WorldWideScience

Sample records for strong horizontal shear

  1. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to

  2. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  3. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  4. Monitoring polymer properties using shear horizontal surface acoustic waves.

    Science.gov (United States)

    Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio

    2009-10-01

    Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.

  5. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  6. Horizontal mergers and weak and strong competition commissions

    Directory of Open Access Journals (Sweden)

    Ristić Bojan

    2014-01-01

    Full Text Available In this paper we analyse the horizontal merger of companies in an already concentrated industry. The participants in mergers are obliged to submit notification to the Competition Commission but they also have the option of rejecting the merger. At the time of the notification submission the participants do not know whether the Commission is strong or weak, and they can complain to the Court if the Commission prohibits the merger. We model the strategic interaction between Participants and Commission in a dynamic game of incomplete information and determine weak perfect Bayesian equilibria. The main finding of our paper is that Participants will base their decision to submit notification on their belief in a weak Commission decision and will almost completely ignore the possibility of a strong Commission decision. We also provide a detailed examination of one case from Serbian regulatory practice, which coincides with the results of our game theoretical model.

  7. On the use of horizontal acoustic doppler profilers for continuous bed shear stress monitoring

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2013-01-01

    Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean. Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler (ADCP) to monitor bed shear stress, applying a prescribed

  8. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of pectoralis minor muscle.

    Science.gov (United States)

    Umehara, Jun; Nakamura, Masatoshi; Fujita, Kosuke; Kusano, Ken; Nishishita, Satoru; Araki, Kojiro; Tanaka, Hiroki; Yanase, Ko; Ichihashi, Noriaki

    2017-07-01

    Stretching maneuvers for the pectoralis minor muscle, which involve shoulder horizontal abduction or scapular retraction, are performed in clinical and sports settings because the tightness of this muscle may contribute to scapular dyskinesis. The effectiveness of stretching maneuvers for the pectoralis minor muscle is unclear in vivo. The purpose of this study was to verify the effectiveness of stretching maneuvers for the pectoralis minor muscle in vivo using ultrasonic shear wave elastography. Eighteen healthy men participated in this study. Elongation of the pectoralis minor muscle was measured for 3 stretching maneuvers (shoulder flexion, shoulder horizontal abduction, and scapular retraction) at 3 shoulder elevation angles (30°, 90°, and 150°). The shear elastic modulus, used as the index of muscle elongation, was computed using ultrasonic shear wave elastography for the 9 aforementioned stretching maneuver-angle combinations. The shear elastic modulus was highest in horizontal abduction at 150°, followed by horizontal abduction at 90°, horizontal abduction at 30°, scapular retraction at 30°, scapular retraction at 90°, scapular retraction at 150°, flexion at 150°, flexion at 90°, and flexion at 30°. The shear elastic moduli of horizontal abduction at 90° and horizontal abduction at 150° were significantly higher than those of other stretching maneuvers. There was no significant difference between horizontal abduction at 90° and horizontal abduction at 150°. This study determined that shoulder horizontal abduction at an elevation of 90° and horizontal abduction at an elevation of 150° were the most effective stretching maneuvers for the pectoralis minor muscle in vivo. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  10. Driven transverse shear waves in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2008-01-01

    The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 c ) where Γ is the Coulomb coupling parameter and Γ c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results

  11. Existence of Shear Horizontal Surface Waves in a Magneto-Electro-Elastic Material

    International Nuclear Information System (INIS)

    Wei-Yi, Wei; Dai-Ning, Fang; Jin-Xi, Liu

    2009-01-01

    The existence of shear horizontal surface waves in a magneto-electro-elastic (MEE) half-space with hexagonal (6mm) symmetry is investigated. The surface of the MEE half-space is mechanically free, but subjected to four types of electromagnetic boundary conditions. These boundary conditions are electrically open/magnetically closed, electrically open/magnetically open, electrically closed/magnetically open and electrically closed/magnetically closed. It is shown that except for the electrically open/magnetically closed condition, the three other sets of electromagnetic boundary conditions allow the propagation of shear horizontal surface waves

  12. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Courtney, Michael; Parmentier, R.

    2008-01-01

    altitude. The altitude errors of focused range gated lidars are likely to arise partly from an unaccounted shift of the weighting functions, describing the sample volume, due to the range dependent collection efficiency of the focused telescope. Possibilities of correcting the lidar measurements both...... an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 in which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended...... for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars....

  13. Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography

    International Nuclear Information System (INIS)

    Papazoglou, S; Hamhaber, U; Braun, J; Sack, I

    2007-01-01

    A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology

  14. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    KAUST Repository

    Xu, Yanlong

    2015-09-01

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. © 2015.

  15. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading.

    Science.gov (United States)

    Feng, Bo; Xiong, Feng; Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio.

  16. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity.

    Science.gov (United States)

    Glavatskiy, Kirill S; Dalton, Benjamin A; Daivis, Peter J; Todd, B D

    2015-06-01

    We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.

  17. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity

    Science.gov (United States)

    Glavatskiy, Kirill S.; Dalton, Benjamin A.; Daivis, Peter J.; Todd, B. D.

    2015-06-01

    We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.

  18. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    International Nuclear Information System (INIS)

    Xu, Yanlong

    2015-01-01

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. - Highlights: • Shear horizontal wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. • Calculations on band structure and transmission show that the graded layered media possess very large band gaps. • Finite element method confirms that waves in band gaps are spatially enhanced and stopped by the graded units. • The study suggests that the graded structure possesses the property of manipulating elastic waves spatially

  19. Asymmetric first order shear horizontal guided waves propagation in a tapered plate

    International Nuclear Information System (INIS)

    Chen, Jiu-Jiu; Song, Guang-Huang; Han, Xu

    2015-01-01

    In this paper, through numerical simulation of the first order shear horizontal guided waves propagation in a homogeneous tapered plate, we have realized sound unidirectional transmission based on the mode conversion mechanism. We also find that the contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle of tapered edge. And the working frequency range of the asymmetric transmission can be easily controlled by the height of tapered surface or the thickness of slab. This asymmetric system shows potentially significant applications in various sound devices. - Highlights: • We study the sound unidirectional transmission for SH 1 guided wave in a homogeneous tapered plate. • The contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle. • The working frequency range of unidirectional transmission can be easily controlled by structure parameters

  20. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    Directory of Open Access Journals (Sweden)

    Maria Kogia

    2016-04-01

    Full Text Available Guided Wave Testing (GWT using novel Electromagnetic Acoustic Transducers (EMATs is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0 waves for GWT with optimal high temperature properties (up to 500 °C has been developed. Thermal and Computational Fluid Dynamic (CFD simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.

  1. A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning

    International Nuclear Information System (INIS)

    Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun

    2014-01-01

    An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time

  2. Studying the instantaneous velocity field in gas-sheared liquid films in a horizontal duct

    Science.gov (United States)

    Vasques, Joao; Tokarev, Mikhail; Cherdantsev, Andrey; Hann, David; Hewakandamby, Buddhika; Azzopardi, Barry

    2016-11-01

    In annular flow, the experimental validation of the basic assumptions on the liquid velocity profile is vital for developing theoretical models of the flow. However, the study of local velocity of liquid in gas-sheared films has proven to be a challenging task due to the highly curved and disturbed moving interface of the phases, small scale of the area of interrogation, high velocity gradients and irregular character of the flow. This study reports on different optical configurations and interface-tracking methods employed in a horizontal duct in order to obtain high-resolution particle image velocimetry (PIV) data in such types of complex flows. The experimental envelope includes successful measurements in 2D and 3D waves regimes, up to the disturbance wave regime. Preliminary data show the presence of complex structures in the liquid phase, which includes re-circulation areas below the liquid interface due to the gas-shearing action, together with non-uniform transverse movements of the liquid phase close to the wall due to the presence of 3D waves at the interface. With the aid of the moving interface-tracking, PIV, time-resolved particle-tracking velocimetry and vorticity measurements were performed.

  3. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.

    2014-09-14

    © 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.

  4. Do rotational shear-cushioning shoes influence horizontal ground reaction forces and perceived comfort during basketball cutting maneuvers?

    Directory of Open Access Journals (Sweden)

    Wing-Kai Lam

    2017-11-01

    Full Text Available Background Court shoe designs predominantly focus on reducing excessive vertical ground reaction force, but shear force cushioning has received little attention in the basketball population. We aimed to examine the effect of a novel shoe-cushioning design on both resultant horizontal ground reaction forces and comfort perception during two basketball-specific cutting movements. Methods Fifteen university team basketball players performed lateral shuffling and 45-degree sidestep cutting at maximum effort in basketball shoes with and without the shear-cushioning system (SCS. Paired t-tests were used to examine the differences in kinetics and comfort perception between two shoes. Results SCS shoe allowed for larger rotational material deformation compared with control shoes, but no significant shoe differences were found in braking phase kinetics during both cutting movements (P = 0.35. Interestingly, a greater horizontal propulsion impulse was found with the SCS during 45-degree cutting (P  0.05. Discussion The application of a rotational shear-cushioning structure allowed for better forefoot comfort and enhanced propulsion performance in cutting, but did not influence the shear impact. Understanding horizontal ground reaction force information may be useful in designing footwear to prevent shear-related injuries in sport populations.

  5. The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions

    OpenAIRE

    Buscall, Richard; Kusuma, Tiara E.; Stickland, Anthony D.; Rubasingha, Sayuri; Scales, Peter J.; Teo, Hui-En; Worrall, Graham L.

    2014-01-01

    The behaviour in simple shear of two concentrated and strongly cohesive mineral suspensions showing highly non-monotonic flow curves is described. Two rheometric test modes were employed, controlled stress and controlled shear-rate. In controlled stress mode the materials showed runaway flow above a yield stress, which, for one of the suspensions, varied substantially in value and seemingly at random from one run to the next, such that the up flow-curve appeared to be quite irreproducible. Th...

  6. Test of Horizontal Magnetic Field Measurements in the Presence of a Strong Vertical Field

    CERN Document Server

    Vasserman, Isaac

    2004-01-01

    Trajectory straightness is an important parameter defining the performance of free-electron laser (FEL) devices. The first test of horizontal field measurements using Hall probes was done in 1998 as a preparation to the tuning of undulators for the FEL project at the Advanced Photon Source. This work continues the 1998 work, now associated with Linac Coherent Light Source (LCLS) project. Tolerances for the LCLS FEL undulator specify 2 um trajectory excursion in both (horizontal and vertical) planes for a particle energy of 14.1 GeV, which means that measurements of a small horizontal field in presence of strong (up to 1.5 T) vertical field are required. Hall probe measurements under such conditions are complicated due to a planar Hall probe effect. Previous tests done in 1998 showed that a 2- axis Sentron probe is a possible choice. The high sensitivity of horizontal field integrals to the vertical position of the sensor was observed. It was shown that this probe could be used for fast measurements and tuning...

  7. The Peano-series solution for modeling shear horizontal waves in piezoelectric plates

    Directory of Open Access Journals (Sweden)

    Ben Ghozlen M.H.

    2012-06-01

    Full Text Available The shear horizontal (SH wave devices have been widely used in electroacoustic. To improve their performance, the phase velocity dispersion and the electromechanical coupling coefficient of the Lamb wave should be calculated exactly in the design. Therefore, this work is to analyze exactly the Lamb waves polarized in the SH direction in homogeneous plate pie.zoelectric material (PZT-5H. An alternative method is proposed to solve the wave equation in such a structure without using the standard method based on the electromechanical partial waves. This method is based on an analytical solution, the matricant explicitly expressed under the Peano series expansion form. Two types of configuration have been addressed, namely the open circuited and the short circuited. Results confirm that the SH wave provides a number of attractive properties for use in sensing and signal processing applications. It has been found that the phase velocity remains nearly constant for all values of h/λ (h is the plate thickness, λ the acoustic wavelength. Secondly the SH0 wave mode can provide very high electromechanical coupling. Graphical representations of electrical and mechanical amounts function of depth are made, they are in agreement with the continuity rules. The developed Peano technique is in agreement with the classical approach, and can be suitable with cylindrical geometry.

  8. Selection of Shear Horizontal Wave Transducers for Robotic Nondestructive Inspection in Harsh Environments

    Directory of Open Access Journals (Sweden)

    Sungho Choi

    2016-12-01

    Full Text Available Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs and magnetostrictive transducers (MSTs. Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel.

  9. Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs

    KAUST Repository

    Xu, Yanlong

    2015-08-01

    The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.

  10. Temperature dependence of immunoreactions using shear horizontal surface acoustic wave immunosensors

    Science.gov (United States)

    Kogai, Takashi; Yatsuda, Hiromi; Kondoh, Jun

    2017-07-01

    In this paper, the temperature dependence of immunoreactions, which are antibody-antigen reactions, on a shear horizontal surface acoustic wave (SH-SAW) immunosensor is described. The immunosensor is based on a reflection-type delay line on a 36° Y-cut 90° X-propagation quartz substrate, where the delay line is composed of a floating electrode unidirectional transducer (FEUDT), a grating reflector, and a sensing area between them. In order to evaluate the temperature dependence of immunoreactions, human serum albumin (HSA) antigen-antibody reactions are investigated. The SH-SAW immunosensor chip is placed in a thermostatic chamber and the changes in the SH-SAW velocity resulting from the immunoreactions are measured at different temperatures. As a result, it is observed that the HSA immunoreactions are influenced by the ambient temperature and that higher temperatures provide more active reactions. In order to analyze the immunoreactions, an analytical approach using an exponential fitting method for changes in SH-SAW velocity is employed.

  11. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading

    OpenAIRE

    Feng, Bo; Xiong, Feng; Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compres...

  12. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans

    2017-01-01

    Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat......) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra...... in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen's early work in 1953 'on the spectrum of energy in turbulent shear flow' led Tchen to predict a shear production...

  13. A variable-frequency structural health monitoring system based on omnidirectional shear horizontal wave piezoelectric transducers

    Science.gov (United States)

    Huan, Qiang; Miao, Hongchen; Li, Faxin

    2018-02-01

    Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.

  14. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  15. Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes

    Science.gov (United States)

    Critelli, R.; Finazzo, S. I.; Zaniboni, M.; Noronha, J.

    2014-09-01

    Recent estimates for the electromagnetic fields produced in the early stages of noncentral ultrarelativistic heavy ion collisions indicate the presence of magnetic fields B ˜O(0.1-15mπ2), where mπ is the pion mass. It is then of special interest to study the effects of strong (Abelian) magnetic fields on the transport coefficients of strongly coupled non-Abelian plasmas, such as the quark-gluon plasma formed in heavy ion collisions. In this paper we study the anisotropy in the shear viscosity induced by an external magnetic field in a strongly coupled N =4 super Yang-Mills (SYM) plasma. Due to the spatial anisotropy created by the magnetic field, the most general viscosity tensor of a magnetized plasma has five shear viscosity coefficients and two bulk viscosities. We use the holographic correspondence to evaluate two of the shear viscosities, η⊥≡ηxyxy (perpendicular to the magnetic field) and η∥≡ηxzxz=ηyzyz (parallel to the field). When B ≠0 the shear viscosity perpendicular to the field saturates the viscosity bound η⊥/s=1/(4π), while in the direction parallel to the field the bound is violated since η∥/s<1/(4π). However, the violation of the bound in the case of strongly coupled SYM is minimal even for the largest value of B that can be reached in heavy ion collisions.

  16. Rheology of Confined Polymer Melts under Shear Flow : Strong Adsorption Limit

    NARCIS (Netherlands)

    Subbotin, A.; Manias, E.; Hadziioannou, G.; Brinke, G. ten

    1995-01-01

    The dynamics of a confined polymer melt between strong adsorbing surfaces is considered theoretically. In particular the influence of bridging on the theological behavior is investigated. It is shown that the bridges are very important for small enough shear velocities. Several regimes of

  17. Experimental analysis of minimum shear stress to drag particles in a horizontal bed; Analise experimental da tensao de cisalhamento minima para arraste de particulas em um leito horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Dornelas, Breno Almeida; Soares, Edson Jose [Universidade Federal do Espirito Santo. Departamento de Engenharia Mecanica (Brazil)], e-mails: bad@ucl.br, edson@ct.ufes.br; Quirino Filho, Joao Pedro; Loureiro, Bruno Venturini [Faculdade do Centro Leste (UCL). Laboratorio de Fluidos e Fenomenos de Transporte (Brazil)], e-mails: joaoquirino@ucl.br, brunovl@ucl.br

    2009-12-15

    Efficient hole cleaning is still a challenge in well bore drilling to produce oil and gas. The critical point is the horizontal drilling that inherently tends to form a bed of sediment particles at the well bottom during drilling. The cuttings bed erosion depends mainly on the shear stress promoted by the drilling fluid flow. The shear stress required to cause drag in the cuttings bed is investigated according to the fluid and particles properties, using an experimental assembly, composed of: a system for fluid circulation, a particle box, a pump system and measuring equipment. The observation area is a box below the flow line in an acrylic duct used to calibrate sand particles. The test starts with the pumps in a low frequency which is increased in steps. At each frequency level, images are captured of carried particles and the established flow rate is recorded. The images are analyzed when the dragged particle is no longer random and sporadic, but becomes permanent. The shear stress is identified by the PKN correlation (by Prandtl, von Karman, and Nikuradse) for the minimum flow rate necessary to cause drag. Results were obtained for just water and water-glycerin solution flows. (author)

  18. Self-regulation of mean flows in strongly stratified sheared turbulence

    Science.gov (United States)

    Salehipour, Hesam; Caulfield, Colm-Cille; Peltier, W. Richard

    2016-11-01

    We investigate the near-equilibrium state of shear-driven stratified turbulence generated by the breaking of Holmboe wave instability (HWI) and Kelvin-Helmholtz instability (KHI). We discuss DNS analyses associated with HWI under various initial conditions. We analyze the time-dependent distribution of the gradient Richardson number, Rig (z , t) associated with the horizontally-averaged velocity and density fields. We demonstrate that unlike the KHI-induced turbulence, the fully turbulent flow that is generated by HWI is robustly characterized by its high probability of Rig 0 . 2 - 0 . 25 , independent of the strength of the initial stratification and furthermore that the turbulence evolves in a 'near-equilibrium' state. The KHI-induced turbulence may become grossly 'out of equilibrium', however, and therefore decays rapidly when the initial value at the interface, Rig (0 , 0) , is closer to the critical value of 1/4; otherwise as Rig (0 , 0) -> 0 the KHI-induced turbulence is close to a state of equilibrium and hence is much more long-lived. We conjecture that stratified shear turbulence tends to adjust to a state of 'near-equilibrium' with horizontally-averaged flows characterized by a high probability of Rig <= 1 / 4 , and hence sustained turbulence over relatively long times.

  19. Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling

    CERN Document Server

    Bluhm, M; Redlich, K

    2012-01-01

    The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.

  20. Shear-wave velocity compilation for Northridge strong-motion recording sites

    Science.gov (United States)

    Borcherdt, Roger D.; Fumal, Thomas E.

    2002-01-01

    Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.

  1. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  2. Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma

    Science.gov (United States)

    Mamo, Kiminad A.

    2012-10-01

    We study holographic RG flow of the shear viscosity tensor of anisotropic, strongly coupled {N}=4 super-Yang-Mills plasma by using its type IIB supergravity dual in anisotropic bulk spacetime. We find that the shear viscosity tensor has three independent components in the anisotropic bulk spacetime away from the boundary, and one of the components has a non-trivial RG flow while the other two have a trivial one. For the component of the shear viscosity tensor with non-trivial RG flow, we derive its RG flow equation, and solve the equation analytically to second order in the anisotropy parameter a. We derive the RG equation using the equation of motion, holographic Wilsonian RG method, and Kubo's formula. All methods give the same result. Solving the equation, we find that the ratio of the component of the shear viscosity tensor to entropy density η /s flows from above 1/{4π } the horizon (IR) to below 1/{4π } the boundary (UV) where it violates the holographic shear viscosity (Kovtun-Son-Starinets) bound and where it agrees with the other longitudinal component.

  3. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    International Nuclear Information System (INIS)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-01-01

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed

  4. Wentzel-Kramers-Brillouin solution of cut-off frequency for horizontal shear (SH) waves in various inhomogeneous thin films

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2013-01-01

    The Wentzel-Kramers-Brillouin method is employed to study the cut-off frequencies of the horizontal shear waves in a freestanding functionally graded piezoelectric-piezomagnetic material film with the electrically and magnetically open boundary conditions. An analytical solution, which could be used in analyzing the problems of various functionally graded materials, is proven to have high precision by analytical analysis and a numerical example. The results reveal that the set of cut-off frequencies is a series of approximate arithmetic progressions. A theoretical foundation based on the relationship between the cut-off frequencies and the materials' gradient property is established for nondestructive evaluation.

