H mutation. These results, together with the previous results for the mutants of the His ligands of P D1 and P D2 , lead to a definite conclusion that a charge is mainly localized to P D1 in P680. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Hydrogen bonds and twist in cellulose microfibrils.

    Science.gov (United States)

    Kannam, Sridhar Kumar; Oehme, Daniel P; Doblin, Monika S; Gidley, Michael J; Bacic, Antony; Downton, Matthew T

    2017-11-01

    There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  20. Supramolecular network through Nsbnd H…O, Osbnd H…O and Csbnd H…O hydrogen bonding interaction and density functional theory studies of 4-methylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal

    Science.gov (United States)

    Rajkumar, M.; Muthuraja, P.; Dhandapani, M.; Chandramohan, A.

    2018-02-01

    By utilizing the hydrogen bonding strategy, 4-methylanilinium-3-hydroxy-4-corboxy-benzenesulphonate (4MABS), an organic proton transfer molecular salt was synthesized and single crystals of it were successfully grown by slow solvent evaporation solution growth technique at ambient temperature. The 1H and 13C NMR spectra were recorded to establish the molecular structure of the title salt. The single crystal XRD analysis reveals that the title salt crystallizes in monoclinic crystal system with centrosymmetric space group, P21/n. Further, the title salt involves extensive intermolecular Nsbnd H…O, Osbnd H…O and Csbnd H…O as well as intramolecular Osbnd H…O hydrogen bonding interactions to construct supramolecular architecture. All quantum chemical calculations were performed at the level of density functional theory (DFT) with B3LYP functional using 6-311G (d,p) basis atomic set. The photoluminescence spectrum was recorded to explore the emission property of the title crystal. The presence of the various vibrational modes and functional groups in the synthesized salt was confirmed by FT-IR studies. The thermal behaviour of title crystal was established employing TG/DTA analyses. The mechanical properties of the grown crystal were determined by Vicker's microhardness studies. Dielectric measurements were carried out on the grown crystal at a different temperature to evaluate electrical properties.

  1. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  2. Thermodynamic stability of hydrogen-bonded systems in polar and nonpolar environments.

    Science.gov (United States)

    Pasalić, Hasan; Aquino, Adélia J A; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Georg, Herbert C; Moraes, Tatiane F; Coutinho, Kaline; Canuto, Sylvio; Lischka, Hans

    2010-07-30

    The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal-isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. 2010 Wiley Periodicals, Inc.

  3. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Energy Technology Data Exchange (ETDEWEB)

    Koetzle, Thomas F. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: tkoetzle@anl.gov; Piccoli, Paula M.B.; Schultz, Arthur J. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-02-21

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a {beta}-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS)

  4. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Science.gov (United States)

    Koetzle, Thomas F.; Piccoli, Paula M. B.; Schultz, Arthur J.

    2009-02-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H⋯O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  5. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    International Nuclear Information System (INIS)

    Koetzle, Thomas F.; Piccoli, Paula M.B.; Schultz, Arthur J.

    2009-01-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  6. Hydrogen-bond acidity of ionic liquids: an extended scale.

    Science.gov (United States)

    Kurnia, Kiki A; Lima, Filipa; Cláudio, Ana Filipa M; Coutinho, João A P; Freire, Mara G

    2015-07-15

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  7. Exploring Strong Interactions in Proteins with Quantum Chemistry and Examples of Their Applications in Drug Design.

    Directory of Open Access Journals (Sweden)

    Neng-Zhong Xie

    Full Text Available Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge are studied that are stronger than (or comparable to the common hydrogen bond interactions, and play important roles in protein-protein interactions.Quantum chemical methods MP2 and CCSD(T are used in calculations of interaction energies and structural optimizations.The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets. Typical examples of amino acid salt bridge, cation-π, and amide bridge interactions are analyzed, including the inhibitor design targeting neuraminidase (NA enzyme of influenza A virus, and the ligand binding interactions in the HCV p7 ion channel. The inhibition mechanism of the M2 proton channel in the influenza A virus is analyzed based on strong amino acid interactions.(1 The salt bridge interactions between acidic amino acids (Glu- and Asp- and alkaline amino acids (Arg+, Lys+ and His+ are the strongest residue-residue interactions. However, this type of interaction may be weakened by solvation effects and broken by lower pH conditions. (2 The cation- interactions between protonated amino acids (Arg+, Lys+ and His+ and aromatic amino acids (Phe, Tyr, Trp and His are 2.5 to 5-fold stronger than common hydrogen bond interactions and are less affected by the solvation environment. (3 The amide bridge interactions between the two amide-containing amino acids (Asn and Gln are three times stronger than hydrogen bond interactions, which are less influenced by the pH of the solution. (4 Ten of the twenty natural amino acids are involved in salt bridge, or cation-, or amide bridge interactions that often play important roles in protein-protein, protein-peptide, protein-ligand, and protein-DNA interactions.

  8. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    Science.gov (United States)

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  9. Looking at hydrogen bonds in cellulose.

    Science.gov (United States)

    Nishiyama, Yoshiharu; Langan, Paul; Wada, Masahisa; Forsyth, V Trevor

    2010-11-01

    A series of cellulose crystal allomorphs has been studied using high-resolution X-ray and neutron fibre diffraction to locate the positions of H atoms involved in hydrogen bonding. One type of position was always clearly observed in the Fourier difference map (F(d)-F(h)), while the positions of other H atoms appeared to be less well established. Despite the high crystallinity of the chosen samples, neutron diffraction data favoured some hydrogen-bonding disorder in native cellulose. The presence of disorder and a comparison of hydrogen-bond geometries in different allomorphs suggests that although hydrogen bonding may not be the most important factor in the stabilization of cellulose I, it is essential for stabilizing cellulose III, which is the activated form, and preventing it from collapsing back to the more stable cellulose I.

  10. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond. Dipak K. Palit Radaition & Photochemistry Division Bhabha Atomic Research Centre Mumbai 400 085, India.

  11. Lichenysin, a cyclooctapeptide occurring in Chinese liquor jiannanchun reduced the headspace concentration of phenolic off-flavors via hydrogen-bond interactions.

    Science.gov (United States)

    Zhang, Rong; Wu, Qun; Xu, Yan

    2014-08-20

    Nonvolatile compounds play important roles in the quality of alcoholic beverages. In our previous work, a type of cyclooctapeptide lichenysin was newly identified in Chinese strong-aroma type liquor. In this work, it was found that lichenysin could selectively affect aroma volatility in strong-aroma type (Jiannanchun) liquor. Interaction of lichenysin and volatile phenolic compounds (off-odors in strong-aroma type liquor) was characterized using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HS-SPME results indicated that lichenysin very efficiently suppressed the volatility of phenolic compounds by 36-48% (P flavor and nonvolatile matrix components in Chinese liquors.

  12. Intramolecular hydrogen bonding and tautomerism in Schiff bases ...

    Indian Academy of Sciences (India)

    N and keto-amine, O…H-N forms) in this series. The molecular structure of 8 has been determined crystallographically, and observed that the compound is in the form of phenol-imine, defined by the strong intramolecular [O-H…N = 1.72(3), 1.81(2) Å] hydrogen bonds. Compound 8 crystallizes in the monoclinic space group ...

  13. Influence of intramolecular and intermolecular hydrogen bonding on the fluorescence decay time of indigo derivatives

    International Nuclear Information System (INIS)

    Schneider, S.; Lill, E.; Hefferle, P.; Doerr, F.

    1981-01-01

    It is well known that both intramolecular and intermolecular hydrogen bonding can lead to drastic changes in the lifetime of the first excited singlet state. By employing a synchronously pumped, mode-locked dye-laser for excitation in connection with a continuously operated streak camera for detection, the solvent-dependent fluorescence decay times of several indigo derivatives were determined with high temporal resolution (approx. 5 ps with deconvolution). It is found that in indigo dyes intramolecular hydrogen bonding gives rise to a strong fluorescence quenching; intermolecular hydrogen bonding can also provide a channel for fast radiationless deactivation in those derivatives in which the former are not present. (author)

  14. Hydrogen peroxide coordination to cobalt(II) facilitated by second-sphere hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Wallen, C.M.; Palatinus, Lukáš; Bacsa, J.; Scarborough, C.C.

    2016-01-01

    Roč. 55, č. 39 (2016), s. 11902-11906 ISSN 0044-8249 Institutional support: RVO:68378271 Keywords : cobalt * hydrogen bonds * peroxides * peroxido ligands * second-sphere interactions Subject RIV: CC - Organic Chemistry

  15. Strong interaction phenomenology

    International Nuclear Information System (INIS)

    Giffon, M.

    1989-01-01

    A brief review of high energy hadronic data (Part I)is followed by an introduction to the standard (Weinberg Salam Glashow) model of electroweak interactions and its extension to the hadrons (Part II). Rudiments of QCD and of the parton model area given in Part III together with a quick review of the spectroscopy of heavy flavours whereas Part IV is devoted to the introduction to deep inelastic scattering and to the so-called EMC effects. (author)

  16. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding

    OpenAIRE

    Yuan, Hongbo; Xu, Jialiang; van Dam, Eliane P.; Giubertoni, Giulia; Rezus, Yves L. A.; Hammink, Roel; Bakker, Huib J.; Zhan, Yong; Rowan, Alan E.; Xing, Chengfen; Kouwer, Paul H. J.

    2017-01-01

    Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions fo...

  17. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability.

    Science.gov (United States)

    Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  18. Hydrogen-bonded encapsulation complexes in protic solvents.

    Science.gov (United States)

    Amaya, Toru; Rebek, Julius

    2004-11-03

    We describe here the behavior of the hydrogen-bonded capsule 1.1 and its complexes in protic solvents. The kinetics and thermodynamics of the encapsulation process were determined through conventional (1)H NMR methods. The enthalpies and entropies of encapsulation are both positive, indicating a process that liberates solvent molecules. The rates of dissociation-association of the capsule were comparable to the rates for the in-out exchange of large guests, which suggests that guest exchange occurs by complete dissociation of the capsule in protic solvents. The stability of the hydrogen-bonded capsule 1.1 toward protic solvents depends strongly on the guests, with the best guest being dimethylstilbene 8. The results establish guidelines for the properties of capsules that could be accessed in water.

  19. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  20. Hydrogen bonding lowers intrinsic nucleophilicity of solvated nucleophiles.

    Science.gov (United States)

    Chen, Xin; Brauman, John I

    2008-11-12

    The relationship between nucleophilicity and the structure/environment of the nucleophile is of fundamental importance in organic chemistry. In this work, we have measured nucleophilicities of a series of substituted alkoxides in the gas phase. The functional group substitutions affect the nucleophiles through ion-dipole, ion-induced dipole interactions and through hydrogen bonding whenever structurally possible. This set of alkoxides serves as an ideal model system for studying nucleophiles under microsolvation settings. Marcus theory was applied to analyze the results. Using Marcus theory, we separate nucleophilicity into two independent components, an intrinsic nucleophilicity and a thermodynamic driving force determined solely by the overall reaction exothermicity. It is found that the apparent nucleophilicities of the substituted alkoxides are always much lower than those of the unsubstituted ones. However, ion-dipole, ion-induced dipole interactions, by themselves, do not significantly affect the intrinsic nucleophilicity; the decrease in the apparent nucleophilicity results from a weaker thermodynamic driving force. On the other hand, hydrogen bonding not only stabilizes the nucleophile but also increases the intrinsic barrier height by 3 to approximately 4 kcal mol (-1). In this regard, the hydrogen bond is not acting as a perturbation in the sense of an external dipole but more directly affects the electronic structure and reactivity of the nucleophilic alkoxide. This finding offers a deeper insight into the solvation effect on nucleophilicity, such as the remarkably lower reactivities in nucleophilic substitution reactions in protic solvents than in aprotic solvents.

  1. Water, Hydrogen Bonding and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available n this work, the properties of the water are briefly revisited. Though liquid water has a fleeting structure, it displays an astonishingly stable network of hydrogen bonds. Thus, even as a liquid, water possesses a local lattice with short range order. The presence of hydroxyl (O-H and hydrogen (H....OH2 bonds within water, indicate that it can simultaneously maintain two separate energy systems. These can be viewed as two very different temperatures. The analysis presented uses results from vibrational spec- troscopy, extracting the force constant for the hydrogen bonded dimer. By idealizing this species as a simple diatomic structure, it is shown that hydrogen bonds within wa- ter should be able to produce thermal spectra in the far infrared and microwave regions of the electromagnetic spectrum. This simple analysis reveals that the oceans have a physical mechanism at their disposal, which is capable of generating the microwave background.

  2. Local structure and hydrogen bond characteristics of imidazole molecules for proton conduction in acid and base proton-conducting composite materials.

    Science.gov (United States)

    Hori, Yuta; Chikai, Takuma; Ida, Tomonori; Mizuno, Motohiro

    2018-04-18

    Composite materials of acidic polymers and basic molecules have high proton-conductivity. Understanding the proton conduction mechanism of the composite materials, which depends on hydrogen bond characteristics, is an important task for developing materials with high proton-conductivity. This work is focused on poly(vinylphosphonic acid)-imidazole and alginic acid-imidazole as examples of composite materials of acidic polymers and basic molecules and examines the local structure and hydrogen bond characteristics of imidazole (Im) molecules in composite materials using density functional theory. The results show that Im molecules interact strongly with polymeric acids in these composite materials and that the interaction energy increases with the increase in the number of Im molecules. The rotational motion of Im molecules occurs in the segment where only Im molecules without excess protons are hydrogen-bonded to each other. The calculation results for the various segments, which depend on the hydrogen bonding environment, show that the proton conduction process in composite materials consists of the following steps: proton transfer in the segment where Im molecules interact with polymeric acids, proton transfer in the segment where Im molecules are affected by excess protons, and Grotthuss diffusion with reorientation of Im molecules in the segment where only Im molecules without excess protons are bonded to each other.

  3. H/D Isotope Effects in Hydrogen Bonded Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Filarowski

    2013-04-01

    Full Text Available An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (1H,2H on d (1H. This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  4. Infrared spectra of hydrogen-bonded salicylic acid and its derivatives : Salicylic acid and acetylsalicylic acid

    Science.gov (United States)

    Wójcik, Marek J.

    1981-11-01

    Infrared spectra of hydrogen-bonded salicylic acid, O-deutero-salicylic acid and acetylsalicylic acid crystals have been studied experimentally and theoretically. Interpretation of these spectra was based on the Witkowski-Maréchal model. Semi-quantitative agreement between experimental and theoretical spectra can be achieved with the simplest form of this model, with values of interaction parameters transferable for equivalent intermolecular hydrogen bonds.

  5. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    Science.gov (United States)

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  6. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  7. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    Science.gov (United States)

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Chirality Transfer and Modulation in LB Films Derived From the Diacetylene/Melamine Hydrogen-Bonded Complex.

    Science.gov (United States)

    Zhu, Yu; Xu, Yangyang; Zou, Gang; Zhang, Qijin

    2015-08-01

    Introduction of hydrogen-bonding interaction into π-conjugated systems is a promising strategy, since the highly selective and directional hydrogen-bonding can increase the binding strength, provide enhanced stability to the assemblies, and position the π-conjugated molecules in a desired arrangement. The helical packing of the rigid melamine cores seems to play a dominating role in the subsequent formation of the peripheral helical PDA backbone. The polymerized Langmuir-Blodgett (LB) films exhibited reversible colorimetric and chiroptical changes during repeated heating-cooling cycles, which should be ascribed to the strong hydrogen-bonding interaction between the carboxylic acid and the melamine core. Further, the closely helical packing of the melamine cores could be destroyed upon exposure to HCl or NH(3) gas, whereas the peripheral helical polyaniline and polydiacetylene (PDA) backbone exhibited excellent stability. Although similar absorption changes could be observed for the films upon exposure to HCl or NH(3) gas, their distinct circular dichroism (CD) responses enabled us to distinguish the above two stimuli. © 2015 Wiley Periodicals, Inc.

  9. Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano- and micro-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Sinjab, Faris; Bondakov, Georgi; Notingher, Ioan, E-mail: ioan.notingher@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom)

    2014-06-23

    An integrated atomic force and polarized Raman microscope were used to measure the elastic properties of individual diphenylalanine (FF) nano- and micro-tubes and to obtain quantitative information regarding the inter-molecular interactions that define their mechanical properties. For individual tubes, co-localised force spectroscopy and Raman spectroscopy measurements allowed the calculation of the Young's and shear moduli (25 ± 5 GPa and 0.28 ± 0.05 GPa, respectively) and the contribution of hydrogen bonding network to the Young's modulus (∼17.6 GPa). The π-π interactions between the phenyl rings, dominated by T-type arrangements, were estimated based on previously published X-ray data to only 0.20 GPa. These results provide experimental evidence obtained from individual FF tubes that the network of H-bonds dominates the elastic properties of the FF tubes.

  10. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 2. Simple inorganic complexes but intricate hydrogen bonding networks: Synthesis and crystal structures of [MII(opda)2(NO3)2] (M = Zn and Cd; opda = orthophenylenediamine). Sabbani Supriya. Full Papers Volume 121 Issue 2 March 2009 pp 137-143 ...

  11. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  12. Structural, intramolecular hydrogen bonding and vibrational studies

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  13. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    The harmonic oscillator model of aromaticity (HOMA) index elucidated the impact of hydrogen bond- ing in the ring. Intramolecular hydrogen ... (Figure 3). The total ener- gies obtained for these possible conformers are listed in Table 1. ..... Structure, Reactivity and Intermolecular Forces: An. Euristic Interpretation by Means of ...

  14. New Architectures in Hydrogen Bond Catalysis

    Science.gov (United States)

    Rodriguez, Andrew A.; Yoo, Hoseong; Ziller, Joseph W.; Shea, Kenneth J.

    2009-01-01

    New achiral sulfamide, phosphoric triamide, and thiophosphoric triamide compounds have been synthesized. Their activity as hydrogen bond catalysts for the Friedel-Crafts and Baylis-Hillman reactions compares favorably with that of a known and active thiourea catalyst. The new compounds were also studied by X-ray crystallography and their solid state structures are described. PMID:20160884

  15. Hydrogen-bonding catalysis of sulfonium salts

    OpenAIRE

    Kaneko, Shiho; Kumatabara, Yusuke; Shimizu, Shoichi; Maruoka, Keiji; Shirakawa, Seiji

    2017-01-01

    Although quaternary ammonium and phosphonium salts are known as important catalysts in phase-transfer catalysis, the catalytic ability of tertiary sulfonium salts has not yet been well demonstrated. Herein, we demonstrate the catalytic ability of trialkylsulfonium salts as hydrogen-bonding catalysts on the basis of the characteristic properties of the acidic α hydrogen atoms on alkylsulfonium salts.

  16. Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation calculations.

    Science.gov (United States)

    Chen, Wei-Lin; Lin, Shiang-Tai

    2017-08-09

    The activity coefficient of a chemical in a mixture is important in understanding the thermodynamic properties and non-ideality of the mixture. The COSMO-SAC model based on the result of quantum mechanical implicit solvation calculations has been shown to provide reliable predictions of activity coefficients for mixed fluids. However, it is found that the prediction accuracy is in general inferior for associating fluids. Existing methods for describing the hydrogen-bonding interaction consider the strength of the interaction based only on the polarity of the screening charges, neglecting the fact that the formation of hydrogen bonds requires a specific orientation between the donor and acceptor pairs. In this work, we propose a new approach that takes into account the spatial orientational constraints in hydrogen bonds. Based on the Valence Shell Electron Pair Repulsion (VSEPR) theory, the molecular surfaces associated with the formation of hydrogen bonds are limited to those in the projection of the lone pair electrons of hydrogen bond acceptors, in addition to the polarity of the surface screening charges. Our results show that this new directional hydrogen bond approach, denoted as the COSMO-SAC(DHB) model, requires fewer universal parameters and is significantly more accurate and reliable compared to previous models for a variety of properties, including vapor-liquid equilibria (VLE), infinite dilution activity coefficient (IDAC) and water-octanol partition coefficient (K ow ).

  17. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    Science.gov (United States)

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape

  18. 2,6-Diamino-9H-purine monohydrate and bis(2,6-diamino-9H-purin-1-ium) 2-(2-carboxylatophenyl)acetate heptahydrate: two simple structures with very complex hydrogen-bonding schemes.

    Science.gov (United States)

    Atria, Ana María; Garland, Maria Teresa; Baggio, Ricardo

    2010-11-01

    Two structures presenting an uncomplexed 2,6-diaminopurine (dap) group are reported, namely 2,6-diamino-9H-purine monohydrate, C(5)H(6)N(6)·H(2)O, (I), and bis(2,6-diamino-9H-purin-1-ium) 2-(2-carboxylatophenyl)acetate heptahydrate, 2C(5)H(7)N(6)(+)·C(9)H(6)O(4)(2-)·7H(2)O, (II). Both structures are rather featureless from a molecular point of view, but present instead an outstanding hydrogen-bonding scheme. In compound (I), this is achieved through a rather simple independent unit content (one neutral dap and one water molecule) and takes the form of two-dimensional layers tightly connected by strong hydrogen bonds, and interlinked by much weaker hydrogen bonds and π-π interactions. In compound (II), the fundamental building blocks are more complex, consisting of two independent 2,6-diamino-9H-purin-1-ium (Hdap(+)) cations, one homophthalate [2-(2-carboxylatophenyl)acetate] dianion and seven solvent water molecules. The large number of hydrogen-bond donors and acceptors produces 26 independent interactions, leading to an extended and complicated network of hydrogen bonds in a packing organization characterized by the stacking of interleaved anionic and cationic planar arrays. These structural characteristics are compared with those of similar compounds in the literature.

  19. Gold nanoparticle assemblies through Hydrogen-bonded supramolecular mediators

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2007-01-01

    The synthesis of spherical gold nanoparticle assemblies with multicomponent double rosette molecular boxes as mediators is presented. These nine-component hydrogen-bonded supramolecular structures held together by 36 hydrogen bonds induce gold nanoparticle assembly. The morphologies of the

  20. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  1. Halogen and Hydrogen Bonding between (N-Halogeno)-succinimides and Pyridine Derivatives in Solution, the Solid State and In Silico.

    Science.gov (United States)

    Stilinović, Vladimir; Horvat, Gordan; Hrenar, Tomica; Nemec, Vinko; Cinčić, Dominik

    2017-04-19

    A study of strong halogen bonding within three series of halogen-bonded complexes, derived from seven para-substituted pyridine derivatives and three N-halosuccinimides (iodo, bromo and chloro), has been undertaken with the aid of single-crystal diffraction, solution complexation and computational methods. The halogen bond was compared with the hydrogen bond in an equivalent series based on succinimide. The halogen-bond energies are in the range -60 to -20 kJ mol -1 and change regularly with pyridine basicity and the Lewis acidity of the halogen. The halogen-bond energies correlate linearly with the product of charges on the contact atoms, which indicates a predominantly electrostatic interaction. The binding enthalpies in solution are around 19 kJ mol -1 less negative due to solvation effects. The optimised geometries of the complexes in the gas phase are comparable to those of the solid-state structures, and the effects of the supramolecular surroundings in the latter are discussed. The bond energies for the hydrogen-bonded series are intermediate between the halogen-bond energies of iodine and bromine, although there are specific differences in the geometries of the halogen- and hydrogen-bonded complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  3. Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...

    Indian Academy of Sciences (India)

    Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.

  4. Hydrogen bonding in oxalic acid and its complexes

    Indian Academy of Sciences (India)

    The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N–H... O hydrogen bond. The parameters of this hydrogen bond, ...

  5. Hydrogen bonding in oxalic acid and its complexes: A database ...

    Indian Academy of Sciences (India)

    The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N–H... O hydrogen bond. The parameters of this hydrogen bond, ...

  6. Hydrogen bond donor–acceptor–donor organocatalysis for conjugate addition of benzylidene barbiturates via complementary DAD– ADA hydrogen bonding

    NARCIS (Netherlands)

    Leung, King-Chi; Cui, Jian-Fang; Hui, Tsz-Wai; Zhou, Zhong-Yuan; Wong, Man-Kin

    2014-01-01

    A new class of hydrogen bond donor-acceptor-donor (HB-DAD) organocatalysts has been developed for conjugate addition of benzylidene barbiturates. HB-DAD organocatalyst 1a (featuring para-chloro-pyrimidine as the hydrogen bond acceptor (HBA), N-H as the hydrogen bond donor (HBD) and a trifluoroacetyl

  7. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  8. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  9. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Bonfio, Claudia; Mansy, Sheref S; Cowan, J A

    2018-03-01

    Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

  10. Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs.

    Science.gov (United States)

    Khakshoor, Omid; Wheeler, Steven E; Houk, K N; Kool, Eric T

    2012-02-15

    We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions between F and natural bases in nucleic acid duplexes and in a DNA polymerase active site. Since F is widely used to measure electrostatic contributions to pairing and replication, it is important to quantify the impact of this isostere on DNA stability. Here, we studied the pairing stability and selectivity of this compound and a closely related variant, dichlorotoluene deoxyriboside (L), in DNA, using both experimental and computational approaches. We measured the thermodynamics of duplex formation in three sequence contexts and with all possible pairing partners by thermal melting studies using the van't Hoff approach, and for selected cases by isothermal titration calorimetry (ITC). Experimental results showed that internal F-A pairing in DNA is destabilizing by 3.8 kcal/mol (van't Hoff, 37 °C) as compared with T-A pairing. At the end of a duplex, base-base interactions are considerably smaller; however, the net F-A interaction remains repulsive while T-A pairing is attractive. As for selectivity, F is found to be slightly selective for adenine over C, G, T by 0.5 kcal mol, as compared with thymine's selectivity of 2.4 kcal/mol. Interestingly, dichlorotoluene in DNA is slightly less destabilizing and slightly more selective than F, despite the lack of strongly electronegative fluorine atoms. Experimental data were complemented by computational results, evaluated at the M06-2X/6-31+G(d) and MP2/cc-pVTZ levels of theory. These computations suggest that the pairing energy of F to A

  11. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  12. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    Science.gov (United States)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  13. Theoretical Characterization of Hydrogen Bonding Interactions ...

    Indian Academy of Sciences (India)

    In the complexes under study each binding partner to. 9HFCA can act as both proton donor as well as accep- tor. They have calculated the stretching frequencies and analyzed that 9-hydroxy stretch is blue shifted in the complexes of formic acid, acetic and propionic acids, while red shifted in the complexes with formamide ...

  14. Crystal structure and hydrogen bonding interactions

    Indian Academy of Sciences (India)

    −1) = 0.467; F(000) = 548; reflection collected/ unique = 10499/5559; refinement method full-matrix least-squares on F2; final R indices [I > 2σ1 ] R1 = 0.0387, wR2 .... trophilic and nucleophilic reactive sites in S,N-acetals could be utilized in regioselective ring-closure strate- gies to yield interesting and novel molecules con-.

  15. Hydrogen bond strength in membrane proteins probed by time-resolved 1 H-detected solid-state NMR and MD simulations

    NARCIS (Netherlands)

    Medeiros-silva, João; Jekhmane, Miranda; Baldus, Marc; Weingarth, Markus

    2017-01-01

    1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining

  16. RAFT Polymerization of Styrene and Maleimide in the Presence of Fluoroalcohol: Hydrogen Bonding Effects with Classical Alternating Copolymerization as Reference

    Directory of Open Access Journals (Sweden)

    Fangjun Yao

    2017-03-01

    Full Text Available The impacts of hydrogen bonding on polymerization behavior has been of interest for a long time; however, universality and in-depth understanding are still lacking. For the first time, the effect of hydrogen bonding on the classical alternating-type copolymerization of styrene and maleimide was explored. N-phenylmaleimide (N-PMI/styrene was chosen as a model monomer pair in the presence of hydrogen bonding donor solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, which interacted with N-PMI via hydrogen bonding. Reversible addition-fragmentation chain transfer polymerization (RAFT technique was used to guarantee the “living” polymerization and thus the homogeneity of chain compositions. In comparison with the polymerization in nonhydrogen bonding donor solvent (toluene, the copolymerization in HFIP exhibited a high rate and a slight deviation from alternating copolymerization tendency. The reactivity ratios of N-PMI and St were revealed to be 0.078 and 0.068, respectively, while the reactivity ratios in toluene were 0.026 and 0.050. These interesting results were reasonably explained by using computer simulations, wherein the steric repulsion and electron induction by the hydrogen bonding between HFIP and NPMI were revealed. This work first elucidated the hydrogen bonding interaction in the classical alternating-type copolymerization, which will enrich the research on hydrogen bonding-induced polymerizations.

  17. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  18. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  19. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  20. Fluorine as a hydrogen-bond acceptor: experimental evidence and computational calculations.

    Science.gov (United States)

    Dalvit, Claudio; Invernizzi, Christian; Vulpetti, Anna

    2014-08-25

    Hydrogen-bonding interactions play an important role in many chemical and biological systems. Fluorine acting as a hydrogen-bond acceptor in intermolecular and intramolecular interactions has been the subject of many controversial discussions and there are different opinions about it. Recently, we have proposed a correlation between the propensity of fluorine to be involved in hydrogen bonds and its (19)F NMR chemical shift. We now provide additional experimental and computational evidence for this correlation. The strength of hydrogen-bond complexes involving the fluorine moieties CH2F, CHF2, and CF3 was measured and characterized in simple systems by using established and novel NMR methods and compared to the known hydrogen-bond complex formed between acetophenone and p-fluorophenol. Implications of these results for (19)F NMR screening are analyzed in detail. Computed values of the molecular electrostatic potential at the different fluorine atoms and the analysis of the electron density topology at bond critical points correlate well with the NMR results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intramolecular hydrogen bonding in myricetin and myricitrin

    DEFF Research Database (Denmark)

    Vojta, Danijela; Dominkovic, Katarina; Miljanic, Snezana

    2017-01-01

    The molecular structures of myricetin (3,3’,4’,5,5’,7-hexahydroxyflavone; MCE) and myricitrin (myricetin 3-O-rhamnoside; MCI) are investigated by quantum chemical calculations (B3LYP/6-311G**). Two preferred molecular rotamers of MCI are predicted, corresponding to different conformations of the O......-rhamnoside subunit. The rotamers are characterized by different hydrogen bonded cross-links between the hydroxy groups of the rhamnoside substituent and the parent MCE moiety. The predicted OH stretching frequencies are compared with vibrational spectra of MCE and MCI recorded for the sake of this investigation (IR...

  2. DNA-inspired hierarchical polymer design: electrostatics and hydrogen bonding in concert.

    Science.gov (United States)

    Hemp, Sean T; Long, Timothy E

    2012-01-01

    Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modeling the vapor-liquid equilibria of polymer-solvent mixtures: Systems with complex hydrogen bonding behavior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put...... on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account...

  4. Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter jejuni

    OpenAIRE

    Mañez, Pau Arroyo; Lu, Changyuan; Boechi, Leonardo; Martí, Marcelo A.; Shepherd, Mark; Wilson, Jayne Louise; Poole, Robert K.; Luque, F. Javier; Yeh, Syun-Ru; Estrin, Darío A.

    2011-01-01

    Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding netwo...

  5. Infrared intensities and charge mobility in hydrogen bonded complexes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta,” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-08-21

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al.[J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X–H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the –XH⋯Y– fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  6. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  7. Hydrogen Bond Basicity Prediction for Medicinal Chemistry Design.