  5. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    Science.gov (United States)

    Pollard, Thomas B

    using uniform-electrode and shear-horizontal mode configurations on potassium-niobate, langasite, and quartz substrates. Optimum configurations are determined yielding maximum sensitivity. Results show mode propagation-loss and sensitivity to viscosity are correlated by a factor independent of substrate material. The analysis is useful for designing devices meeting sensitivity and signal level requirements. A novel, rapid and precise microfluidic chamber alignment/bonding method was developed for SAW platforms. The package is shown to have little effect on device performance and permits simple macrofluidic interfacing. Lastly, prototypes were designed, fabricated, and tested for viscosity and biosensor applications; results show ability to detect as low as 1% glycerol in water and surface-bound DNA crosslinking.

  6. Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma.

    Science.gov (United States)

    Policastro, G; Son, D T; Starinets, A O

    2001-08-20

    Using the anti-de Sitter/conformal field theory correspondence, we relate the shear viscosity eta of the finite-temperature N = 4 supersymmetric Yang-Mills theory in the large N, strong-coupling regime with the absorption cross section of low-energy gravitons by a near-extremal black three-brane. We show that in the limit of zero frequency this cross section coincides with the area of the horizon. From this result we find eta = pi / 8N(2)T3. We conjecture that for finite 't Hooft coupling g(2)(YM)N the shear viscosity is eta = f(g(2)(YM)N)N2T3, where f(x) is a monotonic function that decreases from O(x(-2)ln(-1)(1/x)) at small x to pi/8 when x-->infinity.

  7. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree

  8. Numerical investigation into strong axis bending shear interaction in rolled I-shaped steel sections

    NARCIS (Netherlands)

    Dekker, R.W.A.; Snijder, B.H.; Maljaars, J.

    2016-01-01

    Clause 6.2.8 of EN 1993-1-1 covers the design rules on bending-shear resistance, taking presence of shear into account by a reduced yield stress for the shear area. Numerical research on bending-shear interaction by means of the Abaqus Finite Element modelling soft-ware is presented. The numerical

  9. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    International Nuclear Information System (INIS)

    Ishihara, Takashi; Kaneda, Yukio; Hunt, Julian C R

    2011-01-01

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R λ = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10η, where η is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, κ) from scales larger than 1/κ to scales smaller than 1/κ at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  10. The pecularities of shear crack pre-rupture evolution and distribution of seismicity before strong earthquakes

    Directory of Open Access Journals (Sweden)

    D. Kiyashchenko

    2001-01-01

    Full Text Available Several methods are presently suggested for investigating pre-earthquake evolution of the regions of high tectonic activity based on analysis of the seismicity spatial distribution. Some precursor signatures are detected before strong earthquakes: decrease in fractal dimension of the continuum of earthquake epicenters, cluster formation, concentration of seismic events near one of the nodal planes of the future earthquake, and others. In the present paper, it is shown that such peculiarities are typical of the evolution of the shear crack network under external stresses in elastic bodies with inhomogeneous distribution of strength. The results of computer modeling of crack network evolution are presented. It is shown that variations of the fractal dimension of the earthquake epicenters’ continuum and other precursor signatures contain information about the evolution of the destruction process towards the main rupture.

  11. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity.

    Science.gov (United States)

    Dalton, Benjamin A; Glavatskiy, Kirill S; Daivis, Peter J; Todd, B D

    2015-07-01

    We use molecular-dynamics computer simulations to investigate the density, strain-rate, and shear-pressure responses of a simple model atomic fluid to transverse and longitudinal external forces. We have previously introduced a response function formalism for describing the density, strain-rate, and shear-pressure profiles in an atomic fluid when it is perturbed by a combination of longitudinal and transverse external forces that are independent of time and have a simple sinusoidal spatial variation. In this paper, we extend the application of the previously introduced formalism to consider the case of a longitudinal force composed of multiple sinusoidal components in combination with a single-component sinusoidal transverse force. We find that additional harmonics are excited in the density, strain-rate, and shear-pressure profiles due to couplings between the force components. By analyzing the density, strain-rate, and shear-pressure profiles in Fourier space, we are able to evaluate the Fourier coefficients of the response functions, which now have additional components describing the coupling relationships. Having evaluated the Fourier coefficients of the response functions, we are then able to accurately predict the density, velocity, and shear-pressure profiles for fluids that are under the influence of a longitudinal force composed of two or three sinusoidal components combined with a single-component sinusoidal transverse force. We also find that in the case of a multisinusoidal longitudinal force, it is sufficient to include only pairwise couplings between different longitudinal force components. This means that it is unnecessary to include couplings between three or more force components in the case of a longitudinal force composed of many Fourier components, and this paves the way for a highly accurate but tractable treatment of nonlocal transport phenomena in fluids with density and strain-rate inhomogeneities on the molecular length scale.

  12. Ultrasonics transduction in metallic and composite structures for structural health monitoring using extensional and shear horizontal piezoelectric wafer active sensors

    Science.gov (United States)

    Abdelrahman, Ayman Kamal

    Structural health monitoring (SHM) is crucial for monitoring structures performance, detecting the initiation of flaws and damages, and predicting structural life span. The dissertation emphasizes on developing analytical and numerical models for ultrasonics transduction between piezoelectric wafer active sensors (PWAS), and metallic and composite structures. The first objective of this research is studying the power and energy transduction between PWAS and structure for the aim of optimizing guided waves mode tuning and PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical models for power and energy were developed based on exact Lamb wave solution with application on multimodal Lamb wave situations that exist at high excitation frequencies and/or relatively thick structures. Experimental validation was conducted using Scanning Laser Doppler Vibrometer. The second objective of this work focuses on shear horizontal (SH) PWAS which are poled in thickness-shear direction (d35 mode). Analytical and finite element predictive models of the E/M impedance of free and bonded SH-PWAS were developed. Next, the wave propagation method has been considered for isotropic materials. Finally, the power and energy of SH waves were analytically modeled and a MATLAB graphical user interface (GUI) was developed for determining phase and group velocities, mode shapes, and energy of SH waves. The third objective focuses on guided wave propagation in composites. The transfer matrix method (TMM) has been used to calculate dispersion curves of guided waves in composites. TMM suffers numerical instability at high frequency-thickness values, especially in multilayered composites. A method of using stiffness matrix method was investigated to overcome instability. A procedure of using combined stiffness transfer matrix method (STMM) was presented and coded in MATLAB. This was followed by a comparative study between commonly used methods for the calculation of

  13. MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Jaeggli, S. A.

    2016-01-01

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s −1 . The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium

  14. MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggli, S. A., E-mail: sarah.jaeggli@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-02-10

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s{sup −1}. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.

  15. Static and kinetic friction of strongly confined polymer films under shear

    NARCIS (Netherlands)

    Hirz, S; Subbotin, A; Frank, C; Hadziioannou, G

    1996-01-01

    In the present work, we investigate the dependence of relaxational processes in strongly confined polymer liquids as a function of the molecular mass and of the confining film thickness, both theoretically and experimentally. A qualitative agreement is observed between the theoretical predictions

  16. Compressibility effects on a shear flow in strongly coupled dusty plasma. I. A study using computational fluid dynamics

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman

    2018-01-01

    We study compressibility effects on the two-dimensional strongly coupled dusty plasma by means of computational fluid dynamics (CFD) with the Kolmogorov flow as an initial shear flow profile. Nonlinear compressible vortex flow dynamics and other linear and nonlinear properties of such flow in the presence of variable density, pressure, and electrostatic potential are addressed using a generalised compressible hydrodynamic model. The stabilizing effect of compressibility on the unstable shear flows in the presence of strong correlation ( τm>0 ) is presented. Increasing the Mach number relatively reduces the growth-rate of perturbation. On the other hand, strong correlation makes the medium to be more unstable and increases the growth rate. Using an eigen value solver, various linear properties of compressible Kolmogorov flow have been investigated for a range of variable parameters, for example, Mach number, Reynolds number, and viscoelastic coefficient (τm). Compressible Kolmogorov flow becomes unstable above a critical value of the Reynolds number (Rc), and below Rc, the shear flow is found to be neutrally stable. In this study, it is found that the viscoelasticity reduces the value of Rc. For our choice of parameters, at τm=τmc , the compressible Kolmogorov flow becomes unconditionally unstable and no Rc exists for values of τm higher than τmc . To address the nonlinear properties, for example, mode-mode interaction due to the presence of nonlinearity in the fluid, vortex formation, etc., a massively parallelized Advanced Generalized SPECTral Code (AG-Spect) has been developed. AG-Spect, a newly developed code, is an efficient tool to solve any set of nonlinear fluid dynamic equations. A good agreement in linear growth rates obtained from the eigen value solver and time dependent simulation (AG-Spect) is found. In our CFD study, the suppression of instability, elongated vortex structures, pattern formation, nonlinear saturation, and visco

  17. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.

    Science.gov (United States)

    Pääkkö, M; Ankerfors, M; Kosonen, H; Nykänen, A; Ahola, S; Osterberg, M; Ruokolainen, J; Laine, J; Larsson, P T; Ikkala, O; Lindström, T

    2007-06-01

    Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales

  18. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  19. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    Science.gov (United States)

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  20. EUROMECH colloquium 377. Stability and control of shear flows with strong temperature or density gradients. Book of abstracts

    International Nuclear Information System (INIS)

    1998-10-01

    The topics discussed comprise the onset of instability in heated free jets and jets with density gradients, flow past heated/cooled boundaries, atmospheric shear flow, and mathematical modeling of laminar-turbulent transition phenomena. Three contributions have been input to INIS. (P.A.)

  1. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    Science.gov (United States)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  2. Shear Wave Splitting analysis of borehole microseismic reveals weak azimuthal anisotropy hidden behind strong VTI fabric of Lower Paleozoic shales in northern Poland

    Science.gov (United States)

    Gajek, Wojciech; Verdon, James; Malinowski, Michał; Trojanowski, Jacek

    2017-04-01

    Azimuthal anisotropy plays a key-role in hydraulic fracturing experiments, since it provides information on stress orientation and pre-existing fracture system presence. The Lower Paleozoic shale plays in northern Poland are characterized by a strong (15-18%) Vertical Transverse Isotropy (VTI) fabric which dominates weak azimuthal anisotropy being of order of 1-2%. A shear wave travelling in the subsurface after entering an anisotropic medium splits into two orthogonally polarized waves travelling with different velocities. Splitting parameters which can be assessed using a microseismic array are polarization of the fast shear wave and time delay between two modes. Polarization of the fast wave characterizes the anisotropic system on the wave path while the time delay is proportional to the magnitude of anisotropy. We employ Shear Wave Splitting (SWS) technique using a borehole microseismic dataset collected during a hydraulic stimulation treatment located in northern Poland, to image fracture strike masked by a strong VTI signature. During the inversion part, the VTI background parameters were kept constant using information from 3D seismic (VTI model used for pre-stack depth migration). Obtained fracture azimuths averaged over fracturing stages are consistent with the available XRMI imager logs from the nearby vertical well, however they are different from the large-scale maximum stress direction (by 40-45 degrees). Inverted Hudson's crack density (ca. 2%) are compatible with the low shear-wave anisotropy observed in the cross-dipole sonic logs (1-2%). This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Data were provided by the PGNiG SA. Collaboration with University of Bristol was supported within TIDES COST Action ES1401.

  3. Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

    Science.gov (United States)

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena

    2015-01-01

    Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  4. Measurement and modelling of bed shear induced by solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.

    horizontal continental shelf. Measurements of bed shear stress, surface elevation and flow velocities were carried out. Periodic waves were also generated and the bed shear stresses measured over a horizontal bed were found to be comparable with the earlier...

  5. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  6. Nonlinear rocking analysis of nuclear reactor building simultaneously subjected to horizontal and vertical earthquake motions

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Motohashi, S.; Mizuno, N.; Moribe, I.; Sugiyama, N.; Suzuki, T.

    1983-01-01

    In the dynamic analysis of a reactor building, the response acceleration of the building is largely amplified during an earthquake and it's base mat may be lifted by a response overturning moment caused by a strong earthquake. And it makes geometrical nonlinear interaction between the base mat and rock foundation beneath it, which produces very complex phenomena by horizontal and vertical earthquake motions. In this paper, the dynamic behavior of a BWR type reactor building is studied considering the uplift of the base mat subjected to simultaneous horizontal and vertical earthquake motions. Results: (1) The horizontal maximum response values of the building (acceleration, shear force and bending moment) have little effect by the existence of the vertical input. (2) The vertical acceleration of the building is generated by the uplift of the base mat caused by horizontal input. (3) The horizontal acceleration response spectrum of the building takes some effect by the uplift within it's high frequency range. (orig./HP)

  7. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  8. Effect of tree roots on a shear zone: modeling reinforced shear stress.

    Science.gov (United States)

    Kazutoki Abe; Robert R. Ziemer

    1991-01-01

    Tree roots provide important soil reinforcement that impoves the stability of hillslopes. After trees are cut and roots begin to decay, the frequency of slope failures can increase. To more fully understand the mechanics of how tree roots reinforce soil, fine sandy soil containing pine roots was placed in a large shear box in horizontal layers and sheared across a...

  9. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    Keywords. Coupled shear walls; degree of coupling; peak shear demand; concrete. ... The proposed graphical method is based on the continuous medium theory and allows a rapid assessment of the structural behaviour of coupled shear wall bents in mixed shear wall structures that are subject to horizontal loading.

  10. Horizontal cooperation in logistics : Opportunities and impediments

    NARCIS (Netherlands)

    Cruijssen, Frans; Cools, Martine; Dullaert, Wout

    This paper presents the results of a large-scale survey on the potential benefits of and impediments for horizontal cooperation in Flanders. The main findings are that in general Logistics Service Providers strongly believe in the potential benefits of horizontal cooperation to increase their

  11. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  12. Horizontal Equity, Once More

    OpenAIRE

    Musgrave, Richard A.

    1990-01-01

    Reconsiders the proposition that vertical equity is the primary norm for tax design, with horizontal equity a mere derivative therefrom. In the case of limited policy options, vertical and horizontal equity goals may conflict so that a trade-off will be needed. Independent values must then be assigned to each, confirming the standing of a horizontal as well as vertical equity as a primary norm.

  13. Inplane shear capacity of reinforced composite masonry block walls

    International Nuclear Information System (INIS)

    White, W.H.; Tseng, W.S.

    1981-01-01

    The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)

  14. Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows

    Science.gov (United States)

    Tripathi, Sumit; Tabor, Rico F.; Singh, Ramesh; Bhattacharya, Amitabh

    2017-08-01

    We study the transportation of highly viscous furnace-oil in a horizontal pipe as core-annular flow (CAF) using experiments. Pressure drop and high-speed images of the fully developed CAF are recorded for a wide range of flow rate combinations. The height profiles (with respect to the centerline of the pipe) of the upper and lower interfaces of the core are obtained using a high-speed camera and image analysis. Time series of the interface height are used to calculate the average holdup of the oil phase, speed of the interface, and the power spectra of the interface profile. We find that the ratio of the effective velocity of the annular fluid to the core velocity, α , shows a large scatter. Using the average value of this ratio (α =0.74 ) yields a good estimate of the measured holdup for the whole range of flow rate ratios, mainly due to the low sensitivity of the holdup ratio to the velocity ratio. Dimensional analysis implies that, if the thickness of the annular fluid is much smaller than the pipe radius, then, for the given range of parameters in our experiments, the non-dimensional interface shape, as well as the non-dimensional wall shear stress, can depend only on the shear Reynolds number and the velocity ratio. Our experimental data show that, for both lower and upper interfaces, the normalized power spectrum of the interface height has a strong dependence on the shear Reynolds number. Specifically, for low shear Reynolds numbers, interfacial modes with large wavelengths dominate, while, for large shear Reynolds numbers, interfacial modes with small wavelengths dominate. Normalized variance of the interface height is higher at lower shear Reynolds numbers and tends to a constant with increasing shear Reynolds number. Surprisingly, our experimental data also show that the effective wall shear stress is, to a large extent, proportional to the square of the core velocity. Using the implied scalings for the holdup ratio and wall shear stress, we can derive

  15. Horizontal shellside thermosiphon reboilers

    International Nuclear Information System (INIS)

    Yilmaz, S.B.

    1987-01-01

    Horizontal shellside thermosiphon reboilers are commonly used in the petroleum processing industries. These units have received very little attention in the literature, and there is no published data for their performance. Due to the lacek of advanced design methods for horizontal thermosiphon reboilers, Heat Transfer Research, Inc. (HTRI) has started a few years ago a comprehensive research program to determine, model and predict the thermal and hydraulic performance of these units. The results of the HTRI research indicates that horizontal thermosiphon reboilers are superior in thermal performance to kettle reboilers and vertical tubeside thermosiphon reboilers. This paper also reviews the state-of-the-art in horizontal thermosiphon reboiler design. Typical design practices and rules-of-thumbs are discussed

  16. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  17. Early lineations in a later shear zone: case study from the Eastern Ghats Belt, India

    Science.gov (United States)

    Bose, S.; Gupta, S.

    2016-12-01

    In polydeformed gneissic terranes, ductile shear zones may cut across rocks with older penetrative fabrics. Earlier lineations in later ductile shear zones need to be identified to avoid incorrect kinematic interpretation. To investigate the fate of early lineations during later ductile shearing, the Mahanadi Shear Zone (MSZ) from the Eastern Ghats Belt (EGB) in India is taken as a case study. The EGB is a Proterozoic granulite terrane correlated with Indo-Antarctica collision. The MSZ lies within the EGB, but is oriented almost perpendicular to the trend of the belt. The penetrative structural fabric in the EGB is NE-SW trending and dipping SE. However, a broad swing in structural trend from NE-SW to WNW-ESE can be detected near the MSZ from satellite imagery. In mylonitised rocks of the shear zone, a discrepancy between the shear zone lineation and inferred shear sense leads to uncertainty in kinematic interpretation of the shear zone. The EGB rock types include charnockites, quartzofeldspathic gneisses and garnet-sillimanite-bearing metapelitic gneisses (khondalites). Outside the MSZ, gneisses preserve an earlier, dominantly down-dip intersection lineation. Sillimanite needles in khondalites are aligned parallel to this lineation, while quartz and garnet are also annealed into the granulite facies fabric. In the vicinity of the shear zone, evidence of dextral non-coaxial shearing progressively increases but the lineation distribution is scattered. Quartz grains show strong undulose extinction caused by strain at lower temperatures, and crystallographic c-axis fabric analyses using EBSD indicate deformation by basal c-slip mechanism. Preferred alignment of the sillimanite needles is disrupted in khondalites within the MSZ because of partial rotation of the needles towards the sub-horizontal movement direction, with the extent of rotation of the needles being apparently controlled by grain size. Some sillimanite needles also appear to have undergone

  18. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  19. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  20. Rapid Weakening of Hurricane Joaquin in Strong Vertical Wind Shear and Cold SSTs: Numerical Simulations with Assimilation of High-Definition Sounding System Dropsondes During Tropical Cyclone Intensity Experiment

    Science.gov (United States)

    Pu, Z.; Zhang, S.

    2017-12-01

    Observations from High-Definition Sounding System (HDSS) Dropsondes, collected for Hurricane Joaquin (2005) during the Office of Naval Research Tropical Cyclone Intensity (TCI) Experiment in 2015, are assimilated into the Gridpoint Statistical Interpolation (GSI)-based hybrid data assimilation systems embedded in the NCEP Hurricane Weather Research and Forecasting (HWRF) system. A three-dimensional and a four-dimensional ensemble-variational hybrid (3DEnVAR and 4DEnVar) data assimilation configuration are used. It is found that the experiments with assimilation of the HDSS dropsonde observations capture well the intensity changes during the rapid weakening (RW) of Hurricane Joaquin. Compared with 3DEnVAR, 4DEnVar leads to better assimilation results and subsequent forecasts and thus offers a set of simulations to diagnose the processes associated with the RW of Hurricane Joaquin. A drastic increase in the vertical wind shear (VWS, with a magnitude of 12 m s-1) is found before the RW. This high VWS is persistent during the 0-12 h period of RW, inducing changes in the vortex structure of Hurricane Joaquin through dry air intrusion in the mid-level and the dilution of the upper-level warm core. The transport of low air from above into the boundary layer occurs at the same time, resulting in depressed values in the storm inflow layer and reduced eyewall values through the updraft. As a consequence, downdrafts flush the boundary layer with low air, leading to the weakening of inflow in the boundary layers. When Hurricane Joaquin moves over an area where the SSTs are below 28oC within the hurricane inner core during the 18-30 h period of RW, the cold SSTs significantly inhibit latent and sensible heat release within the hurricane inner core and its vicinity, thus resulting in the continuous weakening of Hurricane Joaquin.

  1. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  2. The effect of shearing rate and slope angle on the simple shear response of marine clays

    Science.gov (United States)

    Biscontin, G.; Rutherford, C.