    Science.gov (United States)

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M; Ribeiro, Jean F R; Sartori, Geraldo Rodrigues

    2016-05-12

    Hydrogen bonding is discussed in the context of medicinal chemistry design. Minimized molecular electrostatic potential (Vmin) is shown to be an effective predictor of hydrogen bond basicity (pKBHX), and predictive models are presented for a number of hydrogen bond acceptor types relevant to medicinal chemistry. The problems posed by the presence of nonequivalent hydrogen bond acceptor sites in molecular structures are addressed by using nonlinear regression to fit measured pKBHX to calculated Vmin. Predictions are made for hydrogen bond basicity of fluorine in situations where relevant experimental measurements are not available. It is shown how predicted pKBHX can be used to provide insight into the nature of bioisosterism and to profile heterocycles. Examples of pKBHX prediction for molecular structures with multiple, nonequivalent hydrogen bond acceptors are presented.

  8. The role of hydrogen bonding in tethered polymer layers

    OpenAIRE

    Ren, C.; Nap, R. J.; Szleifer, I.

    2008-01-01

    A molecular theory to study the properties of end tethered polymer layers, in which the polymers have the ability to form hydrogen bonds with water is presented. The approach combines the ideas of the single-chain mean-field theory to treat tethered layers with the approach of Dormidontova (Macromolecules, 2002 35,987) to include hydrogen bonds. The generalization includes the consideration of position dependent polymer-water and water-water hydrogen bonds. The theory is applied to model poly...

  9. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    Science.gov (United States)

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  10. Effect of small cage guests on hydrogen bonding of tetrahydrofuran in binary structure II clathrate hydrates.

    Science.gov (United States)

    Alavi, Saman; Ripmeester, John A

    2012-08-07

    Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.

  11. Hydrogen-Bonding Modification in Biuret Under Pressure.

    Science.gov (United States)

    Borstad, Gustav M; Ciezak-Jenkins, Jennifer A

    2017-02-02

    Biuret (C 2 H 5 N 3 O 2 ) has been studied to 30 GPa by Raman spectroscopy and 50 GPa by X-ray diffraction. Raman peaks exhibit shoulders and splitting that suggests that the molecules undergo reorientation in response to compression. These are observed in three pressure ranges: the first from 3-5 GPa, the second from 8-12 GPa, and finally from 16-20 GPa. The particular modes in the sample that are observed to change in the Raman are strongly linked to the molecular vibrations involving the N-H and the C═O bond, which are most strongly coupled to the hydrogen-bonded lattice structure. The X-ray diffraction suggests that the crystal maintains a monoclinic structure to the highest pressures studied. Although there was a considerable degree of hysteresis observed in some X-ray runs, all the changes observed under pressure are reversible.

  12. Similar strength of the NH⋯O and NH⋯S hydrogen bonds in binary complexes

    DEFF Research Database (Denmark)

    Andersen, Cecilie Lindholm; Jensen, Christine S.; Mackeprang, Kasper

    2014-01-01

    to be extremely small with only 5 and 19 cm-1 for DMA-DME and DMA-DMS, respectively. The experimentally determined integrated absorbance has been combined with a calculated oscillator strength to determine an equilibrium constant of 2 × 10-3 and 4 × 10-3 for the DMA-DME and DMA-DMS complexes, respectively....... The topological analyses reveal that several hydrogen bond interactions are present in the complexes. The calculated binding energies, geometric parameters, observed redshifts, and topological analyses suggest that oxygen and sulfur are hydrogen bond acceptors of similar strength. (Graph Presented)....

  13. A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method

    DEFF Research Database (Denmark)

    Kromann, Jimmy Charnley; Christensen, Anders Steen; Svendsen, Casper Steinmann

    2014-01-01

    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction en...... vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible....

  14. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  15. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  16. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... or mechanical stress might be difficult to detect due to a large variation between the specimens. In this study, the modifications by all past external impacts such as climate and mechanical history were sought erased. This was done by heating specimens of pine (Pinus sylvestris L.) to 80 °C about 24 h while......, and load histories were assumed to be erased by this treatment. Thus, all specimens would be given a common starting point for further experiments. After the first treatment, the specimens were subjected to different climate histories in order to examine the impact of variations in air humidity...

  17. Hydrogen bonds in concreto and in computro

    Science.gov (United States)

    Stouten, Pieter F. W.; Kroon, Jan

    1988-07-01

    Molecular dynamics simulations of liquid water and liquid methanol have been carried out. For both liquids an effective pair potential was used. The models were fitted to the heat of vaporization, pressure and various radial distribution functions resulting from diffraction experiments on liquids. In both simulations 216 molecules were put in a cubic periodical ☐. The system was loosely coupled to a temperature bath and to a pressure bath. Following an initial equilibration period relevant data were sampled during 15 ps. The distributions of oxygen—oxygen distances in hydrogen bonds obtained from the two simulations are essentially the same. The distribution obtained from crystal data is somewhat different: the maximum has about the same position, but the curve is much narrower, which can be expected merely from the fact that diffraction experiments only supply average atomic positions and hence average interatomic distances. When thermal motion is taken into account a closer likeness is observed.

  18. Porous Hydrogen-Bonded Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Yi-Fei Han

    2017-02-01

    Full Text Available Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  19. Proton tunnelling in intermolecular hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Horsewill, A.J. [Nottingham Univ. (United Kingdom); Johnson, M.R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Trommsdorff, H.P. [Grenoble-1 Univ., 38 (France)

    1997-04-01

    The wavefunctions of particles extend beyond the classically accessible regions of potential energy-surfaces (PES). A manifestation of this partial delocalization is the quantum-mechanical tunneling effect which enables a particle to escape from a metastable potential-well. Tunnelling is most important for the lightest atoms, so that the determination of its contribution to proton transfer, one of the most fundamental chemical reactions, is an important issue. QENS and NMR techniques have been employed to study the motion of protons in the hydrogen bond of benzoic-acid crystals, a system which has emerged as a particularly suitable model since proton transfer occurs in a near symmetric double-well potential. The influence of quantum tunnelling was revealed and investigated in these experiments. This work provides an experimental benchmark for theoretical descriptions of translational proton-tunnelling. (author). 7 refs.

  20. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Solomonov, Boris N.

    2012-01-01

    Highlights: ► Solution enthalpies and activity coefficients of amines in methanol were measured. ► Thermodynamic functions of H-bonding of amines with methanol were determined. ► Specific interaction entropy of amines in methanol can be about zero or positive. ► Cooperativity of H-bonds in methanol media is smaller than in water solutions. ► A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes “methanol–amine” determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent–solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  1. Hydrogen bonded 1D-3D supramolecular structures from Benzylamine and organic acidic components

    Science.gov (United States)

    Gao, Xingjun; Li, XiaoLiang; Jin, Shouwen; Hu, Kaikai; Guo, Jianzhong; Guo, Ming; Xu, Weiqiang; Wang, Daqi

    2018-03-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids afforded a total of seven organic salts with the compositions: (benzylamine)2: (p-nitrophenol)2: (H2O) (1) [(HL)2+⋯(npl-)2⋯(H2O), npl- = p-nitrophenolate], (benzylamine): (4-tert-butylbenzoic acid) (2) [(HL+)⋯(tba-), tba- = 4-tert-butylbenzoate], (benzylamine): (3,4-dichlorobenzoic acid) (3) [(HL+)⋯dcba-), dcba- = 3,4-dichlorobenzoate], (benzylamine): (2,5-dihydroxybenzoic acid) (4) [(HL+)⋯(dhba-), dhba- = 2,5-dihydroxybenzoate], (benzylamine): (2-bromo-but-2-enedioic acid) (5) [(HL+)⋯(Hbba-), Hbba- = 2-bromo-hydrogenbut-2-enedioate], (benzylamine): (2,6-pyridinedicarboxylic acid) (6) [(HL+)⋯(Hpdc-), Hpdc- = 2,6-pyridine hydrogendicarboxylate], and (benzylamine)2: (3-nitrophthalic acid): 2(H2O) (7) [(HL+)2⋯(npa2-)⋯(H2O)2, npa2- = 3-nitrophthalate]. The seven salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The results reveal that among the seven investigated crystals the NH2 in the benzylamine are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond between the NH3+ and deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 1, 4, 5, 6, and 7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CH-π/CH2-π, Cπ-Cπ, Osbnd O, O-Cπ, O-π, and Cl-π associations also contribute to the stabilization and expansion of the total high-dimensional framework structures. For the coexistence of the various weak nonbonding interactions, these structures adopted a variety of

  2. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    changes and the redshift favor the Z OH group, matching the results of NBO and AIM calculations. This reflects that the thermochemistry of adduct formation is not a good measure of the hydrogen bond strength in charged adducts, and that the ionic interactions in the E and Z adducts of protonated...

  3. Influence of hydrogen bonding on the generation and stabilization of ...

    Indian Academy of Sciences (India)

    Keywords. Hydrogen bonding; polymer liquid crystals; smectic; thermal properties; polymer. ... The occurrence of the smectic phases in some of the polymers indicated possibly self-assembly through the formation of hetero intermolecular hydrogen bonded networks. A smectic polymorphism and in addition, ...

  4. Hydrogen bonding in oxalic acid and its complexes: A database ...

    Indian Academy of Sciences (India)

    Abstract. The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak. N–H...O hydrogen bond. The parameters of this ...

  5. Phase transition in triglycine family of hydrogen bonded ferroelectrics

    Indian Academy of Sciences (India)

    Hydrogen bonded ferroelectric crystals form a subclass of ferroelectrics in which hydrogen bonds play an important role in determining the properties. Triglycine family is one such class which includes triglycine sulphate (TGS), triglycine selenate. (TGSe), triglycine fluoroberyllate (TGFBe), mixed crystals like ...

  6. Intermolecular hydrogen bonds: From temperature-driven proton ...

    Indian Academy of Sciences (India)

    Abstract. We have combined neutron scattering and a range of numerical simulations to study hydrogen bonds in condensed matter. Two examples from a recent thesis will be presented. The first concerns proton transfer with increasing temperature in short inter- molecular hydrogen bonds [1,2]. These bonds have unique ...

  7. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk ...

  8. A novel hydrogen-bonded cyclic dibromide in an organic ...

    Indian Academy of Sciences (India)

    Unknown

    A novel hydrogen-bonded cyclic dibromide in an organic diammonium salt. #. BIKSHANDARKOIL R SRINIVASAN,1,* ... rangement of anions and cations may be viewed as a typical lamellar structure. The crystal water mole- cules can be ..... layers of organic (dbtmen)2+ cations (dashed lines indi- cate hydrogen bonding).

  9. Hydrogen bond and lifetime dynamics in diluted alcohols

    NARCIS (Netherlands)

    Salamatova, Evgeniia; Cunha, Ana V.; Shinokita, Keisuke; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2017-01-01

    Hydrogen-bonding plays a crucial role in many chemical and biochemical reactions. Alcohols, with their hydrophilic and hydrophobic groups, constitute an important class of hydrogen-bonding molecules with functional tuning possibilities through changes in the hydrophobic tails. Recent studies

  10. Comparison of the proton-transfer paths in hydrogen bonds from theoretical potential-energy surfaces and the concept of conservation of bond order III. O-H-O hydrogen bonds.

    Science.gov (United States)

    Majerz, Irena; Olovsson, Ivar

    2010-01-01

    The quantum-mechanically derived reaction coordinates (QMRC) for the proton transfer in O-H-O hydrogen bonds have been derived from ab initio calculations of potential-energy surfaces. A comparison is made between the QMRC and the corresponding bond-order reaction coordinates (BORC) derived by applying the Pauling bond order concept together with the principle of conservation of bond order. In agreement with earlier results for N-H-N(+) hydrogen bonds there is virtually perfect agreement between the QMRC and BORC curves for intermolecular O-H-O hydrogen bonds. For intramolecular O-H-O hydrogen bonds, the donor and acceptor parts of the molecule impose strong constraints on the O···O distance and the QMRC does not follow the BORC relation in the whole range. The neutron-determined proton positions are located close to the theoretically calculated potential-energy minima, and where the QMRC and the BORC curves coincide with each other. The results confirm the universal character of intermolecular hydrogen bonds: BORC is identical with QMRC and the proton can be moved from donor to acceptor keeping its valency equal to 1. The shape of PES for intramolecular hydrogen bonds is more complex as it is sensitive to the geometry of the molecule as well as of the hydrogen bridge. This journal is © the Owner Societies 2010

  11. Hydrogen-bonding patterns in 5-fluorocytosine–melamine co-crystal (4/1

    Directory of Open Access Journals (Sweden)

    Marimuthu Mohana

    2016-04-01

    Full Text Available The asymmetric unit of the title compound, 4C4H4FN3O·C3H6N6, comprises of two independent 5-fluorocytosine (5FC molecules (A and B and one half-molecule of melamine (M. The other half of the melamine molecule is generated by a twofold axis. 5FC molecules A and B are linked through two different homosynthons [R22(8 ring motif]; one is formed via a pair of N—H...O hydrogen bonds and the second via a pair of N—H...N hydrogen bonds. In addition to this pairing, the O atoms of 5FC molecules A and B interact with the N2 amino group on both sides of the melamine molecule, forming a DDAA array of quadruple hydrogen bonds and generating a supramolecular pattern. The 5FC (molecules A and B and two melamine molecules interact via N—H...O, N—H...N and N—H...O, N—H...N, C—H...F hydrogen bonds forming R66(24 and R44(15 ring motifs. The crystal structure is further strengthened by C—H...F, C—F...π and π–π stacking interactions.

  12. Experimental quantification of electrostatics in X-H···π hydrogen bonds.

    Science.gov (United States)

    Saggu, Miguel; Levinson, Nicholas M; Boxer, Steven G

    2012-11-21

    Hydrogen bonds are ubiquitous in chemistry and biology. The physical forces that govern hydrogen-bonding interactions have been heavily debated, with much of the discussion focused on the relative contributions of electrostatic vs quantum mechanical effects. In principle, the vibrational Stark effect, the response of a vibrational mode to electric field, can provide an experimental method for parsing such interactions into their electrostatic and nonelectrostatic components. In a previous study we showed that, in the case of relatively weak O-H···π hydrogen bonds, the O-H bond displays a linear response to an electric field, and we exploited this response to demonstrate that the interactions are dominated by electrostatics (Saggu, M.; Levinson, N. M.; Boxer, S. G. J. Am. Chem. Soc.2011, 133, 17414-17419). Here we extend this work to other X-H···π interactions. We find that the response of the X-H vibrational probe to electric field appears to become increasingly nonlinear in the order O-H < N-H < S-H. The observed effects are consistent with differences in atomic polarizabilities of the X-H groups. Nonetheless, we find that the X-H stretching vibrations of the model compounds indole and thiophenol report quantitatively on the electric fields they experience when complexed with aromatic hydrogen-bond acceptors. These measurements can be used to estimate the electrostatic binding energies of the interactions, which are found to agree closely with the results of energy calculations. Taken together, these results highlight that with careful calibration vibrational probes can provide direct measurements of the electrostatic components of hydrogen bonds.

  13. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  14. Enthalpy of cooperative hydrogen bonding in complexes of tertiary amines with aliphatic alcohols: Calorimetric study

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Novikov, Vladimir B.; Solomonov, Boris N.

    2011-01-01

    Research highlights: → Solution enthalpies of aliphatic alcohols in tertiary amines and vice versa were measured. → The enthalpies of specific interaction of amines in aliphatic alcohols are lower than the enthalpies of hydrogen bonding in 1:1 complexes amine-alcohol determined in base media. → Hydrogen bond cooperativity factors in multi-particle complexes of alcohols with aromatic amines are approximately equal for all alcohols. → Hydrogen bond cooperativity factors in multi-particle complexes of alcohols with trialkylamines decrease with increasing of alkyl radical length in alcohol and amine molecules. - Abstract: The work is devoted to the investigation of thermodynamics of specific interaction of the tertiary aliphatic and aromatic amines with associated solvents as which aliphatic alcohols were taken. Solution enthalpies of aliphatic alcohols in amines (tri-n-propylamine, 2-methylpyridine, 3-methylpyridine, N-methylimidazole) as well as amines in alcohols were measured at infinite dilution. The enthalpies of specific interaction (H-bonding) in systems studied were determined based on experimental data. The enthalpies of specific interaction of amines in aliphatic alcohols significantly lower than the enthalpies of hydrogen bonding in complexes amine-alcohol of 1:1 composition determined in base media due to the reorganization of aliphatic alcohols as solvents. The determination of solvent reorganization contribution makes possible to define the hydrogen bonding enthalpies of amines with clusters of alcohols. Obtained enthalpies of hydrogen bonding in multi-particle complexes are sensitive to the influence of cooperative effect. It was shown, that hydrogen bond cooperativity factors in multi-particle complexes of alcohols with amines are approximately equal for all alcohols when pyridines and N-methylimidazole as solutes are used. At the same time, H-bonding cooperativity factors in complexes of trialkylamines with associative species of alcohols

  15. Multicomponent hydrogen-bonding organic solids constructed from 6-hydroxy-2-naphthoic acid and N-heterocycles: Synthesis, structural characterization and synthon discussion

    Science.gov (United States)

    Zong, Yingxia; Shao, Hui; Pang, Yanyan; Wang, Debao; Liu, Kang; Wang, Lei

    2016-07-01

    Seven novel multicomponent crystals involving various substituted organic amine molecules and 6-hydroxy-2-naphthoic acid were prepared and characterized by using single crystal X-ray diffraction, infrared and thermogravimetric analyses (TGA). Crystal structures with 1,4-bis(imidazol) butane (L1) 1, 1,4-bis(imidazol-1-ylmethyl)benzene (L2) 2, 1-phenyl piperazine 3, 2-amino-4-hydroxy-6-methyl pyrimidine 4, 4,4'-bipyridine 5, 5,5'-dimethyl-2,2'-dipyridine 6, 2-amino-4,6-dimethyl pyrimidine 7 were determined. Among the seven molecular complexes, total proton transfer from 6-hydroxy-2-naphthoic acid to coformer has occurred in crystals 1-4, while the remaining were cocrystals. X-ray single-crystal structures of these complexes reveal that strong hydrogen bonding O-H···O/N-H···O/O-H···N and weak C-H···O/C-H···π/π···π intermolecular interactions direct the packing modes of molecular crystals together. The analysis of supramolecular synthons in the present structures shows that some classical supramolecular synthons like pyridine-carboxylic acid heterosynthon R22 (7) and aminopyridine-carboxylic acid heterosynthon R22 (8), are again observed in constructing the hydrogen-bonding networks in this paper. Besides, we noticed that water molecules act as a significant hydrogen-bonding connector in constructing supramolecular architectures of 3, 4, 6, and 7.

  16. Ferroelectric phase transition in hydrogen-bonded 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4

    CERN Document Server

    Czapla, Z; Waskowska, A

    2003-01-01

    A new crystal of 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4 has been grown and its x-ray structure and physical properties were studied. At room temperature the crystals are monoclinic, space group C2/c. The flat 2-aminopyridine cations are hydrogen bonded to the anionic [PO sub 4 ] groups. The interesting feature of the crystal structure is the three-dimensional network of hydrogen bonds including, among others, two strong, symmetrical O centre dot centre dot centre dot H, H centre dot centre dot centre dot O interactions with disordered proton locations. Symmetrically related PO sub 4 anions linked through these protons form infinite (PO sub 4) subinfinity chains along the crystal a-axis. The anomalies in the temperature dependence of the electric permittivity showed that the crystal undergoes ferroelectric phase transition at T sub c = 103.5 K. The spontaneous polarization takes place along the crystal a-axis, being parallel to the chains of the hydrogen-bonded PO sub ...

  17. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    Directory of Open Access Journals (Sweden)

    Yin Long

    2015-07-01

    Full Text Available A linear hydrogen-bond acidic (HBA linear functionalized polymer (PLF, was deposited onto a bare surface acoustic wave (SAW device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB, dimethyl methylphosphonate (DMMP, mustard gas (HD, chloroethyl ethyl sulphide (2-CEES, 1,5-dichloropentane (DCP and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  18. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants.

    Science.gov (United States)

    Long, Yin; Wang, Yang; Du, Xiaosong; Cheng, Luhua; Wu, Penglin; Jiang, Yadong

    2015-07-28

    A linear hydrogen-bond acidic (HBA) linear functionalized polymer (PLF), was deposited onto a bare surface acoustic wave (SAW) device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB), dimethyl methylphosphonate (DMMP), mustard gas (HD), chloroethyl ethyl sulphide (2-CEES), 1,5-dichloropentane (DCP) and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can't be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  19. Crystal structures and hydrogen bonding in the morpholinium salts of four phenoxyacetic acid analogues

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2015-11-01

    Full Text Available The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazin-4-ium phenoxyacetate, C4H10NO+·C8H7O3−, (I, morpholinium (4-fluorophenoxyacetate, C4H10NO+·C8H6 FO3−, (II, and isomeric morpholinium (3,5-dichlorophenoxyacetate (3,5-D, (III, and morpholinium (2,4-dichlorophenoxyacetic acid (2,4-D, C4H10NO+·C8H5Cl2O3−, (IV, have been determined and their hydrogen-bonded structures are described. In the crystals of (I, (III and (IV, one of the the aminium H atoms is involved in a three-centre asymmetric cation–anion N—H...O,O′ R12(4 hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II, the primary N—H...O interaction is linear. In the structures of (I, (II and (III, the second N—H...Ocarboxyl hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV, the ion pairs are linked though inversion-related N—H...O hydrogen bonds [graph set R42(8], giving a cyclic heterotetrameric structure.

  20. Excited state hydrogen bonding fluorescent probe: Role of structure and environment

    International Nuclear Information System (INIS)

    Dey, Debarati; Sarangi, Manas Kumar; Ray, Angana; Bhattacharyya, Dhananjay; Maity, Dilip Kumar

    2016-01-01

    An environment sensitive fluorescent probe, 11-benzoyl-dibenzo[a,c]phenazine (BDBPZ), has been synthesized and characterized that acts via excited state hydrogen bonding (ESHB). On interaction with hydrogen bond donating solvents the fluorescence intensity of BDBPZ increases abruptly with a concomitant bathochromic shift. The extent of fluorescence increment and the red-shift of λ max depend on hydrogen bond donating ability of the solvent associated. ESHB restricts the free rotation of the benzoyl group and hence blocks the non-radiative deactivation pathway. BDBPZ forms an exciplex with organic amine in nonpolar medium that readily disappears on increasing the polarity of the solvent. In polar environment the fluorescence of both the free molecule and excited state hydrogen bonded species are quenched on addition of amine unlike its parent dibenzo[a,c]phenazine (DBPZ), that remains very much inaccessible towards the solvent as well as quencher molecules due to its structure. This newly synthesized derivative BDBPZ is much more interactive due to the benzoyl group that is flanked outside the skeletal aromatic rings of DBPZ, which helps to sense the environment properly and thus shows better ESHB capacity than DBPZ.

  1. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  2. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydrogen-bond network and pH sensitivity in transthyretin: Neutron crystal structure of human transthyretin.

    Science.gov (United States)

    Yokoyama, Takeshi; Mizuguchi, Mineyuki; Nabeshima, Yuko; Kusaka, Katsuhiro; Yamada, Taro; Hosoya, Takaaki; Ohhara, Takashi; Kurihara, Kazuo; Tomoyori, Katsuaki; Tanaka, Ichiro; Niimura, Nobuo

    2012-02-01

    Transthyretin (TTR) is a tetrameric protein associated with human amyloidosis. In vitro, the formation of amyloid fibrils by TTR is known to be promoted by low pH. Here we show the neutron structure of TTR, focusing on the hydrogen bonds, protonation states and pH sensitivities. A large crystal was prepared at pD 7.4 for neutron protein crystallography. Neutron diffraction studies were conducted using the IBARAKI Biological Crystal Diffractometer with the time-of-flight method. The neutron structure solved at 2.0Å resolution revealed the protonation states of His88 and the detailed hydrogen-bond network depending on the protonation states of His88. This hydrogen-bond network is composed of Thr75, Trp79, His88, Ser112, Pro113, Thr118-B and four water molecules, and is involved in both monomer-monomer and dimer-dimer interactions, suggesting that the double protonation of His88 by acidification breaks the hydrogen-bond network and causes the destabilization of the TTR tetramer. In addition, the comparison with X-ray structure at pH 4.0 indicated that the protonation occurred to Asp74, His88 and Glu89 at pH 4.0. Our neutron model provides insights into the molecular stability of TTR related to the hydrogen-bond network, the pH sensitivity and the CH···O weak hydrogen bond. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong

    2013-01-01

    Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions

  5. Local electronic and geometrical structures of hydrogen-bonded complexes studied by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Luo, Y.

    2004-01-01

    Full text: The hydrogen bond is one of the most important forms of intermolecular interactions. It occurs in all-important components of life. However, the electronic structures of hydrogen-bonded complexes in liquid phases have long been difficult to determine due to the lack of proper experimental techniques. In this talk, a recent joint theoretical and experimental effort to understand hydrogen bonding in liquid water and alcohol/water mixtures using synchrotron radiation based soft-X-ray spectroscopy will be presented. The complexity of the liquid systems has made it impossible to interpret the spectra with physical intuition alone. Theoretical simulations have thus played an essential role in understanding the spectra and providing valuable insights on the local geometrical and electronic structures of these liquids. Our study sheds light on a 40-year controversy over what kinds of molecular structures are formed in pure liquid methanol. It also suggests an explanation for the well-known puzzle of why alcohol and water do not mix completely: the system must balance nature's tendency toward greater disorder (entropy) with the molecules' tendency to form hydrogen bonds. The observation of electron sharing and broken hydrogen bonding local structures in liquid water will be presented. The possible use of X-ray spectroscopy to determinate the local arrangements of hydrogen-bonded nanostructures will also been discussed

  6. Using the C-O stretch to unravel the nature of hydrogen bonding in low-temperature solid methanol-water condensates.

    Science.gov (United States)

    Dawes, Anita; Mason, Nigel John; Fraser, Helen Jane

    2016-01-14

    Transmission infrared spectroscopy has been used in a systematic laboratory study to investigate hydrogen bonding in binary mixtures of CH3OH and H2O, vapour deposited at 30 K, as a function of CH3OH/H2O mixing ratio, R. Strong intermolecular interactions are evident between CH3OH and H2O with infrared band profiles of the binary ices differing from that of the pure components and changing significantly with R. Consistent evidence from the O-H and C-H band profiles and detailed analysis of the C-O stretch band reveal two different hydrogen bonding structural regimes below and above R = 0.6-0.7. The vapour deposited solid mixtures were found to exhibit behaviour similar to that of liquids with evidence of inhomogeneity and higher coordination number of hydrogen bonds that are concentration dependent. The C-O stretch band is found to consist of three components around 1039 cm(-1) ('blue'), 1027 cm(-1) ('middle') and 1011 cm(-1) ('red'). The 'blue' and 'middle' components corresponding to environments with CH3OH dominating as a proton donor (PD) and proton acceptor (PA) respectively reveal preferential bonding of CH3OH as a PA and H2O as a PD in the mixtures. The 'red' component is only present in the presence of H2O and has been assigned to the involvement of both lone pairs of electrons on the oxygen atom of CH3OH as a PA to two PD H2O atoms. Cooperative effects are evident with concurrent blue-shifts in the C-H stretching modes of CH3OH below R = 0.6 indicating CH3 group participation in hydrogen bonding.

  7. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model.

    Science.gov (United States)

    Yi, Hojae; Puri, Virendra M

    2012-11-01

    A primary plant cell wall network was computationally modeled using the finite element approach to study the hypothesis of hemicellulose (HC) tethering with the cellulose microfibrils (CMFs) as one of the major load-bearing mechanisms of the growing cell wall. A computational primary cell wall network fragment (10 × 10 μm) comprising typical compositions and properties of CMFs and HC was modeled with well-aligned CMFs. The tethering of HC to CMFs is modeled in accordance with the strength of the hydrogen bonding by implementing a specific load-bearing connection (i.e. the joint element). The introduction of the CMF-HC interaction to the computational cell wall network model is a key to the quantitative examination of the mechanical consequences of cell wall structure models, including the tethering HC model. When the cell wall network models with and without joint elements were compared, the hydrogen bond exhibited a significant contribution to the overall stiffness of the cell wall network fragment. When the cell wall network model was stretched 1% in the transverse direction, the tethering of CMF-HC via hydrogen bonds was not strong enough to maintain its integrity. When the cell wall network model was stretched 1% in the longitudinal direction, the tethering provided comparable strength to maintain its integrity. This substantial anisotropy suggests that the HC tethering with hydrogen bonds alone does not manifest sufficient energy to maintain the integrity of the cell wall during its growth (i.e. other mechanisms are present to ensure the cell wall shape).

  8. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  9. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2017-01-01

    Full Text Available The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman and X-ray crystallographic techniques complemented with a density functional theory (DFT method. The hindered rotation of the C(O–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p basis set revealed that the conformer (A with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  10. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  11. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    Science.gov (United States)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  12. Whole-molecule calculation of log p based on molar volume, hydrogen bonds, and simulated 13C NMR spectra.

    Science.gov (United States)

    Schnackenberg, Laura K; Beger, Richard D

    2005-01-01

    The prediction of Log P is usually accomplished using either substructure or whole-molecule approaches. However, these methods are complicated, and previous whole-molecule approaches have not been successful for the prediction of Log P in very complex molecules. The observed chemical shifts in nuclear magnetic resonance (NMR) spectroscopy are related to the electrostatics at the nucleus, which are influenced by solute-solvent interactions. The different solvation effects on a molecule by either water or methanol have a strong effect on the NMR chemical shift value. Therefore, the chemical shift values observed in an aqueous and organic solvent should correlate to Log P. This paper develops a rapid, objective model of Log P based on molar volume, hydrogen bonds, and differences in calculated 13C NMR chemical shifts for a diverse set of compounds. A partial least squares (PLS) model of Log P built on the sum of carbon chemical shift differences in water and methanol, molar volume, number of hydrogen bond donors and acceptors in 162 diverse compounds gave an r2 value of 0.88. The average r2 for 10 training models of Log P made from 90% of the data was 0.87+/-0.01. The average q2 for 10 leave-10%-out cross-validation test sets was 0.87+/-0.05.

  13. Hydrogen-bonding interactions between water and the one- and two-electron-reduced forms of vitamin K1: applying quinone electrochemistry to determine the moisture content of non-aqueous solvents.

    Science.gov (United States)

    Hui, Yanlan; Chng, Elaine Lay Khim; Chng, Cheryl Yi Lin; Poh, Hwee Ling; Webster, Richard D

    2009-02-04

    Vitamin K(1) (VK(1)) was shown by voltammetry and coulometry to undergo two chemically reversible one-electron reduction processes in acetonitrile (CH(3)CN) containing 0.2 M Bu(4)NPF(6) as the supporting electrolyte. The potential separation between the first and second electron-transfer steps diminished sequentially with the addition of water, so that at a H(2)O concentration of approximately 7 M (approximately 13% v/v) only one process was detected, corresponding to the reversible transfer of two electrons per molecule. The voltammetric behavior was interpreted on the basis of the degree of hydrogen bonding between the reduced forms of VK(1) with water in the solvent. It was found that the potential separation between the first and second processes was especially sensitive to water in the low molar levels (0.001-0.1 M); therefore, by measuring the peak separation as a function of controlled water concentrations (accurately determined by Karl Fischer coulometric titrations) it was possible to prepare calibration curves of peak separation versus water concentration. The calibration procedure is independent of the type of reference electrode and can be used to determine the water content of CH(3)CN between 0.01 and 5 M, by performing a single voltammetric scan in the presence of 1.0 mM VK(1). The voltammetry was also investigated in dichloromethane, dimethylformamide, and dimethyl sulfoxide. The reduction processes were monitored by in situ electrochemical UV-vis spectroscopy in CH(3)CN over a range of water concentrations (0.05-10 M) to spectroscopically identify the hydrogen-bonded species.

  14. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    International Nuclear Information System (INIS)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R.; Coulston, Emma; Cole, George C.; Legon, Anthony C.; Tew, David P.

    2015-01-01

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and 14 N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC 5 H 5 does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C 2 axis of the pyridine. The a-type spectra of HCCH—NC 5 H 5 and DCCD—NC 5 H 5 are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC 5 H 5 , DCCH—NC 5 H 5 , indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single 13 C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the 13 C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm −1 in the C 2v configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene

  15. Triplet-Triplet Energy Transfer Study in Hydrogen Bonding Systems.

    Science.gov (United States)

    Wang, Zhijia; Zhao, Jianzhang; Guo, Song

    2015-01-01

    The 2,6-diiodoBodipy-styrylBodipy hydrogen bonding system was prepared to study the effect of hydrogen bonding on the triplet-triplet-energy-transfer (TTET) process. 2,6-DiiodoBodipy linked with N-acetyl-2,6-diaminopyridine (D-2) was used as the triplet energy donor, and the styrylBodipy connected with thymine (A-1) was used as triplet energy acceptor, thus the TTET process was established upon photoexcitation. The photophysical processes of the hydrogen bonding system were studied with steady-state UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence lifetime measurement and nanosecond time-resolved transient absorption spectroscopies. The TTET of the intramolecular/hydrogen bonding/intermolecular systems were compared through nanosecond transient absorption spectroscopy. The TTET process of the hydrogen bonding system is faster and more efficient (kTTET = 6.9 × 10(4) s(-1), ΦTTET = 94.0%) than intermolecular triplet energy transfer (kTTET = 6.0 × 10(4) s(-1), ΦTTET = 90.9%), but slower and less efficient than intramolecular triplet energy transfer (kTTET > 10(8) s(-1)). These results are valuable for designing self-assembly triplet photosensitizers and for the study of the TTET process of hydrogen bonding systems.

  16. Crystal structure and hydrogen-bonding patterns in 5-fluorocytosinium picrate

    Directory of Open Access Journals (Sweden)

    Marimuthu Mohana

    2017-03-01

    Full Text Available In the crystal structure of the title compound, 5-fluorocytosinium picrate, C4H5FN3O+·C6H2N3O7−, one N heteroatom of the 5-fluorocytosine (5FC ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11° with the ring of the picrate (PA− anion. In the crystal, the 5FC+ cation interacts with the PA− anion through three-centre N—H...O hydrogen bonds, forming two conjoined rings having R21(6 and R12(6 motifs, and is extended by N—H...O hydrogen bonds and C—H...O interactions into a two-dimensional sheet structure lying parallel to (001. Also present in the crystal structure are weak C—F...π interactions.

  17. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  18. Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations.

    Science.gov (United States)

    Bao, Zongbi; Xie, Danyan; Chang, Ganggang; Wu, Hui; Li, Liangying; Zhou, Wei; Wang, Hailong; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Zaworotko, Michael J; Ren, Qilong; Chen, Banglin

    2018-04-04

    Research on hydrogen-bonded organic frameworks (HOFs) has been developed for quite a long time; however, those with both established permanent porosities and functional properties are extremely rare due to weak hydrogen-bonding interactions among molecular organic linkers, which are much more fragile and difficult to stabilize. Herein, through judiciously combining the superiority of both the moderately stable coordination bonds in metal-organic frameworks and hydrogen bonds, we have realized a microporous hydrogen-bonded metal-complex or metallotecton framework HOF-21, which not only shows permanent porosity, but also exhibits highly selective separation performance of C 2 H 2 /C 2 H 4 at room temperature. The outstanding separation performance can be ascribed to sieving effect confined by the fine-tuning pores and the superimposed hydrogen-bonding interaction between C 2 H 2 and SiF 6 2- on both ends as validated by both modeling and neutron powder diffraction experiments. More importantly, the collapsed HOF-21 can be restored by simply immersing it into water or salt solution. To the best of our knowledge, such extraordinary water stability and restorability of HOF-21 were observed for the first time in HOFs, underlying the bright perspective of such new HOF materials for their industrial usage.

  19. Modeling liquid-vapor equilibria with an equation of state taking into account dipolar interactions and association by hydrogen bonding; Modelisation des proprietes PVTX des fluides du systeme H{sub 2}O-gaz prenant en compte l'association par liaisons hydrogenes et les interactions dipolaires

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, E

    2006-11-15

    Modelling fluid-rock interactions as well as mixing and unmixing phenomena in geological processes requires robust equations of state (EOS) which must be applicable to systems containing water, gases over a broad range of temperatures and pressures. Cubic equations of state based on the Van der Waals theory (e. g. Soave-Redlich-Kwong or Peng-Robinson) allow simple modelling from the critical parameters of the studied fluid components. However, the accuracy of such equations becomes poor when water is a major component of the fluid since neither association trough hydrogen bonding nor dipolar interactions are accounted for. The Helmholtz energy of a fluid may be written as the sum of different energetic contributions by factorization of partition function. The model developed in this thesis for the pure H{sub 2}O and H{sub 2}S considers three contributions. The first contribution represents the reference Van der Waals fluid which is modelled by the SRK cubic EOS. The second contribution accounts for association through hydrogen bonding and is modelled by a term derived from Cubic Plus Association (CPA) theory. The third contribution corresponds to the dipolar interactions and is modelled by the Mean Spherical Approximation (MSA) theory. The resulting CPAMSA equation has six adjustable parameters, which three represent physical terms whose values are close to their experimental counterpart. This equation results in a better reproduction of the thermodynamic properties of pure water than obtained using the classical CPA equation along the vapour-liquid equilibrium. In addition, extrapolation to higher temperatures and pressure is satisfactory. Similarly, taking into account dipolar interactions together with the SRK cubic equation of state for calculating molar volume of H{sub 2}S as a function of pressure and temperature results in a significant improvement compared to the SRK equation alone. Simple mixing rules between dipolar molecules are proposed to model the H

  20. Single Photon Ionization Mass Spectroscopy of Hydrogen Bonded and van der Waals Cluster Systems Using a Capillary Discharge Soft X-Ray Laser

    Science.gov (United States)

    Heinbuch, S.; Dong, F.; Bernstein, E. R.; Rocca, J. J.

    We report the first use of a soft x-ray laser in photochemistry studies. A 46.9 nm capillary discharge soft x-ray laser was used to study hydrogen bonded and van der Waals cluster systems. The study of van der Waals cluster formation and growth in the gas phase can contribute to the understanding of solvation processes, solvation dynamics, and the nucleation and growth of small clusters. The comparative investigation of water, methanol, and ammonia clusters is of importance because these clusters demonstrate a wide range of van der Waals interactions and hydrogen bonding: water clusters are very strongly and dominantly hydrogen bonded; methanol clusters somewhat less so; and ammonia clusters perhaps not at all. Sulfur dioxide is the major contributor to acid rain and a generator of soot. The process of SO2 and water forming acid rain has been studied for some time in order to determine the atmospheric mechanism for this environmental issue. Carbon dioxide is the major gas phase pollutant responsible for the "green house effect" of the atmosphere. Many experiments employing supersonic expansion coupled with mass spectroscopic detection have been conducted in order to study monomeric and clustered structure and behavior of each of these systems. Spectroscopic and photochemical properties of the systems should be related to cluster structure. However, one of the most serious problems in the investigation of the distribution of neutral hydrogen-bonded and van der Waals clusters is the fragmentation or the intra-cluster ion-molecule reactions to the protonated cluster ions. Electron Impact (EI) ionization usually suffers considerably from fragmentation of parent cluster ions on account of the large excess energies during the ionization process. Multiphoton ionization (MPI) processes result in the predissociation of the neutral clusters before ionization. Single photon ionization is a more "gentle" way to study hydrogen-bonded and Van der Waals clusters since less

  1. Hydrogen bond strength in membrane proteins probed by time-resolved1H-detected solid-state NMR and MD simulations.

    Science.gov (United States)

    Medeiros-Silva, João; Jekhmane, Shehrazade; Baldus, Marc; Weingarth, Markus

    2017-10-01

    1 H-detected solid-state NMR in combination with 1 H/ 2 D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining time-resolved 1 H-detected solid-state NMR experiments and molecular dynamics simulations. In particular, we show that the carboxyl-side chain of the highly conserved residue Glu51 is involved in ultra-strong hydrogen bonds, which are fully-water-exposed and yet stable for weeks. The astonishing stability of these hydrogen bonds is important for the structural integrity of potassium channels, which we further corroborate by computational studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The hydrogen-bonding ability of the amino acid glutamine revealed by neutron diffraction experiments.

    Science.gov (United States)

    Rhys, N H; Soper, A K; Dougan, L

    2012-11-15

    Hydrogen bonding between glutamine residues has been identified as playing an important role in the intermolecular association and aggregation of proteins. To establish the molecular mechanisms of glutamine interactions, neutron diffraction coupled with hydrogen/deuterium isotopic substitution in combination with computational modeling has been used to investigate the structure and hydration of glutamine in aqueous solution. The final structures obtained are consistent with the experimental data and provide insight into the hydrogen-bonding ability of glutamine. We find that the backbone of glutamine is able to coordinate more water molecules than the side chain, suggesting that charged groups on the glutamine molecule are more successful in attracting water than the dipole in the side chain. In both the backbone and the side chain, we find that the carbonyl groups interact more readily with water molecules than the amine groups. We find that glutamine-glutamine interactions are present, despite their low concentration in this dilute solution. This is evidenced through the occurrence of dimers of glutamine molecules in the solution, demonstrating the effective propensity of this molecule to associate through backbone-backbone, backbone-side chain, and side chain-side chain hydrogen bond interactions. The formation of dimers of glutamine molecules in such a dilute solution (30 mg/mL glutamine) may have implications in the aggregation of glutamine-rich proteins in neurological diseases where aggregation is prevalent.

  3. Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds.

    Science.gov (United States)

    Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-12-01

    In this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl 4 . The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Competition between halogen, dihalogen and hydrogen bonds in bromo- and iodomethanol dimers

    Czech Academy of Sciences Publication Activity Database

    Riley, K. E.; Řezáč, Jan; Hobza, Pavel

    2013-01-01

    Roč. 19, č. 7 (2013), s. 2879-2883 ISSN 1610-2940 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : dihalogen bond * halogen bond * hydrogen bond * noncovalent interactions Subject RIV: CE - Biochemistry Impact factor: 1.867, year: 2013

  5. NH+-F hydrogen bonding in a fluorinated "proton sponge" derivative: integration of solution, solid-state, gas-phase, and computational studies.

    Science.gov (United States)

    Scerba, Michael T; Leavitt, Christopher M; Diener, Matthew E; DeBlase, Andrew F; Guasco, Timothy L; Siegler, Maxime A; Bair, Nathaniel; Johnson, Mark A; Lectka, Thomas

    2011-10-07

    We report detailed studies on the characterization of an intramolecular NH-F hydrogen bond formed within a fluorinated "proton sponge" derivative. An ammonium ion, generated from 8-fluoro-N,N-dimethylnaphthalen-1-amine, serves as a charged hydrogen bond donor to a covalently bound fluorine appropriately positioned on the naphthalene skeleton. Potentiometric titrations of various N,N-dimethylnaphthalen-1-amines demonstrate a significant increase in basicity when hydrogen bonding is possible. X-ray crystallography reveals that NH-F hydrogen bonding in protonated 8-fluoro-N,N-dimethylnaphthalen-1-amine is heavily influenced by ion pairing in the solid state; bifurcated and trifurcated hydrogen bonds are formed depending on the counterion utilized. Compelling evidence of hydrogen bonding in the 8-fluoro-N,N-dimethylnaphthyl-1-ammonium cation is provided by gas-phase cryogenic vibrational photodissociation spectroscopy. Solution-phase infrared spectroscopy provides complementary results, and the frequencies of the N-H stretching mode in both phases are in excellent agreement with the computed vibrational spectra. NMR analysis of protonated 8-fluoro-N,N-dimethylnaphthalen-1-amine demonstrates significant H-F coupling between the N-H hydrogen and fluorine that cannot be attributed to long-range, through-bond interactions; the couplings correlate favorably with calculated values. The results obtained from these experiments are congruent with the formation of an NH-F hydrogen bond upon protonation of 8-fluoro-N,N-dimethylnaphthalen-1-amine.

  6. The hydrogen bond strength of the phenol-phenolate anionic complex: a computational and photoelectron spectroscopic study.

    Science.gov (United States)

    Buytendyk, Allyson M; Graham, Jacob D; Collins, Kim D; Bowen, Kit H; Wu, Chia-Hua; Wu, Judy I

    2015-10-14

    The phenol-phenolate anionic complex was studied in vacuo by negative ion photoelectron spectroscopy using 193 nm photons and by density functional theory (DFT) computations at the ωB97XD/6-311+G(2d,p) level. We characterize the phenol-phenolate anionic complex as a proton-coupled phenolate pair, i.e., as a low-barrier hydrogen bond system. Since the phenol-phenolate anionic complex was studied in the gas phase, its measured hydrogen bond strength is its maximal ionic hydrogen bond strength. The D(PhO(-)···HOPh) interaction energy (26-30 kcal mol(-1)), i.e., the hydrogen bond strength in the PhO(-)···HOPh complex, is quite substantial. Block-localized wavefunction (BLW) computations reveal that hydrogen bonded phenol rings exhibit increased ring π-electron delocalization energies compared to the free phenol monomer. This additional stabilization may explain the stronger than expected proton donating ability of phenol.

  7. The Role of Molecule Clustering by Hydrogen Bond in Hydrous Ethanol on Laminar Burning Velocity

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The role of hydrogen bond molecule clustering in laminar burning velocities was observed. The water in hydrous ethanol can change the interaction between water-ethanol molecules. A certain amount of water can become oxygenated which increases the burning velocity. The hydrogen bond interaction pattern of ethanol and water molecules was modeled. Based on the molecular model, azeotropic behavior emerges from ethanol-water hydrogen bond, which is at a 95.1%v composition. The interaction with water molecule causes the ethanol molecule to be clustered with centered oxygenated compound. So, it supplies extra oxygen and provides intermolecular empty spaces that are easily infiltrated by the air. In the azeotropic composition, the molecular bond chain is the shortest, so hypothetically the burning velocity is anticipated to increase. The laminar burning velocity of ethanol fuel was tested in a cylindrical explosion bomb in lean, stoichiometric, and rich mixtures. The experimental result showed that the maximum burning velocity occurred at hydrous ethanol of 95.5%v composition. This discrepancy is the result of the addition of energy from 7.7% free ethanol molecules that are not clustered. At the rich mixture, the burning velocity of this composition is higher than that of anhydrous ethanol.

  8. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    Science.gov (United States)

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding

    Science.gov (United States)

    2017-01-01

    Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels. PMID:29213150

  10. Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding.

    Science.gov (United States)

    Yuan, Hongbo; Xu, Jialiang; van Dam, Eliane P; Giubertoni, Giulia; Rezus, Yves L A; Hammink, Roel; Bakker, Huib J; Zhan, Yong; Rowan, Alan E; Xing, Chengfen; Kouwer, Paul H J

    2017-11-28

    Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels.

  11. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules.

    Science.gov (United States)

    Oksanen, Esko; Chen, Julian C-H; Fisher, Suzanne Zoë

    2017-04-07

    Abstract : The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  12. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules

    Directory of Open Access Journals (Sweden)

    Esko Oksanen

    2017-04-01

    Full Text Available Abstract: The hydrogen bond (H bond is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  13. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid.

    Science.gov (United States)

    Niskanen, Johannes; Sahle, Christoph J; Juurinen, Iina; Koskelo, Jaakko; Lehtola, Susi; Verbeni, Roberto; Müller, Harald; Hakala, Mikko; Huotari, Simo

    2015-09-03

    Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded using inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per Owater increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO4(2-) is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4(-) peaks at ∼12 M.

  14. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  15. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  16. On hydrogen bonding in 1,6-anhydro-beta-D-glucopyranose (levoglucosan): X-ray and neutron diffraction and DFT study.

    Science.gov (United States)

    Smrcok, Lubomír; Sládkovicová, Mariana; Langer, Vratislav; Wilson, Chick C; Koós, Miroslav

    2006-10-01

    The geometry of hydrogen bonds in 1,6-anhydro-beta-D-glucopyranose (levoglucosan) is accurately determined by refinement of time-of-flight neutron single-crystal diffraction data. Molecules of levoglucosan are held together by a hydrogen-bond array formed by a combination of strong O-H...O and supporting weaker C-H...O bonds. These are fully and accurately detailed by the neutron diffraction study. The strong hydrogen bonds link molecules in finite chains, with hydroxyl O atoms acting as both donors and acceptors of hydroxyl H atoms. A comparison of molecular and solid-state DFT calculations predicts red shifts of O-H and associated blue shifts of C-H stretching frequencies due to the formation of hydrogen bonds in this system.

  17. Studies of Hydrogen Bonding Between N, N-Dimethylacetamide and Primary Alcohols

    Directory of Open Access Journals (Sweden)

    M. S. Manjunath

    2009-01-01

    Full Text Available Hydrogen bonding between N, N-dimethylacetamide (DMA and alcohols has been studied in carbon tetrachloride solution by an X-band Microwave bench at 936GHz. The dielectric relaxation time (τ of the binary system are obtained by both Higasi's method and Gopalakrishna method. The most likely association complex between alcohol and DMA is 1:1 stoichiometric complex through the hydroxyl group of the alcohol and the carbonyl group of amide. The results show that the interaction between alcohols and amides is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of amide and the alkyl chain-length of both the alcohols and amide plays an important role in the determination of the strength of hydrogen bond (O-H: C=O formed and suggests that the proton donating ability of alcohols is in the order: 1-propanol < 1-butanol < 1-pentanol and the accepting ability of DMA.

  18. Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions.

    Science.gov (United States)

    Van Duong, Tu; Reekmans, Gunter; Venkatesham, Akkaladevi; Van Aerschot, Arthur; Adriaensens, Peter; Van Humbeeck, Jan; Van den Mooter, Guy

    2017-05-01

    We recently found that indomethacin (IMC) can effectively act as a powerful crystallization inhibitor for polyethylene glycol 6000 (PEG) despite the fact that the absence of interactions between the drug and the carrier in the solid state was reported in the literature. However, in the present study, we investigate the possibility of drug-carrier interactions in the liquid state to explain the polymer crystallization inhibition effect of IMC. We also aim to discover other potential PEG crystallization inhibitors. Drug-carrier interactions in both liquid and solid state are characterized by variable temperature Fourier transform infrared spectroscopy (FTIR) and cross-polarization magic angle spinning 13 C nuclear magnetic resonance spectroscopy (CP/MAS NMR). In the liquid state, FTIR data show evidence of the breaking of hydrogen bonding between IMC molecules to form interactions of the IMC monomer with PEG. The drug-carrier interactions are disrupted upon storage and polymer crystallization, resulting in segregation of IMC from PEG crystals that can be observed under polarized light microscopy. This process is further confirmed by 13 C NMR since in the liquid state, when the IMC/PEG monomer units ratio is below 2:1, IMC signals are undetectable because of the loss of cross-polarization efficiency in the mobile IMC molecules upon attachment to PEG chains via hydrogen bonding. This suggests that each ether oxygen of the PEG unit can form hydrogen bonds with two IMC molecules. The NMR spectrum of IMC shows no change in solid dispersions with PEG upon storage, indicating the absence of interactions in the solid state, hence confirming previous studies. The drug-carrier interactions in the liquid state elucidate the crystallization inhibition effect of IMC on PEG as well as other semicrystalline polymers such as poloxamer and Gelucire. However, hydrogen bonding is a necessary but apparently not a sufficient condition for the polymer crystallization inhibition. Screening

  19. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  20. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  1. Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Post, Michael R; Lester, Henry A; Dougherty, Dennis A

    2017-04-04

    Designing subtype-selective agonists for neuronal nicotinic acetylcholine receptors is a challenging and significant goal aided by intricate knowledge of each subtype's binding patterns. We previously reported that in α6β2 receptors, acetylcholine makes a functional cation-π interaction with Trp149, but nicotine and TC299423 do not, suggesting a distinctive binding site. This work explores hydrogen binding at the backbone carbonyl associated with α6β2 Trp149. Substituting residue i + 1, Thr150, with its α-hydroxy analogue (Tah) attenuates the carbonyl's hydrogen bond accepting ability. At α6(T150Tah)β2, nicotine shows a 24-fold loss of function, TC299423 shows a modest loss, and acetylcholine shows no effect. Nicotine was further analyzed via a double-mutant cycle analysis utilizing N'-methylnicotinium, which indicated a hydrogen bond in α6β2 with a ΔΔG of 2.6 kcal/mol. Thus, even though nicotine does not make the conserved cation-π interaction with Trp149, it still makes a functional hydrogen bond to its associated backbone carbonyl.

  2. Microwave spectroscopy of 2-(trifluoromethyl)pyridine⋯water complex: Molecular structure and hydrogen bond

    Science.gov (United States)

    Li, Xiaolong; Zheng, Yang; Gou, Qian; Feng, Gang; Xia, Zhining

    2018-01-01

    In order to explore the -CF3 substitution effect on the complexation of pyridine, we investigated the 2-(trifluoromethyl)pyridine⋯water complex by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Experimental assignment and ab initio calculations confirmed that the observed complex is stabilized through N⋯H-O and O⋯H-C hydrogen bonds forming a five-membered ring structure. The bonding distance in N⋯H-O is determined to be 2.027(2) Å, whilst that in O⋯H-C interaction is 2.728(2) Å. The quantum theory of atoms in molecules analysis indicates that the interaction energy of N⋯H-O hydrogen bond is ˜22 kJ mol-1 and that for O⋯H-C hydrogen bond is ˜5 kJ mol-1. The water molecule lies almost in the plane of the aromatic ring in the complex. The -CF3 substitution to pyridine quenches the tunneling splitting path of the internal motion of water molecule.

  3. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.

    Science.gov (United States)

    Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang

    2017-06-01

    Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Examining student heuristic usage in a hydrogen bonding assessment.

    Science.gov (United States)

    Miller, Kathryn; Kim, Thomas

    2017-09-01

    This study investigates the role of representational competence in student responses to an assessment of hydrogen bonding. The assessment couples the use of a multiple-select item ("Choose all that apply") with an open-ended item to allow for an examination of students' cognitive processes as they relate to the assignment of hydrogen bonding within a structural representation. Response patterns from the multiple-select item implicate heuristic usage as a contributing factor to students' incorrect responses. The use of heuristics is further supported by the students' corresponding responses to the open-ended assessment item. Taken together, these data suggest that poor representational competence may contribute to students' previously observed inability to correctly navigate the concept of hydrogen bonding. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):411-416, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  5. Reassigning hydrogen-bond centering in dense ice

    International Nuclear Information System (INIS)

    Benoit, Magali; Romero, Aldo H.; Marx, Dominik

    2002-01-01

    Hydrogen bonds in H 2 O ice change dramatically upon compression. Thereby a hydrogen-bonded molecular crystal, ice VII, is transformed to an atomic crystal, ice X. Car-Parrinello simulations reproduce the features of the x-ray diffraction spectra up to about 170 GPa but allow for analysis in real space. Starting from molecular ice VII with static orientational disorder, dynamical translational disordering occurs first via creation of ionic defects, which results in a systematic violation of the ice rules. As a second step, the transformation to an atomic solid and thus hydrogen-bond centering occurs around 110 GPa at 300 K and no novel phase is found up to at least 170 GPa

  6. Versatile and Resilient Hydrogen-Bonded Host Frameworks.

    Science.gov (United States)

    Adachi, Takuji; Ward, Michael D

    2016-12-20

    Low-density molecular host frameworks, whether equipped with persistent molecular-scale pores or virtual pores that are sustainable only when occupied by guest molecules, have emerged as a promising class of materials owing to the ability to tailor the size, geometry, and chemical character of their free space through the versatility of organic synthesis. As such, molecular frameworks are promising candidates for storage, separations of commodity and fine chemicals, heterogeneous catalysis, and optical and electronic materials. Frameworks assembled through hydrogen bonds, though generally not stable toward collapse in the absence of guests, promise significant chemical and structural diversity, with pores that can be tailored for a wide range of guest molecules. The utility of these frameworks, however, depends on the resilience of n-dimensional hydrogen-bonded motifs that serve as reliable building blocks so that the molecular constituents can be manipulated without disruption of the anticipated global solid-state architecture. Though many hydrogen-bonded frameworks have been reported, few exist that are amenable to systematic modification, thus limiting the design of functional materials. This Account reviews discoveries in our laboratory during the past decade related to a series of host frameworks based on guanidinium cations and interchangeable organosulfonate anions, in which the 3-fold symmetry and hydrogen-bonding complementarity of these ions prompt the formation of a two-dimensional (2-D) quasi-hexagonal hydrogen-bonding network that has proven to be remarkably resilient toward the introduction of a wide range of organic pendant groups attached to the sulfonate. Since an earlier report in this journal that focused primarily on organodisulfonate host frameworks with lamellar architectures, this unusually persistent network has afforded an unparalleled range of framework architectures and hundreds of new crystalline materials with predictable solid

  7. Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability.

    Science.gov (United States)

    Pazos, Ileana M; Gai, Feng

    2012-10-18

    While the thermodynamic effects of trimethylamine oxide (TMAO), urea, and guanidine hydrochloride (GdnHCl) on protein stability are well understood, the underlying mechanisms of action are less well characterized and, in some cases, even under debate. Herein, we employ the stretching vibration of two infrared (IR) reporters, i.e., nitrile (C≡N) and carbonyl (C═O), to directly probe how these cosolvents mediate the ability of water to form hydrogen bonds with the solute of interest, e.g., a peptide. Our results show that these three agents, despite having different effects on protein stability, all act to decrease the strength of the hydrogen bonds formed between water and the infrared probe. While the behavior of TMAO appears to be consistent with its protein-protecting ability, those of urea and GdnHCl are inconsistent with their role as protein denaturants. The latter is of particular interest as it provides strong evidence indicating that although urea and GdnHCl can perturb the hydrogen-bonding property of water their protein-denaturing ability does not arise from a simple indirect mechanism.

  8. Effect of an external electric field on the dissociation energy and the electron density properties: The case of the hydrogen bonded dimer HF...HF.

    Science.gov (United States)

    Mata, Ignasi; Molins, Elies; Alkorta, Ibon; Espinosa, Enrique

    2009-01-28

    The effect of a homogeneous external electric field parallel to the hydrogen bond in the FH...FH dimer has been studied by theoretical methods. The quantum theory of atoms in molecules methodology has been used for analyzing the electron distribution of the dimer, calculated with different hydrogen bond distances and external field magnitudes. It is shown that an electric field in the opposite direction to the dipole moment of the system strengthens the interaction due to a larger mutual polarization between both molecules and increases the covalent character of the hydrogen bond, while an external field in the opposite direction has the inverse effect. The properties of the complex at its equilibrium geometry with applied field have been calculated, showing that dependencies between hydrogen bond distance, dissociation energy, and properties derived from the topological analysis of the electron distribution are analogous to those observed in families of XDH...AY complexes. The application of an external field appears as a useful tool for studying the effect of the atomic environment on the hydrogen bond interaction. In the case of FH...FH, both the kinetic energy density and the curvature of the electron density along the hydrogen bond at the bond critical point present a surprisingly good linear dependence on the dissociation energy. The interaction energy can be modeled by the sum of two exponential terms that depend on both the hydrogen bond distance and the applied electric field. Moreover, as indicated by the resulting interaction energy observed upon application of different external fields, the equilibrium distance varies linearly with the external field, and the dependence of the dissociation energy on either the hydrogen bond distance or the external electric field is demonstrated to be exponential.

  9. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  10. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  11. Hydrogen bonds and local symmetry in the crystal structure of gibbsite.

    Science.gov (United States)

    Vyalikh, Anastasia; Zesewitz, Konrad; Scheler, Ulrich

    2010-11-01

    First-principles quantum mechanical calculations of NMR chemical shifts and quadrupolar parameters have been carried out to assign the (27)Al MAS NMR resonances in gibbsite. The (27)Al NMR spectrum shows two signals for octahedral aluminum revealing two aluminum sites coordinated by six hydroxyl groups each, although the crystallographic positions of the two Al sites show little difference. The presence of two distinguished (27)Al NMR resonances characterized by rather similar chemical shifts but quadrupolar coupling constants differing by roughly a factor of two is explained by different character of the hydrogen bonds, in which the hydroxyls forming the corresponding octahedron around each aluminum site, are involved. The Al-I site characterized by a C(Q) = 4.6 MHz is surrounded by OH-groups participating in four intralayer and two interlayer hydrogen bonds, while the Al-II site with the smaller quadrupolar constant (2.2 MHz) is coordinated by hydroxides, of which two point toward the intralayer cavities and four OH-bonds are aligned toward the interlayer gallery. In high-resolution solid-state (1)H CRAMPS (combination of rotation and multiple-pulse spectroscopy) four signals with an intensity ratio of 1:2:2:1 are resolved which allow to distinguish six nonequivalent hydrogen sites reported in the gibbsite crystal structure and to ascribe them to two types of structural OH groups associated with intralayer and interlayer hydrogen bonds. This study can be applied to characterize the gibbsite-like layer-intergallery interactions associated with hydrogen bonding in the more complex systems, such as synthetic aluminum layered double hydroxides. 2010 John Wiley & Sons, Ltd.

  12. Hydrogen-bond network and pH sensitivity in human transthyretin

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Takeshi, E-mail: tyokoya3@pha.u-toyama.ac.jp; Mizuguchi, Mineyuki; Nabeshima, Yuko [University of Toyama, 2630 Sugitani, Toyama 930-0914 (Japan); Kusaka, Katsuhiro; Yamada, Taro [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Hosoya, Takaaki [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Ibaraki University, 4-12-1 Naka-Narusawa, Hitachi, Ibaraki 316-8511 (Japan); Ohhara, Takashi [Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Kurihara, Kazuo [Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Tanaka, Ichiro [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Ibaraki University, 4-12-1 Naka-Narusawa, Hitachi, Ibaraki 316-8511 (Japan); Niimura, Nobuo [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan)

    2013-11-01

    The neutron crystal structure of human transthyretin is presented. Transthyretin (TTR) is a tetrameric protein. TTR misfolding and aggregation are associated with human amyloid diseases. Dissociation of the TTR tetramer is believed to be the rate-limiting step in the amyloid fibril formation cascade. Low pH is known to promote dissociation into monomer and the formation of amyloid fibrils. In order to reveal the molecular mechanisms underlying pH sensitivity and structural stabilities of TTR, neutron diffraction studies were conducted using the IBARAKI Biological Crystal Diffractometer with the time-of-flight method. Crystals for the neutron diffraction experiments were grown up to 2.5 mm{sup 3} for four months. The neutron crystal structure solved at 2.0 Å revealed the protonation states of His88 and the detailed hydrogen-bond network depending on the protonation states of His88. This hydrogen-bond network is involved in monomer–monomer and dimer–dimer interactions, suggesting that the double protonation of His88 by acidification breaks the hydrogen-bond network and causes the destabilization of the TTR tetramer. Structural comparison with the X-ray crystal structure at acidic pH identified the three amino acid residues responsible for the pH sensitivity of TTR. Our neutron model provides insights into the molecular stability related to amyloidosis.