    2010-12-01

    The response of submarine slopes to seismic or storm loading has become an important element in the risk assessment for offshore structures and local tsunami hazard. Evaluation of submarine slope stability requires characterization of soil behavior and relies on the selection of appropriate parameter values. Although the traditional simple shear device has been used to investigate cyclic loading effects on marine clay, it does not allow for complex loading conditions which often contribute to the failure on submarine slopes. Understanding the interaction between the initial shear stress, the slope angle, and the multi-directional shaking due to earthquakes or storm loading is an important aspect to understanding the failure mechanisms of submarine slope failures. The initial static driving force on the slope is combined with the dynamic loading by storms and earthquakes to create complex loading paths. Therefore, the ability to apply complex stress or strain paths is important to fully study the shear response of marine clays on submarine slopes. A new multi-directional simple shear device developed at Texas A&M University allows loading along three independent axes, two perpendicular horizontal directions to allow any stress or strain paths in the horizontal plane, and a third in the vertical direction. This device is used to investigate the response of Gulf of Mexico marine deposits to different loading conditions. To study the effect of slope angle on the shear response of the soil, samples are subjected to a shear stress during consolidation, Kα consolidation. One-dimensional monotonic and cyclic shearing of Ko consolidated specimens is used to simulate level ground conditions, whereas sloping surfaces were simulated using Kα consolidation for both monotonic and cyclic tests. The effects of shearing rate on the soil response are investigated using strain controlled tests at varying frequencies.

  3. The combined compression and shear of a rectangular rubber block

    Science.gov (United States)

    Hill, James M.; Myers, Timothy G.

    1992-09-01

    For long rectangular rubber blocks with metal plates bonded to their upper and lower surfaces, approximate force-deflection relations are obtained for the problem of combined compression (or tension) and shear. The results obtained generalise that of Klingbeil and Shield for the case of pure compression alone, as well as incorporating the well known simple shear result. However, unlike the pure compression solution, horizontal and vertical force resultants on the free surfaces cannot both be set to zero, which is a well known characteristic of simple shearing. Here the strategy is adopted of equating to zero only the horizontal force resultants on the free surfaces so that the pure compression approximation of Klingbeil and Shield emerges in the event of zero shear. The force-deflection relations so obtained are illustrated graphically.

  4. Effects of shear coupling on shear properties of wood

    Science.gov (United States)

    Jen Y. Liu

    2000-01-01

    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  5. A Hammer-Impact, Aluminum, Shear-Wave Seismic Source

    Science.gov (United States)

    Haines, Seth S.

    2007-01-01

    Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.

  6. Remarks on impact shearing

    Science.gov (United States)

    Klepaczko, J. R.

    1998-10-01

    A review is presented on recent progress in shear testing of materials at high and very high strain rates. Some experimental techniques are discussed which allow for materials testing in shear up to 10 6 ls. More detailed informations are provided on experimental techniques based on the Modified Double Shear specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, including construction, armor and inoxidable steels, and also aluminum alloys. The double shear configuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental studies of adiabatic shear propagation and high speed machining is discussed. The role of adiabatic heating at different rates of shearing is also discussed, including transition from pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important parameter in development of plastic localization. Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent material layers. Numerical simulations support the existence of the CIV in shear which can be recognized to some extent as a material constant.

  7. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  8. Experimental study of shear rate dependence in perpetually sheared granular matter

    Science.gov (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai

    2017-06-01

    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  9. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang

    2017-01-01

    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  10. Shear Thinning in Xenon

    Science.gov (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  11. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  12. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Directory of Open Access Journals (Sweden)

    Korjenic Sinan

    2015-11-01

    Full Text Available This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  13. PRODUCTIVITY OF FRACTURED HORIZONTAL WELLS

    Directory of Open Access Journals (Sweden)

    Stjepan Antolović

    2009-12-01

    Full Text Available The interest and performance of horizontal drilling and completions has increased during the last two decades. Horizontal wells are advantageous compared to vertical wells in thin reservoirs, reservoirs with favorable vertical permeability and reservoirs with water and gas coning problems. In many reservoirs, the ratio of horizontal permeability to the vertical permeability is substantially larger than one and often is close to 10. Thus, these reservoirs are very good candidates for hydraulic fracturing. By hydraulic fracturing one or more fractures are created, which can be longitudinal or orthogonal. By that, flow is altered and it mostly conducts horizontally through reservoir toward horizontal wellbore. With this altered flow, fluid is produced faster, with less pressure loss by fluid unit of produced fluid. Some of the existing mathematical models to determine the productivity of multifractured horizontal wells are presented in this work (the paper is published in Croatian.

  14. Edge-Induced Shear Banding in Entangled Polymeric Fluids

    Science.gov (United States)

    Hemingway, Ewan J.; Fielding, Suzanne M.

    2018-03-01

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ ˙ (for states of homogeneous shear) is monotonic, or has a region of negative slope, d σ /d γ ˙ edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  15. The involvement of glutamate-gated channels in negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Fahrenfort, I.; Klooster, J.; Sjoerdsma, T.; Kamermans, M.

    2005-01-01

    Photoreceptors are the light sensitive cells in the retina. They project to horizontal cells and bipolar cells via a glutamatergic feed forward pathway. Horizontal cells are strongly electrically coupled and integrate in that way the input from the photoreceptors. Horizontal cells feedback to cones

  16. Inferring horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Matt Ravenhall

    2015-05-01

    Full Text Available Horizontal or Lateral Gene Transfer (HGT or LGT is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric" methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic" approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.

  17. Dilatancy of Shear Transformations in a Colloidal Glass

    Science.gov (United States)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.

    2018-01-01

    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  18. Constant load and constant volume response of municipal solid waste in simple shear.

    Science.gov (United States)

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Shear thickening of Laponite suspensions with poly (ethylene oxide)

    NARCIS (Netherlands)

    Fall, A.; Bonn, D.

    2012-01-01

    We study the effect of addition of polyethylene oxide (PEO) on the rheological behavior of suspensions of Laponite. Experiments were performed on mixtures of PEO and Laponite at different concentrations. These mixtures can exhibit very strong shear thickening behavior: under shear, the suspension

  20. Parametric excitation of drift waves in a sheared slab geometry

    International Nuclear Information System (INIS)

    Vranjes, J.; Weiland, J.

    1992-01-01

    The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)

  1. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  2. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    the coupled equations for potential and pressure exhibit special tripolar vortex-like structures. For the general case, however, parallel ion dynamics is included and the equation describing the stationary ITG vortex has the structure of a nonlinear Poisson-type equation. Analytical as well as numerical...... solutions of this equation are presented for various possible cases. It is shown that, for a critical value of the velocity shear asymmetric dipolar vortices can arise which are strongly modified as a localized vortex chain at resonance. For strong velocity shear these structures are destroyed...

  3. The horizontal resolution of MIPAS

    Directory of Open Access Journals (Sweden)

    J.-C. Lambert

    2009-02-01

    Full Text Available Limb remote sensing from space provides atmospheric composition measurements at high vertical resolution while the information is smeared in the horizontal domain. The horizontal components of two-dimensional (altitude and along-track coordinate averaging kernels of a limb retrieval constrained to horizontal homogeneity can be used to estimate the horizontal resolution of limb retrievals. This is useful for comparisons of measured data with modeled data, to construct horizontal observation operators in data assimilation applications or when measurements of different horizontal resolution are intercompared. We present these averaging kernels for retrievals of temperature, H2O, O3, CH4, N2O, HNO3 and NO2 from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding high-resolution limb emission spectra. The horizontal smearing of a MIPAS retrieval in terms of full width at half maximum of the rows of the horizontal averaging kernel matrix varies typically between about 200 and 350 km for most species, altitudes and atmospheric conditions. The range where 95% of the information originates from varies from about 260 to 440 km for these cases. This information spread is smaller than the MIPAS horizontal sampling, i.e. MIPAS data are horizontally undersampled, and the effective horizontal resolution is driven by the sampling rather than the smearing. The point where the majority of the information originates from is displaced from the tangent point towards the satellite by typically less than 10 km for trace gas profiles and about 50 to 100 km for temperature, with a few exceptions for uppermost altitudes. The geolocation of a MIPAS profile is defined as the tangent point of the middle line of sight in a MIPAS limb scan. The majority of the information displacement with respect to this nominal geolocation of the measurement is caused by the satellite movement and the geometrical

  4. Notes on the horizontal cohomology

    OpenAIRE

    Verbovetsky, Alexander

    1998-01-01

    This paper is devoted to the horizontal (``characteristic'') cohomology of systems of differential equations. Recent results on computing the horizontal cohomology via the compatibility complex are generalized. New results on the Vinogradov C-spectral sequence and the Krasil'shchik C-cohomology are obtained. As an application of general theory, the examples of an evolution equation and a p-form gauge theory are explicitly worked out.

  5. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  6. Seismic Response of a Sedimentary Basin: Preliminary Results from Strong Motion Downhole Array in Taipei Basin

    Science.gov (United States)

    Young, B.; Chen, K.; Chiu, J.

    2013-12-01

    The Strong Motion Downhole Array (SMDA) is an array of 32 triggered strong motion broadband seismometers located at eight sites in Taipei Basin. Each site features three to five co-located three-component accelerometers--one at the surface and an additional two to four each down independent boreholes. Located in the center of Taipei Basin is Taipei City and the Taipei metropolitan area, the capital of Taiwan and home to more than 7 million residents. Taipei Basin is in a major seismic hazard area and is prone to frequent large earthquakes producing strong ground motion. This unique three-dimension seismic array presents new frontiers for seismic research in Taiwan and, along with it, new challenges. Frequency-dependent and site-specific amplification of seismic waves from depth to surface has been observed: preliminary results indicate that the top few tens of meters of sediment--not the entire thickness--are responsible for significant frequency-dependent amplification; amplitudes of seismic waves at the surface may be as much as seven times that at depth. Dominant amplification frequencies are interpreted as quarter-wavelength constructive interference between the surface and major interfaces in the sediments. Using surface stations with known orientation as a reference, borehole seismometer orientations in these data--which are unknown, and some of which vary considerably from event to event--have been determined using several methods. After low-pass filtering the strong motion data, iteratively rotating the two horizontal components from an individual borehole station and cross-correlating them with that from a co-located surface station has proven to be very effective. In cases where the iterative cross-correlation method does not provide a good fit, rotating both surface and borehole stations to a common axis of maximum seismic energy provides an alternative approach. The orientation-offset of a borehole station relative to the surface station may be

  7. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  8. Sheared solid materials

    Indian Academy of Sciences (India)

    cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). .... Figure 1 displays the stress–strain curves at constant shear rate ˙γ applied for t > 0 in units of µ0 and τ−1 ..... In particular, the slow structural relaxations evidently arise from migration of the free volume.

  9. Roles of wind shear at different vertical levels: Cloud system organization and properties

    Science.gov (United States)

    Chen, Qian; Fan, Jiwen; Hagos, Samson; Gustafson, William I.; Berg, Larry K.

    2015-07-01

    Understanding critical processes that contribute to the organization of mesoscale convective systems (MCSs) is important for accurate weather forecasts and climate predictions. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of convective systems using the Weather Research and Forecasting model with spectral bin microphysics. Based on a control run for a MCS with weak wind shear (Ctrl), we find that increasing wind shear at the lower troposphere (L-shear) leads to a more organized quasi-line convective system. Strong wind shear in the middle troposphere (M-shear) tends to produce large vorticity and form a mesocyclone circulation and an isolated strong storm that leans toward supercellular structure. By increasing wind shear at the upper vertical levels only (U-shear), the organization of the convection is not changed much, but the convective intensity is weakened. Increasing wind shear in the middle troposphere for the selected case results in a significant drying, and the drying is more significant when conserving moisture advection at the lateral boundaries, contributing to the suppressed convective strength and precipitation relative to Ctrl. Precipitation in the L-shear and U-shear does not change much from Ctrl. Evident changes of cloud macrophysical and microphysical properties in the strong wind shear cases are mainly due to large changes in convective organization and water vapor. The insights obtained from this study help us better understand the major factors contributing to convective organization and precipitation.

  10. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  11. Horizontal Diplopia Following Upper Blepharoplasty

    Directory of Open Access Journals (Sweden)

    Tomás Ortiz-Basso

    2014-09-01

    Full Text Available Diplopia is an infrequent complication after blepharoplasty. Most of the cases are in its vertical form due to trauma of the extraocular muscles. In this article, we present a case of horizontal diplopia following cosmetic upper blepharoplasty; we review the literature on this unexpected complication and offer some recommendations to avoid it.

  12. Shear induced phase transitions induced in edible fats

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  13. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  14. Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls

    Science.gov (United States)

    Radosław, Jasiński

    2017-10-01

    This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.

  15. Comparison Of Direct Simple Shear Confinement Methods On Clay And Silt Specimens

    Science.gov (United States)

    2011-12-20

    SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT...methods performed in the Marine Geomechanics Laboratory at the University of Rhode Island. In this chapter sample preparation, storage, equipment, and... Geomechanics Laboratory at the University of Rhode Island. Direct simple shear tests allow for the measurement of maximum horizontal shear stress of

  16. Sketches of a hammer-impact, spiked-base, shear-wave source

    Science.gov (United States)

    Hasbrouck, W.P.

    1983-01-01

    Generation of shear waves in shallow seismic investigations (those to depths usually less than 100 m) can be accomplished by horizontally striking with a hammer either the end of a wood plank or metal structure embedded at the ground surface. The dimensioned sketches of this report are of a steel, hammer-impact, spiked-base, shear-wave source. It has been used on outcrops and in a desert environment and for conducting experiments on the effect of rotating source direction.

  17. Shear-thinning Fluid

    Science.gov (United States)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  18. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  19. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system , the loss in weight feeder system , the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included

  20. Strong piezoelectricity in bioinspired peptide nanotubes.

    Science.gov (United States)

    Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil

    2010-02-23

    We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.

  1. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  2. Indirect dating of deformation: a geochronological study from the Pan African Ajaj shear zone, Saudi Arabia.

    Science.gov (United States)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs

    2013-04-01

    The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.

  3. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Science.gov (United States)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  4. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  5. Effect of horizontal reinforcement in strengthening of masonry members

    International Nuclear Information System (INIS)

    Farooq, S.H.; Ilyas, M.; Ggaffar, A.

    2008-01-01

    An experimental research program was undertaken to ascertain the effectiveness of a new technique for strengthening masonry wall panels using steel strips on compressive and shear strength enhancement. The experimental work includes eight wall panels, four each for compressive and shear strength evaluation. This work was the phase I of extensive research project which include testing of strengthened masonry wall panels under monotonic load (Phase-I), static cyclic load (Phase-2) and dynamic load (Phase-3). The wall panels were strengthened with different steel strip arrangements, which consist of single/double face application of coarse and fine steel strip mesh with reduced spacing of horizontal strips. This paper investigates only the effectiveness of horizontal steel strips on strength enhancement. Four masonry wall panels are considered in two groups and in each group, one wall was retrofitted with coarse steel mesh on single face and on second wall fine steel mesh was applied on one side. Furthermore, test results of strengthened specimens are also compared with the un-strengthened specimen (REFE). The mechanisms by which load was carried were observed, varying from the initial, uncracked state, and the final, fully cracked state. The results demonstrate a quite significant increase in the compressive and shear capacity of strengthened panels as compared to REFE-panel. However, increase in the compressive strength of fine mesh above that of coarse mesh is negligible. The technique/approach is found quite viable for strengthening of masonry walls, for rehabilitation of old deteriorated buildings and unreinforced masonry structures in seismic zones. (author)

  6. The Winfrith horizontal impact rig

    International Nuclear Information System (INIS)

    Barr, P.

    1985-12-01

    The Horizontal Impact Rig has been designed to allow studies of the impact of radioactive material transport containers and their associated transport vehicles and impact limiters, using large scale models, and to allow physically large missiles to be projected for studying the impact behaviour of metal and concrete structures. It provides an adequately rigid support structure for impact experiments with targets of large dimensions. Details of its design, instrumentation, performance prediction and construction are given. (U.K.)

  7. Reduction of vertical transport in two-dimensional stably stratified forced shear flows

    Science.gov (United States)

    Toqué, Nathalie; Lignières, François; Vincent, Alain

    2006-04-01

    The effect of stable stratification on the vertical transport of passive contaminants in forced, stationary, two-dimensional (2D) and inhomogeneous shear turbulence is investigated numerically. The mean flow consists of several superimposed parallel sheared layers in a stably stratified medium. We find that, as stratification increases, the vertical transport decreases much faster than predicted by mixing length estimates. For the highest stratification, particles vertical dispersion nearly vanishes. The proposed interpretation emphasizes the role of weakly sheared layers where the relative increase of the mean horizontal velocity with respect to the root-mean-square (rms) vertical velocity causes the decrease of the Lagrangian correlation timescale.

  8. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density.

    Science.gov (United States)

    Furukawa, Akira

    2017-01-01

    We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.

  9. Gusts and Shear in an Idealized LES-modeled Hurricane

    Science.gov (United States)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  10. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  11. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    Science.gov (United States)

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  12. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  13. Effect of shear on the rheology and crystallization of palm oil.

    Science.gov (United States)

    Tarabukina, E; Jego, F; Haudin, J-M; Navard, P; Peuvrel-Disdier, E

    2009-10-01

    This article reports on the impact of shear on crystallization upon cooling of palm oil. Samples were cooled down under shear from 70 to 10 degrees C, then kept at this temperature, while performing rheological measurements using a controlled shear rate rheometer and rheo-optical observations using optical microscopy and small-angle light scattering. Shear rates between 1 and 300 s(-1) were investigated. Two crystallization steps were observed, characterized by associated viscosity increases. The effect of shear on these 2 crystallization processes was investigated. Shear was shown to influence almost all of the steps of the structuring process of the crystallizing palm oil. The spherulite size and growth rate during the 1st crystallization are affected by shear. The onset time of the 2nd crystallization process strongly depends on the extent of shear. The steady state structures after the 1st and 2nd crystallization processes constituted of a suspension of aggregates of spherulites are controlled by the applied shear rate. The texture of crystallized vegetal fats and subsequent end product properties depend on the structure developed during the crystallization process. This structuring process is strongly influenced by the thermo-mechanical history applied to the product (cooling rate, degree of undercooling, annealing time, application of flow). This article shows how the shear rate as well as extent of shear affects the different steps of the crystallization and aggregation processes in the case of palm oil after the 1st crystallization.

  14. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model is b...

  15. Effect of chlorhexidine on the shear bond strength of self-etch ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the effect of chlorhexidine on shear bond strength of self-etch adhesives to dentin. The crowns of 60 sound human premolars were horizontally sectioned to expose the coronal dentin. Dentin surfaces were polished with 320 grit silicon carbide papers, and were randomly divided into 4 ...

  16. Rayleigh-Taylor instabilities with sheared magnetic fields

    International Nuclear Information System (INIS)

    Ruderman, M. S.; Terradas, J.; Ballester, J. L.

    2014-01-01

    Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvén speed of the structure.

  17. Rayleigh-Taylor instabilities with sheared magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M. S. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Terradas, J.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-04-20

    Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvén speed of the structure.

  18. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  19. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    OpenAIRE

    Orit Adato; Noga Ninyo; Uri Gophna; Sagi Snir

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally ...

  20. Explorando nuevos horizontes en NASA

    Science.gov (United States)

    Villanueva, G. L.

    A pesar de la incesante expansión del Universo iniciada con el Big Bang 14 mil millones de años atrás, nuestro Universo se siente cada día más cercano. La inquebrantable vocación de la humanidad por descubrir nuevos horizontes ha permitido el acercamiento de civilizaciones en nuestro planeta y nos ha permitido conocer nuestro lugar en el Universo como nunca antes. En este artículo presento una breve sinopsis de nuestro trabajo que se relaciona con diversas investigaciones con implicaciones astrobiológicas, desde el origen de los ingredientes de la "sopa de la vida", hasta la evolución y composición de la atmósfera de Marte.

  1. Nuclear component horizontal seismic restraint

    International Nuclear Information System (INIS)

    Snyder, G.J.

    1988-01-01

    In a nuclear reactor having a reactor vessel, a reactor guard vessel, a thermal insulation shell and a horizontal seismic restraint, a restraint is described comprising: a. a first ring on the wall of the reactor vessel; b. a second ring on the wall of the reactor guard vessel in alignment with the first ring; c. a first block attached to the second ring proximate the first ring so as to provide a predetermined clearance between the first block and the first ring which is reduced to zero during thermal expansion; d. motion limit means extending through an aperture in the thermal insulation shell in alignment with the second ring and the first block; the e. a second block attached to the motion limit means proximate the second ring and in alignment the first block so as to provide a predetermined clearance between the second block and the second ring which is reduced to zero during thermal expansion

  2. Cross-shore velocity shear, eddies and heterogeneity in water column properties over fringing coral reefs: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; McManus, M.A.; Logan, J.B.; McLaughlin, B.E.

    2006-01-01

    A multi-day hydrographic survey cruise was conducted to acquire spatially extensive, but temporally limited, high-resolution, three-dimensional measurements of currents, temperature, salinity and turbidity off West Maui in the summer of 2003 to better understand coastal dynamics along a complex island shoreline with coral reefs. These data complement long-term, high-resolution tide, wave, current, temperature, salinity and turbidity measurements made at a number of fixed locations in the study area starting in 2001. Analyses of these hydrographic data, in conjunction with numerous field observations, evoke the following conceptual model of water and turbidity flux along West Maui. Wave- and wind-driven flows appear to be the primary control on flow over shallower portions of the reefs while tidal and subtidal currents dominate flow over the outer portions of the reefs and insular shelf. When the direction of these flows counter one another, which is quite common, they cause a zone of cross-shore horizontal shear and often form a front, with turbid, lower-salinity water inshore of the front and clear, higher-salinity water offshore of the front. It is not clear whether these zones of high shear and fronts are the cause or the result of the location of the fore reef, but they appear to be correlated alongshore over relatively large horizontal distances (orders of kilometers). When two flows converge or when a single flow is bathymetrically steered, eddies can be generated that, in the absence of large ocean surface waves, tend to accumulate material. Areas of higher turbidity and lower salinity tend to correlate with regions of poor coral health or the absence of well-developed reefs, suggesting that the oceanographic processes that concentrate and/or transport nutrients, contaminants, low-salinity water or suspended sediment might strongly influence coral reef ecosystem health and sustainability.

  3. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    Science.gov (United States)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  4. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  5. Improving Interlaminar Shear Strength

    Science.gov (United States)

    Jackson, Justin

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2

  6. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  7. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  8. Parametric Study of Rockbolt Shear Behaviour by Double Shear Test

    Science.gov (United States)

    Li, L.; Hagan, P. C.; Saydam, S.; Hebblewhite, B.; Li, Y.

    2016-12-01

    Failure of rockbolts as a result of shear or bending loads can often be found in underground excavations. The response of rock anchorage systems has been studied in shear, both by laboratory tests as well as numerical modelling in this study. A double shear test was developed to examine the shear behaviour of a bolt installed across two joints at different angles. To investigate the influence of various parameters in the double shear test, a numerical model of a fully grouted rockbolt installed in concrete was constructed and analysed using FLAC3D code. A number of parameters were considered including concrete strength, inclination between rockbolt and joints and rockbolt diameter. The numerical model considered three material types (steel, grout and concrete) and three interfaces (concrete-concrete, grout-concrete and grout-rockbolt). The main conclusions drawn from the study were that the level of bolt resistance to shear was influenced by rock strength, inclination angle, and diameter of the rockbolt. The numerical simulation of the bolt/grout interaction and deformational behaviour was found to be in close agreement with earlier experimental test results.

  9. The Sheer Stress of Shear Stress: Responses of the Vascular Wall to a Haemodynamic Force

    NARCIS (Netherlands)

    C. Cheng (Caroline (Ka Lai))

    2006-01-01

    textabstractStudies in the hemodynamic field point to a strong relation between shear stress and the onset to vascular diseases such as atherosclerosis. Data from in vitro studies using sheared endothelial cells have provided insight into the possible mechanisms involved. However, the lack of an

  10. Streaming instability in a velocity–sheared dusty plasma | Duwa ...

    African Journals Online (AJOL)

    A two-stream instability, obtained from kinetic theory, of strongly velocity-sheared inhomogeneous streaming electron in a magnetized plasma in the presence of negatively charged dust is discussed. Various cold plasma approximations were considered and it is shown that when the diamagnetic effect of ion can be ignored ...

  11. Nondestructive Evaluation of a Be/Cu Diffusion Bond using a Shear Horizontal Wave

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Kyu; Cheong, Yong Moo; Lee, Dong Won; Hong, Bong Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The International Thermo-nuclear Experimental Reactor (ITER) blanket first wall includes Beryllium(Be) amour tiles joined to a CuCrZr heat sink with stainless steel cooling tubes. This first wall's panels are one of the critical components in the ITER which is exposed with a surface heat flux of 0.5 MW/m2. As a qualification program, ultrasonic test (UT) of a Be/CuCrZr diffusion bond has to be applied according to the proper procedure. Ultrasonic test can detect the presence of unbonded regions and is based on an amplitude change and a phase inversion in a signal reflected from a bond interface. The purpose of this study is to investigate the feasibility of EMAT (Electro-Magnetic Acoustic Transducer) technology for an in-situ inspection of a Be/Copper alloy joining interface under a high temperature and high radiation environment.

  12. Nondestructive Evaluation of a Be/Cu Diffusion Bond using a Shear Horizontal Wave

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Yong Moo; Lee, Dong Won; Hong, Bong Keun

    2009-01-01

    The International Thermo-nuclear Experimental Reactor (ITER) blanket first wall includes Beryllium(Be) amour tiles joined to a CuCrZr heat sink with stainless steel cooling tubes. This first wall's panels are one of the critical components in the ITER which is exposed with a surface heat flux of 0.5 MW/m2. As a qualification program, ultrasonic test (UT) of a Be/CuCrZr diffusion bond has to be applied according to the proper procedure. Ultrasonic test can detect the presence of unbonded regions and is based on an amplitude change and a phase inversion in a signal reflected from a bond interface. The purpose of this study is to investigate the feasibility of EMAT (Electro-Magnetic Acoustic Transducer) technology for an in-situ inspection of a Be/Copper alloy joining interface under a high temperature and high radiation environment

  13. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  14. Cut-off frequencies of circumferential horizontal shear waves in various functionally graded cylinder shells.

    Science.gov (United States)

    Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji

    2018-03-01

    In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Science.gov (United States)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  16. DEM Simulation of Direct Shear: 1. Rupture Under Constant Normal Stress Boundary Conditions

    Science.gov (United States)

    Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.; Bahrani, N.

    2014-09-01

    A particle-based distinct element method and its grain-based method are used to generate and simulate a synthetic specimen calibrated to the rupture characteristics of an intact (non-jointed) low-porosity brittle rock deformed in direct shear. The simulations are compared to the laboratory-generated ruptures and used to investigate rupture at various normal stress magnitudes. The fracturing processes leading to shear rupture zone creation and the rupture mechanism are found to be normal stress dependent (progressing from tensile splitting to shear rupture) and show partial confirmation of rupture zone creation in nature and in experiments from other materials. The normal stress dependent change is found to be due to the orientation of the major principal stress and local stress concentrations internal to the synthetic specimens being deformed. The normal stress dependent rupture creation process results in a change to the rupture zone's geometry, shear stress versus horizontal displacement response, and thus ultimate strength.

  17. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    Directory of Open Access Journals (Sweden)

    Siekierski Wojciech

    2015-03-01

    Full Text Available At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  18. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  19. Vertical and horizontal access configurations

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs

  20. Horizontal vortex single chamber hydroturbine

    Directory of Open Access Journals (Sweden)

    Sergio Antonio Zarate-Orrego

    2016-01-01

    Full Text Available Se evaluó una máquina con alta resistencia de forma para extraer energía de una quebrada, río o corriente marina, y generar electricidad. Sin instrumentos adecuados, la investigación fue cualitativa. Se supuso que si aun así funcionaba, su comportamiento podía mejorar suavizándose la forma. El aparato tiene una tobera semi-convergente de paredes planas, una cámara de vórtice cilíndrica y un rodete. Capta agua por su sección mayor y la descarga tangencialmente por su sección menor en la cámara de vórtice; ésta tiene un orificio en una de sus paredes laterales. Así forma un vórtice horizontal que hace girar un rodete cuyo eje acciona un generador eléctrico. El trabajo experimental realizado mostró que sí es posible producir energía eléctrica con este dispositivo pese a las condiciones adversas en que se ensayó.

  1. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    Science.gov (United States)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  2. Multi Resonance Shear Mode Transducers

    Science.gov (United States)

    2016-11-21

    engineering in the single crystal lead magnesium niobate-lead titanate (PMNT) system has uncovered a very unique piezoelectric shear mode. Contrary to...ABSTRACT Crystallographic engineering of single crystal relaxor-based ferroelectrics was used to design broadband, compact, high power, low frequency...utilize the d36 shear piezoelectric coefficient, which has advantages for compact low frequency sonar transducers. The d36 cut is unique in that large

  3. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.

    1982-12-01

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  4. A constitutive model for simple shear of dense frictional suspensions

    Science.gov (United States)

    Singh, Abhinendra; Mari, Romain; Denn, Morton M.; Morris, Jeffrey F.

    2018-03-01

    Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $\\phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $\\phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(\\phi,\\tilde{\\sigma}$, and $\\mu)$, with $\\tilde{\\sigma} = \\sigma/\\sigma_0$ the dimensionless shear stress and $\\mu$ the coefficient of interparticle friction: the dimensional stress is $\\sigma$, and $\\sigma_0 \\propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \\textquotedblleft jamming\\textquotedblright\\ points at volume fraction $\\phi_{\\rm J}^0 = \\phi_{\\rm rcp}$ (random close packing) for the low-stress lubricated state, and at $\\phi_{\\rm J} (\\mu) < \\phi_{\\rm J}^0$ for any nonzero $\\mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.

  5. Evidence for shear stress-mediated dilation of the internal carotid artery in humans

    DEFF Research Database (Denmark)

    Carter, Howard Henry; Atkinson, Ceri L; Heinonen, Ilkka H A

    2016-01-01

    increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle......-mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; Pstress is an important stimulus for hypercapnic vasodilation of the internal carotid...

  6. Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia

    DEFF Research Database (Denmark)

    Hoiland, Ryan L; Smith, Kurt J; Carter, Howard Henry

    2017-01-01

    Evidence for shear stress as a regulator of carotid artery dilation in response to increased arterial CO2 was recently demonstrated in humans during sustained elevations in CO2 (hypercapnia); however, the relative contributions of CO2 and shear stress to this response remains unclear. We examined...... vasodilatory function and health in humans.NEW & NOTEWORTHY Shear stress dilates the internal carotid artery in humans. This vasodilatory response occurs independent of other physiological factors, as demonstrated by our transient CO2 test, and is strongly correlated to shear area under the curve. Assessing...

  7. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  8. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm

    1999-01-01

    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  9. Horizontal Canal Benign Positional Vertigo

    Directory of Open Access Journals (Sweden)

    Mohtaram Najafi

    1998-03-01

    Full Text Available Benign paroxysmal positional vertigo (BPPV is a syndrome characterized by transient episodes of vertigo in association with rapid changes in head position in Dix-Halpike Maneuver. This kind of vertigo is thought to be caused by migration of otoconial debris into canals other than the posterior canal, such as the anterior or lateral canals. It is also theoretically possible for many aberrant patterns of BPPV to occur from an interaction of debris in several canals, location of debris within the canal, and central adaptation patterns to lesions. The symptoms of BPPV are much more consistent with free-moving densities (canaliths in the posterior SCC rather than fixed densities attached to the cupula. While the head is upright, the particles sit in the PSC at the most gravity-dependent position. The best method to induce and see vertigo and nystagmus in BPPV of the lateral semicircular canal is to rotate head 90°while patient is in the supine position, nystagmus would appear in the unaffected side weaker but longer than the affected side. canal paresis has been described in one third of the patients with BPPV. Adaptation which is one of the remarkable features of BPPV in PSC is rarely seen in LSC. Rotations of 270° or 360° around the yaw axis (the so-called barbecue maneuver toward the unaffected ear are popular methods for the treatment of geotropic HC-BPPV. These maneuvers consist of sequential head turning of 90° toward the healthy side while supine. With these maneuvers, the free-floating otoconial debris migrates in the ampullofugal direction, finally entering the utricle through the nonampullated end of the horizontal canal. This kind of vertigo recovers spontaneously more rapidly and suddenly.

  10. Shear viscosity of an ordering latex suspension

    NARCIS (Netherlands)

    van der Vorst, A.M.; van der Vorst, B.; van den Ende, Henricus T.M.; Aelmans, N.J.J.; Mellema, J.

    1997-01-01

    The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield behavior which disappears below a volume fraction of 8%. At high shear rates, the

  11. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  12. First wind shear observation in PMSE with the tristatic EISCAT VHF radar

    Science.gov (United States)

    Mann, I.; Häggström, I.; Tjulin, A.; Rostami, S.; Anyairo, C. C.; Dalin, P.

    2016-11-01

    The Polar Summer Mesosphere has the lowest temperatures that occur in the entire Earth system. Water ice particles below the optically observable size range participate there in the formation of strong radar echoes (Polar Mesospheric Summer Echoes, PMSE). To study PMSE we carried out observations with the European Incoherent Scatter (EISCAT) VHF and EISCAT UHF radar simultaneously from a site near Tromsø (69.58°N, 19.2272°E) and observed VHF backscattering also with the EISCAT receivers in Kiruna (67.86°N, 20.44°E) and Sodankylä (67.36°N, 26.63°E). This is one of the first tristatic measurements with EISCAT VHF, and we therefore describe the observations and geometry in detail. We present observations made on 26 June 2013 from 7:00 to 13:00 h UT where we found similar PMSE patterns with all three VHF receivers and found signs of wind shear in PMSE. The observations suggest that the PMSE contains sublayers that move in different directions horizontally, and this points to Kelvin-Helmholtz instability possibly playing a role in PMSE formation. We find no signs of PMSE in the UHF data. The electron densities that we derive from observed incoherent scatter at UHF are at PMSE altitudes close to the noise level but possibly indicate reduced electron densities directly above the PMSE.

  13. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  14. Wall shear stress evolution in carotid artery bifurcation

    Science.gov (United States)

    Bernad, S. I.; Bosioc, A. I.; Totorean, A. F.; Petre, I.; Bernad, E. S.

    2017-07-01

    The steady flow in an anatomically realistic human carotid bifurcation was simulated numerically. Main parameters such as wall shear stress (WSS), velocity profiles and pressure distributions are investigated in the carotid artery, namely in bifurcation and sinusoidal enlargement regions. Flow in the carotid sinus is dominated by a single secondary vortex motion accompanied by a strong helical flow. This type of flow is induced primarily by the curvature and asymmetry of the in vivo geometry. Low wall shear stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb.

  15. Face perception is tuned to horizontal orientation in the N170 time window.

    OpenAIRE

    Jacques, Corentin; Schiltz, Christine; Goffaux, Valérie

    2014-01-01

    The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phaserandomized in a ...

  16. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Instability and mixing in interacting stratified shear layers

    Science.gov (United States)

    Joe, W. T.; Caulfield, C. P.

    2003-11-01

    Often in geophysical fluid flows, a stratified shear flow undergoes a transition to turbulence, leading to markedly enhanced mixing of the fluid parcels, and deceleration of the forcing shear flow. Such mixing events generically lead to the development of a layered density distribution, with deep layers of relatively well-mixed fluid separated by relatively thin interfaces of strong density gradient. There are certain circumstances in which re-intensification of the shear by the external forcing is initially localized in the vicinity of the strong density gradient interfaces. We consider numerically the behaviour of a simple example of such flows, where a relatively deep well-mixed layer is bordered by two thin interfaces of stronger density gradient, each of which is subject to a localized velocity shear. We find that the stability and subsequent behaviour of such flows are qualitatively and quantitatively dependent on the overall stratification. Sufficiently strongly stratified flows lead to Kelvin-Helmholtz instabilities and associated mixing events which remain localized in the vicinity of the interfaces, while weaker stratification allows for intense interaction across the interior well-mixed layer.

  18. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  19. The experimental basis for interpreting particle and magnetic fabrics of sheared till

    Science.gov (United States)

    Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.

    2008-01-01

    Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a necessary but insufficient criterion for confirming the model

  20. Effect of sheared flows on neoclassical tearing modes

    International Nuclear Information System (INIS)

    Sen, A.; Chandra, D.; Kaw, P.; Bora, M.P.; Kruger, S.; Ramos, J.

    2005-01-01

    The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)

  1. Squirming through shear thinning fluids

    Science.gov (United States)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  2. Shear Brillouin light scattering microscope.

    Science.gov (United States)

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J J; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-11

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution.

  3. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  4. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    -continental deformation. They record pre-strike-slip shearing events, i.e., regional horizontal shearing flow in the mid-crust and the exhumation and uplift via anticlinal doming, in the intra-continental shortening setting in the Eastern Himalayan Syntaxis region.

  5. Shear rheology of extended nanoparticles

    Science.gov (United States)

    Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.

    2010-07-01

    Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended “jack”-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction.

  6. Alternativa estructural de refuerzo horizontal en muros de mampostería Structural alternative of horizontal reinforcement in masonry walls

    Directory of Open Access Journals (Sweden)

    Diego Fernando Páez Moreno

    2009-01-01

    Full Text Available La implementación de refuerzo horizontal en muros de mampostería con ladrillo macizo de arcilla cocida es una técnica empleada en varios países. En este trabajo se propone un análisis para muros de mampostería representativos de la ciudad de Tunja con la implementación de grafiles de acero como alternativa de refuerzo horizontal. Este estudio involucra la definición de los tipos de materiales a emplear, las características de los muros a ensayar y las variables que se deben aplicar, tanto en los muros como en la ejecución del ensayo de compresión diagonal, que define tipos de muros con características propias de refuerzo. Los resultados del proceso de análisis del comportamiento individual y general de los muros de mampostería sometidos al ensayo de compresión diagonal permiten identificar la variación del esfuerzo cortante representativo para cada tipo de muro, en relación con el refuerzo empleado en los diferentes modelos y la tipología de falla.Implementation of horizontal reinforcement in masonry walls with solid cooked clay bricks is a commonly used technique in several countries. This article is intended to analyze masonry walls representatives of Tunja City, with implementation of small steel bars as an alternative of horizontal reinforcement. This study involves definition of types of materials to be used, characteristics of walls to be tested, and variables which should be applied in both walls and during the execution of the diagonal compression test which defines the types of walls with own characteristics of reinforcement. Results from individual and general behavior analysis process of masonry walls subject to diagonal compression tests allow identifying variation of shear stress for each kind of wall, in relation to reinforcement used in several models and failure typology.

  7. The Role of Shear Failure on Stress Characterization

    Science.gov (United States)

    Chan, A. W.; Hauser, M.; Couzens-Schultz, B. A.; Gray, G.

    2014-09-01

    Leak-off pressure and lost circulation data are generally thought to be reflective of minimum stress. We propose an alternative interpretation should be considered where the data may reflect a shear failure along zones of pre-existing weakness rather than opening of tensile fractures against the minimum stress. This mechanism has been discussed in a small number of borehole stability and hydraulic fracture papers, but has not been widely applied to leak-off test or lost circulation interpretation. In this paper, we will revisit and expand the concept introduced recently by Couzens-Schultz and Chan (J Struct Geol, doi: 10.1016/j.jsg.2010.06.013, 2010) based on abnormally low leak-off tests in an active thrust belt to the analysis of lost circulation observations in modern-day deltaic environments. In the Gulf of Mexico, lost circulations historically are interpreted as a representation of the minimum horizontal stress due to initiating or reopening of a fracture in tensile mode. However, shear failure or fault reactivation can occur at pressures well below the minimum far-field stress that is typically considered a safe upper bound for mud pressure if pre-existing planes of weakness such as faults or fracture networks exist. We demonstrated a mud loss event is shown to be inconsistent with the tensile failure mode in a normal stress environment, but in good agreement with expectations for shear failure along pre-existing faults.

  8. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    . The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...

  9. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  10. Melt Stirring by Horizontal Crucible Vibration

    Science.gov (United States)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  11. Capital and interest in horizontal innovation models

    OpenAIRE

    Man-Seop Park

    2010-01-01

    Horizontal innovation models have a common structure of three sequentially connected sectors. This structure--production of commodities by means of commodities--necessitates the compounding of interest on an input that goes through multiple production periods before the final good is produced. I argue that this aspect is missed (or deliberately assumed away) in typical horizontal innovation models and that this practice generates internal inconsistency in relation to the long run nature of th...

  12. DEM Simulation of Direct Shear: 2. Grain Boundary and Mineral Grain Strength Component Influence on Shear Rupture

    Science.gov (United States)

    Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.

    2014-09-01

    The influence of mineral grain and grain boundary strength is investigated using a calibrated intact (non-jointed) brittle rock specimen subjected to direct shear with a particle-based distinct element method and its embedded grain-based method. The adopted numerical approach allows one to independently control the grain boundary and mineral grain strength. The investigation reveals that, in direct shear, the normal stress ( σ n) applied to a rock specimen relative to its uniaxial compressive strength (UCS) determines the resulting rupture mechanism, the ultimate rupture zone geometry, and thus its shear stress versus horizontal displacement response. This allows one to develop a rupture matrix based on this controlling parameter (i.e., σ n/UCS). Mineral grain strength reductions result in the lowering of the apparent cohesion intercept of the peak linear Coulomb strength envelope, while grain boundary strength reductions change the peak linear Coulomb strength envelope to a bi-linear or curved shape. The impact of grain boundary strength is only relevant at σ n/UCS ratios 0.17), the influence of weakened grain boundaries is minimized and strength is controlled by that of the mineral grains.