  13. Hydrogen-bond network and pH sensitivity in human transthyretin.

    Science.gov (United States)

    Yokoyama, Takeshi; Mizuguchi, Mineyuki; Nabeshima, Yuko; Kusaka, Katsuhiro; Yamada, Taro; Hosoya, Takaaki; Ohhara, Takashi; Kurihara, Kazuo; Tanaka, Ichiro; Niimura, Nobuo

    2013-11-01

    Transthyretin (TTR) is a tetrameric protein. TTR misfolding and aggregation are associated with human amyloid diseases. Dissociation of the TTR tetramer is believed to be the rate-limiting step in the amyloid fibril formation cascade. Low pH is known to promote dissociation into monomer and the formation of amyloid fibrils. In order to reveal the molecular mechanisms underlying pH sensitivity and structural stabilities of TTR, neutron diffraction studies were conducted using the IBARAKI Biological Crystal Diffractometer with the time-of-flight method. Crystals for the neutron diffraction experiments were grown up to 2.5 mm(3) for four months. The neutron crystal structure solved at 2.0 Å revealed the protonation states of His88 and the detailed hydrogen-bond network depending on the protonation states of His88. This hydrogen-bond network is involved in monomer-monomer and dimer-dimer interactions, suggesting that the double protonation of His88 by acidification breaks the hydrogen-bond network and causes the destabilization of the TTR tetramer. Structural comparison with the X-ray crystal structure at acidic pH identified the three amino acid residues responsible for the pH sensitivity of TTR. Our neutron model provides insights into the molecular stability related to amyloidosis.

  14. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  15. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The hydrogen bonding interactions in selected archetypal vapor molecules formed in the gas phase over protic ionic liquids are discussed, based on Raman spectroscopy assisted with ab initio molecular orbital DFT-type quantum mechanical calculations (B3LYP with 6-311+G(d,p) basis sets) on assumed...... Ionic Liquid, To be submitted for J. Phys. Chem. A (2009)....

  16. Benchmark, DFT assessments, cooperativity, and energy decomposition analysis of the hydrogen bonds in HCN/HNC oligomeric complexes.

    Science.gov (United States)

    de Oliveira, Paulo McMiller C; Silva, Juliana A B; Longo, Ricardo L

    2017-02-01

    Hydrogen cyanide (HCN) and its tautomer hydrogen isocyanide (HNC) are relevant for extraterrestrial chemistry and possible relation to the origin of biomolecules. Several processes and reactions involving these molecules depend on their intermolecular interactions that can lead to aggregates and liquids especially due to the hydrogen bonds. It is thus important to comprehend, to describe, and to quantify their hydrogen bonds, mainly their nature and the cooperativity effects. A systematic study of all linear complexes up to pentamers of HCN and HNC is presented. CCSD(T)/CBS energy calculations, with and without basis set superposition error (BSSE) corrections for energies and geometries, provided a suitable set of benchmarks. Approximated methods based on the density functional theory (DFT) such as BP86, PBE, TPSS, B3LYP, CAM-B3LYP with and without dispersion corrections and long-range corrections, were assessed to describe the interaction energies and cooperativity effects. These assessments are relevant to select DFT functionals for liquid simulations. Energy decomposition analysis was performed at the PBE/STO-TZ2P level and provided insights into the nature of the hydrogen bonds, which are dominated by the electrostatic component. In addition, several linear relationships between the various energy components and the interaction energy were obtained. The cooperativity energy was also found to be practically linear with respect to the interaction energy, which may be relevant for designing and/or correcting empirical force fields. Graphical Abstract Hydrogen bonds in HCN/HNC oligomeric complexesᅟ.

  17. Dynamics of hydrogen bonds in water and consequences for the ...

    Indian Academy of Sciences (India)

    Figure. 1 summarizes the situation in a schematic and simplified way. As pointed out above, to know the behaviour of liquid water we must take into account the properties of the intermolecular hydrogen bonds (HB). The peculiar behaviour of liquid water is due to such bonds, more precisely, due to three of their properties:.

  18. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  19. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    , and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...

  20. Cycloaddition Reaction of Hydrogen-Bonded Zn(II)

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 129, No. 2, February 2017, pp. 239–247. c Indian Academy of Sciences. DOI 10.1007/s12039-016-1218-6. REGULAR ARTICLE. Solid-state Photochemical [2+2] Cycloaddition Reaction of. Hydrogen-Bonded Zn(II) Metal Complex Containing Several Parallel. C=C Bonds. ABDUL MALIK P PEEDIKAKKAL.

  1. Dynamics of hydrogen bonds in water and consequences for the ...

    Indian Academy of Sciences (India)

    E-mail: jose.teixeira@cea.fr. Abstract. The dynamics of liquid water is evaluated by the coherent quasi-elastic scat- tering at two different momentum transfers, in order to discriminate hydrogen bond life- time from molecular dynamics. The results indicate a possible issue for the puzzle of the behaviour of supercooled water.

  2. Examining Student Heuristic Usage in a Hydrogen Bonding Assessment

    Science.gov (United States)

    Miller, Kathryn; Kim, Thomas

    2017-01-01

    This study investigates the role of representational competence in student responses to an assessment of hydrogen bonding. The assessment couples the use of a multiple-select item ("Choose all that apply") with an open-ended item to allow for an examination of students' cognitive processes as they relate to the assignment of hydrogen…

  3. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  4. Dynamics of hydrogen bonds in water and consequences for the ...

    Indian Academy of Sciences (India)

    Invited Papers Volume 71 Issue 4 October 2008 pp 761-768 ... The dynamics of liquid water is evaluated by the coherent quasi-elastic scattering at two different momentum transfers, in order to discriminate hydrogen bond life-time ... The results indicate a possible issue for the puzzle of the behaviour of supercooled water.

  5. Effects of dimethyl sulfoxide on the hydrogen bonding structure and ...

    Indian Academy of Sciences (India)

    Keywords. Aqueous NMA-DMSO solution; hydrogen-bond lifetime; structural relaxation times; self- diffusion coefficients; orientational relaxation times. 1. Introduction. Dimethyl sulfoxide (DMSO) is an important organic solvent, with immense significance in chemical and biological systems.1 In addition to being an effective.

  6. Polarization-induced sigma-holes and hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Hennemann, M.; Murray, J. S.; Politzer, P.; Riley, Kevin Eugene; Clark, T.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 2461-2469 ISSN 1610-2940 Institutional research plan: CEZ:AV0Z40550506 Keywords : hydrogen bond * sigma-hole * polarization * field effect * ab initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.984, year: 2012

  7. Hydrogen bonding in oxalic acid and its complexes: A database ...

    Indian Academy of Sciences (India)

    –COOH as an acceptor in the case of biomolecules was carried out by Ramanad- ham and coworkers [4]. A method was proposed to distinguish between ionized and neutral carboxyl group based on hydrogen bonding properties of OH of COOH. A more general survey of all the carboxylic acid structures determined using ...

  8. Hydrogen bonding of formamide, urea, urea monoxide and their thio ...

    Indian Academy of Sciences (India)

    Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and ...

  9. Binding of reactive organophosphate by oximes via hydrogen bond

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Binding of reactive organophosphate by oximes via hydrogen bond. Andrea Pappalardo Maria E Amato Francesco P Ballistreri Valentina La Paglia Fragola Gaetano A Tomaselli Rosa Maria Toscano Giuseppe Trusso Sfrazzetto. Volume 125 Issue 4 July ...

  10. Binding of reactive organophosphate by oximes via hydrogen bond

    Indian Academy of Sciences (India)

    In this contribution, the ability of simple oximes to bind a well-known nerve agent simulant (dimethylmethylphosphonate, DMMP) via hydrogen bond is reported. UV/Vis measurements indicate the formation of 1:1 complexes. 1H-, 31P-NMR titrations and T-ROESY experiments confirm that oximes bind the organophosphate ...

  11. Formation of a hydrogen-bonded barbiturate [2]-rotaxane.

    Science.gov (United States)

    Tron, Arnaud; Thornton, Peter J; Rocher, Mathias; Jacquot de Rouville, Henri-Pierre; Desvergne, Jean-Pierre; Kauffmann, Brice; Buffeteau, Thierry; Cavagnat, Dominique; Tucker, James H R; McClenaghan, Nathan D

    2014-03-07

    Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.

  12. Organic ferroelectrics based on hydrogen-bonded supermolecules

    International Nuclear Information System (INIS)

    Horiuchi, Sachio; Kumai, Reiji; Tokura, Yoshinori

    2007-01-01

    This article describes a new design strategy and prospective approaches to the fabrication of novel organic ferroelectrics. Ferroelectricity and a significant dielectric response as well as collective proton transfer are demonstrated in the hydrogen-bonded supramolecular chains composed of 2,5-dihydroxy-p-benzoquinone derivatives (acid) and nitrogen-containing aromatic bases. (author)

  13. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    Science.gov (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  14. Versatile Hydrogen-Hydrogen Bond with a Difference

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Versatile Hydrogen-Hydrogen Bond with a Difference. A G Samuelson. Research News Volume 1 ... Author Affiliations. A G Samuelson1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  15. Intermolecular hydrogen bonds: From temperature-driven proton ...

    Indian Academy of Sciences (India)

    molecular hydrogen bonds [1,2]. These bonds have unique physical and chemical properties and are thought to play a fundamental role in processes like enzymatic catalysis. By combining elastic and inelastic neutron scattering results with ab initio, lattice dynamics and molecular dynamics simulations, low frequency ...

  16. Dielectric relaxation and hydrogen bonding studies of 1,3 ...

    Indian Academy of Sciences (India)

    tric spectrometry of associating liquids. To find hydrogen bond concentration, dielectric relaxation studies have been performed on alcohol–alcohol mixtures and on mixtures of alcohols with water [20–37]. Crossely [38] had studied the dielectric permittivity and loss for a series of diols and concluded that the relaxation times ...

  17. Hydrogen Bonding Patterns in a Series of 3-Spirocyclic Oxindoles

    African Journals Online (AJOL)

    NICO

    Hydrogen Bonding Patterns in a Series of. 3-Spirocyclic Oxindoles. Andreas Lemmerer* and Joseph P. Michael. Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, P.O. WITS 2050, South Africa. Received 24 May 2010, revised 5 October 2010, accepted 29 October 2010.

  18. π Hydrogen bonded complexes of Acetic acid and Trifluoroacetic ...

    Indian Academy of Sciences (India)

    Matrix isolation infrared spectra of O-H···π Hydrogen bonded complexes of Acetic acid and Trifluoroacetic acid with Benzene. PUJARINI BANERJEE, INDRANI BHATTACHARYA and TAPAS CHAKRABORTY. ∗. Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India.

  19. Hydrogen bonding of formamide, urea, urea monoxide and their thio ...

    Indian Academy of Sciences (India)

    Abstract. Ab initio and DFT methods have been employed to study the hydrogen bonding ability of for- mamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with the monohydrated ...

  20. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    Abstract. We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on ...

  1. Understanding hydrogen bonding and determination of in-crystal dipol

    Indian Academy of Sciences (India)

    Wintec

    asparaginium ion and the picrate in the other complex. We have additionally performed theoretical calcu- lations at the density functional theory (DFT) level to understand the origin of enhancement of the dipole moments in the two systems. Keywords. X-ray diffraction; experimental charge density; hydrogen bonding; dipole ...

  2. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  3. Influence of hydrogen bonding on the generation and stabilization of ...

    Indian Academy of Sciences (India)

    ety totally vanquished liquid crystalline phases while biphenylene and naphthalene units did only reduce the transition .... firms the fact that during heating some of the amide–ester hydrogen bonds change into amide–amide ... their potential applications in LC displays, NLO materials, information storage devices etc. [12].

  4. Phase transition in triglycine family of hydrogen bonded ...

    Indian Academy of Sciences (India)

    Using the crystal structure, a comprehensive interpretation of the origin of ferroelectricity in the hydrogen bonded triglycine family of crystals is given. Our detailed analysis showed that the instability of nitrogen double well potential plays a driving role in the mechanism of the ferroelectric transitions in these crystals.

  5. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    2016-03-31

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO2(CH2)nCO2-[HO2(CH2)nCO2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that upon formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO4-[HO2(CH2)2CO2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO2(CH2)2CO2-[HO2(CH2)2CO2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.

  6. Including virtual photons in strong interactions

    International Nuclear Information System (INIS)

    Rusetsky, A.

    2003-01-01

    In the perturbative field-theoretical models we investigate the inclusion of the electromagnetic interactions into the purely strong theory that describes hadronic processes. In particular, we study the convention for splitting electromagnetic and strong interactions and the ambiguity of such a splitting. The issue of the interpretation of the parameters of the low-energy effective field theory in the presence of electromagnetic interactions is addressed, as well as the scale and gauge dependence of the effective theory couplings. We hope, that the results of these studies are relevant for the electromagnetic sector of ChPT. (orig.)

  7. Hydrogen bonds in concreto and in computro: the sequel

    Science.gov (United States)

    Stouten, Pieter F. W.; Van Eijck, Bouke P.; Kroon, Jan

    1991-02-01

    In the framework of our comparative research concerning hydrogen bonding in the crystalline and liquid phases we have carried out molecular dynamics (MD) simulations of liquid methanol. Six different rigid three site models are compared. Five of them had been reported in the literature and one (OM2) we developed by a fit to the experimental molar volume, heat of vaporization and neutron weighted radial distribution function. In general the agreement with experiment is satisfactory for the different models. None of the models has an explicit hydrogen bond potential, but five of the six models show a degree of hydrogen bonding comparable to experiments on liquid methanol. The analysis of the simulation hydrogen bonds indicates that there is a distinct preference of the O⋯O axis to lie in the acceptor lone pairs plane, but hardly any for the lone pair directions. Ab initio calculations and crystal structure statistics of OH⋯O hydrogen bonds agree with this observation. The O⋯O hydrogen bond length distributions are similar for most models. The crystal structures show a sharper O⋯O distribution. Explicit introduction of harmonic motion with a quite realistic root mean square amplitude of 0.08 Å to the thermally averaged crystal distribution results in a distribution comparable to OM2 although the maximum of the former is found at shorter distance. On the basis of the analysis of the static properties of all models we conclude that our OM2, Jorgenson's OPLS and Haughney, Ferrario and McDonald's HFM1 models are good candidates for simulations of liquid methanol under isothermal, isochoric conditions. Partly flexible and completely rigid OM2 are simulated at constant pressure and with fixed volume. The flexible simulations give essentially the same (correct) results under both conditions, which is not surprising because the flexible form was fitted under both conditions. Rigid OM2 has a similar potential energy but larger pressure in the

  8. Influence of supramolecular structures in crystals on parallel stacking interactions between pyridine molecules.

    Science.gov (United States)

    Janjić, Goran V; Ninković, Dragan B; Zarić, Snezana D

    2013-08-01

    Parallel stacking interactions between pyridines in crystal structures and the influence of hydrogen bonding and supramolecular structures in crystals on the geometries of interactions were studied by analyzing data from the Cambridge Structural Database (CSD). In the CSD 66 contacts of pyridines have a parallel orientation of molecules and most of these pyridines simultaneously form hydrogen bonds (44 contacts). The geometries of stacked pyridines observed in crystal structures were compared with the geometries obtained by calculations and explained by supramolecular structures in crystals. The results show that the mean perpendicular distance (R) between pyridine rings with (3.48 Å) and without hydrogen bonds (3.62 Å) is larger than that calculated, because of the influence of supramolecular structures in crystals. The pyridines with hydrogen bonds show a pronounced preference for offsets of 1.25-1.75 Å, close to the position of the calculated minimum (1.80 Å). However, stacking interactions of pyridines without hydrogen bonds do not adopt values at or close to that of the calculated offset. This is because stacking interactions of pyridines without hydrogen bonds are less strong, and they are more susceptible to the influence of supramolecular structures in crystals. These results show that hydrogen bonding and supramolecular structures have an important influence on the geometries of stacked pyridines in crystals.

  9. Investigations of an O-H...S hydrogen bond via Car-Parrinello and path integral molecular dynamics.

    Science.gov (United States)

    Jezierska, Aneta; Panek, Jarosław J

    2009-06-01

    The presence of intramolecular hydrogen bonds influences the binding energy, tautomeric equilibrium, and spectroscopic properties of various classes of organic molecules. This article discusses the O-H...S bridge, one of the less commonly investigated types of intramolecular interactions. 3-mercapto-1,3-diphenylprop-2-en-1-one was considered as the model structure. This compound exhibits photochromic properties. Car-Parrinello molecular dynamics (CPMD) was applied to investigate the spectroscopic and molecular properties of this compound in the gas phase and in the solid state. The second part of the study is devoted to the effects of the quantization of nuclear motions, with special attention to the O-H...S moiety. Path integral molecular dynamics (PIMD) of the molecular crystal of 3-mercapto-1,3-diphenylprop-2-en-1-one was carried out for this purpose. The employment of this fully quantum mechanical technique enables one to study, in a time-averaged sense, the zero-point motion important for flat potential energy surfaces. Finally, the potentials of mean force (Pmfs) were calculated from the CPMD and PIMD data obtained for the solid-state calculations. The effect of including quantum nuclear motion was investigated. In the studied compound, quantum effects shortened the H-bridge and provided a better description of the free energy minimum. The computational results place this uncommon intramolecular H-bonding among the class of strong hydrogen bonds with large red shifts of O-H stretching modes, which correspond well with previously presented experimental data in the literature concerning this structure. 2008 Wiley Periodicals, Inc.

  10. The hydrolysis of epoxides catalyzed by inorganic ammonium salts in water: kinetic evidence for hydrogen bond catalysis.

    Science.gov (United States)

    Nozière, B; Fache, F; Maxut, A; Fenet, B; Baudouin, A; Fine, L; Ferronato, C

    2018-01-17

    Naturally-occurring inorganic ammonium ions have been recently reported as efficient catalysts for some organic reactions in water, which contributes to the understanding of the chemistry in some natural environments (soils, seawater, atmospheric aerosols, …) and biological systems, and is also potentially interesting for green chemistry as many of their salts are cheap and non-toxic. In this work, the effect of NH 4 + ions on the hydrolysis of small epoxides in water was studied kinetically. The presence of NH 4 + increased the hydrolysis rate by a factor of 6 to 25 compared to pure water and these catalytic effects were shown not to result from other ions, counter-ions or from acid or base catalysis, general or specific. The small amounts of amino alcohols produced in the reactions were identified as the actual catalysts by obtaining a strong acceleration of the reactions when adding these compounds directly to the epoxides in water. Replacing the amino alcohols by other strong hydrogen-bond donors, such as trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) gave the same results, demonstrating that the kinetics of these reactions was driven by hydrogen-bond catalysis. Because of the presence of many hydrogen-bond donors in natural environments (for instance amines and hydroxy-containing compounds), hydrogen-bond catalysis is likely to contribute to many reaction rates in these environments.

  11. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu [Department of Chemistry, University of Minnesota, 207 Pleasant St., SE, Minneapolis, Minnesota 55455 (United States); Coulston, Emma; Cole, George C. [Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Legon, Anthony C., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu; Tew, David P., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu [Department of Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS (United Kingdom)

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.

  12. Hydrogen bonding of tyrosine B10 to heme-bound oxygen in Ascaris hemoglobin. Direct evidence from UV resonance Raman spectroscopy.

    Science.gov (United States)

    Huang, S; Huang, J; Kloek, A P; Goldberg, D E; Friedman, J M

    1996-01-12

    The hemoglobin from Ascaris suum, a parasitic nematode, has a spontaneous dissociation rate for the dioxygen ligand that is 3 orders of magnitude less than for mammalian myoglobins or hemoglobins. In this hemoglobin, the distal histidine is replaced with a glutamine which is capable of forming a stabilizing hydrogen bond to the bound dioxygen. A single hydrogen bond from a glutamine is, under typical circumstances, not sufficient to account for the low off rate for oxygen. Several studies point to a second hydrogen bond to the heme-bound dioxygen originating from tyrosine B10 as the source of this unusual reactivity. In this study ultraviolet (UV) resonance Raman spectroscopy is used to directly observe the formation of this hydrogen bond upon oxygen binding. The study reveals that both oxygen and carbon monoxide induce similar conformational changes in the globin upon binding to the heme; however, in the case of oxygen, a strong hydrogen bond involving a tyrosine is also observed. Similar studies on the QE7L mutant of this Hb suggest that the glutamine plays a role in stabilizing a rigid tertiary structure associated with the distal heme pocket. This conformation maintains the tyrosine in an orientation conducive to hydrogen bond formation with a heme-bound dioxygen ligand.

  13. A theory of the strong interactions

    International Nuclear Information System (INIS)

    Gross, D.J.

    1979-01-01

    The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)

  14. Two independent hydrogen bonded complexes of bis(1-piperidiniumacetate) hydrochloride in crystal and in the PM3 optimized structure

    International Nuclear Information System (INIS)

    Dega-Szafran, Z.; Petryna, M.; Dutkiewicz, G.; Kosturkiewicz, Z.

    2003-01-01

    Bis(1-piperidiniumacetate) hydrochloride, (PAA) 2 H · Cl + , has been synthesized and its structure solved by X-ray diffraction. The crystals belong to the triclinic system with two symmetrically independent hydrogen bonded complexes, denoted A and B, at two different inversion centers. The compound crystallizes in the space group P1 with a = 8.559(1), b = 9.625(1), c = 11.441(1) A, α = 74.85(1) o , β = 68.22(1) o , γ 84.10(1) o , Z = 2, R = 0.036. Each complex consists of two 1-piperidiniumacetate moieties. Four 1-piperidiniumacetates, as zwitterions, are held together by a network of hydrogen bonds of the types O...H...O (2.462(3) and 2.463(3) A), N-H...O (2.755(2) A) and N-H...Cl (3.167(2) A). Both N-H atoms in a complex A interact with chlorine anions. A number of weak C-H...Cl contacts stabilize the three-dimensional crystal structure. In the isolated molecule of (PAA) 2 H · Cl + optimized by the PM3 method, there also are two independent hydrogen bonded complexes. In complex A the natural form of 1-piperidineacetic acid interacts with its anionic form, while in complex B the 1-piperidiniumacetic acid, as a cation, forms a hydrogen bond with its zwitterionic form. FTIR spectrum of bis(1-piperidiniumacetate) hydrochloride has been analysed and discussed. (author)

  15. Role of the distal hydrogen-bonding network in regulating oxygen affinity in the truncated hemoglobin III from Campylobacter jejuni.

    Science.gov (United States)

    Arroyo Mañez, Pau; Lu, Changyuan; Boechi, Leonardo; Martí, Marcelo A; Shepherd, Mark; Wilson, Jayne Louise; Poole, Robert K; Luque, F Javier; Yeh, Syun-Ru; Estrin, Darío A

    2011-05-17

    Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding network involving the three distal residues. Here we have studied the structural and kinetic properties of the G8(WF) mutant of Ctb and employed state-of-the-art computer simulation methods to investigate the properties of the O(2) adduct of the G8(WF) mutant, with respect to those of the wild-type protein and the previously studied E7(HL) and/or B10(YF) mutants. Our data indicate that the unique oxygen binding properties of Ctb are determined by the interplay of hydrogen-bonding interactions between the heme-bound ligand and the surrounding TyrB10, TrpG8, and HisE7 residues.

  16. Electroweak and Strong Interactions Phenomenology, Concepts, Models

    CERN Document Server

    Scheck, Florian

    2012-01-01

    Electroweak and Strong Interaction: Phenomenology, Concepts, Models, begins with relativistic quantum mechanics and some quantum field theory which lay the foundation for the rest of the text. The phenomenology and the physics of the fundamental interactions are emphasized through a detailed discussion of the empirical fundamentals of unified theories of strong, electromagnetic, and weak interactions. The principles of local gauge theories are described both in a heuristic and a geometric framework. The minimal standard model of the fundamental interactions is developed in detail and characteristic applications are worked out. Possible signals of physics beyond that model, notably in the physics of neutrinos are also discussed. Among the applications scattering on nucleons and on nuclei provide salient examples. Numerous exercises with solutions make the text suitable for advanced courses or individual study. This completely updated revised new edition contains an enlarged chapter on quantum chromodynamics an...

  17. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  18. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    Science.gov (United States)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals

  19. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    probes like photons, pions or protons or the heated and compressed hadronic matter generated in a heavy-ion collision. Leaving any nuclear medium without strong final-state interactions, dileptons are the optimum decay channel as they avoid any final-state distortion of the 4- momenta of the decay products entering eq.

  20. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    Properties of hadrons in strongly interacting matter provide a link between quantum chromodynamics in the ... Top: Spectral function of the ρ-meson at normal nuclear matter density as a function of mass and ... directly but folded with the branching ratio ΓV →p1+p2 /Γtot into the specific final channel one is investigating.

  1. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    Science.gov (United States)

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  2. Hydrogen bonds induced supramolecular self-assembly of azobenzene derivatives on the highly oriented pyrolytic graphite surface

    Science.gov (United States)

    Miao, Xinrui; Cheng, Zhiyu; Ren, Biye; Deng, Wenli

    2012-08-01

    The self-assembly of azobenzene derivatives (CnAzCOOH) with various lengths of peripheral alkyl chains (with carbon number of n = 8, 10, 12, 14, 16) were observed by scanning tunneling microscopy on highly oriented pyrolytic graphite (HOPG) surface. The effect of van der Waals interactions and the intermolecular hydrogen bonding on the two-dimensional self-assembly was systematically studied. No alkyl-chain length effect was observed according to the STM images. All kinds of CnAzCOOH adopting the same pattern self-assembled on the HOPG surface, suggesting the formation of the two-dimensional structures was dominated by the hydrogen bonding of the functional groups. It could be found that two CnAzCOOH molecules formed a hydrogen-bonded dimer with “head-to-head” fashion as expected; however, the dimers organized themselves in the form of relative complex lamellae. Three dimers as a group arranged side by side and formed a well-defined stripe with periodic dislocations due to the registry mechanism of the alkyl chain with the underlying HOPG surface. The hydrogen bonds between the adjacent dimers in one lamella were formed and dominated the self-assembled pattern.

  3. Structure and weak hydrogen bonds in liquid acetaldehyde

    Directory of Open Access Journals (Sweden)

    Cordeiro Maria A. M.

    2004-01-01

    Full Text Available Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The OxxxH average distance and the C-HxxxO angle obtained are characteristic of weak hydrogen bonds.

  4. Nuclear quantum effects and hydrogen bond fluctuations in water

    Science.gov (United States)

    Ceriotti, Michele; Cuny, Jérôme; Parrinello, Michele; Manolopoulos, David E.

    2013-01-01

    The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and 1H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water. PMID:24014589

  5. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis

    Directory of Open Access Journals (Sweden)

    Matej Žabka

    2015-08-01

    Full Text Available Chiral thioureas and squaramides are among the most prominent hydrogen-bond bifunctional organocatalysts now extensively used for various transformations, including aldol, Michael, Mannich and Diels-Alder reactions. More importantly, the experimental and computational study of the mode of activation has begun to attract considerable attention. Various experimental, spectroscopic and calculation methods are now frequently used, often as an integrated approach, to establish the reaction mechanism, the mode of activation or explain the stereochemical outcome of the reaction. This article comprises several case studies, sorted according to the method used in their study. The aim of this review is to give the investigators an overview of the methods currently utilized for mechanistic investigations in hydrogen-bonding organocatalysis.

  6. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in [Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012 (India)

    2016-03-21

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T{sub 1} and T{sub 2} states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S{sub 0} state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S{sub 0}, T{sub 1}, and T{sub 2} states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ{sup ∗} triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents.

  7. Synthesis, crystal structures, hydrogen bonding graph-sets and ...

    African Journals Online (AJOL)

    Synthesis, crystal structures, hydrogen bonding graph-sets and theoretical studies of nickel (+II) co-ordinations with pyridine-2,6-dicarboxamide oxime. ... which crystallized in the monoclinic space group C2/c with a = 14.915(2), b = 0.895(2), c = 8.205(1) Å, β = 114.69(1), and Z = 4. The complex consists of discrete cations ...

  8. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  9. Hydrogen-Bonded Polymer-Porphyrin Assemblies in Water: Supramolecular Structures for Light Energy Conversion.

    Science.gov (United States)

    Kutz, Anne; Alex, Wiebke; Krieger, Anja; Gröhn, Franziska

    2017-09-01

    In this study, a new type of functional, self-assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar-energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self-assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intramolecular hydrogen bond in molecular and proton-transfer forms of Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Filarowski, A.; Koll, A.; Karpfen, A.; Wolschann, P

    2004-02-16

    The force field and structural parameters modifications upon the formation of intramolecular hydrogen bond and proton transfer reaction in N-methyl-2-hydroxybenzylidene amine (HBZA) are determined on the basis of ab initio and DFT calculations. Reliability of the calculations is verified by comparing of the theoretical vibrational spectra with those experimentally determined in the gas phase. A model of resonance interactions is applied and the quantitative contribution of ortho-quinoid structure in the particular conformers is estimated. A comparison is also made to the systems without {pi}-electron coupling (Mannich bases)

  11. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF2)(pyrazine)2]SbF6, [Cu2F(HF)(HF2)(pyrazine)4](SbF6)2, and [CuAg(H3F4)(pyrazine)5](SbF6)2.

    Science.gov (United States)

    Manson, Jamie L; Schlueter, John A; Funk, Kylee A; Southerland, Heather I; Twamley, Brendan; Lancaster, Tom; Blundell, Stephen J; Baker, Peter J; Pratt, Francis L; Singleton, John; McDonald, Ross D; Goddard, Paul A; Sengupta, Pinaki; Batista, Cristian D; Ding, Letian; Lee, Changhoon; Whangbo, Myung-Hwan; Franke, Isabel; Cox, Susan; Baines, Chris; Trial, Derek

    2009-05-20

    -F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.

  12. Competing intramolecular N-H⋯O=C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Aamer, E-mail: aamersaeed@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Khurshid, Asma [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Jasinski, Jerry P. [Department of Chemistry, Keene State College, 229 Main Street Keene, NH 03435-2001 (United States); Pozzi, C. Gustavo; Fantoni, Adolfo C. [Instituto de Física La Plata, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 49 y 115, La Plata, Buenos Aires (Argentina); Erben, Mauricio F., E-mail: erben@quimica.unlp.edu.ar [CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, (1900) La Plata, Buenos Aires (Argentina)

    2014-03-18

    Highlights: • Two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible in the title molecule. • Crystal structures and vibrational properties were determined. • The C=O and C=S double bonds of the acyl-thiourea group are mutually oriented in opposite directions. • A strong hyperconjugative lpO1 → σ{sup ∗}(N2-H) remote interaction was detected. • Topological analysis reveals a Cl⋯N interaction playing a relevant role in crystal packing. - Abstract: The synthesis of a novel 1-acyl-thiourea species (C{sub 14}H{sub 17}N{sub 2}O{sub 2}SCl), has been tailored in such a way that two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible. The X-ray structure analysis as well as the vibrational (FT-IR and FT-Raman) data reveal that the S conformation is preferred, with the C=O and C=S bonds of the acyl-thiourea group pointing in opposite directions. The preference for the intramolecular N-H⋯O=C hydrogen bond within the -C(O)NHC(S)NH- core is confirmed. The Natural Bond Orbital and the Atom in Molecule approaches demonstrate that a strong hyperconjugative lpO → σ{sup ∗}(N-H) remote interaction between the acyl and the thioamide N-H groups is responsible for the stabilization of the S conformation. Intermolecular interactions have been characterized in the periodic system electron density and the topological analysis reveals the presence of an extended intermolecular network in the crystal, including a Cl⋯N interaction playing a relevant role in crystal packing.