  13. Tensile and shear loading stability of all-inside meniscal repairs: an in vitro biomechanical evaluation.

    Science.gov (United States)

    Brucker, Peter U; Favre, Philippe; Puskas, Gabor J; von Campe, Arndt; Meyer, Dominik C; Koch, Peter P

    2010-09-01

    Most biomechanical studies for evaluation of the structural properties of meniscal repairs have been performed in tensile loading scenarios perpendicular to the circumferential meniscal fibers. However, meniscal repair constructs are also exposed to shear forces parallel to the circumferential meniscal fibers during healing, particularly in the midportion of the meniscus. Material properties of meniscal repair devices cannot be extrapolated from tensile to shear load scenarios. Controlled laboratory study. In 84 harvested and isolated bovine lateral menisci following removal of adjacent soft tissue, a standardized vertical lesion was set followed by repair using all-inside flexible (FasT-Fix, FasT-Fix AB, RapidLoc) and rigid (Meniscus Screw, Meniscus Arrow) meniscal repair devices. Vertical and horizontal 2.0 Ethibond sutures were used as controls. The repaired meniscal construct was tested in a tensile (parallel to the axis of the tested repair device) and shear load scenario (perpendicular to the axis of the tested repair device) at 5 mm/min and 37 degrees C environmental temperature. Maximum load to failure, stiffness, and failure mode were recorded. The absolute load to failure values of each repair device in the shear scenario were only marginally different from the tensile load scenario. However, the stiffness of several tested devices was markedly reduced in the shear scenario. In both scenarios, large differences of the load to failure and the stiffness between the implant types up to 5-fold were found (P meniscal repair devices exposed to shear load scenarios have comparable maximum loads to failures as tensile load scenarios. However, the stiffness of the majority of the flexible meniscal repair implants in a shear load scenario is markedly reduced. The applied scenario also affects the failure mode in several flexible meniscal repair devices. Meniscal repair devices with sufficient stiffness and stability against shear loads may be favored for meniscal

  14. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow.

    Science.gov (United States)

    Winkler, Roland G

    2016-04-20

    The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior. Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion. Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different power-law dependence on the shear rate compared to passive dumbbells under flow is found.

  15. Meniscal shear stress for punching

    NARCIS (Netherlands)

    Tuijthof, Gabrielle J. M.; Meulman, Hubert N.; Herder, Just L.; van Dijk, C. Niek

    2009-01-01

    Aim: Experimental determination of the shear stress for punching meniscal tissue. Methods: Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available

  16. In vivo shear stress response.

    Science.gov (United States)

    Egginton, Stuart

    2011-12-01

    EC (endothelial cell) responses to shear stress generated by vascular perfusion play an important role in circulatory homoeostasis, whereas abnormal responses are implicated in vascular diseases such as hypertension and atherosclerosis. ECs subjected to high shear stress in vitro alter their morphology, function and gene expression. The molecular basis for mechanotransduction of a shear stress signal, and the identity of the sensing mechanisms, remain unclear with many candidates under investigation. Translating these findings in vivo has proved difficult. The role of VEGF (vascular endothelial growth factor) flow-dependent nitric oxide release in remodelling skeletal muscle microcirculation is established for elevated (activity, dilatation) and reduced (overload, ischaemia) shear stress, although their temporal relationship to angiogenesis varies. It is clear that growth factor levels may offer only a permissive environment, and alteration of receptor levels may be a viable therapeutic target. Angiogenesis in vivo appears to be a graded phenomenon, and capillary regression on withdrawal of stimulus may be rapid. Combinations of physiological angiogenic stimuli appear not to be additive.

  17. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet

    Energy Technology Data Exchange (ETDEWEB)

    El Hassan, Mouhammad; Vetel, Jerome; Garon, Andre [Ecole Polytechnique de Montreal, Department of Mechanical Engineering, LADYF, Montreal, Quebec (Canada); Assoum, Hassan Hassan; Sobolik, Vaclav; Abed-Meraim, Kamel; Sakout, Anas [LaSIE, Universite de La Rochelle, La Rochelle (France)

    2012-06-15

    The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR-PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers. (orig.)

  18. Optimal recovery from microburst wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1993-01-01

    Severe low-altitude wind variability represents an infrequent but significant hazard to aircraft taking off or landing. During the period from 1964 to 1985, microburst wind shear was a contributing factor in at least 26 civil aviation accidents involving nearly 500 fatalities and over 200 injuries. A microburst is a strong localized downdraft that strikes the ground, creating winds that diverge radially from the impact point. The physics of microbursts have only been recently understood in detail, and it has been found that effective recovery from inadvertent encounters may require piloting techniques that are counter-intuitive to flight crews. The goal of this work was to optimize the flight path of a twin-jet transport aircraft encountering a microburst during approach to landing. The objective was to execute an escape maneuver that maintained safe ground clearance and an adequate stall margin during the climb-out portion of the trajectory.

  19. Horizontal integration in the development strategy of mining companies

    Directory of Open Access Journals (Sweden)

    Jan Kudełko

    2016-01-01

    Full Text Available Integration strategy is one option in the development of mining companies and is implemented through a connection of either processes or economic entities which operate or may operate separately. Usually this strategy is carried out by companies that occupy a very strong competitive position. Considering its direction, it may be horizontal or vertical. Horizontal integration strategy stems from a desire to increase market share by an entrepreneur or create a new company based on common know-how and combined operational processes. It can be realized in an external dimension through a merger or takeover, as well as in the internal dimension based on its own resources. The external dimension is based on capital or contractual integration of a company with external economic entities performing related or conglomerate activity. The targets of such integration have a resource, a market effectiveness, or a competence nature. In the case of mining companies, it covers all important activity areas, including geology, mining, processing, environmental protection, and waste management, and is carried out with due diligence. In the internal dimension, the strategy of horizontal integration consists in consolidating the strategic targets of all business units around the company’s (corporation’s targets. The authors focused on two trends most relevant to pursuing a horizontal integration strategy, including increasing the company’s flexibility and undertaking joint activities. Flexibility consists in the potential ability of the company to adapt quickly to changed environment conditions. Joint activity includes co-operation of its respective units in terms of products, markets, and functions.

  20. Volume fracturing of deep shale gas horizontal wells

    Directory of Open Access Journals (Sweden)

    Tingxue Jiang

    2017-03-01

    Full Text Available Deep shale gas reservoirs buried underground with depth being more than 3500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV, low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1 × 104 m3/d and 17.5 × 104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50 × 108 m3 gas from the interval of 3500–4000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6000 m.

  1. Face perception is tuned to horizontal orientation in the N170 time window.

    Science.gov (United States)

    Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie

    2014-02-07

    The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.

  2. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  3. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  4. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  5. Why Does the Bay of Bengal have a Strong Shallow Stratification?

    Science.gov (United States)

    D'Asaro, E. A.

    2016-02-01

    Strong stratification in the upper 20m of the Bay of Bengal during the southwest monsoon limits the depth of mixing, thereby shortening the response time of ocean SST to intraseasonal oscillations and allowing the ocean to play a role in their dynamics. Although freshwater input from rain and from the Ganges-Brahmaputra and Irrawaddy river systems provides the necessary lateral density contrast, the mechanisms by which this is converted to a vertical stratification have remained unclear. One possible mechanism is submesoscale instabilities and eddies that slump horizontal gradients into the vertical at fronts, driven by the available potential energy in the gradient. Another is the vertical shear in the Ekman layer that advects lighter fresher water over denser water, driven by the wind. These two mechanisms have distinctly different physics, time and space scales and driving mechanisms. Here, we examine ship-based and autonomous data from 2014 and 2015 in the Bay of Bengal, taken as part of the ASIRI/OMM project joint between US and Indian scientists for evidence for the importance of these two mechanisms.

  6. Instability of subharmonic resonances in magnetogravity shear waves.

    Science.gov (United States)

    Salhi, A; Nasraoui, S

    2013-12-01

    We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.

  7. Simplified analysis about horizontal displacement of deep soil under tunnel excavation

    Science.gov (United States)

    Tian, Xiaoyan; Gu, Shuancheng; Huang, Rongbin

    2017-11-01

    Most of the domestic scholars focus on the study about the law of the soil settlement caused by subway tunnel excavation, however, studies on the law of horizontal displacement are lacking. And it is difficult to obtain the horizontal displacement data of any depth in the project. At present, there are many formulas for calculating the settlement of soil layers. In terms of integral solutions of Mindlin classic elastic theory, stochastic medium theory, source-sink theory, the Peck empirical formula is relatively simple, and also has a strong applicability at home. Considering the incompressibility of rock and soil mass, based on the principle of plane strain, the calculation formula of the horizontal displacement of the soil along the cross section of the tunnel was derived by using the Peck settlement formula. The applicability of the formula is verified by comparing with the existing engineering cases, a simple and rapid analytical method for predicting the horizontal displacement is presented.

  8. Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland

    KAUST Repository

    Rahpeyma, Sahar

    2016-08-11

    The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd

  9. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  10. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  11. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  12. Shear viscosity of the quark matter

    OpenAIRE

    Iwasaki, Masaharu; Ohnishi, Hiromasa; Fukutome, Takahiko

    2007-01-01

    We discuss shear viscosity of the quark matter by using Kubo formula. The shear viscosity is calculated in the framework of the quasi-particle RPA for the Nambu-Jona-Lasinio model. We obtain a formula that the shear viscosity is expressed by the quadratic form of the quark spectral function in the chiral symmetric phase. The magnitude of the shear viscosity is discussed assuming the Breit-Wigner type for the spectral function.

  13. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  14. Horizontal alveolar bone loss: A periodontal orphan

    Directory of Open Access Journals (Sweden)

    Jayakumar A

    2010-01-01

    Full Text Available Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician′s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs (of patients diagnosed with chronic periodontitis and seeking periodontal care, which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36% OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2% teeth, and vertical defects were found only in 264 (7.8% of the teeth, which was statistically significant (P<.001. Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3% have addressed vertical bone loss, and 18 (3.7% have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment

  15. Shear induced alignment of short nanofibers in 3D printed polymer composites

    Science.gov (United States)

    Erdem Yunus, Doruk; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-01

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material’s tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  16. Shear assessment of reinforced concrete slab bridges

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2013-01-01

    The capacity of reinforced concrete solid slab bridges in shear is assessed by comparing the design beam shear resistance to the design value of the applied shear force due to the permanent actions and live loads. Results from experiments on half-scale continuous slab bridges are used to develop a

  17. Understanding the desensitizing mechanism of olefin in explosives: shear slide of mixed HMX-olefin systems.

    Science.gov (United States)

    Zhang, Chaoyang; Cao, Xia; Xiang, Bin

    2012-04-01

    We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.

  18. Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes.

    Directory of Open Access Journals (Sweden)

    Yupu Diao

    2011-02-01

    Full Text Available Horizontal transfer of genetic material between complex organisms often involves transposable elements (TEs. For example, a DNA transposon mariner has been shown to undergo horizontal transfer between different orders of insects and between different phyla of animals. Here we report the discovery and characterization of an ITmD37D transposon, MJ1, in Anopheles sinensis. We show that some MJ1 elements in Aedes aegypti and An. sinensis contain intact open reading frames and share nearly 99% nucleotide identity over the entire transposon, which is unexpectedly high given that these two genera had diverged 145-200 million years ago. Chromosomal hybridization and TE-display showed that MJ1 copy number is low in An. sinensis. Among 24 mosquito species surveyed, MJ1 is only found in Ae. aegypti and the hyrcanus group of anopheline mosquitoes to which An. sinensis belongs. Phylogenetic analysis is consistent with horizontal transfer and provides the basis for inference of its timing and direction. Although report of horizontal transfer of DNA transposons between higher eukaryotes is accumulating, our analysis is one of a small number of cases in which horizontal transfer of nearly identical TEs among highly divergent species has been thoroughly investigated and strongly supported. Horizontal transfer involving mosquitoes is of particular interest because there are ongoing investigations of the possibility of spreading pathogen-resistant genes into mosquito populations to control malaria and other infectious diseases. The initial indication of horizontal transfer of MJ1 came from comparisons between a 0.4x coverage An. sinensis 454 sequence database and available TEs in mosquito genomes. Therefore we have shown that it is feasible to use low coverage sequencing to systematically uncover horizontal transfer events. Expanding such efforts across a wide range of species will generate novel insights into the relative frequency of horizontal transfer of

  19. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  20. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  1. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  2. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...

  3. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  4. Horizontal bridges in polar dielectric liquids

    Science.gov (United States)

    Woisetschläger, Jakob; Wexler, Adam D.; Holler, Gert; Eisenhut, Mathias; Gatterer, Karl; Fuchs, Elmar C.

    2012-01-01

    When a high-voltage direct-current is applied to two beakers filled with polar liquid dielectrica like water or methanol, a horizontal bridge forms between the two beakers. By repeating a version of Pellat's experiment, it is shown that a horizontal bridge is stable by the action of electrohydrodynamic pressure. Thus, the static and dynamic properties of the phenomenon called a `floating water bridge' can be explained by the gradient of Maxwell pressure, replenishing the liquid within the bridge against any drainage mechanism. It is also shown that a number of liquids can form stable and long horizontal bridges. The stability of such a connection, and the asymmetry in mass flow through such bridges caused by the formation of ion clouds in the vicinity of the electrodes, is also discussed by two further experiments.

  5. Global Subducting Slab Entrainment of Oceanic Asthenosphere: Re-examination of Sub-Slab Shear-Wave Splitting Patterns

    Science.gov (United States)

    Song, T.; Liu, L.; Kawakatsu, H.

    2011-12-01

    Oceanic asthenosphere is characterized as a low seismic velocity, low viscosity, and strongly anisotropic channel separating from the oceanic lithosphere through a sharp shear wave velocity contrast. It has been a great challenge to reconcile all these observations and ultimately illuminate the fate of oceanic asthenosphere near convergent plate margins. Sub-slab shear wave splitting patterns are particularly useful to address the fate of oceanic asthenosphere since they are directly linked to deformation induced by the mantle flow beneath the subducting slab. To address slab entrainment of oceanic asthenosphere through shear wave splitting, it is important to recognize that oceanic asthenosphere is characterized by azimuthal anisotropy (1-3%) as well as strong P wave and S wave radial anisotropy (3-7%) for horizontally travelling P wave (VPH > VPV) and S wave (VSH > VSV), making it effectively an orthorhombic medium. Here we show that entrained asthenosphere predicts sub-slab SKS splitting pattern, where the fast splitting direction changes from predominantly trench-normal under shallow subduction zones to predominantly trench-parallel under relatively steep subduction zones. This result can be recognized by the 90 degrees shift in the polarization of the fast wave at about 20 degrees incident angle, where VSH equals to VSV forming a classical point singularity (Crampin, 1991). The thickness of the entrained asthenosphere is estimated to be on the order of 100 km, which predicts SKS splitting time varying from 0.5 seconds to 2 seconds. After briefly discussing improvement of the millefeuille model (Kawakatsu et al. 2009) of the asthenosphere upon this new constraint and long wave Backus averaging of orthorhombic solid and melt, we will illustrate that, in the range of observed trench migration speed, dynamic models of 2-D mantle convection with temperature-dependent viscosity do support thick subducting slab entrainment of asthenosphere under ranges of

  6. Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings

    Science.gov (United States)

    Cunha, Americo; Soize, Christian; Sampaio, Rubens

    2015-11-01

    This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.

  7. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  8. Shear viscosity of nuclear matter

    Science.gov (United States)

    Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.; Plujko, V. A.

    2016-11-01

    Shear viscosity η is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density n through the mean-field parameter a , which describes attractive forces in the VDW equation. In the temperature region T =15 -40 MeV, a ratio of the shear viscosity to the entropy density s is smaller than 1 at the nucleon number density n =(0.5 -1.5 ) n0 , where n0=0.16 fm-3 is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the η /s ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of η /s ≫1 are, however, found in both the low-density, n ≪n0 , and high-density, n >2 n0 , regions. This makes the ideal hydrodynamic approach inapplicable for these densities.

  9. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  10. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    Tuomisto, H.; Purhonen, H.; Kouhia, V.

    1997-01-01

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  11. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  12. On the linear stability of sheared and magnetized jets without current sheets - relativistic case

    Science.gov (United States)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2018-03-01

    In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.

  13. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.

    2014-01-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one

  14. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  15. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  16. EVALUATION OF SHEAR CAPACITY FOR BRICK MASONRY WALLS

    Directory of Open Access Journals (Sweden)

    Partene Eva

    2015-05-01

    Full Text Available The papers presents the results of an experimental program and provides valuable information regarding the behaviour of structural masonry walls built up using ceramic blocks with hollows, which represents a very common system for low-rise residential buildings, up to 4 stories, depending on the seismic acceleration on site. A number of six masonry walls where tested in bear state being subjected to constant vertical loading and to cyclic in-plane horizontal loads. The main objective was to determine the shear capacity for unreinforced masonry walls and reinforced masonry walls. The experimental results were also useful to determine the contribution of the reinforcing of the masonry walls with concrete columns. The comparison between unreinforced masonry and reinforced masonry has a great importance due to the fact that the Romanian Seismic Standards have imposed the reinforcement in seismic areas for building with more than 1 storey. Further studies will be conducted on strengthening the masonry walls using FRP materials.

  17. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  18. Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2017-12-01

    Full Text Available Geometrically, the upper pointed surface of an aircraft and bonnet of a car are examples of upper horizontal surfaces of a paraboloid of revolution (uhspr. The motion of these objects strongly depends on the boundary layer that is formed within the immediate space on it. However, each of these surfaces is neither a horizontal/vertical nor cone/wedge and neither a cone nor a wedge. This article presents the motion of 2-dimensional Blasius flow of Carreau fluid on the surface of such object. The case in which the reaction between the Carreau fluid and catalyst at the surface produces significant temperature differences which consequently set up buoyancy-driven flows within the boundary layer is investigated. Single first-order Arrhenius kinetics is adopted to model the reaction on the surface of the catalyst situated on uhspr which initiates the free convection. Suitable similarity variables are applied to non-dimensionalized, parameterized and reduce the governing partial differential equations to a coupled ordinary differential equations (BVP. The BVP is solved numerically using the shooting technique. Temperature distribution in the flow of viscoelastic Carreau fluid is greater than that of a Newtonian fluid. Local heat transfer rate decreases faster when the Carreau fluid is characterized as shear-thinning. Maximum concentration is guaranteed at a small value of power-law index n and large value of thickness parameter. Keywords: Viscoelastic-Carreau fluid, Catalitic surface, Paraboloid of revolution, Numerical method, Uhspr, Boundary layer analysis

  19. Evaluation of Simplified Methods for Estimating Shear Capacity Using JNES/NUPEC Low-Rise Concrete Shear Wall Cyclic Test Data.

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Ali, S.

    2008-06-01

    The simplified methods in current codes for determining the shear capacity of reinforced concrete shear walls had mostly been validated using the test results of single-element shear walls. Recently available JNES/NUPEC test data of reinforced concrete shear walls under multi-directional cyclic loadings provided a unique opportunity to investigate the adequacy of the simplified methods for use in situations with strong interaction effects. A total of 11 test specimens with aspect ratios between 0.47 and 0.87 have been used in the assessment. Two simplified methods from the ACI 349-01 standard [1] and one from the ASCE 43-05 standard [2] have been evaluated. This paper also presents the development of an adjustment factor to consider the aspect ratio and the development of two approaches to consider interaction effects for one of the simplified methods. It concludes with the insights on the applicability of the code methods when interaction effects exist.

  20. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon

    2013-01-01

    With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...

  1. The horizontal plane appearances of scoliosis

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2017-01-01

    Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen...

  2. Rectifying Horizontal Inequalities: Lessons from African Conflict

    African Journals Online (AJOL)

    the conflict, and the action taken after violent conflict ceased. Section three will be dedicated to the lessons learned from the Malian and the Rwandan experience, including policy recommendations that should be instituted for any nation where horizontal inequalities are a major catalyst of conflict. Introduction. As a new ...

  3. Horizontal gene transfer in the phytosphere

    NARCIS (Netherlands)

    Elsas, van J.D.; Turner, S.; Bailey, M.J.

    2003-01-01

    Here, the ecological aspects of gene transfer processes between bacteria in the phytosphere are examined in the context of emerging evidence for the dominant role that horizontal gene transfer (HGT) has played in the evolutionary shaping of bacterial communities. Moreover, the impact of the putative

  4. Plantmediated horizontal transmission of Wolbachia between whiteflies

    Science.gov (United States)

    Li, Shao-Jian; Ahmed, Muhammad Z; Lv, Ning; Shi, Pei-Qiong; Wang, Xing-Min; Huang, Ji-Lei; Qiu, Bao-Li

    2017-01-01

    Maternal transmission is the main transmission pathway of facultative bacterial endosymbionts, but phylogenetically distant insect hosts harbor closely related endosymbionts, suggesting that horizontal transmission occurs in nature. Here we report the first case of plant-mediated horizontal transmission of Wolbachia between infected and uninfected Bemisia tabaci AsiaII7 whiteflies. After infected whiteflies fed on cotton leaves, Wolbachia was visualized, both in the phloem vessels and in some novel ‘reservoir' spherules along the phloem by fluorescence in situ hybridization using Wolbachia-specific 16S rRNA probes and transmission electron microscopy. Wolbachia persisted in the plant leaves for at least 50 days. When the Wolbachia-free whiteflies fed on the infected plant leaves, the majority of them became infected with the symbiont and vertically transmitted it to their progeny. Multilocus sequence typing and sequencing of the wsp (Wolbachia surface protein) gene confirmed that the sequence type of Wolbachia in the donor whiteflies, cotton phloem and the recipient whiteflies are all identical (sequence type 388). These results were replicated using cowpea and cucumber plants, suggesting that horizontal transmission is also possible through other plant species. Our findings may help explain why Wolbachia bacteria are so abundant in arthropods, and suggest that in some species, Wolbachia may be maintained in populations by horizontal transmission. PMID:27935594

  5. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and...

  6. Determinants Of Vertical And Horizontal Export Diversification ...

    African Journals Online (AJOL)

    The intuition is that East Asian countries have devoted significant amount of investment on education, health, infrastructure and these in turn created a better conducive atmosphere for FDI inflow. The study also reveals domestic investment plays an important role to enhance vertical as well as horizontal export diversification ...

  7. Third international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues.

  8. Evaluation of horizontal magnification on panoramic images

    Directory of Open Access Journals (Sweden)

    Maryam Raoof

    2013-01-01

    Full Text Available Aims: This study evaluated the horizontal magnification of images taken from adults and pediatrics with PM 2002 CC Planmeca analogue machine. Materials and Methods: A series of 120 panoramic radiographs were obtained of 60 adults and 60 pediatrics. For all patients, negative impressions were used to make positive casts of the teeth. A caliper was used to measure the maximum mesiodistal length of the buccal surface of all teeth except canines on both casts and radiographs. The horizontal magnification factor was calculated for incisor, premolar, and molar regions by dividing the values obtained from the casts by the values obtained from the radiographs. Statistical Analysis: Independent t-test and one-way analysis of variance (ANOVA were used. Results: The results indicated that with regard to adults, maxillary and mandibular incisor regions, unlike the other two sessions, didn′t show significant difference of the mean magnification of horizontal dimension (P = 0.5. In pediatrics, the comparison between mean magnification factors of all subgroups showed significant difference (P < 0.0001. Despite the adults′ radiographs, the results of pediatrics′ radiographs showed significantly higher magnification than the index listed by the manufacturer of the radiographic machine used. Conclusion: The present study results point to the fact that PM 2002 CC Proline panoramic machine makes possible precise measurements on radiographs of adults′ jaws in the horizontal dimension.

  9. Third international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    1995-01-01

    The Third International Seminar on Horizontal Steam Generators held on October 18-20, 1994 in Lappeenranta, consisted of six sessions dealing with the topics: thermal hydraulic experiments and analyses, primary collector integrity, management of primary-to-secondary leakage accidents, feedwater collector replacement and discussion of VVER-440 steam generator safety issues

  10. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  11. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  12. Flow mapping for ESS horizontal target

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.; Kikura, H.; Taishi, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Flow behaviour for ESS horizontal target is studied experimentally using two dimensional water model. A velocity field of stationary flow in reaction zone has been obtained. Three dimensional effect was also studied as a spanwise flow structure. (author) 3 figs., 3 refs.

  13. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  14. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  15. Pengaruh Komunikasi Horizontal Terhadap Kinerja Pegawai Pada Badan Pemberdayaan Masyarakat Kampung di Kabupaten Jayawijaya

    Directory of Open Access Journals (Sweden)

    Siti Khikmatul Rizqi

    2017-04-01

    Full Text Available This article discusses the effect of Horizontal Communication on Employee Performance at the Office of Community Empowerment Agency (BPMK Jayawijaya Regency. This study consists of two variables, namely as a horizontal free communication variable with research indicators: coordination, problem solving and information exchange. While the dependent variable of employee performance with research indicator: result, benefit and impact. In the sampling of the authors using saturated samples in which the entire population is used as a sample of 27 employees. And data analysis technique that writer use is statistical data analysis with type of associative research and data processed by using simple regression model. The results showed horizontal communication is very strong and direct 0.795 (significant with employee performance at 95% confidence level. Horizontal communication contributes to employee performance of 32.0%.   Artikel ini membahas tentang pengaruh Komunikasi Horizontal Terhadap Kinerja Pegawai pada Kantor Badan Pemberdayaan Masyarakat Kampung (BPMK Kabupaten Jayawijaya. Penelitian ini terdiri dari dua variable yaitu sebagai variabel bebas komunikasi horizontal dengan indikator penelitian: koordinasi, pemecahan masalah dan pertukaran informasi. Sementara variabel terikat kinerja  pegawai dengan indikator penelitian : hasil, manfaat dan dampak. Dalam penarikan sampel penulis menggunakan sampel jenuh dimana seluruh populasi dijadikan sampel yaitu berjumlah 27 pegawai. Dan teknik analisa data yang penulis gunakan adalah analisa data statistik dengan jenis penelitian asosiatif dan data diolah menggunakan model regresi sederhana. Hasil penelitian menunjukkan komunikasi horizontal  berhubungan sangat kuat dan searah sebesar 0,795 (signifikan dengan kinerja pegawai pada taraf kepercayaan 95%. Komunikasi horizontal memberikan kontribusi terhadap kinerja pegawai sebesar 32,0%.

  16. Nucleation in Sheared Granular Matter

    Science.gov (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias

    2018-02-01

    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  17. Nucleation in Sheared Granular Matter.

    Science.gov (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L; Schröter, Matthias

    2018-02-02

    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  18. Super-strong Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, Takenori J.; Sakurai, Takashi

    2018-01-01

    Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.

  19. Suppressing of γ-crystal formation in metallocene-based isotactic polypropylene during isothermal crystallization under shear flow.

    Science.gov (United States)

    Wang, Yan; Chen, Chen; Xu, Jia-Zhuang; Lei, Jun; Mao, Yimin; Li, Zhong-Ming; Hsiao, Benjamin S

    2012-04-26

    The effect of shear flow on isothermal crystallization behavior of γ-crystals in metallocene-based isotactic polypropylene melt was investigated by in situ synchrotron wide-angle X-ray diffraction (WAXD). In the sample under weak shear (at strain of 300% for 30 s duration), simultaneous evolution of α- and γ-crystals occurred, and the final fraction of γ-crystals (fγ) was 0.66, which was identical to the undeformed sample (PP-Static). In this scenario, α-crystals probably served as effective seeds for nucleation of γ-crystals. In the samples under strong shear (at strain of 500% for 30 s duration or long-time continuous shear at strains of 100% and 500%), the sequential emergence of α- and γ-crystals was observed. In this case, molten polymer chains were probably constrained by the surrounding crystals after intense short-time shear and/or maintained their extended chain conformation after long-time shear. These oriented chains had little chance to form the γ-crystals directly, behaving very differently from the relaxed chains. Under strong shear fields, the emergence of γ-crystals was delayed or inhibited, whereas the fγ value was also decreased rapidly. A simple model for the possible pathway of γ-crystal formation in the strong shear environment was proposed.

  20. Heat and momentum transport in sheared Rayleigh-Benard convection

    Science.gov (United States)

    Krishnamurti, Ruby; Zhu, Yi

    This is a report on laboratory measurements of heat and momentum flux in sheared Rayleigh-Benard convection. A cylindrical annulus of water uniformly heated below and cooled above was subjected to an imposed shear by driving the bottom boundary so that it rotated steadily around the vertical axis of symmetry. The top boundary was stationary and formed part of a torsion balance. It was suspended from the laboratory ceiling by a long torsion wire. The torque exerted upon the top boundary by the fluid was measured by the twist of the torsion wire. From this angle of twist, the vertical flux of horizontal momentum was determined. The heat flux as well as the momentum flux were measured at each fixed value of Rayleigh number Ra and Reynolds number Re. The measurements were made in the range 6 × 10 6 ≤ Ra ≤ 6 × 10 7 and 38 ≤ Re ≤ 352. One of the most striling results is that at Ra near 3 × 10 7 to 5 × 10 7 depending upon Re, the dimensionless momentum flux Mo ceases its increasing trend and begins to decrease with increasing Ra. This may be described by saying that the effective viscosity decreases with further increasing of Ra. However, Mo always remained greater than unity in the range investigated.

  1. Effect of the environment on horizontal gene transfer between bacteria and archaea.

    Science.gov (United States)

    Fuchsman, Clara A; Collins, Roy Eric; Rocap, Gabrielle; Brazelton, William J

    2017-01-01

    Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In

  2. Effect of the environment on horizontal gene transfer between bacteria and archaea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2017-09-01

    Full Text Available Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted. Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007, to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits and transferred genes (identified by DarkHorse were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of

  3. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  4. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  5. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT region

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-05-01

    Full Text Available Using a fully nonlinear two-dimensional (2-D numerical model, we simulated gravity waves (GWs breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT. An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's apparent horizontal phase velocity and decreases the GW's intrinsic frequency and vertical wavelength. Both the accelerated mean wind and the decreased GW vertical wavelength contribute to the enhancement of wind shears. This, in turn, creates a background condition that favors the occurrence of GW instability, breaking, and momentum deposition, as well as mean wind acceleration, which further enhances the wind shears. We find that GWs with longer vertical wavelengths and faster horizontal phase velocity can induce larger winds, but they may not necessarily induce larger wind shears. In addition, the background temperature can affect the time and height of GW breaking, thus causing accelerated mean winds and wind shears.

  6. Shear-coupled PL waves observed at the Kerguelen Isles

    Science.gov (United States)

    Pettersen, O.; Maupin, V.

    2003-04-01

    S-waves generated by earthquakes in Indonesia and recorded at the seismological broadband station PAF on the Kerguelen Isles are usually followed by particularly large, long and monochromatic wavetrains. These wavetrains are not observed, or are not as prominent, for events at comparable epicentral distances in other source regions. They have a clear dominant period of about 20 seconds and last usually for more than 100s. They show slight normal dispersion, and have a prograde elliptical motion in the vertical propagation plane with largest amplitude on the radial component. These characteristics suggest that the observed waves are shear-coupled PL-waves, i.e., a phase which propagates partly as a mantle S-wave and partly as P-waves trapped in the crust. The P-wave portion of the propagation may occur close to the source, close to the receiver, or at both ends of the wavepath, over a significant portion of the epicentral distance. Observations at Kerguelen of strong shear-coupled PL waves from Indonesian earthquakes suggest a special crust and upper mantle structure in the region between the Kerguelen hotspot and the South-East Indian Ridge, 1000 km away. This includes the region where a special upper mantle anisotropic structure has been detected from surface wave polarisation anomalies. We analyse which implications the strong shear-coupled PL waves may have on the structure between the hotspot and the ridge.

  7. A Step in the D'' Shear Velocity Discontinuity Beneath the Cocos Plate Imaged by Kirchhoff Migration

    Science.gov (United States)

    Hutko, A.; Lay, T.; Garnero, E.; Revenaugh, J.

    2005-12-01

    We use 270 horizontally-polarized S waves from 15 deep earthquakes under South America recorded at broadband stations in western North America to image shear-velocity structure in the deep mantle beneath the Cocos Plate. We use a Kirchhoff migration approach, assuming isotropic scattering from a three-dimensional grid of possible scattering nodes in the lowermost mantle. Several 3D mantle tomography models are used to correct for first-order travel-time perturbations due to volumetric heterogeneity, and waveforms are migrated with respect to either S or ScS arrivals. We observe an East-West striking abrupt 50-150 km change in the depth of the D'' shear velocity discontinuity near 6°N. This feature is apparent in migrations for a 1D reference model and in migrations that use different 3D aspherical models to account for volumetric velocity effects. Our results do not contain significant topography elsewhere on the boundary, and are compatible with a relatively flat D'' discontinuity on either side of the step. The vertical step is constrained to occur over less than 100 km laterally. The step may be due to strong temperature and or chemical gradients, both of which require an active dynamical process to sustain such a steep feature. One dynamical process that can account for the step is folding and piling of a cold slab that has reached the core-mantle boundary, as observed in numerical and experimental models, resulting in a 100 km elevation of the post-perovskite phase boundary due to a 700K lateral temperature reduction in the folded slab. We also detect localized low velocities along the boundary of the imaged D'' discontinuity, which may involve upwellings caused by the slab laterally displacing a thin hot thermal boundary layer. Preliminary efforts to migrate broadband and short period P wave data also reveal complicated D'' structure in this region, however these results are much lower resolution and will be explored in greater detail.

  8. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Science.gov (United States)

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-10-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  9. Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Eloisa Di Sipio

    2017-11-01

    Full Text Available The performance of very shallow geothermal systems (VSGs, interesting the first 2 m of depth from ground level, is strongly correlated to the kind of sediment locally available. These systems are attractive due to their low installation costs, less legal constraints, easy maintenance and possibility for technical improvements. The Improving Thermal Efficiency of horizontal ground heat exchangers Project (ITER aims to understand how to enhance the heat transfer of the sediments surrounding the pipes and to depict the VSGs behavior in extreme thermal situations. In this regard, five helices were installed horizontally surrounded by five different backfilling materials under the same climatic conditions and tested under different operation modes. The field test monitoring concerned: (a monthly measurement of thermal conductivity and moisture content on surface; (b continuous recording of air and ground temperature (inside and outside each helix; (c continuous climatological and ground volumetric water content (VWC data acquisition. The interactions between soils, VSGs, environment and climate are presented here, focusing on the differences and similarities between the behavior of the helix and surrounding material, especially when the heat pump is running in heating mode for a very long time, forcing the ground temperature to drop below 0 °C.

  10. Microstructural description of shear-thickening suspensions

    Directory of Open Access Journals (Sweden)

    Singh Abhinendra

    2017-01-01

    Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.

  11. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  12. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow

    Science.gov (United States)

    Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian

    2017-09-01

    This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.

  13. Clast-fabric development in a shearing granular material: Implications for subglacial till and fault gouge

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.

    2000-01-01

    Elongate clasts in subglacial till and in fault gouge align during shearing, but the relation between clast-fabric strength and cumulative shear strain for such materials is effectively unknown. This relation was explored in experiments with a large ring-shear device in which a till and a viscous putty that contained isolated clasts were sheared to high strains. As expected, rotation of clasts in the putty is closely approximated by the theory of G.B. Jeffrey, who derived the orbits of rigid ellipsoids in a slowly shearing fluid. Clast rotation in the till, however, is strikingly different. Rather than orbiting through the shear plane as predicted by Jeffery, most clasts rotate into the shear plane and remain there, resulting in strong fabrics regardless of the aspect ratios and initial orientations of clasts. This divergent behavior is likely due to slip of the till matrix along the surfaces of clasts, which is a natural expectation in a granular material but violates the no-slip condition of Jeffery's model. These results do not support the widespread belief that subglacial till deformation results in weak clast fabrics. Thus, many tills with weak fabrics thought to have been sheared subglacially to high strains, like many basal tills of the Laurentide Ice Sheet, may have been sheared only slightly with little effect on either ice-sheet dynamics or sediment transport. In addition, these results indicate that in simple shear the rotation of clasts in till and in fault gouge is best analyzed with the model of A. March, who treated inclusions as passive markers.

  14. ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States

    Science.gov (United States)

    Yong, Alan; Martin, Antony; Stokoe, Kenneth; Diehl, John

    2013-01-01

    Funded by the 2009 American Recovery and Reinvestment Act (ARRA), we conducted geophysical site characterizations at 191 strong-motion stations: 187 in California and 4 in the Central-Eastern United States (CEUS). The geophysical methods used at each site included passive and active surface-wave and body-wave techniques. Multiple techniques were used at most sites, with the goal of robustly determining VS (shear-wave velocity) profiles and VS30 (the time-averaged shear-wave velocity in the upper 30 meters depth). These techniques included: horizontal-to-vertical spectral ratio (HVSR), two-dimensional (2-D) array microtremor (AM), refraction microtremor (ReMi™), spectral analysis of surface wave (SASW), multi-channel analysis of surface waves (Rayleigh wave: MASRW; and Love wave: MASLW), and compressional- and shear-wave refraction. Of the selected sites, 47 percent have crystalline, volcanic, or sedimentary rock at the surface or at relatively shallow depth, and 53 percent are of Quaternary sediments located in either rural or urban environments. Calculated values of VS30 span almost the full range of the National Earthquake Hazards Reduction Program (NEHRP) Site Classes, from D (stiff soils) to B (rock). The NEHRP Site Classes based on VS30 range from being consistent with the Class expected from analysis of surficial geology, to being one or two Site Classes below expected. In a few cases where differences between the observed and expected Site Class occurred, it was the consequence of inaccurate or coarse geologic mapping, as well as considerable degradation of the near-surface rock. Additionally, several sites mapped as rock have Site Class D (stiff soil) velocities, which is due to the extensive weathering of the surficial rock.

  15. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  16. Developments in Plasticity Approach to Shear

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...... into account the mechanism of crack formation followed by crack sliding. Comparisons between the model and test results are carried out. Good agreement has been found over a wide range of cases....

  17. Cuttings-carried theory and erosion rule in gas drilling horizontal well

    Directory of Open Access Journals (Sweden)

    Wei Na

    2014-01-01

    Full Text Available In gas horizontal drilling, the gas with cuttings will go through the annulus at high speed which will lead strong erosion to the drill tools. This paper proposes a cuttings-carried theory and modified the critical cuttings-carried model for the gas-solid flow. Meanwhile, the erosive energy is obtained through simulating the gas-solid mixture in different conditions. The study result has positive significance on the determination of reasonable injection volume by optimizing construction parameters of horizontal well in gas drilling.

  18. Critical shear stress on the surface of a cuttings bed; Tensao critica de cisalhamento na superficie de um leito de cascalhos

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Luciana Mancor [Universidade Estadual Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia de Petroleo]. E-mail: luciana@lenep.uenf.br; Campos, Wellington [PETROBRAS, S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: campos@cenpes.petrobras.com.br; Braga, Luiz Carvalho [Centro Federal de Educacao Tecnologica (CEFET), Macae, RJ (Brazil). Unidade de Ensino Descentralizada]. E-mail: luiz@lenep.uenf.br

    2000-07-01

    The cuttings transport during the drilling of highly inclined and horizontal wells is hindered by the creation of a cuttings bed in the annulus. In this work, it is shown that the equilibrium height of this bed can be determined from the shear stress on its surface. This fact enables the formulation of a methodology for evaluating the equilibrium height of the cuttings bed through the introduction of a new concept, that of critical shear stress. This is the shear stress that acts on the bed surface at the imminence of movement of the particles on the bed surface. The use of the methodology requires the determination of the acting shear stress and of the required critical shear stress. The acting shear stress is calculated by means of a computer program that solve the motion differential equations in the annular space; covering the cases of the laminar and turbulent flow regimes. The actuating shear stress is a function of flow rate and of the annular geometry in the presence of a cuttings bed; it is also a function of the physical properties of the fluid. On the other hand, the required critical shear stress is a function of the particles diameters and physical properties of the fluid and particles. A mechanistic model for the critical shear stress is also presented. (author)

  19. The shear viscosity of the non-commutative plasma

    Science.gov (United States)

    Landsteiner, Karl; Mas, Javier

    2007-07-01

    We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory.

  20. Shear bond strength of veneering porcelain to porous zirconia.

    Science.gov (United States)

    Nakamura, Takashi; Sugano, Tsuyoshi; Usami, Hirofumi; Wakabayashi, Kazumichi; Ohnishi, Hiroshi; Sekino, Tohru; Yatani, Hirofumi

    2014-01-01

    In this study, two types of porous zirconia and dense zirconia were used. The flexural strength of non-layered zirconia specimens and those of the layered zirconia specimens with veneering porcelain were examined. Furthermore, the shear bond strength of veneering porcelain to zirconia was examined. The flexural strength of the non-layered specimens was 1,220 MPa for dense zirconia and 220 to 306 MPa for porous zirconia. The flexural strength of the layered specimens was 360 MPa for dense zirconia and 132 to 156 MPa for porous zirconia, when a load was applied to the porcelain side. The shear bond strength of porcelain veneered to dense zirconia was 27.4 MPa and that of porcelain veneered to porous zirconia was 33.6 to 35.1 MPa. This suggests that the veneering porcelain bonded strongly to porous zirconia although porous zirconia has a lower flexural strength than dense zirconia.

  1. Nonlinear evolution of a layered stratified shear flow

    Science.gov (United States)

    Lee, V.; Caulfield, C. P.

    2001-10-01

    We investigate numerically and theoretically the nonlinear evolution of a parallel shear flow at moderate Reynolds number which has embedded within it a mixed layer of intermediate fluid. The two relatively thin strongly stratified density interfaces are centered on the edges of the shear layer. We are particularly interested in the development of primary and secondary instabilities. We present the results of a stability analysis which predicts that such flows may be unstable to stationary vortical disturbances which are a generalization of an inviscid instability first considered by G.I. Taylor. We investigate the behavior of these "Taylor billows" at finite amplitude through two-dimensional numerical simulations. We observe that the braid regions connecting adjacent primary Taylor billows are susceptible to secondary, inherently two-dimensional instabilities. We verify that these secondary instabilities, which take the form of small elliptical vortices, arise due to a local intensification of the spanwise vorticity in the braid region.