  13. Strong interaction studies with kaonic atoms

    Directory of Open Access Journals (Sweden)

    Marton J.

    2016-01-01

    Full Text Available The strong interaction of antikaons (K− with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K−pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DAΦNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K−p atom leading to a hadronic shift ϵ1s and a hadronic broadening Γ1s of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2. Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.

  14. Hydrogen bonding. 47. Characterization of the ethylene glycol-heptane partition system: hydrogen bond acidity and basicity of peptides.

    Science.gov (United States)

    Abraham, M H; Martins, F; Mitchell, R C; Salter, C J

    1999-02-01

    Twelve measured ethylene glycol-heptane partition coefficients, Peh, have been combined with 20 measured literature values and 44 indirectly determined values to give a set of 76 values. Excluding one value for benzamide, the log Peh values are correlated through our general solvation equation, log Peh = 0.336 - 0.075R2 - 1. 201pi2H - 3.786 Sigmaalpha2H - 2.201 Sigmabeta2H + 2.085Vx with r2 = 0.966, sd = 0.28, and F = 386. The solute descriptor R2 is the excess molar refraction, pi2H is the dipolarity/polarizability, Sigmaalpha2H and Sigmabeta2H are the overall hydrogen bond acidity and basicity, and Vx is the McGowan volume. The log Peh equation has then been used to obtain descriptors for eleven peptides, all of which are end-protected. It is shown that for these end-protected peptides, hydrogen bond basicity makes a greater contribution to log Peh than does hydrogen bond acidity.

  15. Thermal generation and mobility of charge carriers in collective proton transport in hydrogen-bonded chains

    Energy Technology Data Exchange (ETDEWEB)

    Peyrard, M.; Boesch, R.; Kourakis, I. (Dijon Univ., 21 (France). Faculte des Sciences)

    1991-01-01

    The transport of protons in hydrogen-bonded systems is a long standing problem which has not yet obtained a satisfactorily theoretical description. Although this problem was examined first for ice, it is relevant in many systems and in particular in biology for the transport along proteins or for proton conductance across membranes, an essential process in cell life. The broad relevance makes the study of proton conduction very appealing. Since the original work of Bernal and Fowler on ice, the idea that the transport occurs through chains of hydrogen bonds has been well accepted. Such proton wires'' were invoked by Nagle and Morowitz for proton transport across membranes proteins and more recently across lipid bilayers. In this report, we assume the existence of such an hydrogen-bonded chain and discuss its consequences on the dynamics of the charge carriers. We show that this assumption leads naturally to the idea of soliton transport and we put a special emphasis on the role of the coupling between the protons and heavy ions motions. The model is presented. We show how the coupling affects strongly the dynamics of the charge carriers and we discuss the role it plays in the thermal generation of carriers. The work presented has been performed in 1986 and 87 with St. Pnevmatikos and N. Flyzanis and was then completed in collaboration with D. Hochstrasser and H. Buettner. Therefore the results presented in this part are not new but we think that they are appropriate in the context of this multidisciplinary workshop because they provide a rather complete example of the soliton picture for proton conduction. This paper discusses the thermal generation of the charge carriers when the coupling between the protons and heavy ions dynamics is taken into account. The results presented in this part are very recent and will deserve further analysis but they already show that the coupling can assist for the formation of the charge carriers.

  16. Hydrogen-Bonded Homoleptic Fluoride-Diarylurea Complexes: Structure, Reactivity, and Coordinating Power.

    Science.gov (United States)

    Pfeifer, Lukas; Engle, Keary M; Pidgeon, George W; Sparkes, Hazel A; Thompson, Amber L; Brown, John M; Gouverneur, Véronique

    2016-10-04

    Hydrogen bonding with fluoride is a key interaction encountered when analyzing the mode of action of 5'-fluoro-5'-deoxyadenosine synthase, the only known enzyme capable of catalyzing the formation of a C-F bond from F - . Further understanding of the effect of hydrogen bonding on the structure and reactivity of complexed fluoride is therefore important for catalysis and numerous other applications, such as anion supramolecular chemistry. Herein we disclose a detailed study examining the structure of 18 novel urea-fluoride complexes in the solid state, by X-ray and neutron diffraction, and in solution phase and explore the reactivity of these complexes as a fluoride source in S N 2 chemistry. Experimental data show that the structure, coordination strength, and reactivity of the urea-fluoride complexes are tunable by modifying substituents on the urea receptor. Hammett analysis of aryl groups on the urea indicates that fluoride binding is dependent on σ p and σ m parameters with stronger binding being observed for electron-deficient urea ligands. For the first time, defined urea-fluoride complexes are used as fluoride-binding reagents for the nucleophilic substitution of a model alkyl bromide. The reaction is slower in comparison with known alcohol-fluoride complexes, but S N 2 is largely favored over E2, at a ratio surpassing all hydrogen-bonded complexes documented in the literature for the model alkyl bromide employed. Increased second-order rate constants at higher dilution support the hypothesis that the reactive species is a 1:1 urea-fluoride complex of type [UF] - (U = urea) resulting from partial dissociation of the parent compound [U 2 F] - . The dissociation processes can be quantified through a combination of UV and NMR assays, including DOSY and HOESY analyses that illuminate the complexation state and H-bonding in solution.

  17. Two new hydrogen bond-supported supramolecular compounds assembly from polyoxovanadate and organoamines

    International Nuclear Information System (INIS)

    Duan Weijie; Cui Xiaobing; Xu Yan; Xu Jiqing; Yu Haihui; Yi Zhihui; Cui Jiwen; Wang Tiegang

    2007-01-01

    Two novel organic-inorganic hybrid compounds based on organoamines and polyoxovanadates formulated as (H 2 dien) 4 [H 10 V 18 O 42 (PO 4 )](PO 4 ).2H 2 O (1) (dien=diethylenetriamine) and (Him) 8 [HV 18 O 42 (PO 4 )] (2) (im=imidazole) have been prepared under hydrothermal conditions by using different starting materials, and characterized by elemental analyses, IR, ESR, XPS, TGA and single-crystal X-ray diffraction analyses. Crystal data for compound 1: C 16 H 74 N 12 O 52 V 18 P 2 , Monoclinic, space group C2/c, a=23.9593(4) A, b=13.0098(2) A, c=20.1703(4) A, β=105.566(3) o , V=6056.6(19) A 3 , Z=4; for compound 2, C 24 H 41 N 16 O 46 V 18 P, Tetragonal, space group I4/mmm, a=13.5154(8) A, b=13.5154(8) A, c=19.1136 A, β=90 o , V=3491.4(3) A 3 , Z=2. Compound 1 consists of protonated diens together with polyoxovanadates [H 10 V 18 O 42 (PO 4 )] 5- . Compound 2 is composed of protonated ims and polyoxovanadates [HV 18 O 42 (PO 4 )] 8- . There are hydrogen-bonding interactions between polyoxovanadates and different organoamines in 1 and 2. Polyoxovanadates are linked through H 2 dien into a three-dimensional network via hydrogen bonds in 1, while polyoxovanadates are linked by Him into a two-dimensional layer network via hydrogen bonds in 2. The crystal packing patterns of the two compounds reveal various supramolecular frameworks. - Graphical abstract: Two new organic-inorganic hybrid compounds based on [V 18 O 42 (PO 4 )] building blocks have been hydrothermally synthesized. 1 is the first 3-D supramolecular network structure consisting of [V 18 O 42 (PO 4 )] unit, while 2 possesses 2-D layered supramolecular structure

  18. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal.

    Science.gov (United States)

    Ueda, Akira; Yamada, Shota; Isono, Takayuki; Kamo, Hiromichi; Nakao, Akiko; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi; Yamamoto, Kaoru; Nishio, Yutaka; Mori, Hatsumi

    2014-08-27

    A hydrogen bond (H-bond) is one of the most fundamental and important noncovalent interactions in chemistry, biology, physics, and all other molecular sciences. Especially, the dynamics of a proton or a hydrogen atom in the H-bond has attracted increasing attention, because it plays a crucial role in (bio)chemical reactions and some physical properties, such as dielectricity and proton conductivity. Here we report unprecedented H-bond-dynamics-based switching of electrical conductivity and magnetism in a H-bonded purely organic conductor crystal, κ-D3(Cat-EDT-TTF)2 (abbreviated as κ-D). This novel crystal κ-D, a deuterated analogue of κ-H3(Cat-EDT-TTF)2 (abbreviated as κ-H), is composed only of a H-bonded molecular unit, in which two crystallographically equivalent catechol-fused ethylenedithiotetrathiafulvalene (Cat-EDT-TTF) skeletons with a +0.5 charge are linked by a symmetric anionic [O···D···O](-1)-type strong H-bond. Although the deuterated and parent hydrogen systems, κ-D and κ-H, are isostructural paramagnetic semiconductors with a dimer-Mott-type electronic structure at room temperature (space group: C2/c), only κ-D undergoes a phase transition at 185 K, to change to a nonmagnetic insulator with a charge-ordered electronic structure (space group: P1). The X-ray crystal structure analysis demonstrates that this dramatic switching of the electronic structure and physical properties originates from deuterium transfer or displacement within the H-bond accompanied by electron transfer between the Cat-EDT-TTF π-systems, proving that the H-bonded deuterium dynamics and the conducting TTF π-electron are cooperatively coupled. Furthermore, the reason why this unique phase transition occurs only in κ-D is qualitatively discussed in terms of the H/D isotope effect on the H-bond geometry and potential energy curve.

  19. The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models-A theoretical study

    International Nuclear Information System (INIS)

    Aquino, Adelia J.A.; Tunega, Daniel; Pasalic, Hasan; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-01-01

    Hydrogen bonded and cation bridged complexation of poly(acrylic acid) oligomers, representing a model compound for humic acids, with acetic acid and the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) have been studied by means of density functional theory. Solvation effects were computed by means of a combination of microsolvation (explicit insertion of water molecules) and global solvation (polarizable continuum approach). The stability of hydrogen bonded complexes in solution is characterized by a strong competition between solute and solvent molecules. The cation bridged complexes of the negatively charged (deprotonated) ligands were found to be strongly favored explaining the capability of humic acids to fixate anionic species from soil solutions and the ability to form cross-linking structures within the humic acid macromolecules

  20. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  1. Fundamental Structure of Matter and Strong Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  2. Strong Interaction Studies with PANDA at FAIR

    International Nuclear Information System (INIS)

    Schönning, Karin

    2016-01-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme

  3. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  4. Strong Interaction Studies with PANDA at FAIR

    Science.gov (United States)

    Schönning, Karin

    2016-10-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.

  5. Communication: A hydrogen-bonded difluorocarbene complex: Ab initio and matrix isolation study

    Science.gov (United States)

    Sosulin, Ilya S.; Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2017-10-01

    Structure and spectroscopic features of the CF2⋯HF complexes were studied by ab initio calculations at the CCSD(T) level and matrix isolation FTIR spectroscopy. The calculations predict three stable structures. The most energetically favorable structure corresponds to hydrogen bonding of HF to the lone pair of the C atom (the interaction energy of 3.58 kcal/mol), whereas two less stable structures are the H⋯F bonded complexes (the interaction energies of 0.30 and 0.24 kcal/mol). The former species was unambiguously characterized by the absorptions in the FTIR spectra observed after X-ray irradiation of fluoroform in a xenon matrix at 5 K. The corresponding features appear at 3471 (H-F stretching), 1270 (C-F symmetric stretching, shoulder), 1175 (antisymmetric C-F stretching), and 630 (libration) cm-1, in agreement with the computational predictions. To our knowledge, it is the first hydrogen-bonded complex of dihalocarbene. Possible weaker manifestations of the H⋯F bonded complexes were also found in the C-F stretching region; however, their assignment is tentative. The H⋯C bonded complex is protected from reaction yielding a fluoroform molecule by a remarkably high energy barrier (23.85 kcal/mol), so it may be involved in various chemical reactions.

  6. "Long-distance" H/D isotopic self-organization phenomena in scope of the infrared spectra of hydrogen-bonded terephthalic and phthalic acid crystals.

    Science.gov (United States)

    Flakus, Henryk T; Hachuła, Barbara; Hołaj-Krzak, Jakub T; Al-Agel, Faisal A; Rekik, Najeh

    2017-02-15

    This paper deals with the experimental and theoretical studies of abnormal properties of terephthalic acid (TAC) and phthalic acid (PAC) crystals manifested in the H/D isotopic exchange. The widely utilized deuteration routine appeared to be insufficiently effective in the case of the h 6 -TAC isotopomer. In the case of the d 4 -TAC derivative the isotopic exchange process occurred noticeably more effectively. In contrast, both isotopomers of PAC, h 6 and d 4 , appeared much more susceptible for deuteration. A theoretical model was elaborated describing "long-distance" dynamical co-operative interactions involving hydrogen bonds in TAC and PAC crystals. The model assumes extremely strong dynamical co-operative interactions of hydrogen bonds from the adjacent (COOH) 2 cycles. This leads to an additional stabilization of h 6 -TAC molecular chains. The interaction energies affect the chemical equilibrium of the H/D isotopic exchange. The model predicts a differentiated influence of the H and D atoms linked to the aromatic rings on to the process. In this approach the totally-symmetric CH bond stretching vibrations and the proton stretching totally symmetric vibrations couple with the π-electronic motions. It was also shown that identical hydrogen isotope atoms, H or D, in whole TAC molecules, noticeably enlarge the energy of the dynamical co-operative interactions in the crystals, in contrast to the case of different hydrogen isotopes present in the carboxyl groups and linked to the aromatic rings. The "long-distance" dynamical co-operative interactions in PAC crystals were found of a minor importance due to the electronic properties of PAC molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Strong Interactive Massive Particles from a Strong Coupled Theory

    DEFF Research Database (Denmark)

    Yu. Khlopov, Maxim; Kouvaris, Christoforos

    2008-01-01

    (-2). These excessive techniparticles are all captured by $^4He$, creating \\emph{techni-O-helium} $tOHe$ ``atoms'', as soon as $^4He$ is formed in Big Bang Nucleosynthesis. The interaction of techni-O-helium with nuclei opens new paths to the creation of heavy nuclei in Big Bang Nucleosynthesis. Due...

  8. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  9. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  10. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Delpouve, N., E-mail: delpouve.nicolas@gmail.com [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M. [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France)

    2012-09-01

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T{sub g}.

  11. Fragility and cooperativity concepts in hydrogen-bonded organic glasses

    International Nuclear Information System (INIS)

    Delpouve, N.; Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M.

    2012-01-01

    Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T g .

  12. Isotopic fractionation in proteins as a measure of hydrogen bond length

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Ross H., E-mail: r.mckenzie@uq.edu.au [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia); Athokpam, Bijyalaxmi; Ramesh, Sai G. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  13. Visible absorbing croconium dyes with intramolecular hydrogen bonding: A combined experimental and computational study

    Science.gov (United States)

    Prabhakar, Ch.; Promila; Tripathi, Anuj; Bhanuprakash, K.; Jayathirtharao, V.

    2017-10-01

    Croconium molecules CR1-CR4 with break-in conjugation (Csbnd N Bonding) was synthesized by condensation of croconic acid and arylamines. By using combined experimental and theoretical methods like UV-visible spectra, DFT and TDDFT studies, we have characterized electronic absorption properties. The reported molecules are having absorption in visible region ranging from 450 to 550 nm with large extinction coefficient (2.5-5.0 × 104 M-1 cm-1). We find that CR2 and CR4 are showing 50 to 100 nm red shifted absorption than CR1 and CR3. This red shift is possibly due to presence of intramolecular hydrogen bonding in CR2 and CR4. Further this is supported by DFT studies, in case of CR2 and CR4 shows strong intramolecular hydrogen bonding between oxygen of carboxylate group (at ortho position of phenyl ring) and hydrogen of nitrogen attached to the central croconate ring. It is also observed that, there is small diradicaloid character in these molecules. This study is helpful in design and synthesis of new croconium dyes which are useful in materials applications.

  14. Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis

    KAUST Repository

    Ajitha, Manjaly John

    2016-08-17

    Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility in the preorganization of molecular entities required to achieve high enantioselectivity. Herein, we review some recent important organocatalytic asymmetric reactions where a NCHB serves as a critical factor in determining the stereoselectivity.

  15. Phosphorescence quantum yield enhanced by intermolecular hydrogen bonds in Cu4I4 clusters in the solid state.

    Science.gov (United States)

    Mazzeo, Paolo P; Maini, Lucia; Petrolati, Alex; Fattori, Valeria; Shankland, Kenneth; Braga, Dario

    2014-07-07

    Organo-copper(i) halide complexes with a Cu4I4 cubane core and cyclic amines as ligands have been synthesized and their crystal structures have been defined. Their solid state photophysical properties have been measured and correlated with the crystal structure and packing. A unique and remarkably high luminescence quantum yield (76%) has been measured for one of the complexes having the cubane clusters arranged in a columnar structure and held together by N-HI hydrogen bonds. This high luminescence quantum yield is correlated with a slow radiationless deactivation rate of the excited state and suggests a rather strong enhancement of the cubane core rigidity bestowed by the hydrogen bond pattern. Some preliminary thin film deposition experiments show that these compounds could be considered to be good candidates for applications in electroluminescent devices because of their bright luminescence, low cost and relatively easy synthesis processes.

  16. A Critical Check for the Role of Resonance in Intramolecular Hydrogen Bonding.

    Science.gov (United States)

    Jiang, Xiaoyu; Zhang, Huaiyu; Wu, Wei; Mo, Yirong

    2017-11-27

    Although resonance-assisted H-bonds (RAHBs) are well recognized, the role of π resonance in RAHBs is controversial, as the seemingly enhanced H-bonds in unsaturated compounds may result from the constraints imposed by the σ skeleton. Herein the block-localized wave function (BLW) method, which can derive optimal yet resonance-quenched structures with related physiochemical properties, was employed to examine the correlation between π resonance and the strength of intramolecular RAHBs. Examination of a series of paradigmatic molecules with RAHBs and their saturated analogues showed that it is inappropriate to compare a conjugated system with its saturated counterpart, as they may have quite different σ frameworks. Nevertheless, comparison between a conjugated system and its resonance-quenched (i.e., electron-localized) state, which have identical σ skeletons, shows that in all studied cases, π resonance unanimously reduces the bonding distance by 0.111-0.477 Å, strengthens the bonding by 40-56 %, and redshifts the D-H vibrational frequency by 104-628 cm -1 . Furthermore, there is an excellent correlation between hydrogen-bonding strength and the classical Coulomb attraction between the hydrogen-bond donor and the acceptor, which suggests that the dominant role of the electrostatic interaction in H-bonds and RAHBs originates from the charge flow from H-bond donors to acceptors through π conjugation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    Science.gov (United States)

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultrasonic and IR study of intermolecular association through hydrogen bonding in ternary liquid mixtures.

    Science.gov (United States)

    Awasthi, Aashees; Shukla, J P

    2003-08-01

    Complex formation in ternary liquid mixtures of dimethylsulfoxide (DMSO) with phenol and o-cresol in carbontetrachloride has been studied by measuring ultrasonic velocity at 2 MHz, in the concentration range of 0.019-0.162 (in mole fraction of DMSO) at varying temperatures of 20, 30 and 40 degrees C. Using measured values of ultrasonic velocity, other parameters such as adiabatic compressibility, intermolecular free length, molar sound velocity, molar compressibility, specific acoustic impedance and molar volume have been evaluated. These parameters have been utilized to study the solute-solute interactions in these systems. The ultrasonic velocity shows a maxima and adiabatic compressibility a corresponding minima as a function of concentration for these mixtures. The results indicate the occurrence of complex formation between unlike molecules through intermolecular hydrogen bonding between oxygen atom of DMSO molecule and hydrogen atom of phenol and o-cresol molecules. The excess values of adiabatic compressibility and intermolecular free length have also been evaluated. The variation of both these parameters with concentration also indicates the possibility of the complex formation in these systems. Further, to investigate the presence of O-HO bond complexes and the strength of molecular association with concentrations, the infrared spectra of both the systems, DMSO-phenol and DMSO-o-cresol, have been recorded for various concentrations at room temperature (20 degrees C). The results obtained using infrared spectroscopy for both the systems also support the occurrence of complex formation through intermolecular hydrogen bonding in these ternary liquid mixtures.

  19. Three-dimensional hydrogen-bonded structures in the hydrated proton-transfer salts of isonipecotamide with the dicarboxylic oxalic and adipic acid homologues.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2013-10-01

    The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O(+)·C2HO4(-)·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O(+)·C6H8O4(2-)·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-H···O(carboxyl) hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-H···O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-H···O(carboxyl) hydrogen bonds, generating cyclic R4(3)(10) and R3(2)(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-H···O(water) hydrogen bonds, to give a cyclic R4(2)(8) association which is conjoined with an R4(4)(12) motif. Further N-H···O(water), water O-H···O(amide) and piperidinium N-H···O(carboxyl) hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

  20. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces.

    Science.gov (United States)

    Kim, Byeong-Su; Park, Sang Wook; Hammond, Paula T

    2008-02-01

    We present the integration of amphiphilic block copolymer micelles as nanometer-sized vehicles for hydrophobic drugs within layer-by-layer (LbL) films using alternating hydrogen bond interactions as the driving force for assembly for the first time, thus enabling the incorporation of drugs and pH-sensitive release. The film was constructed based on the hydrogen bonding between poly(acrylic acid) (PAA) as an H-bond donor and biodegradable poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as the H-bond acceptor when assembled under acidic conditions. By taking advantage of the weak interactions of the hydrogen-bonded film on hydrophobic surfaces, it is possible to generate flexible free-standing films of these materials. A free-standing micelle LbL film of (PEO-b-PCL/PAA)60 with a thickness of 3.1 microm was isolated, allowing further characterization of the bulk film properties, including morphology and phase transitions, using transmission electron microscopy and differential scanning calorimetry. Because of the sensitive nature of the hydrogen bonding employed to build the multilayers, the film can be rapidly deconstructed to release micelles upon exposure to physiological conditions. However, we could also successfully control the rate of film deconstruction by cross-linking carboxylic acid groups in PAA through thermally induced anhydride linkages, which retard the drug release to the surrounding medium to enable sustained release over multiple days. To demonstrate efficacy in delivering active therapeutics, in vitro Kirby-Bauer assays against Staphylococcus aureus were used to illustrate that the drug-loaded micelle LbL film can release significant amounts of an active antibacterial drug, triclosan, to inhibit the growth of bacteria. Because the micellar encapsulation of hydrophobic therapeutics does not require specific chemical interactions, we believe this noncovalent approach provides a new route to integrating active small

  1. The effect of hydrogen bonding on torsional dynamics: A combined far-infrared jet and matrix isolation study of methanol dimer

    DEFF Research Database (Denmark)

    Kollipost, F.; Andersen, Jonas; Wallin Mahler Andersen, Denise

    2014-01-01

    The effect of strong intermolecular hydrogen bonding on torsional degrees of freedom is investigated by far-infrared absorption spectroscopy for different methanol dimer isotopologues isolated in supersonic jet expansions or embedded in inert neon matrices at low temperatures. For the vacuum......-isolated and Ne-embedded methanol dimer, the hydrogen bond OH librational mode of the donor subunit is finally observed at ∼560 cm(-1), blue-shifted by more than 300 cm(-1) relative to the OH torsional fundamental of the free methanol monomer. The OH torsional mode of the acceptor embedded in neon is observed...... in order to quantify the contribution of vibrational anharmonicity for this important class of intermolecular hydrogen bond vibrational motion....

  2. Convex Modeling of Interactions with Strong Heredity.

    Science.gov (United States)

    Haris, Asad; Witten, Daniela; Simon, Noah

    2016-01-01

    We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.

  3. Strongly Interacting Matter at High Energy Density

    International Nuclear Information System (INIS)

    McLerran, L.

    2008-01-01

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N c arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma

  4. Reversible, All-Aqueous Assembly of Hydrogen-Bonded Polymersomes

    Science.gov (United States)

    Wang, Yuhao; Sukhishvili, Svetlana

    2015-03-01

    We report on sub-micron-sized polymersomes formed through single-step, all-aqueous assembly of hydrogen-bonded amphiphilic polymers. The hollow morphology of these assemblies was revealed by transmission electron microscopy (TEM), cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM). Stable in acidic media, these polymersomes could be dissolved by exposure to basic pH values. Importantly, the diameter of assembled hollow structures could be controlled in a wide range from 30 nm to 1 μm by the molecular weight of hydrogen-bonding polymers. We will discuss key quantitative aspects of these assemblies, including kinetics of hollow structure formation, time evolution of polymersome size, and the role of polymer molecular weight on membrane thickness and bending rigidity. We believe that our approach demonstrates an efficient and versatile way to rationally design nanocontainers for drug delivery, catalysis and personal care applications. This work was supported by the Innovation & Entrepreneurship doctoral fellowship from Stevens Institute of Technology.

  5. Conformational Preference Determined by C-H···π Interaction of an O-H···O Hydrogen Bonded Binary Complex of p-Fluorophenol with 2,5-Dihydrofuran: A LIF Spectroscopy Study.

    Science.gov (United States)

    Mukhopadhyay, Deb Pratim; Biswas, Souvick; Chattopadhyay, Aparajeo; Chakraborty, Tapas

    2018-03-26

    Conformational preferences of a binary hydrogen (H) bonded complex between p-fluorophenol (pFP) and 2,5-dihydrofuran (DHF) have been studied by means of laser induced fluorescence (LIF) spectroscopy in a supersonic jet expansion. Calculation predicts two major conformers for this complex, one having a nearly linear geometry in which the two molecular moieties are bound only by an O-H•••O H-bond, but in the other an additional C-H•••π type interaction between an ortho C-H group of pFP and ethylene group of DHF contributes to the binding stabilization and results in a folded geometry for the complex with respect to a global view, although the H-bond angle of the latter is relatively larger. This prediction is realized experimentally by identifying transitions corresponding to the two discrete conformers in a vibrationally resolved LIF excitation spectrum of the complex, and the red shifts of S 1 -S 0 origin band of pFP moiety of the two conformers are 542 and 659 cm -1 , respectively. The assignments are corroborated by means of dispersed fluorescence (DF) spectroscopy. In comparison, the LIF spectral bands for the pFP-tetrahydrofuran (THF) complex can be corresponded to only one conformer, whose S 1 -S 0 origin transition shows a red shift (563 cm -1 ) somewhat similar to the linear conformer of pFP-DHF complex. Such similarities in spectral shifting behavior is consistent with the predictions of electronic structure calculations. The DF spectra also reveal that the energy threshold and pathways of vibrational dynamics in S 1 of the two conformers show different behavior. Excitation to 6a 1 level of pFP moiety of the folded conformer displays signatures of restricted IVR, whereas the linear form displays the emission feature for dissipative IVR.

  6. Near IR overtone spectral investigations of cyclohexanol using local mode model--evidence for variation of anharmonicity with concentration due to hydrogen bonding.

    Science.gov (United States)

    John, Usha; Nair, K P R

    2005-09-01

    The near infrared vibrational overtone absorption spectrum of liquid phase cyclohexanol in carbon tetrachloride in different concentrations are examined in the region Deltav=2, 3 and 4. The free and bonded OH local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. The observation supports the conclusions drawn from earlier experimental studies on anharmonicity variation of OH-stretching vibrations of alcohols due to intermolecular hydrogen bonding. Our observation is also in agreement with the ab initio calculations on water dimer and trimer. Mechanical anharmonicity of bonded OH-stretching bands tends to increase as a consequence of strong hydrogen bonding at higher concentrations.

  7. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou

    2017-01-01

    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  8. HBonanza: a computer algorithm for molecular-dynamics-trajectory hydrogen-bond analysis.

    Science.gov (United States)

    Durrant, Jacob D; McCammon, J Andrew

    2011-11-01

    In the current work, we present a hydrogen-bond analysis of 2673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Estimating the energy of intramolecular hydrogen bonds from1H NMR and QTAIM calculations.

    Science.gov (United States)

    Afonin, Andrei V; Vashchenko, Alexander V; Sigalov, Mark V

    2016-11-29

    The values of the downfield chemical shift of the bridge hydrogen atom were estimated for a series of compounds containing an intramolecular hydrogen bond O-HO, O-HN, O-HHal, N-HO, N-HN, C-HO, C-HN and C-HHal. Based on these values, the empirical estimation of the hydrogen bond energy was obtained by using known relationships. For the compounds containing an intramolecular hydrogen bond, the DFT B3LYP/6-311++G(d,p) method was used both for geometry optimization and for QTAIM calculations of the topological parameters (electron density ρ BCP and the density of potential energy V in the critical point of the hydrogen bond). The calculated geometric and topological parameters of hydrogen bonds were also used to evaluate the energy of the hydrogen bond based on the equations from the literature. Comparison of calibrating energies from the 1 H NMR data with the energies predicted by calculations showed that the most reliable are the linear dependence on the topological ρ BCP and V parameters. However, the correct prediction of the hydrogen bond energy is determined by proper fitting of the linear regression coefficients. To obtain them, new linear relationships were found between the calculated ρ BCP and V parameters and the hydrogen bond energies obtained from empirical 1 H NMR data. These relationships allow the comparison of the energies of different types of hydrogen bonds for various molecules and biological ensembles.

  10. Micropolarity and Hydrogen-Bond Donor Ability of Environmentally Friendly Anionic Reverse Micelles Explored by UV/Vis Absorption of a Molecular Probe and FTIR Spectroscopy.

    Science.gov (United States)

    Girardi, Valeria R; Silber, Juana J; Falcone, Ruben Darío; Correa, N Mariano

    2018-02-08

    In the present work we show how two biocompatible solvents, methyl laurate (ML) and isopropyl myristate (IPM), can be used as a less toxic alternative to replace the nonpolar component in a sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles (RMs) formulation. In this sense, the micropolarity and the hydrogen-bond ability of the interface were monitored through the use of the solvatochromism of a molecular probe (1-methyl-8-oxyquinolinium betaine, QB) and Fourier transform infrared spectroscopy (FTIR). Our results demonstrate that the micropolarity sensed by QB in ML RMs is lower than in IPM RMs. Additionally, the water molecules form stronger H-bond interactions with the polar head of AOT in ML than in IPM. By FTIR was revealed that more water molecules interact with the interface in ML/AOT RMs. On the other hand, for AOT RMs generated in IPM, the weaker water-surfactant interaction allows the water molecules to establish hydrogen bonds with each other trending to bulk water more easily than in ML RMs, a consequence of the dissimilar penetration of nonpolar solvents into the interfacial region. The penetration process is strongly controlled by the polarity and viscosity of the external solvents. All of these results allow us to characterize these biocompatible systems, providing information about interfacial properties and how they can be altered by changing the external solvent. The ability of the nontoxic solvent to penetrate or not into the AOT interface produces a new interface with attractive properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Science.gov (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: strong effects of weak interactions.