  2. Movements of counterculture in Belo Horizonte

    Directory of Open Access Journals (Sweden)

    DÉBORA DE VIVEIROS PEREIRA

    2012-01-01

    Full Text Available This article proposes the analysis of the movements of counterculture in Belo Horizonte between 1968 and 1978, starting from the reports of the newspaper “Diário da Tarde”. The counterculture, movement of world proportions, started between 1950 and 1960, between Europe – in particular France, Germany and England – and the United States oAmerica, was spread throughout the world, especially after the“cultural revolution” of May 1968, in Paris. In Brazil, it became known especially through the “Tropicália” movement, which encompassed several artistic fields in a same group. In Belo Horizonte, especially, the analyses from the periodicals enabled the discovery and subdivision of artistic counterculture movements, “anti-art” and those deemed “threats” to society.

  3. Conservative management of displaced horizontal root fracture

    Directory of Open Access Journals (Sweden)

    Sanjeev Kunhappan

    2011-01-01

    Full Text Available Traumatic injuries of teeth are the main cause of emergency treatment in dental practice. Radicular fractures in permanent teeth are uncommon, being only 0.5-7% of the cases. Horizontal root fractures are more frequently observed in the maxillary anterior region of young male patients and vary in severity from enamel fractures to avulsions. Fracture occurs often in the middle-third of the root followed by apical and coronal third. The present case report describes a clinical case of a horizontal root fracture located at the middle third of a maxillary left-central incisor treated endodontically after approximating fracture segment with the help of orthodontic appliance. After 6 months follow-up, the tooth was asymptomatic with normal periodontal health.

  4. Instability of periodic MHD shear flows

    International Nuclear Information System (INIS)

    Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.

    2004-01-01

    The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations

  5. Shear flow generation due to electromagnetic instabilities

    International Nuclear Information System (INIS)

    Wakatani, M.; Sato, M.; Hamaguchi, S.; Miyato, N.

    2003-01-01

    Shear flow is the most important ingredient governing nonlinear behavior of many types of plasma instability. Electromagnetic effects on shear flow generation have been studied for an electro- magnetic drift wave called resistive drift-Alfven mode (RDAM) and a global MHD mode called resistive wall mode (RWM). For RDAM it is found that the generated shear flow stabilizes the dominant modes; however, other modes are destabilized. For RWM Maxwell stress due to magnetic fluctuations has a tendency to suppress the poloidal flow near the plasma surface, which gives almost same saturation level, since the shear flow stabilization disappears. (author)

  6. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  7. Search for horizontal bosons at the SSC

    International Nuclear Information System (INIS)

    Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.

    1984-01-01

    The production process anti p p → l - l' + + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels

  8. Spin stabilized magnetic levitation of horizontal rotors.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  9. Horizontal Collaboration for Sustainable Transport and Logistics

    OpenAIRE

    Pan, Shenle

    2017-01-01

    The Habilitation thesis (Habilitation à Diriger des Recherches) focuses on recent advances of research on the horizontal collaboration in logistics for sustainable transport and logistics. Firstly, past and recent challenges and evolutionary organisations in logistics are discussed. These challenges have resulted from changes in business environments and sustainability constraints. Evolutionary organisations are then proposed to deal with the challenges and constraints, e.g., from in-house lo...

  10. Horizontal infiltration and trace element measurements for ...

    African Journals Online (AJOL)

    Laboratory investigations of horizontal infiltration were carried out on three Zaria soils (Samaru, Tudun Wada and the Kubanni river basin Fadama wet-land soils) in Nigeria, which are principally alfisols. Diffusivity was found to be -77.5 x 10 -2 cm 2 s-1, -8.4 x 10 -2 cm 2 s-1 and -117.0 x 10 -2 cm 2 s-1 respectively for the ...

  11. Surgical treatment for paralytic horizontal strabismus

    Directory of Open Access Journals (Sweden)

    Feng Zhou*

    2015-08-01

    Full Text Available AIM: To observe the effect of surgery for paralytic horizontal strabismus and the paralytic horizontal strabismus performed by Jensen procedure with antagonist muscle of paralytic muscle recession and medial or lateral rectus extra large resection/recession.METHODS: Fifteen cases(17 eyeswith complete or nearly complete paralytic horizontal strabismus from January 2005 to August. 2014 in our hospital were assessed retrospectively,7 eyes of 7 cases with treatment group A were performed Jensen procedure combined antagonist muscle of paralytic muscle recession, 10 eyes of 8 cases with treatment group B were performed medial or lateral rectus extra large resection/recession. seventeen eyes of 15 cases with an average of 21±8.71mo follow-up were observed.RESULTS: All 17 eyes of 15 cases after the operation obtained satisfied effects, 16 eyes of 14 cases obtained ideal long-term effect. One eye of a patient with a 6mo follow-up was undercorrected of 30△. We found a varying degree of postoperative improvement in visual function. There was a significant reduction in the strabismus angle for distance and near(t=28.71, Pt=36.21, Pt=17.96, Pt=9.20,PCONCLUSION: Jensen procedure combined antagonist muscle of paralytic muscle recession and medial or lateral rectus extra large resection/recession is a safe and successful method of treatment in complete or nearly complete paralysis horizontal strabismus. Patients achieve orthophoria, improvement of the motor ability, and larger field of binocular single vision for long time.

  12. Horizontal vibrations of piles in a centrifuge

    International Nuclear Information System (INIS)

    Bourdin, B.

    1987-01-01

    The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr

  13. Promoting Corporate Social Responsibility in Logistics throughout Horizontal Cooperation

    Directory of Open Access Journals (Sweden)

    Angel A. Juan

    2014-03-01

    Full Text Available This paper discusses how Corporate Social Responsibility (CSR can be promoted in Logistics and Transportation (L&T companies by means of Horizontal Cooperation (HC practices. The L&T sector is experiencing important changes because of new trends in markets and society. These changes have a strong impact on the way L&T companies develop their distribution activities.On the one hand, globalisation and increasing competition are creating incentives for these companies to cooperate in different ways – with the aim of becoming more efficient by sharing resources and reducing costs. On the other hand, the increasing sustainability awareness within society is pressuring L&T companies to integrate CSR principles into their strategies and policies. Accordingly, this paper discusses the current trends in these areas and offers some examples of how HC can contribute to reduce both distributions costs as well as the environmental impact of the distribution activities.

  14. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  15. Construction of preheaters with horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Goetze

    1944-09-27

    This report involved construction of preheaters for distillation and cracking plants in the oil industry, particularly in America. The use of heat transmission by radiation was also a consideration here. The recycling of waste gases occurred, but was not the rule. A convection section was often built next to the radiation section, in which the discharge gases were used for heating the incoming product. The general arrangement of the preheaters was discussed. The first form was a rectangular box with fireproof lining with tubes arranged in a single row along the outer walls and sometimes in a double row on the ceiling. It consisted of smooth and finned tubes. From the simple form a double preheater was developed that allowed one or two common discharge flues to provide as large a heating surface as possible within a reasonable space. Other items discussed were recycling of waste gases, reasons for the choice of horizontal preheaters with radiation heating, the use of vertical tubes in the U.S.A. and elsewhere in the oil industry, details of horizontal preheater tubes, end closures, material, suspension, protection against overloading by radiation, circulation heating, burners, use of horizontal radiation preheaters in hydrogenation in the U.S.A., rebuilding I. G. preheaters, construction, tube supports, and masonry. A list of references on cracking, preheaters, heat transmission, and alloyed steels was given.

  16. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    Traditionally, material response to shear deformation has been studied with methods where the shear is gradually increasing from zero to the final value over a certain fixed deformation zone, e.g. in the well-known torsion test of a tube with a defined shear zone established by a machined...... circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  17. A biaxial method for inplane shear testing. [shear strain in composite materials

    Science.gov (United States)

    Bush, H. G.; Weller, T.

    1978-01-01

    A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.

  18. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    Science.gov (United States)

    2016-01-01

    14 Fig. 9 Load vs. deflection curves from short beam shear experiments ..........17 Fig. 10 Short beam shear specimens cracking in tension on...Walter et al.17 Fig. 10 Short beam shear specimens cracking in tension on the bottom of the specimen Approved for public release; distribution is...unlimited. 19 Fig. 11 Short beam shear specimens cracking as viewed from the side While the 2-D base composite produced a widespread

  19. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  20. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  1. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  2. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  3. Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model

    Science.gov (United States)

    Houchi, K.; Stoffelen, A.; Marseille, G. J.; de Kloe, J.

    2010-11-01

    The climatology of atmospheric horizontal wind and its vertical gradient, i.e., wind shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high-resolution radiosonde wind profiles up to about 30 km altitude are compared with the collocated operational ECMWF model for short-range forecast winds. Statistics of zonal and meridional winds are established from both data sets. The results show mainly similarity in the probability distributions of the modeled and observed horizontal winds, practically at all levels of the atmosphere, while at the same time the vertical shear of the wind is substantially underestimated in the model. The comparison of shear statistics of radiosonde and ECMWF model winds shows that the model wind shear mean and variability are on average a factor of 2.5 (zonal) and 3 (meridional) smaller than of radiosondes in the free troposphere, while in the stratosphere, the planetary boundary layer results are more variable. By applying vertical averaging to the radiosonde data, it is found that the effective vertical resolution of the ECMWF model is typically 1.7 km. Moreover, it is found for individually collocated radiosonde model wind and shear profiles that the model wind may lack in some cases variability larger than 5 m s-1 and 0.015 s-1, respectively, due mainly to the effect of lacking vertical resolution, in particular near the jets. Besides the general importance of this study in highlighting the difference in the representation of the atmospheric wind shear by model and observations, it is more specifically relevant for the future Atmospheric Dynamics Mission (ADM-Aeolus) of the European Space Agency due for launch in 2012. The results presented here are used to generate a realistic global atmospheric database, which is necessary to conduct simulations of the Aeolus Doppler wind lidar in order optimize its vertical sampling and processing.

  4. Influence of rotational axis height of back support on horizontal force applied to buttocks in a reclining wheelchair.

    Science.gov (United States)

    Kobara, Kenichi; Osaka, Hiroshi; Takahashi, Hisashi; Ito, Tomotaka; Fujita, Daisuke; Watanabe, Susumu

    2015-10-01

    Studies have not been conducted to investigate the influence of the height of the rotational axis of a wheelchair's back support on the shear force applied to the buttocks during the reclining motion. The purpose of this study was to investigate the influence of the difference in the rotational axis position of back support in the vertical direction on the horizontal force applied to buttocks for preventing decubitus ulcers. Repeated measures design. The subjects were 13 healthy adult men without leg and/or trunk diseases. The shear force was measured using a force plate. A comfortable sitting posture in the experimental chair was selected for measurement. The rotational axis was positioned 13 cm forward on the horizontal plane from the intersection between the seat and the back support. The axis positions on the vertical plane as two experimental conditions were the seat height and the 7.5-cm upward from the seat height which was nearer to the hip joint. In returning the back support to an upright position, the horizontal force was 12.4 ± 1.6 (percent body weight) under the seat height-axis condition and 10.1 ± 1.8 (percent body weight) under the upward-axis condition (p rotational axis of the back support to reduce the horizontal force applied to buttocks. This study shows one of the suggestions regarding seating approach for the prevention of decubitus ulcers. There is a possibility of reducing horizontal force applied to buttocks after reclined back support, by adjusting the height of the rotational axis position of wheelchair back support. © The International Society for Prosthetics and Orthotics 2014.

  5. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field.

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M S

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  6. Shear strength in corner region of reinforced concrete duct type structures to be embedded in soil

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Endo, T.

    1993-01-01

    Reinforced concrete ducts for accommodating emergency cooling water pipes are generally embedded in soil. The structures is classified as one of the most important structures in terms of earthquake resistant design. During a strong earthquake it is subjected to shear deformations in concerted movement with surrounding soil. The comer regions of the duct should be designed against shear with moment combined. However, the complicated stress conditions in the region render the design more intricate in comparison with the case of simple determinate RC beam type structures. With the above situation in mind an experimental study was conducted, in which prototype as well as one half scale models representing the stress conditions in the region of interest were loaded and brought to failure in shear. The cross section of the prototype test model without shear reinforcements was 60 (height) x 30cm (width), and the tensile reinforcement ratio was 2.58%. The following results were obtained within the limit of the experimental study. (1) The shear capacity predicted by Japanese Design Code for linear RC members over-estimated the experimental ones with a considerably large safety margin of 4.4-5.0. (2) An improved design procedure to be applied to the specific structure was proposed, which gave a reasonable safety factor against shear failure of 1.7-2.0. (3) Combined smeared and discrete cracking model was utilized to simulate the shear failure mechanism, which could realistically pursue experimental behaviors. (author)

  7. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shuncai [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)], E-mail: wangs@soton.ac.uk; Starink, Marco J.; Gao Nong; Qiao Xiaoguang [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Xu Cheng [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Langdon, Terence G. [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2008-09-15

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {l_brace}1 1 1{r_brace}<1 1 0> and {l_brace}0 0 1{r_brace}<1 1 0> shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss.

  8. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    1999-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  9. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    2001-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  10. Thermomechanics of an extensional shear zone, Raft River metamorphic core complex, NW Utah

    Science.gov (United States)

    Gottardi, Raphaël; Teyssier, Christian

    2013-08-01

    A detailed structural and microstructural analysis of the Miocene Raft River detachment shear zone (NW Utah) provides insight into the thermomechanical evolution of the continental crust during extension associated with the exhumation of metamorphic core complexes. Combined microstructural, electron backscattered diffraction, strain, and vorticity analysis of the very well exposed quartzite mylonite show an increase in intensity of the rock fabrics from west to east, along the transport direction, compatible with observed finite strain markers and a model of ``necking'' of the shear zone. Microstructural evidence (quartz microstructures and deformation lamellae) suggests that the detachment shear zone evolved at its peak strength, close to the dislocation creep/exponential creep transition, where meteoric fluids played an important role on strain hardening, embrittlement, and eventually seismic failure. Empirically calibrated paleopiezometers based on quartz recrystallized grain size and deformation lamellae spacing show very similar results, indicate that the shear zone developed under stress ranging from 40 MPa to 60 MPa. Using a quartzite dislocation creep flow law we further estimate that the detachment shear zone quartzite mylonite developed at a strain rates between 10-12 and 10-14 s-1. We suggest that a compressed geothermal gradient across this detachment, which was produced by a combination of ductile shearing, heat advection, and cooling by meteoric fluids, may have triggered mechanical instabilities and strongly influenced the rheology of the detachment shear zone.

  11. Punching shear capacity of reinforced concrete slabs with headed shear studs

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Pop, Anamaria

    2015-01-01

    . To design shear reinforcement in slabs, on the other hand, the engineer must settle for an empirical equation. The aim of the study reported is to demonstrate that it is possible in a simple manner to design shear reinforcement in slabs based on the same rigid-plasticity foundation as for beam shear design...

  12. Simultaneous Rheoelectric Measurements of Strongly Conductive Complex Fluids

    Science.gov (United States)

    Helal, Ahmed; Divoux, Thibaut; McKinley, Gareth H.

    2016-12-01

    We introduce an modular fixture designed for stress-controlled rheometers to perform simultaneous rheological and electrical measurements on strongly conductive complex fluids under shear. By means of a nontoxic liquid metal at room temperature, the electrical connection to the rotating shaft is completed with minimal additional mechanical friction, allowing for simultaneous stress measurements at values as low as 1 Pa. Motivated by applications such as flow batteries, we use the capabilities of this design to perform an extensive set of rheoelectric experiments on gels formulated from attractive carbon-black particles, at concentrations ranging from 4 to 15 wt %. First, experiments on gels at rest prepared with different shear histories show a robust power-law scaling between the elastic modulus G0' and the conductivity σ0 of the gels—i.e., G0'˜σ0α, with α =1.65 ±0.04 , regardless of the gel concentration. Second, we report conductivity measurements performed simultaneously with creep experiments. Changes in conductivity in the early stage of the experiments, also known as the Andrade-creep regime, reveal for the first time that plastic events take place in the bulk, while the shear rate γ ˙ decreases as a weak power law of time. The subsequent evolution of the conductivity and the shear rate allows us to propose a local yielding scenario that is in agreement with previous velocimetry measurements. Finally, to establish a set of benchmark data, we determine the constitutive rheological and electrical behavior of carbon-black gels. Corrections first introduced for mechanical measurements regarding shear inhomogeneity and wall slip are carefully extended to electrical measurements to accurately distinguish between bulk and surface contributions to the conductivity. As an illustrative example, we examine the constitutive rheoelectric properties of five different grades of carbon-black gels and we demonstrate the relevance of this rheoelectric apparatus as a

  13. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán

    2015-01-01

    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  14. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed

  15. Microstructural and rheological evolution of calcite mylonites during shear zone thinning: Constraints from the Mount Irene shear zone, Fiordland, New Zealand

    Science.gov (United States)

    Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.

    2018-01-01

    Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism

  16. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

    CERN Document Server

    Krüger, Timm

    2012-01-01

    The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are obser...

  17. deposit, Singhbhum shear zone, eastern India

    Indian Academy of Sciences (India)

    Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between ...

  18. Solvable groups and a shear construction

    DEFF Research Database (Denmark)

    Freibert, Marco; Swann, Andrew Francis

    The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discuss...... other examples of geometric structures that may be obtained from the shear construction....

  19. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  20. Zonal flow shear amplification by depletion of anisotropic potential eddies in a magnetized plasma: idealized models and laboratory experiment

    International Nuclear Information System (INIS)

    Fedorczak, N; Manz, P; Chakraborty Thakur, S; Xu, M; Tynan, G R

    2013-01-01

    The consequences of vorticity conservation on the spatio-temporal interaction of a E × B zonal shear with a generic pattern of plasma potential modes are investigated in a magnetized plasma environment. Eddies organized on a chain along the zonal direction are locally depleted, resulting in what appears to be a radial decorrelation by the shear flow in the absence of dissipation. The eddy depletion occurs due to a transfer of enstrophy from the chain to the shear flow during the progressive growth in the chain anisotropy. The rate of zonal shear acceleration is derived analytically and its expression is validated by numerical simulations. The rate is proportional to the chain amplitude in the weak shear regime and to the shearing rate in the strong shear regime. Basic properties of the model are validated with fast visible imaging data collected on a magnetized plasma column experiment. A characteristic vorticity flux across the edge shear layer of tokamak plasmas is associated with the model predictions. The dependence of the interaction rate with turbulence amplitude and shearing rate could be an important ingredient of the low to high confinement mode transition. (paper)

  1. Hierarchical order in wall-bounded shear turbulence

    International Nuclear Information System (INIS)

    Carbone, F.; Aubry, N.

    1996-01-01

    Since turbulence at realistic Reynolds numbers, such as those occurring in the atmosphere or in the ocean, involve a high number of modes that cannot be resolved computationally in the foreseeable future, there is a strong motivation for finding techniques which drastically decrease the number of such required modes, particularly under inhomogeneous conditions. The significance of this work is to show that wall-bounded shear turbulence, in its strongly inhomogeneous direction (normal to the wall), can be decomposed into one (or a few) space endash time mother mode(s), with each mother generating a whole family of modes by stretching symmetry. In other words, the generated modes are similar, dilated copies of their mother. In addition, we show that the nature of all previous modes strongly depends on the symmetry itself. These findings constitute the first scaling theory of inhomogeneous turbulence. copyright 1996 American Institute of Physics

  2. Behaviour of Corroded Single Stud Shear Connectors

    Directory of Open Access Journals (Sweden)

    Wen Xue

    2017-03-01

    Full Text Available In this study, the effect of corrosion on the static behavior of stud shear connectors was investigated. An innovative test setup for single stud shear connectors was designed and established. Two series of specimens having different stud diameters were fabricated and tested. The test specimens were firstly corroded to different corrosion rates by the electronic accelerating method. Static loading tests were then performed to obtain the load-slip curves and ultimate strengths of the corroded test specimens. The actual corrosion rates were measured from the studs obtained from the tested specimens. The test results were compared with the push out test specimens having similar corrosion rates. It is shown that the test results obtained from the single stud shear connectors are conservative compared with the corroded push test specimens, which prove the validation of the single stud shear connector test method. The effect of corrosion on the behavior of stud shear connectors was also presented.

  3. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  4. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  5. Imaging Shear Strength Along Subduction Faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-11-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  6. Simple shear of deformable square objects

    Science.gov (United States)

    Treagus, Susan H.; Lan, Labao

    2003-12-01

    Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

  7. Imaging shear strength along subduction faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  8. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    Science.gov (United States)

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  9. GABA sensitivity of spectrally classified horizontal cells in goldfish retina

    NARCIS (Netherlands)

    Verweij, J.; Kamermans, M.; Negishi, K.; Spekreijse, H.