    Science.gov (United States)

    Pereira, Jorge F B; Barber, Patrick S; Kelley, Steven P; Berton, Paula; Rogers, Robin D

    2017-10-11

    The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH 3 (CH 2 ) 2 OH][OAc]), hydroxylammonium acetate ([NH 3 OH][OAc]), ethylammonium acetate ([NH 3 CH 2 CH 3 ][OAc]), and tetramethylammonium acetate ([N(CH 3 ) 4 ][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C 2 mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH 3 ) 4 ][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C 2 mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH 3 groups and [OAc] - , even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc] - ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C 2 mim][OAc] can be controlled.

  13. Intercomponent interactions and mobility in hydrogen-bonded rotaxanes

    NARCIS (Netherlands)

    Jagesar, D.C.

    2010-01-01

    Dhiredj Jagesar onderzocht zogeheten rotaxanen. Deze moleculen kunnen als moleculaire motoren functioneren. Hierbij gebruiken ze licht en elektronen als brandstof. De minuscule motoren kunnen vergelijkbare bewegingen uitvoeren als de motoren in de macroscopische wereld. Toepassingen van moleculaire

  14. Hydrogen Bonding Interaction between 1-Propanol and Acrylic ...

    African Journals Online (AJOL)

    The association between 1-propanol and acrylic esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) in non-polar solvents, viz. n-heptane, CCl4, and benzene has been investigated by means of FTIR spectroscopy. The formation constants of the 1:1 complexes have been calculated using Nash's method.

  15. Hydrogen Bonding Interaction between 1-Propanol and Acrylic ...

    African Journals Online (AJOL)

    NJD

    polar Solvents: An FTIR Study. Kurunthu Dharmalingam, Krishnamurthy Ramachandran and Periyasamy Sivagurunathan*. Department of Physics, Annamalai University, Annamalai Nagar, Tamilnadu-608002, India. Received 22 August 2005; ...

  16. Chiral and achiral crystals, charge-assisted hydrogen-bond patterns and self-organization of selected solid diaminium thiosulfates.

    Science.gov (United States)

    Brozdowska, Agnieszka; Chojnacki, Jarosław

    2017-06-01

    A series of diaminium thiosulfates, derivatives of diamines: NH 2 CH 2 CH(CH 3 )NH 2 (1) and NH 2 (CH 2 ) n NH 2 , n = 3-6 [(2)-(5)] and thiosulfuric acid were prepared and their structures determined by single-crystal X-ray diffraction analysis. Compounds (1), (2) and (4) turned out to be hydrates. The crystal structure of 1,2-propylenediaminium thiosulfate is chiral and exhibits spontaneous resolution. Crystals for both enantiomers [(1a) and (1b)] were obtained with high enantiometric excess and examined. An extended network of strong, charge-assisted hydrogen bonding of the + N-H...O - type (also O-H...O and O-H...S for hydrates) is most likely the main factor defining crystal packing and the variable conformation of the cations. The formation of chiral hydrogen-bond motifs - distorted cubans - seems to induce the formation of chiral solid-state structure from achiral components in the case of (4). Diaminium thiosulfates with an odd number of C atoms in the alkyl chain [compounds (1), (2) and (4)] form three-dimensional supramolecular networks, while in the case of diaminium salts with an even number of C atoms [(3) and (5)], two-dimensional layers of hydrogen-bond domains are observed. The aminium thiosulfates were also characterized by elemental analysis, NMR and Fourier transform (FT)-IR spectroscopy. The conformations of α,ω-alkyldiaminium cations in the solid state are discussed and rationalized by DFT calculations.

  17. Toward a Strongly Interacting Scalar Higgs Particle

    International Nuclear Information System (INIS)

    Shalaby, Abouzeid M.; El-Houssieny, M.

    2008-01-01

    We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism

  18. Point-of-Care Determination of Acetaminophen Levels with Multi-Hydrogen Bond Manipulated Single-Molecule Recognition (eMuHSiR).

    Science.gov (United States)

    Zhang, Yan; Huang, Zhongyuan; Wang, Letao; Wang, Chunming; Zhang, Changde; Wiese, Tomas; Wang, Guangdi; Riley, Kevin; Wang, Zhe

    2018-04-03

    This work aims to face the challenge of monitoring small molecule drugs accurately and rapidly for point-of-care (POC) diagnosis in current clinical settings. Overdose of acetaminophen (AP), a commonly used over the counter (OTC) analgesic drug, has been determined to be a major cause of acute liver failure in the US and the UK. However, there is no rapid and accurate detection method available for this drug in the emergency room. The present study examined an AP sensing strategy that relies on a previously unexplored strong interaction between AP and the arginine (Arg) molecule. It was found that as many as 4 hydrogen bonds can be formed between one Arg molecule and one AP molecule. By taking advantages of this structural selectivity and high tenability of hydrogen bonds, Arg, immobilized on a graphene surface via electrostatic interactions, was utilized to structurally capture AP. Interestingly, bonded AP still remained the perfect electrochemical activities. The extent of Arg-AP bonds was quantified using a newly designed electrochemical (EC) sensor. To verify the feasibility of this novel assay, based on multihydrogen bond manipulated single-molecule recognition (eMuHSiR), both pharmaceutical and serum sample were examined. In commercial tablet measurement, no significant difference was seen between the results of eMuHSiR and other standard methods. For measuring AP concentration in the mice blood, the substances in serum, such as sugars and fats, would not bring any interference to the eMuHSiR in a wide concentration range. This eMuHSiR method opens the way for future development of small molecule detection for the POC testing.

  19. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities.

    Science.gov (United States)

    Kumar Kondapi, Venkata Pavan; Soueidan, Olivier-Mohamad; Cheeseman, Christopher I; West, Frederick G

    2017-06-12

    The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Syntheses, Crystal Structures, Magnetic Behaviours, and Thermal Properties of Three Hydrogen-Bonding Networks Containing Dicyanamide and 4-Hydroxypyridine

    Directory of Open Access Journals (Sweden)

    Lingling Zheng

    2013-01-01

    Full Text Available Three new dicyanamide-bridged polymeric complexes of {[Mn(dca2(L2]·2H2O}n (1, {[Cd(dca2(L2]·2H2O}n (2, and {[Co(dca2(L2]2(L}n (3 (dca = dicyanamide, L = pyridinium-4-olate have been synthesized and structurally characterized. In the three compounds, the protons of hydroxyl groups of 4-hydroxypyridine transfer to pyridyl nitrogen atoms. Compounds 1 and 2 are isomorphous forming one-dimensional [M(dca2(L2]n chains where metals are connected by double dca anions. These one-dimensional chains are extended into two-dimensional layers through weak C–H⋯N hydrogen bonds. Further, these layers are assembled into a three-dimensional supramolecular network through N–H⋯O, O–H⋯O hydrogen bonds. Complex 3 is a coordination layer of (4, 4 topology with octahedral metal centers linked by four single μ1,5-bridges. These layers are interlocked by N–H⋯O, O–H⋯O hydrogen bonds from coordinated water molecules and free L molecules, which leads to a three-dimensional supramolecular architecture. The variable temperature magnetic susceptibilities measurement of compounds 1 and 3 shows the existence of weak antiferromagnetic interactions between the metal centers. The thermogravimetric analyses of the compounds 1–3 are also discussed.

  1. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  2. Structure, vibrations, and hydrogen bond parameters of dibenzotetraaza[14]annulene

    Science.gov (United States)

    Gawinkowski, S.; Eilmes, J.; Waluk, J.

    2010-07-01

    Geometry and vibrational structure of dibenzo[ b, i][1,4,8,11]tetraaza[14]annulene (TAA) have been studied using infrared and Raman spectroscopy combined with quantum-chemical calculations. The assignments were proposed for 106 out of the total of 108 TAA vibrations, based on comparison of the theoretical predictions with the experimental data obtained for the parent molecule and its isotopomer in which the NH protons were replaced by deuterons. Reassignments were suggesteded for the NH stretching and out-of-plane vibrations. The values of the parameters of the intramolecular NH⋯N hydrogen bonds were analysed in comparison with the corresponding data for porphyrin and porphycene, molecules with the same structural motif, a cavity composed of four nitrogen atoms and two inner protons. Both experiment and calculations suggest that the molecule of TAA is not planar and is present in a trans tautomeric form, with the protons located on the opposite nitrogen atoms.

  3. Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics.

    Science.gov (United States)

    Metherell, Alexander J; Cullen, William; Stephenson, Andrew; Hunter, Christopher A; Ward, Michael D

    2014-01-07

    We have prepared a series of mononuclear fac and mer isomers of Ru(II) complexes containing chelating pyrazolyl-pyridine ligands, to examine their differing ability to act as hydrogen-bond donors in MeCN. This was prompted by our earlier observation that octanuclear cube-like coordination cages that contain these types of metal vertex can bind guests such as isoquinoline-N-oxide (K = 2100 M(-1) in MeCN), with a significant contribution to binding being a hydrogen-bonding interaction between the electron-rich atom of the guest and a hydrogen-bond donor site on the internal surface of the cage formed by a convergent set of CH2 protons close to a 2+ metal centre. Starting with [Ru(L(H))3](2+) [L(H) = 3-(2-pyridyl)-1H-pyrazole] the geometric isomers were separated by virtue of the fact that the fac isomer forms a Cu(I) adduct which the mer isomer does not. Alkylation of the pyrazolyl NH group with methyl iodide or benzyl bromide afforded [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+) respectively, each as their fac and mer isomers; all were structurally characterised. In the fac isomers the convergent group of pendant -CH2R or -CH3 protons defines a hydrogen-bond donor pocket; in the mer isomer these protons do not converge and any hydrogen-bonding involving these protons is expected to be weaker. For both [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+), NMR titrations with isoquinoline-N-oxide in MeCN revealed weak 1 : 1 binding (K ≈ 1 M(-1)) between the guest and the fac isomer of the complex that was absent with the mer isomer, confirming a difference in the hydrogen-bond donor capabilities of these complexes associated with their differing geometries. The weak binding compared to the cage however occurs because of competition from the anions, which are free to form ion-pairs with the mononuclear complex cations in a way that does not happen in the cage complexes. We conclude that (i) the presence of fac tris-chelate sites in the cage to act as hydrogen-bond donors, and (ii

  4. Quantum mechanics models of the methanol dimer: O-H…O hydrogen bonds of ß-D-glucose moieties from crystallographic data.

    Science.gov (United States)

    In this study, a survey of the Cambridge Crystal Structure Database for all donor-acceptor interactions in ß-D-glucose moieties was performed to examine the similarities and differences among the different hydroxyl groups and ether oxygen atoms that participate in hydrogen bonds. Comparable behavior...

  5. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.

    Science.gov (United States)

    Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing

    2018-01-12

    To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl]  > MIP [C4mim][C4F7O2]  ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3]  > MIP [C4mim][C4F9SO3]  > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Self-assembly of a [2 x 2] hydrogen bonded grid

    NARCIS (Netherlands)

    Lipkowski, P.R.; Bielejewska, A.G.; Kooijman, Huub; Spek, Anthony L.; Timmerman, P.; Reinhoudt, David

    1999-01-01

    Formation of 24 cooperative hydrogen bonds drives the spontaneous assembly of a rigid bifunctional trimelamine and bis(barbituric acid) to give selectively the [2 × 2] hydrogen-bonded grid, in preference to the corresponding [1 × 1] or polymeric assemblies.

  7. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Fedor, Anna M.; Toda, Megan J.

    2014-01-01

    The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…

  8. Molecular insight into the hydrogen bonding and micro-segregation of a cryoprotectant molecule.

    Science.gov (United States)

    Towey, J J; Soper, A K; Dougan, L

    2012-11-29

    Glycerol-water liquid mixtures are intriguing hydrogen-bonded systems and essential in many fields of chemistry, ranging from basic molecular research to widespread use in industrial and biomedical applications as cryoprotective solutions. Despite much research on these mixtures, the details of their microscopic structure are still not understood. One common notion is that glycerol acts to diminish the hydrogen bonding ability of water, a recurring hypothesis that remains untested by direct experimental approaches. The present work characterizes the structure of glycerol-water mixtures, across the concentration range, using a combination of neutron diffraction experiments and computational modeling. Contrary to previous expectations, we show that the hydrogen bonding ability of water is not diminished in the presence of glycerol. We show that glycerol-water hydrogen bonds effectively take the place of water-water hydrogen bonds, allowing water to maintain its full hydrogen bonding capacity regardless of the quantity of glycerol in the environment. We provide a quantitative measurement of all hydrogen bonding in the system and reveal a concentration range where a microsegregated, bipercolating liquid mixture exists in coexistence with a considerable interface region. This work highlights the role of hydrogen bonding connectivity rather than water structuring/destructuring effects in these important cryoprotective systems.

  9. Substituent Effects on Hydrogen Bonds in DNA : A Kohn-Sham DFT Approach

    NARCIS (Netherlands)

    Guerra, Célia Fonseca; Bickelhaupt, F. Matthias

    2006-01-01

    In this Chapter, we discuss how the hydrogen bonds in Watson-Crick base pairs can be tuned both structurally and in terms of bond strength by exposing the DNA bases to different kinds of substitutions: (1) substitution in the X-H Y hydrogen bonding moiety, (2) remote substitution, i.e., introducing

  10. Weak C–H…O hydrogen bonds in alkaloids: An overview

    Indian Academy of Sciences (India)

    Unknown

    Abstract. An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to.

  11. Kinetic stabilities of double, tetra- and hexarosette hydrogen-bonded assemblies

    NARCIS (Netherlands)

    Prins, L.J.; Neuteboom, Edda E.; Paraschiv, V.; Crego Calama, Mercedes; Timmerman, P.; Reinhoudt, David

    2002-01-01

    A study of the kinetic stabilities of hydrogen-bonded double, tetra-, and hexarosette assemblies, comprising 36, 72, and 108 hydrogen bonds, respectively, is described. The kinetic stabilities are measured using both chiral amplification and racemization experiments. The chiral amplification studies

  12. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    Science.gov (United States)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  13. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  14. Alignment of Hydrogen Bonded Liquid Crystalline Block Copolymers by Magnetic Fields

    Science.gov (United States)

    Gopinadhan, Manesh; Majewski, Pawel; Beach, Evan; Anastas, Paul; Osuji, Chinedum

    2010-03-01

    Hydrogen bonding between a poly(styrene-b-acrylic acid) backbone and an imidazole terminated biphenyl mesogen results in the formation of a side-group liquid crystalline block copolymer (LC BCP). We use a combination of FTIR, X-ray scattering and DSC to characterize the phase behavior of the PAA-LC system, which is largely dominated by the sub-stoichiometric saturation of the binding capacity of the chain. Alignment of a hierarchically ordered lamellar BCP was performed using a 5 T magnetic field at elevated temperature in the melt state and characterized by SAXS. The system exhibits a tilted smectic structure, which on alignment by the field displays scattering patterns akin to those observed in bookshelf or chevron-type structures. These results demonstrate that simple non-covalent interactions can be used to generate LC order and thus provide a convenient handle for subsequent alignment of BCP structures by magnetic fields.

  15. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    Science.gov (United States)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  16. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    Science.gov (United States)

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  17. Detection of a transient intramolecular hydrogen bond using 1JNH scalar couplings

    Science.gov (United States)

    Xiang, ShengQi; Zweckstetter, Markus

    2014-06-01

    Hydrogen bonds are essential for the structure, stability and folding of proteins. The identification of intramolecular hydrogen bonds, however, is challenging, in particular in transiently folded states. Here we studied the presence of intramolecular hydrogen bonds in the folding nucleus of the coiled-coil structure of the GCN4 leucine zipper. Using one-bond 1JNH spin-spin coupling constants and hydrogen/deuterium exchange, we demonstrate that a transient intramolecular hydrogen bond is present in the partially helical folding nucleus of GCN(16-31). The data demonstrate that 1JNH couplings are a sensitive tool for the detection of transient intramolecular hydrogen bonds in challenging systems where the effective/useable protein concentration is low. This includes peptides at natural abundance but also uniformly labeled biomolecules that are limited to low concentrations because of precipitation or aggregation.

  18. Neutron diffraction of α, β and γ cyclodextrins: hydrogen bonding patterns

    International Nuclear Information System (INIS)

    Hingerty, B.E.; Klar, B.; Hardgrove, G.; Betzel, C.; Saenger, W.

    1983-01-01

    Cyclodextrins (CD's) are torus-shaped molecules composed of six (α), seven (β) or eight (γ) (1 → 4) linked glucoses. α-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for α-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for α-CD due to the energetically favored cooperative effect. β-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H H-O representing an equilibrium between two states; O-H O reversible H-O. γ-CD with a disordered water structure similar to β-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state

  19. Hydrogen bond rotations as a uniform structural tool for analyzing protein architecture

    Science.gov (United States)

    Penner, Robert C.; Andersen, Ebbe S.; Jensen, Jens L.; Kantcheva, Adriana K.; Bublitz, Maike; Nissen, Poul; Rasmussen, Anton M. H.; Svane, Katrine L.; Hammer, Bjørk; Rezazadegan, Reza; Nielsen, Niels Chr.; Nielsen, Jakob T.; Andersen, Jørgen E.

    2014-12-01

    Proteins fold into three-dimensional structures, which determine their diverse functions. The conformation of the backbone of each structure is locally at each Cα effectively described by conformational angles resulting in Ramachandran plots. These, however, do not describe the conformations around hydrogen bonds, which can be non-local along the backbone and are of major importance for protein structure. Here, we introduce the spatial rotation between hydrogen bonded peptide planes as a new descriptor for protein structure locally around a hydrogen bond. Strikingly, this rotational descriptor sampled over high-quality structures from the protein data base (PDB) concentrates into 30 localized clusters, some of which correlate to the common secondary structures and others to more special motifs, yet generally providing a unifying systematic classification of local structure around protein hydrogen bonds. It further provides a uniform vocabulary for comparison of protein structure near hydrogen bonds even between bonds in different proteins without alignment.

  20. Effect of Hydrogen Bonding on Linear and Nonlinear Rheology of Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Shabbir, Aamir; Goldansaz, Hadi; Hassager, Ole

    2015-01-01

    . The number of AA side groups (hydrogen-bonding groups) after hydrolysis is determined from NMR measurements. We show that using the theoretical dependency of modulus and reptation time on the packing length, we can account for the changes in linear viscoelasticity due to transformation of nBA side groups...... to AA along the backbone. Assuming superposition holds and subtracting out the linear chain rheology from LVE, the hydrogen bonding contribution to LVE is exposed. Hydrogen bonding affects linear viscoelasticity at frequencies below the inverse reptation time. More specifically, the presence of hydrogen...... bonds causes G′ and G″ as a function of frequency to shift to a power law scaling of 0.5. Furthermore, the magnitude of G′ and G″ scales linearly with the number of hydrogen-bonding groups. The nonlinear extensional rheology shows extreme strain hardening. The magnitude of extensional stress has...

  1. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems.

    Science.gov (United States)

    Lin, Xuhui; Zhang, Huaiyu; Jiang, Xiaoyu; Wu, Wei; Mo, Yirong

    2017-11-09

    The concept of resonance-assisted hydrogen bond (RAHB) has been widely accepted, and its impact on structures and energetics can be best studied computationally using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently. In this work, we use the BLW method to examine a few molecules that result from the merging of two malonaldehyde molecules. As each of these molecules contains two hydrogen bonds, these intramolecular hydrogen bonds may be cooperative or anticooperative, depended on their relative orientations, and compared with the hydrogen bond in malonaldehyde. Apart from quantitatively confirming the concept of RAHB, the comparison of the computations with and without π resonance shows that both σ-framework and π-resonance contribute to the nonadditivity in these RAHB systems with multiple hydrogen bonds.

  2. A 2D Substitutional Solid Solution through Hydrogen Bonding of Molecular Building Blocks.

    Science.gov (United States)

    MacLeod, Jennifer M; Lipton-Duffin, Josh; Fu, Chaoying; Taerum, Tyler; Perepichka, Dmitrii F; Rosei, Federico

    2017-09-26

    Two-dimensional (2D) molecular self-assembly allows for the formation of well-defined supramolecular layers with tailored geometrical, compositional, and chemical properties. To date, random intermixing and entropic effects in these systems have largely been associated with crystalline disorder and glassy phases. Here we describe a 2D crystalline self-assembled molecular system that exhibits random incorporation of substitutional molecules. The lattice is formed from a mixture of trimesic acid (TMA) and terthienobenzenetricarboxylic acid (TTBTA), C 3 -symmetric hydrogen-bonding units of very different sizes (0.79 and 1.16 nm, respectively), at the solution-highly oriented pyrolitic graphite (HOPG) interface. Remarkably, the TTBTA substitutes into the TMA lattice at a fixed stoichiometry near 12%. The resulting lattice constant is consistent with Vegard's law prediction for an alloy with a composition TMA 0.88 TTBTA 0.12 , and the substrate orientation of the lattice is defined by an epitaxial relation with the HOPG substrate. The Gibbs free energy for the TMA/TTBTA lattice was elucidated by considering the entropy of intermixing, via Monte Carlo simulations of multiplicity of the substitutional lattices, and the enthalpy of intermixing, via density functional theory calculations. The latter show that both the bond enthalpy of the H-bonded lattice and the adsorption enthalpy of the molecule/substrate interactions play important roles. This work provides insight into the manifestation of entropy in a molecular crystal constrained by both epitaxy and intermolecular interactions and demonstrates that a randomly intermixed yet crystalline 2D solid can be formed through hydrogen bonding of molecular building blocks of very different size.

  3. Role of intrinsic hydrogen bonds in the assembly of perylene imide derivatives in solution and at the liquid-solid interface.

    Science.gov (United States)

    Guo, Zongxia; Wang, Kun; Yu, Ping; Zhang, Shengyue; Sun, Kai; Li, Zhibo

    2017-08-30

    The impact of hydrogen bond formation on the supramolecular assembly of two perylene imide derivatives (PMAMI and PDINH) was systematically investigated in solution and at the liquid-solid interface. PDINH has intrinsic hydrogen bond sites, but this is not the case for PMAMI. The solution assembly was explored by morphological methods (SEM, AFM, TEM and cryo-TEM) and spectral characterization (UV-vis, FL, XRD, and FTIR spectra). The surface assembly at the liquid-solid interface was detected by scanning tunneling microscopy (STM). It was found that in a mixed solution (THF/MeOH, 10 v%/90 v%), PMAMI formed nanofibers together with large sheet structures and PDINH assembled into uniform nanosheets, suggesting different molecular packing routes. The assembled structures could be adjusted by varying the solvent polarity for both molecules. At the liquid-solid interface, clearly distinguished surface nanostructures from PMAMI and PDINH were easily observed. Based on all spectral and morphological characterizations, it was suggested that in solution the assembly of PMAMI was mainly derived by π-π stacking interactions; on the other hand, the synergetic interaction of hydrogen bonds and π-π stacking was the reason for the hierarchical assembly of PDINH. Hydrogen bonds could be formed both for PMAMI and PDINH and stabilized nanostructures at the liquid-solid interface. This investigation could be useful in designing perylene imide-based building blocks for fabricating supramolecular assemblies with predetermined nanostructures and properties.

  4. The unique functional role of the C-HS hydrogen bond in the substrate specificity and enzyme catalysis of type 1 methionine aminopeptidase.

    Science.gov (United States)

    Reddi, Ravikumar; Singarapu, Kiran Kumar; Pal, Debnath; Addlagatta, Anthony

    2016-07-19

    It is intriguing how nature attains recognition specificity between molecular interfaces where there is no apparent scope for classical hydrogen bonding or polar interactions. Methionine aminopeptidase (MetAP) is one such enzyme where this fascinating conundrum is at play. In this study, we demonstrate that a unique C-HS hydrogen bond exists between the enzyme methionine aminopeptidase (MetAP) and its N-terminal-methionine polypeptide substrate, which allows specific interaction between apparent apolar interfaces, imposing a strict substrate recognition specificity and efficient catalysis, a feature replicated in Type I MetAPs across all kingdoms of life. We evidence this evolutionarily conserved C-HS hydrogen bond through enzyme assays on wild-type and mutant MetAP proteins from Mycobacterium tuberculosis that show a drastic difference in catalytic efficiency. The X-ray crystallographic structure of the methionine bound protein revealed a conserved water bridge and short contacts involving the Met side-chain, a feature also observed in MetAPs from other organisms. Thermal shift assays showed a remarkable 3.3 °C increase in melting temperature for methionine bound protein compared to its norleucine homolog, where C-HS interaction is absent. The presence of C-HS hydrogen bonding was also corroborated by nuclear magnetic resonance spectroscopy through a change in chemical shift. Computational chemistry studies revealed the unique role of the electrostatic environment in facilitating the C-HS interaction. The significance of this atypical hydrogen bond is underscored by the fact that the function of MetAP is essential for any living cell.

  5. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  6. De Sitter vacua of strongly interacting QFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada)

    2017-03-22

    We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.

  7. Encapsulation of anticancer drug by hydrogen-bonded multilayers of tannic acid.

    Science.gov (United States)

    Liu, Fei; Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Martinez-Lopez, Claudia; Catledge, Shane; Kharlampieva, Eugenia

    2014-12-14

    Tannic acid (TA)-based multilayer assemblies have attracted increasing interest for biomedical applications. Here we explore properties of TA-poly(N-vinylpyrrolidone) (TA-PVPON) hydrogen-bonded multilayers for drug encapsulation and long-term storage. We demonstrate that the small molecular weight anticancer drug, doxorubicin (DOX), can be successfully loaded into (TA-PVPON) capsules with high encapsulation efficiency. We have also found that the encapsulated DOX can be efficiently stored inside the capsules for the pH range from pH = 7.4 to pH = 5. We show that the chemical and functional stability of TA at neutral and basic pH values is achieved through complexation with PVPON. The UV-vis spectrophotometry and in situ ellipsometry analyses of the hydrogen bonding interactions between TA and PVPON at different pH values reveal pH-dependent behavior of TA-PVPON capsules for the pH range from pH = 7.4 to pH = 5. Increasing deposition pH value from pH = 5 to pH = 7.4 leads to a 2-fold decrease in capsule thickness. However, this trend is reversed when salt concentration of the deposition solutions is increased from 0.01 M to 0.1 M NaCl. We have also demonstrated that the permeability of (TA-PVPON) capsules prepared using low salt deposition conditions and pH = 7.4 can be increased 2-fold by exposure of the capsules to 0.1 M NaCl salt solutions at the same pH. Our work opens new perspectives for design of novel polymer carriers for controlled drug delivery in cancer therapy.

  8. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  9. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy

    Science.gov (United States)

    Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio

    2007-07-01

    The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.

  10. CH···O Hydrogen Bonds Mediate Highly Specific Recognition of Methylated CpG Sites by the Zinc Finger Protein Kaiso.

    Science.gov (United States)

    Nikolova, Evgenia N; Stanfield, Robyn L; Dyson, H Jane; Wright, Peter E

    2018-03-26

    Many eukaryotic transcription factors recognize the epigenetic marker 5-methylcytosine (mC) at CpG sites in DNA. Despite their structural diversity, methyl-CpG-binding proteins (MBPs) share a common mode of recognition of mC methyl groups that involves hydrophobic pockets and weak hydrogen bonds of the CH···O type. The zinc finger protein Kaiso possesses a remarkably high specificity for methylated over unmethylated CpG sites. A key contribution to this specificity is provided by glutamate 535 (E535), which is optimally positioned to form multiple interactions with mCpG, including direct CH···O hydrogen bonds. To examine the role of E535 and CH···O hydrogen bonding in the preferential recognition of mCpG sites, we determined the structures of wild type Kaiso (WT) and E535 mutants and characterized their interactions with methylated DNA by nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography, and in vitro protein-DNA binding assays. Our data show that Kaiso favors an mCpG over a CpG site by 2 orders of magnitude in affinity and that an important component of this effect is the presence of hydrophobic and CH···O contacts involving E535. Moreover, we present the first direct evidence for formation of a CH···O hydrogen bond between an MBP and 5-methylcytosine by using experimental (NMR) and quantum mechanical chemical shift analysis of the mC methyl protons. Together, our findings uncover a critical function of methyl-specific interactions, including CH···O hydrogen bonds, that optimize the specificity and affinity of MBPs for methylated DNA and contribute to the precise control of gene expression.

  11. Observation of Weak C-H...O Hydrogen Bonding by Unactivated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Boggavarapu, Kiran; Wang, Lai S.

    2005-08-12

    Weak C-H...O hydrogen bonding has been recognized to play a major role in biological molecular structures and functions. A newly developed low-temperature photoelectron spectroscopy apparatus is used here to study the C-H...O hydrogen bonding between unactivated alkanes and the carboxylate functional group. We observed that gaseous linear carboxylates, CH3(CH2)nCO2-, assume folded structures at low temperatures due to weak C-H...O hydrogen bonding between the terminal CH3 and CO2- groups for n-5. Temperature-dependent studies showed that the folding transition depends on both the temperature and the aliphatic chain length. Theoretical calculations revealed that for n = 3-8, the folded conformations are more stable than the linear structures, but C-H...O hydrogen bonding only forms for species with n-5 due to steric constraint in the smaller species. One C-H...O hydrogen-bond is formed in the n = 5 and 6 species, whereas two C-H...O hydrogen-bonds are formed for n = 7 and 8. Comparison of the photoelectron spectral shifts for the folded relative to the linear conformations yielded lower limits for the strength of the C-H...O hydrogen-bonds in CH3(CH2)nCO2-, ranging from 1.2 kcal/mol for n = 5 to 4.4 kcal/mol for n = 8.

  12. The role of hydrogen bonding in excited state intramolecular charge transfer.

    Science.gov (United States)

    Chipem, Francis A S; Mishra, Anasuya; Krishnamoorthy, G

    2012-07-07

    Intramolecular charge transfer (ICT) that occurs upon photoexcitation of molecules is a vital process in nature and it has ample applications in chemistry and biology. The ICT process of the excited molecules is affected by several environmental factors including polarity, viscosity and hydrogen bonding. The effect of polarity and viscosity on the ICT processes is well understood. But, despite the fact that hydrogen bonding significantly influences the ICT process, the specific role of hydrogen bonding in the formation and stabilization of the ICT state is not unambiguously established. Some literature reports predicted that the hydrogen bonding of the solvent with a donor promotes the formation of a twisted intramolecular charge transfer (TICT) state. Some other reports stated that it inhibits the formation of the TICT state. Alternatively, it was proposed that the hydrogen bonding of the solvent with an acceptor favors the TICT state. It is also observed that a dynamic equilibrium is established between the free and the hydrogen bonded ICT states. This perspective focuses on the specific role played by hydrogen bonding of the solvent with the donor and the acceptor, and by proton transfer in the ICT process. The utility of such influence in molecular recognition and anion sensing is discussed with a few recent literature examples in the end.

  13. Relativistic rapprochement of electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs

  14. Synthesis, Structure and Spectroscopy of Two Structurally Related Hydrogen Bonded Compounds in the dpma/HClO4 System; dpma (dimethylphosphorylmethanamine

    Directory of Open Access Journals (Sweden)

    Guido J. Reiss

    2013-06-01

    Full Text Available The new phosphine oxide compound, (dimethylphosphorylmethanaminium perchlorate, dpmaHClO4 (1, was synthesized by the reaction of (dimethylphosphoryl methanamine (dpma with concentrated perchloric acid. (Dimethylphosphorylmethanaminium perchlorate (dimethylphosphorylmethanamine solvate, dpmaHClO4•dpma (2 was obtained by the slow evaporation of an equimolar methanolic solution of 1 and dpma at room temperature. For both compounds, single-crystal X-ray structures, IR and Raman spectra are reported. The assignment of the spectroscopic data were supported by quantum chemical calculations at the B3LYP/6-311G(2d,p level of theory. In 1, the dpmaH cations form polymeric, polar double-strands along [010] by head to tail connections via N–H∙∙∙O hydrogen bonds. The perchlorate anions are located between these strands attached by one medium strong and two weaker un-bifurcated hydrogen bonds (monoclinic, centrosymmetric space group C2/c, a = 17.8796(5 Å, b = 5.66867(14 Å, c = 17.0106(5 Å, β = 104.788(3°, V = 1666.9(1 Å3, Z = 8, T = 293 K, R(F [I > 2σ(I] = 0.0391, wR(F2 [all] = 0.1113. In 2, besides the N–H∙∙∙O hydrogen bonds, medium strong N–H∙∙∙N hydrogen bonds are present. One dpmaH cation and the neutral dpma molecule are connected head to tail by two N–H∙∙∙O hydrogen bonds forming a monocationic cyclic unit. These cyclic units are further connected by N–H∙∙∙O and N–H∙∙∙N hydrogen bonds forming polymeric, polar double-strands along [001]. The perchlorate anions fill the gaps between these strands, and each [ClO4]− anion is weakly connected to the NH2 group by one N–H∙∙∙O hydrogen bond (orthorhombic, non-centrosymmetric space group Pca21 (No. 29, a = 18.5821(5 Å, b = 11.4320(3 Å, c = 6.89400(17 Å, V = 1464.50(6 Å3, Z = 4, T = 100 K, R(F [I > 2σ(I] = 0.0234, wR(F2 [all] = 0.0575. Both structures are structurally related, and their commonalities are discussed in terms of a graph

  15. Soliton patterns and breakup thresholds in hydrogen-bonded chains

    International Nuclear Information System (INIS)

    Tchakoutio Nguetcho, A.S.; Kofane, T.C.

    2006-12-01

    We study the dynamics of protons in hydrogen-bonded quasi one-dimensional networks in terms of a diatomic lattice model of protons and heavy ions, with a phi-four on-site substrate potential. We show that the model with linear and nonlinear coupling between lattice sites of the quartic type for the protons admits a richer dynamics that cannot be found with linear coupling. Depending on the two types of physical boundary conditions namely, the drop and condensate types of boundary conditions, and on conditions that require the presence of linear and nonlinear dispersion terms, soliton patterns that are represented by soliton with compact support, peak, drop, bell, cusp, shock, kink, bubble and loop solitons, are derived within a continuum approximation. The phase trajectories, as well as an analytical analysis, provide information on an disintegration of soliton patterns upon reaching some critical values of the lattice parameters. The total energies of soliton patterns are exactly calculated in the displacive limit. We also show that when the phonon anharmonism is taken into account, the width and the energy of soliton patterns are in qualitative agreement with experimental data. (author)

  16. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  17. Halogen bonding versus hydrogen bonding induced 2D self-assembled nanostructures at the liquid-solid interface revealed by STM.

    Science.gov (United States)

    Wu, Yican; Li, Jinxing; Yuan, Yinlun; Dong, Meiqiu; Zha, Bao; Miao, Xinrui; Hu, Yi; Deng, Wenli

    2017-01-25

    We design a bifunctional molecule (5-bromo-2-hexadecyloxy-benzoic acid, 5-BHBA) with a bromine atom and a carboxyl group and its two-dimensional self-assembly is experimentally and theoretically investigated by using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The supramolecular self-organization of 5-BHBA in two different solvents (1-octanoic acid and n-hexadecane) at the liquid-solid interface at different solution concentrations is obviously different due to the cooperative and competitive intermolecular halogen and hydrogen bonds. Three kinds of nanoarchitectures composed of dimers, trimers and tetramers are formed at the 1-octanoic acid/graphite interface based on -COOHHOOC-, triangular C[double bond, length as m-dash]OBrH-C, -BrO(H), BrBr, and OH interactions. Furthermore, by using n-hexadecane as the solvent, two kinds of self-assembled linear patterns can be observed due to the coadsorption, in which the dimers are formed by intermolecular -COOHHOOC- hydrogen bonds. The molecule-solvent and solvent-solvent van der Waals force and intermolecular hydrogen bonds dominate the formation of coadsorbed patterns. We propose that the cooperative and competitive halogen and hydrogen bonds are related to the polarity of the solvent and the type of molecule-solvent interaction. The intermolecular binding energy of different dimers and their stability are supported by theoretical calculations. The result provides a new and innovative insight to induce the 2D self-assembled nanostructures by halogen and hydrogen bonds at the liquid-solid interface.

  18. Ion-orbital coupling in Car-Parrinello calculations of hydrogen-bond vibrational dynamics: Case study with the NH3-HCl dimer

    Science.gov (United States)

    Ong, S. W.; Lee, B. X. B.; Kang, H. C.

    2011-09-01

    We have performed Car-Parrinello molecular dynamics (CPMD) calculations of the hydrogen-bonded NH3-HCl dimer. Our main aim is to establish how ionic-orbital coupling in CPMD affects the vibrational dynamics in hydrogen-bonded systems by characterizing the dependence of the calculated vibrational frequencies upon the orbital mass in the adiabatic limit of Car-Parrinello calculations. We use the example of the NH3-HCl dimer because of interest in its vibrational spectrum, in particular the magnitude of the frequency shift of the H-Cl stretch due to the anharmonic interactions when the hydrogen bond is formed. We find that an orbital mass of about 100 a.u. or smaller is required in order for the ion-orbital coupling to be linear in orbital mass, and the results for which can be accurately extrapolated to the adiabatic limit of zero orbital mass. We argue that this is general for hydrogen-bonded systems, suggesting that typical orbital mass values used in CPMD are too high to accurately describe vibrational dynamics in hydrogen-bonded systems. Our results also show that the usual application of a scaling factor to the CPMD frequencies to correct for the effects of orbital mass is not valid. For the dynamics of the dimer, we find that the H-Cl stretch and the N-H-Cl bend are significantly coupled, suggesting that it is important to include the latter degree of freedom in quantum dynamical calculations. Results from our calculations with deuterium-substitution show that both these degrees of freedom have significant anharmonic interactions. Our calculated frequency for the H-Cl stretch using the Becke-exchange Lee-Yang-Parr correlation functional compares reasonably well with a previous second-order Møller-Plesset calculation with anharmonic corrections, although it is low compared to the experimental value for the dimer trapped in a neon-matrix.

  19. Effect of cationic substitution on the double-well hydrogen-bond potential in [K1-x(NH4)x]3H(SO4)2 proton conductors: a single-crystal neutron diffraction study.

    Science.gov (United States)

    Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P

    2017-10-01

    The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.

  20. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  1. Using multiple hydrogen bonding cross-linkers to access reversibly responsive three dimensional graphene oxide architecture

    Science.gov (United States)

    Han, Junkai; Shen, Yongtao; Feng, Wei

    2016-07-01

    Three-dimensional (3D) graphene materials have attracted a lot of attention for efficiently utilizing inherent properties of graphene sheets. However, 3D graphene materials reported in the previous literature are constructed through covalent or weak non-covalent interactions, causing permanent structure/property changes. In this paper, a novel 3D graphene material of dynamic interactions between lamellas with 2-ureido-4[1H]-pyrimidinone as a supra-molecular motif has been synthesized. This 3D graphene material shows enhanced sheet interactions while the cross-linking takes place. With proper solvent stimulation, the integrated 3D graphene material can disassemble as isolated sheets. The driving force for the 3D structure assembly or disassembly is considered to be the forming or breaking of the multiple hydrogen bonding pairs. Furthermore, the 3D material is used as an intelligent dye adsorber to adsorb methylene blue and release it. The controllable and reversible characteristic of this 3D graphene material may open an avenue to the synthesis and application of novel intelligent materials.Three-dimensional (3D) graphene materials have attracted a lot of attention for efficiently utilizing inherent properties of graphene sheets. However, 3D graphene materials reported in the previous literature are constructed through covalent or weak non-covalent interactions, causing permanent structure/property changes. In this paper, a novel 3D graphene material of dynamic interactions between lamellas with 2-ureido-4[1H]-pyrimidinone as a supra-molecular motif has been synthesized. This 3D graphene material shows enhanced sheet interactions while the cross-linking takes place. With proper solvent stimulation, the integrated 3D graphene material can disassemble as isolated sheets. The driving force for the 3D structure assembly or disassembly is considered to be the forming or breaking of the multiple hydrogen bonding pairs. Furthermore, the 3D material is used as an

  2. Effect of hydrogen bonding on the infrared absorption intensity of OH stretch vibrations

    Science.gov (United States)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.; McKenzie, Ross H.

    2017-05-01

    We consider how the infrared intensity of a hydrogen-bonded OH stretch varies from weak to strong H-bonds using a theoretical model. We obtain trends for the fundamental and overtone transition intensities as a function of the donor-acceptor distance, a common measure of H-bond strength. Building upon our earlier work using a two-diabatic state model, we introduce a Mecke function-based dipole moment for the H-bond and calculate transition moments using one-dimensional vibrational eigenstates along the H-atom transfer coordinate. The fundamental intensity is found to be over 20-fold enhanced for strong H-bonds, where non-Condon effects are significant. We analyse isotope effects, including the secondary geometric isotope effect. The first overtone intensity varies non-monotonically with H-bond strength; suppression occurs for weak bonds but strong enhancements are possible for strong H-bonds. We also study how these trends are affected by Mecke parameter variations. For a few specific dimers, we compare our results with earlier works.

  3. Supersymmetry and weak, electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1977-01-01

    A supersymmetric theory of particle interactions is discussed. It is based on the earlier model which involves gauge (or vector) superfields, and matter (or chiral) superfields; each of them describes a vector and a Majorana spinor in the first case, or a two-component Dirac spinor and a complex scalar in the second case. The new theory suggests the possible existence of spin - 1/2 gluons and heavy spin-0 quarks, besides spin - 1 gluons and spin - 1/2 quarks. To prevent scalar particles to be exchanged in processes such as μ or β decays a new class of leptons with its own quantum number is introduced; it includes charged leptons and a ''photonic neutrino''

  4. Organic salts formed by 2,4,6-triaminopyrimidine and selected carboxylic acids via a variety of hydrogen bonds: Synthons cooperation, and crystal structures

    Science.gov (United States)

    Xing, Peiqi; Li, Qingyun; Li, Yingying; Wang, Kunpeng; Zhang, Qi; Wang, Lei

    2017-05-01

    By using solvent evaporation method, 2,4,6-triaminopyrimidine (TAPI) is employed to crystallize with a variety of acids, including 3,5-dihydroxybenzoic acid (HDHBA), 3-nitrophthalic acid (H2NPA), 5-amino-2,4,6-triiodoisophthalic acid (H2ATIPIA), 2,5-dibromoterephthalic acid (H2DBTPA), 1,5-naphthalenedisulfonic acid (H2NDSA), sebacic acid (H2SA), 1,2,4-benzenetricarboxylic acid (H3BTA), and biphenyl-2,2‧,5,5'-tetracarboxylic acid (H4BPTA). In all eight complexes, protons are completely exchanged from O atom of acid to nitrogen of TAPI in 1, 3, 4, and, 5, partly transferred in 2, 6, 7, and 8. The crystal structure of all eight complexes exhibit that classical robust hydrogen bonds X-H⋯X (X = O/N) direct the molecular crystals to bind together in a stacking modes. Classical hydrogen bond Nsbnd H⋯O is participated in forming all eight organic salts, while hydrogen bonding Osbnd H⋯O are found in constructing the diversity structures in salts 1, 2, 3, 4, 6, and 7. The analysis shows that some classical supramolecular synthons, such as I R22(8), V R24(12), and VI S(6), are observed again in the construction of hydrogen-bonding networks. In the formation of layered and reticular structure, strong hydrogen bonds between water molecules and ligands having well-refined hydrogen atoms have been considered. Water molecules play an important role in building supramolecular structures of 1, 2, 3, 4, 7, and 8. Moreover, salts 1-8 are further characterized and analyzed by element analysis, infrared radiation, thermogravimetric analysis, proton nuclear magnetic resonance spectra, and mass spectra.

  5. Melting of hydrogen bonds in uracil derivatives probed by infrared spectroscopy and ab initio molecular dynamics.

    Science.gov (United States)

    Szekrényes, Zsolt; Kamarás, Katalin; Tarczay, György; Llanes-Pallás, Anna; Marangoni, Tomas; Prato, Maurizio; Bonifazi, Davide; Björk, Jonas; Hanke, Felix; Persson, Mats

    2012-04-19

    The thermal response of hydrogen bonds is a crucial aspect in the self-assembly of molecular nanostructures. To gain a detailed understanding of their response, we investigated infrared spectra of monomers and hydrogen-bonded dimers of two uracil-derivative molecules, supported by density functional theory calculations. Matrix isolation spectra of monomers, temperature dependence in the solid state, and ab initio molecular dynamics calculations give a comprehensive picture about the dimer structure and dynamics of such systems as well as a proper assignment of hydrogen-bond affected bands. The evolution of the hydrogen bond melting is followed by calculating the C═O···H-N distance distributions at different temperatures. The result of this calculation yields excellent agreement with the H-bond melting temperature observed by experiment.

  6. Hydrogen bond dynamical properties of adsorbed liquid water monolayers with various TiO2 interfaces

    Science.gov (United States)

    English, Niall J.; Kavathekar, Ritwik S.; MacElroy, J. M. D.

    2012-12-01

    Equilibrium classical molecular dynamics (MD) simulations have been performed to investigate the hydrogen-bonding kinetics of water in contact with rutile-(110), rutile-(101), rutile-(100), and anatase-(101) surfaces at room temperature (300 K). It was observed that anatase-(101) exhibits the longest-lived hydrogen bonds in terms of overall persistence, followed closely by rutile-(110). The relaxation times, defined as the integral of the autocorrelation of the hydrogen bond persistence function, were also longer for these two cases, while decay of the autocorrelation function was slower. The increased number and overall persistence of hydrogen bonds in the adsorbed water monolayers at these surfaces, particularly for anatase-(101), may serve to promote possible water photolysis activity thereon.

  7. Sorption of CO2 in a hydrogen-bonded diamondoid network of sulfonylcalix[4]arene

    Energy Technology Data Exchange (ETDEWEB)

    Sinnwell, Michael A.; Atwood, Jerry L.; Thallapally, Praveen K.

    2018-03-29

    An organic material, p-tert-butyltetrasulfonylcalix[4]arene, self-assembles via hydrogen bonding to form a diamondoid supramolecular network. Possessing discrete, zero-dimensional (0D) microcavities, the thiacalixarene derivative adsorbs CO2 at high pressures

  8. Influence of Intramolecular Charge Transfer and Nuclear Quantum Effects on Intramolecular Hydrogen Bonds in Azopyrimidines.

    Science.gov (United States)

    Bártová, Kateřina; Čechová, Lucie; Procházková, Eliška; Socha, Ondřej; Janeba, Zlatko; Dračínský, Martin

    2017-10-06

    Intramolecular hydrogen bonds (IMHBs) in 5-azopyrimidines are investigated by NMR spectroscopy and DFT computations that involve nuclear quantum effects. A series of substituted 5-phenylazopyrimidines with one or two hydrogen bond donors able to form IMHBs with the azo group is prepared by azo coupling. The barrier of interconversion between two rotamers of the compounds with two possible IMHBs is determined by variable temperature NMR spectroscopy and it is demonstrated that the barrier is significantly affected by intramolecular charge transfer. Through-hydrogen-bond scalar coupling is investigated in 15 N labeled compounds and the stability of the IMHBs is correlated with experimental NMR parameters and rationalized by path integral molecular dynamics simulations that involve nuclear quantum effects. Detailed information on the hydrogen bond geometry upon hydrogen-to-deuterium isotope exchange is obtained from a comparison of experimental and calculated NMR data.

  9. QCD : the theory of strong interactions Conference MT17

    CERN Multimedia

    2001-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  10. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    Science.gov (United States)

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives.

  11. Hydrogen bonds of DsrD protein revealed by neutron crystallography

    International Nuclear Information System (INIS)

    Chatake, Toshiyuki; Higuchi, Yoshiki; Mizuno, Nobuhiro; Tanaka, Ichiro; Niimura, Nobuo; Morimoto, Yukio

    2008-01-01

    Hydrogen bonds of DNA-binding protein DsrD have been determined by neutron diffraction. In terms of proton donors and acceptors, DsrD protein shows striking differences from other proteins. The features of hydrogen bonds in DsrD protein from sulfate-reducing bacteria have been investigated by neutron protein crystallography. The function of DsrD has not yet been elucidated clearly, but its X-ray crystal structure revealed that it comprises a winged-helix motif and shows the highest structural homology to the DNA-binding proteins. Since any neutron structure of a DNA recognition protein has not yet been obtained, here detailed information on the hydrogen bonds in the winged-helix-motif protein is given and the following features found. (i) The number of hydrogen bonds per amino acid of DsrD is relatively fewer than for other proteins for which neutron structures were determined previously. (ii) Hydrogen bonds are localized between main-chain and main-chain atoms; there are few hydrogen bonds between main-chain and side-chain atoms and between side-chain and side-chain atoms. (iii) Hydrogen bonds inducted by protonation of specific amino acid residues (Glu50) seem to play an essential role in the dimerization of DsrD. The former two points are related to the function of the DNA-binding protein; the three-dimensional structure was mainly constructed by hydrogen bonds in main chains, while the side chains appeared to be used for another role. The latter point would be expected to contribute to the crystal growth of DsrD

  12. The Low Barrier Hydrogen Bond in the Photoactive Yellow Protein: A Vacuum Artifact Absent in the Crystal and Solution.

    Science.gov (United States)

    Graen, Timo; Inhester, Ludger; Clemens, Maike; Grubmüller, Helmut; Groenhof, Gerrit

    2016-12-28

    There has been considerable debate on the existence of a low-barrier hydrogen bond (LBHB) in the photoactive yellow protein (PYP). The debate was initially triggered by the neutron diffraction study of Yamaguchi et al. ( Proc. Natl. Acad. Sci., U. S. A. , 2009 , 106 , 440 - 444 ) who suggested a model in which a neutral Arg52 residue triggers the formation of the LBHB in PYP. Here, we present an alternative model that is consistent within the error margins of the Yamaguchi structure factors. The model explains an increased hydrogen bond length without nuclear quantum effects and for a protonated Arg52. We tested both models by calculations under crystal, solution, and vacuum conditions. Contrary to the common assumption in the field, we found that a single PYP in vacuum does not provide an accurate description of the crystal conditions but instead introduces strong artifacts, which favor a LBHB and a large 1 H NMR chemical shift. Our model of the crystal environment was found to stabilize the two Arg52 hydrogen bonds and crystal water positions for the protonated Arg52 residue in free MD simulations and predicted an Arg52 pK a upshift with respect to PYP in solution. The crystal and solution environments resulted in almost identical 1 H chemical shifts that agree with NMR solution data. We also calculated the effect of the Arg52 protonation state on the LBHB in 3D nuclear equilibrium density calculations. Only the charged crystal structure in vacuum supports a LBHB if Arg52 is neutral in PYP at the previously reported level of theory ( J. Am. Chem. Soc. , 2014 , 136 , 3542 - 3552 ). We attribute the anomalies in the interpretation of the neutron data to a shift of the potential minimum, which does not involve nuclear quantum effects and is transferable beyond the Yamaguchi structure.

  13. Weak Hydrogen Bonds from Aliphatic and Fluorinated Alocohols to Molecular Nitrogen Detected by Supersonic Jet FTIR Spectroscopy

    Science.gov (United States)

    Oswald, Soenke; Suhm, Martin A.

    2017-06-01

    Complexes of organic molecules with the main component of earth's atmosphere are of interest, also for a stepwise understanding of the phenomenon of matrix isolation. Via its large quadrupole moment, nitrogen binds strongly to polarized OH groups in hydrogen-bonded dimers. Further complexation leads to a smooth spectral transition from free to embedded molecules which we probe in supersonic jets. Results for 1,1,1,3,3,3-hexafluoro-2-propanol, methanol, t-butyl alcohol, and the conformationally more complex ethanol are presented and assigned with the help of quantum chemical calculations. Kuma, S., Slipchenko, M. N., Kuyanov, K. E., Momose, T., Vilesov, A. F., Infrared Spectra and Intensities of the H_2O and N_2 Complexes in the Range of the ν_1- and ν_3-Bands of Water, J. Phys. Chem. A, 2006, 110, 10046-10052. Coussan, S., Bouteiller, Y., Perchard, J. P., Zheng, W. Q., Rotational Isomerism of Ethanol and Matrix Isolation Infrared Spectroscopy, J. Phys. Chem. A, 1998, 102, 5789-5793. Suhm, M. A., Kollipost, F., Femtisecond single-mole infrared spectroscopy of molecular clusters, Phys. Chem. Chem. Phys., 2013, 15, 10702-10721. Larsen, R. W., Zielke, P., Suhm, M. A., Hydrogen bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study, J. Chem. Phys., 2007, 126, 194307. Zimmermann, D., Häber, T., Schaal, H., Suhm, M. A., Hydrogen bonded rings, chains and lassos: The case of t-butyl alcohol clusters, Mol. Phys., 2001, 99, 413-425. Wassermann, T. N., Suhm, M. A., Ethanol Monomers and Dimers Revisited: A Raman Study of Conformational Preferences and Argon Nanocoating Effects, J. Phys. Chem. A, 2010, 114, 8223-8233.

  14. Potential mesogens based on pyridine derivatives: The geometric structure, conformational properties and characteristics of intermolecular hydrogen bonds

    Science.gov (United States)

    Fedorov, Mikhail S.; Giricheva, Nina I.; Shpilevaya, Kseniya E.; Lapykina, Elena A.; Syrbu, Svetlana A.

    2017-03-01

    Conformational properties of the main part (excluding sbnd OC3H7 radicals) of the p-n-propyloxybenzoic (A1) and p-n-propyloxycinnamic (A2) acids molecules (relating to mesomorphic compounds) as well as p-n-propyloxybenzoic acid pyridine ester (B1) and p-n-propyloxyphenylazopyridine (B2) molecules (relating to non-mesomorphic compounds) were studied by DFT(B3LYP)/cc-pVTZ method. It was shown that the main parts of A1 and A2 acids are rigid. The barrier to internal rotation of pyridine fragment in the B1 and B2 molecules depends on the nature of the bridging group. It was determined that all studied A1⋯B1, A2⋯B1 and A2⋯B2 complexes are characterized by a strong hydrogen bond. The binding energy of complexes (≈14 kcal/mol, with BSSE corrections, DFT(B97D)/6-311++G**) exceeds the energy per hydrogen bond in the corresponding acid dimers (≈10 kcal/mol). The structural non-rigidity of A⋯B complexes is mainly caused by possibility of sbnd OC3H7 radicals internal rotation and A and B molecules rotation about the (H)O⋯N line. The characteristics of intermolecular hydrogen bonds were determined by NBO-analysis. The obtained results indicate that examined complexes correspond to the basic requirements to mesogen molecular forms. The thermodynamic functions of the gas-phase complexation reactions (idealized model of the complexes formation in the condensed state) were calculated. Preliminary studies of mesogen-non-mesogen A1⋯B2 system by differential scanning calorimetry and polarizing optical microscopy, showed that it has mesomorphic properties.

  15. Solvatomagnetic Comparison Method: A Proper Quantification of Solvent Hydrogen-Bond Basicity.

    Science.gov (United States)

    Laurence, Christian; Legros, Julien; Nicolet, Pierre; Vuluga, Daniela; Chantzis, Agisilaos; Jacquemin, Denis

    2014-07-10

    The hydrogen-bond-acceptor basicity of an important class of solvents, the amphiprotic solvents (water, alcohols, primary and secondary amides, and carboxylic acids), has not yet been properly parametrized. In this work, the first scale of solvent hydrogen-bond basicity applicable to amphiprotic solvents is established by means of a new method that compares the 19 F NMR chemical shifts of 4-fluorophenol and 4-fluoroanisole in hydrogen-bond-acceptor solvents. This so-called solvatomagnetic comparison method is free of the shortcomings of the solvatochromic comparison method used so far and is easier to carry out than the pure base calorimetric method. The validity of the new scale is assessed by good linear correlations with spectroscopic, thermodynamic, and kinetic solute properties depending on the solvent hydrogen-bond basicity. In such correlation analysis of solvent effects on physicochemical properties, solvent and solute hydrogen-bond basicity scales must not be mixed, since it is shown here that solute and solvent scales are not equivalent. A comprehensive collection of parameters quantifying the hydrogen-bond basicity is presented for 168 solvents.

  16. Direct 13C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA

    International Nuclear Information System (INIS)

    Fürtig, Boris; Schnieders, Robbin; Richter, Christian; Zetzsche, Heidi; Keyhani, Sara; Helmling, Christina; Kovacs, Helena; Schwalbe, Harald

    2016-01-01

    In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond 1 H detection. Here, we develop 13 C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for 13 C direct detection allows correlations of donor–acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed 13 C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.

  17. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    Science.gov (United States)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  18. Evaluation of molecular assembly, spectroscopic interpretation, intra-/inter molecular hydrogen bonding and chemical reactivity of two pyrrole precursors

    Science.gov (United States)

    Rawat, Poonam; Singh, R. N.

    2014-10-01

    This paper describes the evaluation of conformational, spectroscopic, hydrogen bonding and chemical reactivity of pyrrole precursor: ethyl 3,5 dimethyl-1H-pyrrole-2-carboxylate (EDPC) and ethyl 3,4-dimethyl-4-acetyl-1H-pyrrole-2-carboxylate (EDAPC) for the convenient characterization, synthetic usefulness and comparative evaluations. All experimental spectral values of 1H NMR, UV-Vis and FT-IR spectra coincide well with calculated values by DFT. The orbital interactions in EDPC and EDAPC are found to lengthen their Nsbnd H and Cdbnd O bonds and lowers their vibrational frequencies (red shift) resulting to dimer formation. The QTAIM and NBO analyses provide the strength of interactions and charge transfer in the hydrogen bonding unit and stability of dimers. The binding energy of EDPC and EDPAC dimer are found to be 9.92, 10.22 kcal/mol, respectively. In EDPAC and EDPC dimer, hyperconjugative interactions between monomer units is due to n1(O) → σ*(Nsbnd H) that stabilize the molecule up to 9.7 and 9.3 kcal/mol, respectively. On evaluation of molecular electrostatic potential (MEP) and electronic descriptors for EDPC it has been found that it is a good precursor for synthesis of formyl and acetyl derivatives whereas EDAPC has been found to be a good precursor for synthesis of schiff base, hydrazones, hydrazide-hydrazones and chalcones.

  19. Can hydrogen bonds improve the hole-mobility in amorphous organic semiconductors? Experimental and theoretical insights

    KAUST Repository

    Mimaite, Viktorija

    2015-01-01

    © The Royal Society of Chemistry 2015. Five hole-transporting triphenylamine derivatives containing methoxy and methyl groups are synthesized and investigated. The hole-mobility increases in the presence of methyl and methoxy substituents, exceeding 10-2 cm2 V-1 s-1 in the case of methyl groups. Quantum mechanical calculations on these compounds indicate very different dipole moments and intermolecular interaction strengths, with intriguing correlations with the trend in hole-mobility. Temperature dependent hole-mobility measurements indicate disorder dominated hole transport. The values of the energetic disorder parameter (σ) decrease upon methyl and methoxy substitutions despite the increase in dipole moments. This trend is discussed as a function of the interaction energy between adjacent molecules, the dipole moment, the molecular polarizability, and the conformational degree of freedom. Our results indicate that the global decrease of σ upon methyl and methoxy substitutions is dominated by the larger decrease in the geometrical randomness component of the energetic disorder. A direct correlation is established between the decrease in geometrical randomness and the increase in intermolecular interaction energies, mainly stemming from the additional C-H⋯π, O, N hydrogen bonds induced by methyl and methoxy groups.

  20. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity

    Directory of Open Access Journals (Sweden)

    Larance Ronsard

    2017-08-01

    Full Text Available HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23–25 and the loop region consisting of six nucleotides at the position 30–35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC is critically important for TAR interaction. Any mutations in this motif could lead to reduce transactivation ability and pathogenesis. Here, we identified structurally important residues (arginine and lysine residues of Tat in this motif could bind to TAR via hydrogen bond interactions which is critical for transactivation. Natural mutant Ser46Phe in the core motif could likely led to conformational change resulting in more hydrogen bond interactions than the wild type Tat making it highly potent transactivator. Importantly, we report the possible probabilities of number of hydrogen bond interactions in the wild type Tat and the mutants with TAR complexes. This study revealed the differential transactivation of subtype B and C Tat could likely be due to the varying number of hydrogen bonds with TAR. Our data support that the N-terminal and the C-terminal domains of Tat is involved in the TAR interactions through hydrogen bonds which is important for transactivation. This study highlights the evolving pattern of structurally important determinants of Tat in the arginine motif for viral transactivation.

  1. QCD : the theory of strong interactions Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD),predicts that the strong interac- tion is transmitted by the exchange of particles called glu- ons.Unlike the messengers of electromagnetism -pho- tons,which are electrically neutral -gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies.LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  2. Short hydrogen bonds and negative charge in photoactive yellow protein promote fast isomerization but not high quantum yield.

    Science.gov (United States)

    Zhu, Jingyi; Vreede, Jocelyne; Hospes, Marijke; Arents, Jos; Kennis, John T M; van Stokkum, Ivo H M; Hellingwerf, Klaas J; Groot, Marie Louise

    2015-02-12

    Biological signal transduction by photoactive yellow protein (PYP) in halophilic purple sulfur bacteria is initiated by trans-to-cis isomerization of the p-coumaric acid chromophore (pCa) of PYP. pCa is engaged in two short hydrogen bonds with protein residues E46 and Y42, and it is negatively charged at the phenolate oxygen. We investigated the role in the isomerization process of the E46 short hydrogen bond and that of the negative charge on the anionic phenolate moiety of the chromophore. We used wild-type PYP and the mutant E46A, in protonated and deprotonated states (referred to as pE46A and dpE46A, respectively), to reduce the number of hydrogen bond interactions between the pCa phenolate oxygen and the protein and to vary the negative charge density in the chromophore-binding pocket. Their effects on the yield and rate of chromophore isomerization were determined by ultrafast spectroscopy. Molecular dynamics simulations were used to relate these results to structural changes in the mutant protein. We found that deprotonated pCa in E46A has a slower isomerization rate as the main part of this reaction was associated with time constants of 1 and 6 ps, significantly slower than the 0.6 ps time constant in wild-type PYP. The quantum yield of isomerization in dpE46A was estimated to be 30 ± 2%, and that of pE46A was 32 ± 3%, very close to the value determined for wtPYP of 32 ± 2%. Relaxation of the isomerized product state I0 to I1 was faster in dpE46A. We conclude that the negative charge on pCa stabilized by the short hydrogen bonds with E46 and Y42 affects the rate of isomerization but not the quantum yield of isomerization. With this information, we propose a scheme for the potential energy surfaces involved in the isomerization and suggest protein motions near the pCa backbone as key events in successful isomerization.

  3. Synthesis, Characterization, and Solid State Dynamic Studies of a Hydrogen Bond-Hindered Steroidal Molecular Rotor with a Flexible Axis.

    Science.gov (United States)

    Mayorquín-Torres, Martha C; Colin-Molina, Abraham; Pérez-Estrada, Salvador; Galano, Annia; Rodríguez-Molina, Braulio; Iglesias-Arteaga, Martín A

    2018-03-09

    A novel steroid molecular rotor was obtained in four steps from the naturally occurring spirostane sapogenin diosgenin. The structural and dynamic characterization was carried out by solution NMR, VT X-ray diffraction, solid state 13 C CPMAS, and solid state 2 H NMR experiments. They allowed the identification of a fast dynamic process with a frequency of 14 MHz at room temperature, featuring a barrier to rotation Ea = 7.87 kcal mol -1 . The gathered experimental evidence indicated the presence of a hydrogen bond that becomes stronger as the temperature lowers. This interaction was characterized using theoretical calculations, based on topological analyses of the electronic density and energies. In addition, combining theoretical calculations with experimental measurements, it was possible to propose a partition to Ea (∼8 kcal/mol) into three contributions, that are the cost of the intrinsic rotation (∼2 kcal/mol), the hydrogen bond interaction (∼2 kcal/mol), and the packing effects (∼2-3 kcal/mol). The findings from the present work highlight the relevance of the individual components in the function of molecular machines in the solid state.

  4. A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

    Directory of Open Access Journals (Sweden)

    Christer B. Aakeröy

    2015-09-01

    Full Text Available As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately.

  5. Understanding the Thermodynamics of Hydrogen Bonding in Alcohol-Containing Mixtures: Cross-Association.

    Science.gov (United States)

    Fouad, Wael A; Wang, Le; Haghmoradi, Amin; Asthagiri, D; Chapman, Walter G

    2016-04-07

    The thermodynamics of hydrogen bonding in 1-alcohol + water binary mixtures is studied using molecular dynamic (MD) simulation and the polar and perturbed chain form of the statistical associating fluid theory (polar PC-SAFT). The fraction of free monomers in pure saturated liquid water is computed using both TIP4P/2005 and iAMOEBA simulation water models. Results are compared to spectroscopic data available in the literature as well as to polar PC-SAFT. Polar PC-SAFT models hydrogen bonds using single bondable association sites representing electron donors and electron acceptors. The distribution of hydrogen bonds in pure alcohols is computed using the OPLS-AA force field. Results are compared to Monte Carlo (MC) simulations available in the literature as well as to polar PC-SAFT. The analysis shows that hydrogen bonding in pure alcohols is best predicted using a two-site model within the SAFT framework. On the other hand, molecular simulations show that increasing the concentration of water in the mixture increases the average number of hydrogen bonds formed by an alcohol molecule. As a result, a transition in association scheme occurs at high water concentrations where hydrogen bonding is better captured within the SAFT framework using a three-site alcohol model. The knowledge gained in understanding hydrogen bonding is applied to model vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) of mixtures using polar PC-SAFT. Predictions are in good agreement with experimental data, establishing the predictive power of the equation of state.

  6. A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution

    Science.gov (United States)

    Polander, Brandon C.; Barry, Bridgette A.

    2012-01-01

    In photosystem II, oxygen evolution occurs by the accumulation of photo-induced oxidizing equivalents at the oxygen-evolving complex (OEC). The sequentially oxidized states are called the S0-S4 states, and the dark stable state is S1. Hydrogen bonds to water form a network around the OEC; this network is predicted to involve multiple peptide carbonyl groups. In this work, we tested the idea that a network of hydrogen bonded water molecules plays a catalytic role in water oxidation. As probes, we used OEC peptide carbonyl frequencies, the substrate-based inhibitor, ammonia, and the sugar, trehalose. Reaction-induced FT-IR spectroscopy was used to describe the protein dynamics associated with the S1 to S2 transition. A shift in an amide CO vibrational frequency (1664 (S1) to 1653 (S2) cm-1) was observed, consistent with an increase in hydrogen bond strength when the OEC is oxidized. Treatment with ammonia/ammonium altered these CO vibrational frequencies. The ammonia-induced spectral changes are attributed to alterations in hydrogen bonding, when ammonia/ammonium is incorporated into the OEC hydrogen bond network. The ammonia-induced changes in CO frequency were reversed or blocked when trehalose was substituted for sucrose. This trehalose effect is attributed to a displacement of ammonia molecules from the hydrogen bond network. These results imply that ammonia, and by extension water, participate in a catalytically essential hydrogen bond network, which involves OEC peptide CO groups. Comparison to the ammonia transporter, AmtB, reveals structural similarities with the bound water network in the OEC. PMID:22474345

  7. Preferential melting of secondary structures during protein unfolding in different solvents: Competition between hydrophobic solvation and hydrogen bonding

    Science.gov (United States)

    Bagchi, Biman; Roy, Susmita; Ghosh, Rikhia

    2014-03-01

    Aqueous binary mixtures such as water-DMSO, water-urea, and water-ethanol are known to serve as denaturants of a host of proteins, although the detailed mechanism is often not known. Here we combine studies on several proteins in multiple binary mixtures to obtain a unified understanding of the phenomenon. We compare with experiments to support the simulation findings. The proteins considered include (i) chicken villin head piece (HP-36), (ii) immunoglobulin binding protein G (GB1), (iii) myoglobin and (iv) lysozyme. We find that for amphiphilic solvents like DMSO, the hydrophobic groups and the strong hydrogen bonding ability of the >S =O oxygen atom act together to facilitate the unfolding. However, the hydrophilic solvents like urea, due to the presence of more hydrophilic ends (C =O and two NH2) has a high propensity of forming hydrogen bonds with the side-chain residues and backbone of beta-sheet than the same of alpha helix. Such diversity among the unfolding pathways of a given protein in different chemical environments is especially characterized by the preferential solvation of a particular secondary structure.

  8. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  9. Crystal structure and hydrogen bonding in N-(1-deoxy-β-d-fructopyranos-1-yl-2-aminoisobutyric acid

    Directory of Open Access Journals (Sweden)

    Valeri V. Mossine

    2018-01-01

    Full Text Available The title compound, alternatively called d-fructose-2-aminoisobutyric acid (FruAib, C10H19NO7, (I, crystallizes exclusively in the β-pyranose form, with two conformationally non-equivalent molecules [(IA and (IB] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyranose, 10.4% β-furanose, 10.1% α-furanose, 3.0% α-pyranose and <0.7% the acyclic forms. The carbohydrate ring in (I has the normal 2C5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyranose structures. All carboxyl, hydroxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intramolecular hydrogen bonds bridge the amino acid and sugar portions in both molecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intramolecular heteroatom interactions in crystal structures with an increasing proportion of C—H bonds.

  10. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    Energy Technology Data Exchange (ETDEWEB)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es [Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  11. Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol/Poly(vinyl methyl ketone

    Directory of Open Access Journals (Sweden)

    Hana Bourara

    2014-10-01

    Full Text Available The miscibility and phase behavior of poly(4-vinylphenol (PVPh with poly(vinyl methyl ketone (PVMK was investigated by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (Tg over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained Tgs are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh and vinyl methyl ketone (VMK functional groups. These results were also established by scanning electron microscopy study (SEM.

  12. Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques.

    Science.gov (United States)

    Palombo, Francesca; Sassi, Paola; Paolantoni, Marco; Morresi, Assunta; Cataliotti, Rosario Sergio

    2006-09-14

    Liquid 1-octanol and 2-octanol have been investigated by infrared (IR), Raman, and Brillouin experiments in the 10-90 degrees C temperature range. Self-association properties of the neat liquids are described in terms of a three-state model in which OH oscillators differently implicated in the formation of H-bonds are considered. The results are in quantitative agreement with recent computational studies for 1-octanol. The H-bond probability is obtained by Raman data, and a stochastic model of H-bonded chains gives a consistent picture of the self-association characteristics. Average values of hydrogen bond enthalpy and entropy are evaluated. The H-bond formation enthalpy is ca. -22 kJ/mol and is slightly dependent on the structural isomerism. The different degree of self-association for the two octanols is attributed to entropic factors. The more shielded 2-isomer forms larger fractions of smaller, less cooperative, and more ordered clusters, likely corresponding to cyclic structures. Signatures of a different cluster organization are also evidenced by comparing the H-bond energy dispersion (HBED) of OH stretching IR bands. A limiting cooperative H-bond enthalpy value of 27 kJ/mol is found. It is also proposed that the different H-bonding capabilities may modulate the extent of interaggregate hydrocarbon interactions, which is important in explaining the differences in molar volume, compressibility, and vaporization enthalpy for the two isomers.

  13. Phase Behavior and Magnetic Alignment of Hydrogen Bonded Side Chain Liquid Crystalline Block Copolymers

    Science.gov (United States)

    Gopinadhan, Manesh; Majewski, Pawel; Beach, Evan; Anastas, Paul; Osuji, Chinedum

    2010-03-01

    Hydrogen bonding between a poly(styrene-b-acrylic acid) backbone and an imidazole terminated biphenyl mesogen results in the formation of a side-group liquid crystalline block copolymer (LC BCP).We use a combination of FTIR, X-ray scattering and DSC to characterize the phase behavior of the PAA-LC system, which is largely dominated by the sub-stoichiometric saturation of the binding capacity of the chain. In the melt, the self assembled materials exhibited composition and temperature dependent smectic LC phases along with characteristic birefringence and multiple thermal transitions associated with LC polymers. The diblock copolymers (LC BCP) microphase separated into lamellar microdomains with homeotropic anchoring at the IMDS. Alignment of a hierarchically ordered lamellar BCP was performed using a 5 T magnetic field at elevated temperature in the melt state and characterized by SAXS. The system exhibits a tilted smectic structure, which on alignment by the field displays scattering patterns akin to those observed in bookshelf or chevron-type structures. These results demonstrate that simple non-covalent interactions can be used to generate LC order and thus provide a convenient handle for subsequent alignment of BCP structures by magnetic fields.

  14. Hydrogen Bonding: Between Strengthening the Crystal Packing and Improving Solubility of Three Haloperidol Derivatives

    Directory of Open Access Journals (Sweden)

    Hardeep Saluja

    2016-06-01

    Full Text Available The purpose of this study is to confirm the impact of polar functional groups on inter and intra-molecular hydrogen bonding in haloperidol (HP and droperidol (DP and, hence, their effects on dissolution using a new approach. To confirm our theory, a new molecule: deshydroxy-haloperidol (DHP was designed and its synthesis was requested from a contract laboratory. The molecule was then studied and compared to DP and HP. Unlike DHP, both the HP and DP molecules have hydrogen donor groups, therefore, DHP was used to confirm the relative effects of the hydrogen donor group on solubility and crystal packing. The solid dispersions of the three structurally related molecules: HP, DP, and DHP were prepared using PVPK30, and characterized using XRPD and IR. A comparative dissolution study was carried out in aqueous medium. The absence of a hydrogen bonding donor group in DHP resulted in an unexpected increase in its aqueous solubility and dissolution rate from solid dispersion, which is attributed to weaker crystal pack. The increased dissolution rate of HP and DP from solid dispersions is attributed to drug-polymer hydrogen bonding that interferes with the drug-drug intermolecular hydrogen bonding and provides thermodynamic stability of the dispersed drug molecules. The drug-drug intermolecular hydrogen bond is the driving force for precipitation and crystal packing.

  15. Prospects for strong interaction physics at ISABELLE. [Seven papers

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, D P; Trueman, T L

    1977-01-01

    Seven papers are presented resulting from a conference intended to stimulate thinking about how ISABELLE could be used for studying strong interactions. A separate abstract was prepared for each paper for inclusion in DOE Energy Research Abstracts (ERA). (PMA)

  16. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Gerlits, Oksana O. [UT/ORNL; Coates, Leighton [Biology; Woods, Robert J. [Complex; Kovalevsky, Andrey [Biology

    2017-08-30

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.

  17. Strongly-Interacting Fermi Gases in Reduced Dimensions

    Science.gov (United States)

    2015-11-16

    superconductivity), nuclear physics (nuclear matter), high - energy physics (effective theories of the strong interactions ), astrophysics (compact stellar objects...strongly- interacting Fermi gases confined in a standing- wave CO2 laser trap. This trap produces a periodic quasi-two-dimensional pancake geometry...predictions of the phase diagram and high temperature superfluidity. Our recent measurements reveal that pairing energy and cloud profiles can be

  18. Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens.

    Science.gov (United States)

    Liu, Fang; Du, Likai; Lan, Zhenggang; Gao, Jun

    2017-02-15

    Sinapic acid derivatives are important sunscreen species in natural plants, which could provide protection from solar UV radiation. Using a combination of ultrafast excited state dynamics, together with classical molecular dynamics studies, we demonstrate that there is direct coupling of hydrogen bond motion with excited state photoprotection dynamics as part of the basic mechanism in solution. Beyond the intra-molecular degree of freedom, the inter-molecular motions on all timescales are potentially important for the photochemical or photophysical events, ranging from the ultrafast hydrogen bond motion to solvent rearrangements. This provides not only an enhanced understanding of the anomalous experimental spectroscopic results, but also the key idea in the development of sunscreen agents with improved photo-chemical properties. We suggest that the hydrogen bond dynamics coupled excited state photoprotection mechanism may also be possible in a broad range of bio-related molecules in the condensed phase.

  19. Structures and the Hydrogen Bonding Abilities of Estrogens Studied by Supersonic Jet/laser Spectroscopy

    Science.gov (United States)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2013-06-01

    Estrone, estradiol, estriol are known as endogenous estrogen which have the same steroidal frame with different substituent, leading to difference of physiological activity upon the formation of hydrogen bond with estrogen receptor. In the present study, structures of estrogens and their hydrated clusters in a supersonic jet have been studied by various laser spectroscopic techniques and density functional theory calculation to study how the difference of substituents affects their hydrogen bonding ability. Infrared spectra in the OH stretching region indicate a formation of intramolecular hydrogen-bond in estriol, which may lead to weaker physiological activity among the three estrogens. We also measured electronic and infrared spectra of 1:1 hydrated clusters of estrogen. The results show a switch of stable hydration site from the phenolic OH group to the five member ring by substituting one more OH group.

  20. Quark imprisonment as the origin of strong interactions

    CERN Document Server

    Amati, Daniele

    1974-01-01

    A formal scheme is suggested in which the only dynamical ingredients are weak and electro-magnetic interactions with quarks and leptons treated on the same footing. Strong interactions are generated by the requirement that quarks do not appear physically. (7 refs).

  1. Structural analysis of phospholipase A2 from functional perspective. 1. Functionally relevant solution structure and roles of the hydrogen-bonding network.

    Science.gov (United States)

    Yuan, C; Byeon, I J; Li, Y; Tsai, M D

    1999-03-09

    Bovine pancreatic phospholipase A2 (PLA2), a small (13.8 kDa) Ca2+-dependent lipolytic enzyme, is rich in functional and structural character. In an effort to examine its detailed structure-function relationship, we determined its solution structure by multidimensional nuclear magnetic resonance (NMR) spectroscopy at a functionally relevant pH. An ensemble of 20 structures generated has an average root-mean-square deviation (RMSD) of 0.62 +/- 0.08 A for backbone (N, Calpha, C) atoms and 0.98 +/- 0.09 A for all heavy atoms. The overall structure shows several notable differences from the crystal structure: the first three residues at the N-terminus, the calcium-binding loop (Y25-T36), and the surface loop (V63-N72) appear to be flexible; the alpha-helical conformation of helix B (E17-F22) is absent; helix D appears to be shorter (D59-V63 instead of D59-D66); and the hydrogen-bonding network is less defined. These differences were analyzed in relation to the function of PLA2. We then further examined the H-bonding network, because its functional role or even its existence in solution has been in dispute recently. Our results show that part of the H-bonding network (the portion away from N-terminus) clearly exists in solution, as evidenced by direct observation (at 11.1 ppm) of a strong H-bond between Y73 and D99 and an implicated interaction between D99 and H48. Analyses of a series of mutants indicated that the existence of the Y73.D99 H-bond correlates directly with the conformational stability of the mutant. Loss of this H-bond results in a loss of 2-3 kcal/mol in the conformational stability of PLA2. The unequivocal identification and demonstration of the structural importance of a specific hydrogen bond, and the magnitude of its contribution to conformational stability, are uncommon to the best of our knowledge. Our results also suggest that, while the D99.H48 catalytic diad is the key catalytic machinery of PLA2, it also helps to maintain conformational

  2. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  3. Hydrogen bonding-mediated dehydrogenation in the ammonia borane combined graphene oxide systems

    Science.gov (United States)

    Kuang, Anlong; Liu, Taijuan; Kuang, Minquan; Yang, Ruifeng; Huang, Rui; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong; Yang, Xiaolan

    2018-03-01

    The dehydrogenation of ammonia borane (AB) adsorbed on three different graphene oxide (GO) sheets is investigated within the ab initio density functional theory. The energy barriers to direct combination the hydrogens of hydroxyl groups and the hydridic hydrogens of AB to release H2 are relatively high, indicating that the process is energetically unfavorable. Our theoretical study demonstrates that the dehydrogenation mechanism of the AB-GO systems has undergone two critical steps, first, there is the formation of the hydrogen bond (O-H-O) between two hydroxyl groups, and then, the hydrogen bond further react with the hydridic hydrogens of AB to release H2 with low reaction barriers.

  4. Some Brief Notes on Theoretical and Experimental Investigations of Intramolecular Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Lucjan Sobczyk

    2016-12-01

    Full Text Available A review of selected literature data related to intramolecular hydrogen bonding in ortho-hydroxyaryl Schiff bases, ortho-hydroxyaryl ketones, ortho-hydroxyaryl amides, proton sponges and ortho-hydroxyaryl Mannich bases is presented. The paper reports on the application of experimental spectroscopic measurements (IR and NMR and quantum-mechanical calculations for investigations of the proton transfer processes, the potential energy curves, tautomeric equilibrium, aromaticity etc. Finally, the equilibrium between the intra- and inter-molecular hydrogen bonds in amides is discussed.

  5. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    Hydroperoxides are formed in significant amounts in the atmosphere by oxidation of volatile organic compounds and are key in aerosol formation. In a room-temperature experiment, we detected the formation of bimolecular complexes of tert-butyl hydroperoxide (t-BuOOH) and the corresponding alcohol...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....

  6. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    Science.gov (United States)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as

  7. Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation

    Science.gov (United States)

    Root, Leslie J.; Berne, B. J.

    1997-09-01

    We report results of a molecular dynamics study of liquid glycerol at the experimental density and at a series of elevated densities corresponding in our model to pressures of up to 0.7 GPa. We find that the degree of hydrogen bonding increases with increasing pressure over the range studied, and that the width of the hydrogen bond angle distribution increases with increasing pressure. The relevance to the experimental finding by Cook et al. [R. L. Cook, H. E. King, C. A. Herbst, and D. R. Herschbach, J. Chem. Phys. 100, 5178 (1994)] that the fragility of glycerol increases with increasing pressure is discussed.

  8. Long range order and hydrogen bonding in liquid methanol: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shilov, I.Y.; Rode, B.M. [Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Durov, V.A. [Department of Physical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation)

    1999-02-01

    A Monte Carlo simulation of liquid methanol was performed in NVT ensemble at 298 K using a cubic simulation box containing 500 molecules. Long-range correlations in the liquid are discussed on the basis of site-site radial distribution functions. Hydrogen bonding and topological structure of the methanol aggregates were evaluated in detail, namely the number of linked molecules, formation of branches and cyclic structures. The necessity of larger simulation boxes for a full structural description and thermodynamic characterization of hydrogen-bonded liquids is clearly established by the results. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Proof for the concerted inversion mechanism in the trans-->cis isomerization of azobenzene using hydrogen bonding to induce isomer locking.

    Science.gov (United States)

    Bandara, H M Dhammika; Friss, Tracey R; Enriquez, Miriam M; Isley, William; Incarvito, Christopher; Frank, Harry A; Gascon, Jose; Burdette, Shawn C

    2010-07-16

    Azobenzene undergoes reversible cistrans photoisomerization upon irradiation. Substituents often change the isomerization behavior of azobenzene, but not always in a predictive manner. The synthesis and properties of three azobenzene derivatives, AzoAMP-1, -2, and -3, are reported. AzoAMP-1 (2,2'-bis[N-(2-pyridyl)methyl]diaminoazobenzene), which possesses two aminomethylpyridine groups ortho to the azo group, exhibits minimal trans-->cis photoisomerization and extremely rapid cis-->trans thermal recovery. AzoAMP-1 adopts a planar conformation in the solid state and is much more emissive (Phi(fl) = 0.003) than azobenzene when frozen in a matrix of 1:1 diethylether/ethanol at 77 K. Two strong intramolecular hydrogen bonds between anilino protons and pyridyl and azo nitrogen atoms are responsible for these unusual properties. Computational data predict AzoAMP-1 should not isomerize following S(2)azobenzene. Confirmation that the AzoAMP-1 and -2 retain excited state photochemistry analogous to azobenzene was provided by ultrafast transient absorption spectroscopy of both compounds in the visible spectral region. The isomerization of azobenzene occurs via a concerted inversion mechanism where both aryl rings must adopt a collinear arrangement prior to inversion. The hydrogen bonding in AzoAMP-1 prevents both aryl rings from adopting this conformation. To further probe the mechanism of isomerization, AzoAMP-3, which has only one anilinomethylpyridine substituent for hydrogen bonding, was prepared and characterized. AzoAMP-3 does not isomerize and exhibits emission (Phi(fl) = 0.0008) at 77 K. The hydrogen bonding motif in AzoAMP-1 and AzoAMP-3 provides the first example where inhibiting the concerted inversion pathway in an azobenzene prevents isomerization. These molecules provide important supporting evidence for the spectroscopic and computational studies aimed at elucidating the isomerization mechanism in azobenzene.

  10. The effect of hydrogen bonding on torsional dynamics: A combined far-infrared jet and matrix isolation study of methanol dimer

    International Nuclear Information System (INIS)

    Kollipost, F.; Heger, M.; Suhm, M. A.; Andersen, J.; Mahler, D. W.; Wugt Larsen, R.; Heimdal, J.

    2014-01-01

    The effect of strong intermolecular hydrogen bonding on torsional degrees of freedom is investigated by far-infrared absorption spectroscopy for different methanol dimer isotopologues isolated in supersonic jet expansions or embedded in inert neon matrices at low temperatures. For the vacuum-isolated and Ne-embedded methanol dimer, the hydrogen bond OH librational mode of the donor subunit is finally observed at ∼560 cm −1 , blue-shifted by more than 300 cm −1 relative to the OH torsional fundamental of the free methanol monomer. The OH torsional mode of the acceptor embedded in neon is observed at ∼286 cm −1 . The experimental findings are held against harmonic predictions from local coupled-cluster methods with single and double excitations and a perturbative treatment of triple excitations [LCCSD(T)] and anharmonic. VPT2 corrections at canonical MP2 and density functional theory (DFT) levels in order to quantify the contribution of vibrational anharmonicity for this important class of intermolecular hydrogen bond vibrational motion

  11. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  12. A Fast and Cost-Effective Detection of Melamine by Surface Enhanced Raman Spectroscopy Using a Novel Hydrogen Bonding-Assisted Supramolecular Matrix and Gold-Coated Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jing Neng

    2017-05-01

    Full Text Available A fast and cost-effective melamine detection approach has been developed based on surface enhanced Raman spectroscopy (SERS using a novel hydrogen bonding-assisted supramolecular matrix. The detection utilizes Fe3O4/Au magnetic nanoparticles coated with 5-aminoorotic acid (AOA as a SERS active substrate (Fe3O4/Au–AOA, and Rhodamine B (RhB conjugated AOA as a Raman reporter (AOA–RhB. Upon mixing the reagents with melamine, a supramolecular complex [Fe3O4/Au–AOA•••melamine•••AOA–RhB] was formed due to the strong multiple hydrogen bonding interactions between AOA and melamine. The complex was separated and concentrated to a pellet by an external magnet and used as a supramolecular matrix for the melamine detection. Laser excitation of the complex pellet produced a strong SERS signal diagnostic for RhB. The logarithmic intensity of the characteristic RhB peaks was found to be proportional to the concentration of melamine with a limit of detection of 2.5 µg/mL and a detection linearity range of 2.5~15.0 µg/mL in milk. As Fe3O4 nanoparticles and AOA are thousands of times less expensive than the monoclonal antibody used in a traditional sandwich immunoassay, the current assay drastically cut down the cost of melamine detection. The current approach affords promise as a biosensor platform that cuts down sample pre-treatment steps and measurement expense.

  13. Influence of double hydrogen bonds and alkyl chains on the gelation of nonchiral polyurethane model compounds: sheets, eaves trough, tubes and oriented fibers.

    Science.gov (United States)

    Khanna, Shalini; Khan, Mostofa Kamal; Sundararajan, Pudupadi

    2009-11-17

    We describe the gelation, upon self-assembly of a series of nonchiral molecules, resulting in tubular morphology of the fibers. These are biscarbamates, which are model compounds for polyurethanes with two hydrogen bonding groups separated by a (CH(2))(6) spacer and symmetrically substituted with alkyl chains on either side varying in length from C(6) to C(18). Upon gelation, these molecules form a sheet initially. The sheets then tend to wrap, leading to tubules. Those with partial wrapping resemble eaves troughs. With the predominant growth along the hydrogen bonding direction, the energy of interaction between the molecules along this direction would be more dominant than just the van der Waals interaction in the other two, leading to asymmetry of interaction in the sheet. We rationalize such tube formation in this case on the basis of the theories [Schnur, J. M.; Ratna, B. R.; Selinger, J. V.; Singh, A.; Jyothi, G.; Easwaran, K. R. K. Science, 1994, 264, 945. Schnur, J. M. Science, 1993, 262, 166. McKierman, R. L.; Heintz, A. M.; Hsu, S. L.; Gido, S. P.; Penelle, J. Polym. Mater. Sci. Eng. 2001, 84, 416.] which were developed for amphiphilic mono and bilayers, which state that these bilayers are not at their minimal energy when they are flat, and prefer a bent state. The gelation behavior of this series with double hydrogen bond is compared with the monocarbamates with a single hydrogen bonding motif [Moniruzzaman, M.; Sundararajan, P. R. Langmuir 2005, 21, 3802.]. We attribute the tendency toward both gelation and crystallization in some cases to the competing contributions of the hydrogen bond and van der Waals interactions between the long alkyl side chains. Oriented fibers for X-ray diffraction were obtained by simply using a magnetic stir bar during gelation. It is also found that the solvents that gel with diureas [van Esch, J.; Kellogg, R. M.; Feringa, B. L. Tetrahedron Lett. 1997, 38, 281] also form gels with biscarbamates. While the biscarbamates with

  14. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    Science.gov (United States)

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  15. Solid state structure and solution thermodynamics of three-centered hydrogen bonds (O∙∙∙H∙∙∙O) using N-(2-benzoyl-phenyl) oxalyl derivatives as model compounds.

    Science.gov (United States)

    Gómez-Castro, Carlos Z; Padilla-Martínez, Itzia I; García-Báez, Efrén V; Castrejón-Flores, José L; Peraza-Campos, Ana L; Martínez-Martínez, Francisco J

    2014-09-12

    Intramolecular hydrogen bond (HB) formation was analyzed in the model compounds N-(2-benzoylphenyl)acetamide, N-(2-benzoylphenyl)oxalamate and N1,N2-bis(2-benzoylphenyl)oxalamide. The formation of three-center hydrogen bonds in oxalyl derivatives was demonstrated in the solid state by the X-ray diffraction analysis of the geometric parameters associated with the molecular structures. The solvent effect on the chemical shift of H6 [δH6(DMSO-d6)-δH6(CDCl3)] and Δδ(ΝΗ)/ΔT measurements, in DMSO-d6 as solvent, have been used to establish the energetics associated with intramolecular hydrogen bonding. Two center intramolecular HB is not allowed in N-(2-benzoylphenyl)acetamide either in the solid state or in DMSO-d6 solution because of the unfavorable steric effects of the o-benzoyl group. The estimated ΔHº and ΔSº values for the hydrogen bonding disruption by DMSO-d6 of 28.3(0.1) kJ·mol-1 and 69.1(0.4) J·mol-1·K-1 for oxalamide, are in agreement with intramolecular three-center hydrogen bonding in solution. In the solid, the benzoyl group contributes to develop 1-D and 2-D crystal networks, through C-H∙∙∙A (A = O, π) and dipolar C=O∙∙∙A (A = CO, π) interactions, in oxalyl derivatives. To the best of our knowledge, this is the first example where three-center hydrogen bond is claimed to overcome steric constraints.

  16. Transformations of griseofulvin in strong acidic conditions--crystal structures of 2'-demethylgriseofulvin and dimerized griseofulvin.

    Science.gov (United States)

    Leśniewska, Barbara; Jebors, Said; Coleman, Anthony W; Suwińska, Kinga

    2012-03-01

    The structure of griseofulvic acid, C16H15ClO6, at 100 K has orthorhombic (P2(1)2(1)2) symmetry. It is of interest with respect to biological activity. The structure displays intermolecular O-H...O, C-H...O hydrogen bonding as well as week C-H...pi and pi...pi interactions. In strong acidic conditions the griseofulvin undergoes dimerization. The structure of dimerized griseofulvin, C34H32C12O12 x C2H6O x H2O, at 100 K has monoclinic (P2(1)) symmetry. The molecule crystallized as a solvate with one ethanol and one water molecule. The dimeric molecules form intermolecular O-H...O hydrogen bonds to solvents molecules only but they interact via week C-H...O, C-H...pi, C-Cl...pi and pi...pi interactions with other dimerized molecules.

  17. Mixtures of Strongly Interacting Bosons in Optical Lattices

    International Nuclear Information System (INIS)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.

    2008-01-01

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices

  18. On Hydrogen Bonding in the Intramolecularly Chelated Taitomers of Enolic Malondialdehyde and its Mono- and Dithio-Analogues

    DEFF Research Database (Denmark)

    Carlsen, Lars; Duus, Fritz

    1980-01-01

    The intramolecular hydrogen bondings in enolic malondialdehyde and it mono- and dithio-analogues have been evaluated by a semiempricial SCF–MO–CNDO method. The calculations predict that the hydrogen bonds play an important part in the stabilities of malondialdehyde and monothiomalondialdehyde...

  19. Spectroscopic studies of hydrogen-bond structures and dynamics of partially methylated p-tert-butylcalix[6]arenes

    NARCIS (Netherlands)

    Janssen, R.G.; Janssen, Rob G.; Verboom, Willem; Lutz, Bert T.G.; van der Maas, John H.; Maczka, Myrek; van Duynhoven, John P.M.; van Duynhoven, J.P.M.; Reinhoudt, David

    1996-01-01

    Hydrogen-bond structures of partially methylated p-tert-butylcalix[6]arenes were investigated both in solution and the solid state by Fourier transform infrared spectroscopy (FTIR). The hydrogen bonds in these macrocycles are preferentially of the three-centred and cooperative types. The dynamic

  20. Hydrogen bond nature of ferroelectric material studied by X-ray and neutron diffraction. Electric dipole moment and proton tunneling

    International Nuclear Information System (INIS)

    Noda, Yukio; Kiyanagi, Ryoji; Mochida, Tomoyuki; Sugawara, Tadashi

    2006-01-01

    Hydrogen bond nature of MeHPLN and BrHPLN is studied using x-ray and neutron diffraction technique. We found that electric dipole moment of hydrogen atom plays an important role for the phase transition, and proton tunneling model is confirmed on this isolated hydrogen bond system. (author)