    1998-01-01

    We studied the GABA sensitivity of horizontal cells in the isolated goldfish retina. After the glutamatergic input to the horizontal cells was blocked with DNQX, GABA depolarized the monophasic and biphasic horizontal cells. The pharmacology of these GABA-induced depolarizations was tested with the

  10. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  12. Supersonic Love waves in strong piezoelectrics of symmetry mm2

    International Nuclear Information System (INIS)

    Darinskii, A. N.; Weihnacht, M.

    2001-01-01

    A study has been made of the Love wave propagation on piezoelectric substrates of symmetry mm2. It has been shown that under certain conditions the velocity of the Love wave exceeds that of shear horizontal (SH) bulk waves in the substrate. This occurs when the slowness curve of SH bulk waves in the substrate either has a concavity or is convex with nearly zero curvature. For such 'supersonic' Love waves to appear, it is also required that the substrate as well as the layer be specially oriented and that their material constants fulfill a number of inequalities. Numerical computations have been carried out for a number of structures. The results of numerical computations have been compared with approximate analytical estimations. [copyright] 2001 American Institute of Physics

  13. Kinetic Analysis of Horizontal Plyometric Exercise Intensity.

    Science.gov (United States)

    Kossow, Andrew J; Ebben, William P

    2018-05-01

    Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.

  14. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  15. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  16. Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump.

    Science.gov (United States)

    Michels, Michiel H A; van der Goot, Atze Jan; Vermuë, Marian H; Wijffels, René H

    2016-01-01

    The tolerance to shear stress of Tetraselmis suecica , Isochrysis galbana , Skeletonema costatum , and Chaetoceros muelleri was determined in shear cylinders. The shear tolerance of the microalgae species strongly depends on the strain. I. galbana , S. costatum , and C. muelleri exposed to shear stress between 1.2 and 5.4 Pa resulted in severe cell damage. T. suecica is not sensitive to stresses up to 80 Pa. The possibility to grow these algae in a tubular photobioreactor (PBR) using a centrifugal pump for recirculation of the algae suspension was studied. The shear stresses imposed on the algae in the circulation tubes and at the pressure side of the pump were 0.57 and 1.82 Pa, respectively. The shear stress tolerant T. suecica was successfully cultivated in the PBR. Growth of I. galbana , S. costatum , and C. muelleri in the tubular PBR was not observed, not even at the lowest pumping speed. For the latter shear sensitive strains, the encountered shear stress levels were in the order of magnitude of the determined maximum shear tolerance of the algae. An equation was used to simulate the effect of possible damage of microalgae caused by passages through local high shear zones in centrifugal pumps on the total algae culture in the PBR. This simulation shows that a culture of shear stress sensitive species is bound to collapse after only limited number of passages, confirming the importance of considering shear stress as a process parameter in future design of closed PBRs for microalgal cultivation.

  17. A horizontal multi-purpose microbeam system

    Science.gov (United States)

    Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.

    2018-04-01

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  18. Polarized proton target with horizontal spin orientation

    International Nuclear Information System (INIS)

    Bunyatova, Eh.I.; Kiselev, Yu.F.; Kozlenko, N.G.

    1988-01-01

    Proton target, the polarization vector of which may be arbitrary oriented in horizontal plane relatively to the beam, is developed and tested. 70% value of polarization is obtained. 0.6 K temperature is acquired through 3 He pumping out continuous cycle. 1.2-propylene glycol - Cr(V) was used as working medium. Magnetic system is made in the form of Helmholtz sperconducting coils with working curren close to critical one. Target polarization is measured by NMR technique using original system of proton signal processing

  19. Decontamination of large horizontal concrete surfaces outdoors

    International Nuclear Information System (INIS)

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed

  20. A Horizontal Multi-Purpose Microbeam System.

    Science.gov (United States)

    Xu, Y; Randers-Pehrson, G; Marino, S A; Garty, G; Harken, A; Brenner, D J

    2018-04-21

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  1. Spatial-Temporal Instability of an Inviscid Shear Layer

    Directory of Open Access Journals (Sweden)

    Qing-fei Fu

    2017-01-01

    Full Text Available In this work, we explore the transition of absolute instability and convective instability in a compressible inviscid shear layer, through a linear spatial-temporal instability analysis. From linearized governing equations of the shear layer and the ideal-gas equation of state, the dispersion relation for the pressure perturbation was obtained. The eigenvalue problem for the evolution of two-dimensional perturbation was solved by means of shooting method. The zero group velocity is obtained by a saddle point method. The absolute/convective instability characteristics of the flow are determined by the temporal growth rate at the saddle point. The absolute/convective nature of the flow instability has strong dependence on the values of the temperature ratio, the velocity ratio, the oblique angle, and M number. A parametric study indicates that, for a great value of velocity ratio, the inviscid shear layer can transit to absolute instability. The increase of temperature ratio decreases the absolute growth rate when the temperature ratio is large; the effect of temperature ratio is opposite when the temperature ratio is relatively small. The obliquity of the perturbations would cause the increase of the absolute growth rate. The effect of M number is different when the oblique angle is great and small. Besides, the absolute instability boundary is found in the velocity ratio, temperature ratio, and M number space.

  2. Shear Stress Transmission Model for the Flagellar Rotary Motor

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2008-09-01

    Full Text Available Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the charasteristic torque-velocity relationship of the flagellar rotation.

  3. Plankton bloom controlled by horizontal stirring

    Science.gov (United States)

    McKiver, W.; Neufeld, Z.; Scheuring, I.

    2009-10-01

    Here we show a simple mechanism in which changes in the rate of horizontal stirring by mesoscale ocean eddies can trigger or suppress plankton blooms and can lead to an abrupt change in the average plankton density. We consider a single species phytoplankton model with logistic growth, grazing and a spatially non-uniform carrying capacity. The local dynamics have multiple steady states for some values of the carrying capacity that can lead to localized blooms as fluid moves across the regions with different properties. We show that for this model even small changes in the ratio of biological timescales relative to the flow timescales can greatly enhance or reduce the global plankton productivity. Thus, this may be a possible mechanism in which changes in horizontal mixing can trigger plankton blooms or cause regime shifts in some oceanic regions. Comparison between the spatially distributed model and Lagrangian simulations considering temporal fluctuations along fluid trajectories, demonstrates that small scale transport processes also play an important role in the development of plankton blooms with a significant influence on global biomass.

  4. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  5. Shear Driven Synthesis of Polymeric Micro- and Nanomaterials

    Science.gov (United States)

    Tian, Tian

    Polymeric micro- and nanomaterials play a significant role in various current and emerging technologies. A liquid shear based method was developed to fabricate a wide range of polymeric materials, which include fibers, sheets, ribbons, rods and spheres in a scalable, cost-effective and simple way. During the process, droplet shearing, droplet deformation, droplet breaking up and polymer precipitation occur simultaneously. The size and morphology of the resultant structures are determined by the dominating process which is further controlled by the experimental parameters including polymer concentration, polymer molecular weight and antisolvent concentration. Among all of these structures, nanofibers have attracted the latest research interest due to the unique properties. Current leading fiber production approaches in the market possess certain drawbacks. For example, the throughput of electrospinning is limited to around 2.5 kg/hr and the diameter of fiber produced by wet spinning cannot be below micrometer while melt spinning is only applicable to melt-processable polymers. The breakthrough of our liquid shear driven technique for fiber synthesis is that it produces fibers with diameter from 200 nm to several micrometers from a wide range of liquid- processable polymers with high commercial yield (up to 12 kg/hr). Thus in Chapter 2, the optimum parameters range for fiber formation is established and the effects of those parameters on fiber size are investigated. In the original liquid shear method, medium with high viscosity is needed to exert strong shear stress on the droplet and to stretch the droplets to long strand. However, the viscous medium complicates the post sample washing procedure and introduces the potential slippery danger in the working area. Thus a non-viscous medium shearing method is developed in Chapter 3 and it is the first time proposed that the synthesis of PLA or PS nanofibers can be completed in the aqueous ethanol medium. Colloid science

  6. Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites

    DEFF Research Database (Denmark)

    Hashemi, Fariborz; Tahir, Paridah Md; Madsen, Bo

    2015-01-01

    In the present study, six different combinations of pultruded hybrid kenaf/glass composites were fabricated. The number of kenaf and glass rovings was specifically selected to ensure constant local fiber volume fractions in the composites. The volumetric composition of the composites was determined...... was increased as a function of the kenaf fiber volume fraction. A linear relationship with high correlation (R2=0.95) was established between the two volume fractions. Three types of voids were observed in the core region of the composites (lumen voids, interface voids and impregnation voids). The failure...... of the samples started with horizontal shear cracks that propagated into the core region, and ultimately the samples failed by a vertical crack. The interlaminar shear strength was found to decrease as a function of the hybrid fiber mixing ratio....

  7. Effects of CFRP retrofit on impact response of shear-deficient scaled reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Erfan Shafei

    Full Text Available An experimental procedure is carried out to investigate response features of semi-deep reinforced concrete (RC beams with dominant static shear failure subjected to low-velocity impact dynamic load both in intact and retrofitted cases. Built specimens have scaled geometry and material properties preserving physical similarity with full-scale members and are strengthened using externally bonded carbon fiber reinforced polymer (CFRP sheets. Conducted tests gather reliable and robust data revealing notable stiffness and strength recovery within skin attachment. Desired performance criterion is detected here as concrete flexural cracking along span only when brittle shear collapse is prevented. Peak absorbed impulse capacity is attained for unidirectional carbon fiber retrofit. Stiffness is recovered initially during first impacts and then starts degrading due to rupture of horizontal fibers in cross-ply retrofit, but provided stiffness is stable for unidirectional retrofit during all impacts.

  8. Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure

    Science.gov (United States)

    Zhang, Zhuangnan; Zhang, Yan

    2018-03-01

    With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.

  9. Another look at zonal flows: Resonance, shearing, and frictionless saturation

    Science.gov (United States)

    Li, J. C.; Diamond, P. H.

    2018-04-01

    We show that shear is not the exclusive parameter that represents all aspects of flow structure effects on turbulence. Rather, wave-flow resonance enters turbulence regulation, both linearly and nonlinearly. Resonance suppresses the linear instability by wave absorption. Flow shear can weaken the resonance, and thus destabilize drift waves, in contrast to the near-universal conventional shear suppression paradigm. Furthermore, consideration of wave-flow resonance resolves the long-standing problem of how zonal flows (ZFs) saturate in the limit of weak or zero frictional drag, and also determines the ZF scale. We show that resonant vorticity mixing, which conserves potential enstrophy, enables ZF saturation in the absence of drag, and so is effective at regulating the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-regulation effect in an extended 0D predator-prey model of drift-ZF turbulence. This analysis determines the saturated ZF shear and shows that the mesoscopic ZF width scales as LZ F˜f3 /16(1-f ) 1 /8ρs5/8l03 /8 in the (relevant) adiabatic limit (i.e., τckk‖2D‖≫1 ). f is the fraction of turbulence energy coupled to ZF and l0 is the base state mixing length, absent ZF shears. We calculate and compare the stationary flow and turbulence level in frictionless, weakly frictional, and strongly frictional regimes. In the frictionless limit, the results differ significantly from conventionally quoted scalings derived for frictional regimes. To leading order, the flow is independent of turbulence intensity. The turbulence level scales as E ˜(γL/εc) 2 , which indicates the extent of the "near-marginal" regime to be γL<εc , for the case of avalanche-induced profile variability. Here, εc is the rate of dissipation of potential enstrophy and γL is the characteristic linear growth rate of fluctuations. The implications for dynamics near marginality of the strong scaling of saturated E with γL are discussed.

  10. APPLICATION OF THE DISTRIBUTED PLASTICITY CONCEPT IN QUICK NONLINEAR ANALYSIS OF REINFORCED CONCRETE SHEAR WALLS

    Directory of Open Access Journals (Sweden)

    Trifa F.S.

    2015-05-01

    Full Text Available The paper presents a simplified calculation method to predict, as accurate as possible, the most important characteristics of the behaviour of the slender reinforced concrete shear walls in the inelastic range: failure mode, strength capacity, flexural and shear deformations, sectional and element ductility. The formulation is based on nonlinear beam element with taking into account the influence of shear, both on strength and stiffness of the wall. The principal parameters incorporated in the calculation model are: the rectangular shape of the cross section, the aspect ratio of the wall, the most accurate constitutive relationships for the compressed concrete and for the reinforcement steel, both in compression and in tension (including the strengthening of the steel after yielding, the variation of the Poisson ratio of the concrete, the amount and distribution of the vertical reinforcement. The model uses the concept of distributed (smeared plasticity along the element and so the flexural deformations are computed by integrating the actual curvatures on the height of the wall. The shear deformations are also calculated, in agreement with the results of some recent experimental researches. The calculation method was then applied to two experimental wall specimens and their force – horizontal top displacement curves were plotted.

  11. Shear-induced APAP de-agglomeration.

    Science.gov (United States)

    Llusa, Marcos; Levin, Michael; Snee, Ronald D; Muzzio, Fernando J

    2009-12-01

    Active pharmaceutical ingredient agglomerates can generate many solid product regulatory compliance issues. To study the effects of shear rate, strain, type of excipient, and grade of acetaminophen (APAP) on the process of APAP de-agglomeration. A shear-controlled environment is used to expose six different blends that consist of one of three APAP grades and one of two possible types of excipient to 10 different combinations of shear rate and strain. APAP agglomerates are sifted and weighed. Finer APAP grades lead to blends with more APAP agglomerates and type of excipient only affects the de-agglomeration process for the finest APAP grade. De-agglomeration proceeds mainly as a function of strain with a minor contribution toward further de-agglomeration when larger shear rates are used. When mechanical stress (which us proportional to shear rate) overcomes interparticle forces, de-agglomeration occurs. Higher shear rates (and stress) contribute slightly to further APAP de-agglomeration. Extended exposure to stress (strain) reduces the size and the number of agglomerates. Blends with finer APAP present more agglomerates, particularly after low strain exposure. This article presents a useful method for formulation and process development. Exposing blends to higher shear rates and especially to strain mitigates APAP agglomeration in blends. Finer APAP presents more agglomerates and the type of excipient used affects the degree of APAP agglomeration.

  12. Surface shear inviscidity of soluble surfactants.

    Science.gov (United States)

    Zell, Zachary A; Nowbahar, Arash; Mansard, Vincent; Leal, L Gary; Deshmukh, Suraj S; Mecca, Jodi M; Tucker, Christopher J; Squires, Todd M

    2014-03-11

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 10(3)-10(4) times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants.

  13. Shear rheology of molten crumb chocolate.

    Science.gov (United States)

    Taylor, J E; Van Damme, I; Johns, M L; Routh, A F; Wilson, D I

    2009-03-01

    The shear rheology of fresh molten chocolate produced from crumb was studied over 5 decades of shear rate using controlled stress devices. The Carreau model was found to be a more accurate description than the traditional Casson model, especially at shear rates between 0.1 and 1 s(-1). At shear rates around 0.1 s(-1) (shear stress approximately 7 Pa) the material exhibited a transition to a solid regime, similar to the behavior reported by Coussot (2005) for other granular suspensions. The nature of the suspension was explored by investigating the effect of solids concentration (0.20 chocolate was then compared with the rheology of (1) a synthetic chocolate, which contained sunflower oil in place of cocoa butter, and (2) a suspension of sugar of a similar size distribution (volume mean 15 mum) in cocoa butter and emulsifier. The chocolate and synthetic chocolate showed very similar rheological profiles under both steady shear and oscillatory shear. The chocolate and the sugar suspension showed similar Krieger-Dougherty dependency on volume fraction, and a noticeable transition to a stiff state at solids volume fractions above approximately 0.5. Similar behavior has been reported by Citerne and others (2001) for a smooth peanut butter, which had a similar particle size distribution and solids loading to chocolate. The results indicate that the melt rheology of the chocolate is dominated by hydrodynamic interactions, although at high solids volume fractions the emulsifier may contribute to the departure of the apparent viscosity from the predicted trend.

  14. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  15. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953...

  16. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    combinations of reinforcement and for variable slenderness ratios. Theoretical approaches will be evaluated and compared with the test results of several test series. The load bearing capacity of shear reinforced aircrete is highly dependent on the anchorage and bond behaviour of the shear reinforcement......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  17. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  18. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  19. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    KAUST Repository

    Traidia, Abderrazak

    2013-07-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal GTA welding of stainless steels. Buoyancy-induced flow and the sagging of the pool free surface, under the action of gravity, are found to be responsible for the weld asymmetry and the decrease in the weld penetration at the bottom sidewall. The numerical results clearly emphasized the beneficial role of the Marangoni shear stress in limiting the asymmetry of horizontal GTA welds. An additional experimental investigation showed that the asymmetry in the weld shape can be reduced when placing the lowest sulfur content component at the bottom side. © 2013 Elsevier B.V. All rights reserved.

  20. A novel horizontal to vertical spectral ratio approach in a wired structural health monitoring system

    OpenAIRE

    F. P. Pentaris

    2014-01-01

    This work studies the effect ambient seismic noise can have on building constructions, in comparison with the traditional study of strong seismic motion in buildings, for the purpose of structural health monitoring. Traditionally, engineers have observed the effect of earthquakes on buildings by usage of seismometers at various levels. A new approach is proposed in which acceleration recordings of ambient seismic noise are used and horizontal to vertical spectra ratio (HVSR)...

  1. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    Energy Technology Data Exchange (ETDEWEB)

    J Squire, A Bhattacharjee [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-07-01

    We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).

  2. Undulatory swimming in shear-thinning fluids: Experiments with Caenorhabditis elegans

    Science.gov (United States)

    Gagnon, David; Arratia, Paulo

    2015-11-01

    The swimming behavior of microorganisms can be strongly affected by the rheology of their fluidic environment. In this talk, we experimentally investigate the swimming behavior of the nematode Caenorhabditis elegans (~1 mm length, 80 μm diameter) in shear-thinning fluids using tracking and velocimetry methods. We find substantial differences in the resulting flow fields between the shear-thinning and Newtonian cases, even though the swimming kinematics (e.g. speed and frequency) remain similar. For example, velocimetry data show that shear-thinning viscosity enhances vorticity and increases circulation near the strongest body vortex, located near the head of the nematode. These findings are in good agreement with recent theoretical and numerical results. We then estimate the local viscosity around the swimmer, measure the spatial decay of the flow field, and estimate the mechanical power (i.e. viscous dissipation) due to the worm's motion in shear-thinning fluids. We find that the flow decays more slowly in shear-thinning fluids than in Newtonian fluids, but the resulting mechanical power is approximately the same for swimming in shear-thinning fluids when compared to the Newtonian case.

  3. Microscopic dynamics and velocity profiles of bacterial superfluids under oscillatory shear

    Science.gov (United States)

    Cheng, Xiang; Guo, Shuo; Samanta, Devranjan; Peng, Yi; Xu, Xinliang

    Bacterial suspensions a premier example of active fluids show an unusual response to shear stresses. Rather than increasing the viscosity of the suspending fluid, swimming bacteria can self-organize into collective flows under shear, turning the suspension into a ``superfluid'' with zero apparent viscosity. Although the existence of the bacterial superfluid has been demonstrated in bulk rheology measurements, little is known about the microscopic dynamics of such an exotic phase. Here, by combining sensitive rheology measurements with high-speed confocal microscopy, we study the detailed 3D dynamics of concentrated bacterial suspensions confined in narrow gaps under oscillatory shear. We find that sheared bacterial suspensions in the superfluidic phase exhibit velocity profiles with strong spatial heterogeneity, unexpected from the established hydrodynamic theory of active fluids. We quantitatively explain the observed velocity profiles by considering a balance of active stresses and shear stresses in an ensemble average. Our experiments reveal a profound influence of shear flows on bacterial locomotion and provide new insights to the origin of the unique flow behaviors of active fluids.

  4. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Tanaka, Hajime

    2018-01-02

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  5. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids

    Science.gov (United States)

    Ingebrigtsen, Trond S.; Tanaka, Hajime

    2018-01-01

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  6. Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box

    Energy Technology Data Exchange (ETDEWEB)

    Squire, J.; Bhattacharjee, A. [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2014-12-10

    We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region of space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.

  7. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    International Nuclear Information System (INIS)

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-01-01

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  8. Abundance Analysis of Red Horizontal Branch Stars

    Science.gov (United States)

    Jafarzadeh, S.; Lagerholm, C.; Mikolaitis, Š.

    2008-12-01

    During the Observational Stellar Astrophysics research course in Lithuania, we analyzed the spectra of four red horizontal branch stars obtained on the Nordic Optical Telescope and FIES spectrograph. For the analysis we used the program SIU running under IDL. Overall, the metallicity for these stars seems to be higher than what is listed in the literature. We have determined the main atmospheric parameters and abundances of C, N, O and Mg chemical elements. We were only able to get the [O/Fe] abundance for one star because of telluric lines. The abundances were compared with stellar evolutionary models, both for finding the stellar mass and to investigate how well these stars follow theoretical predictions of evolutionary abundance alterations.

  9. Horizontal symmetries for the supersymmetric flavor problem

    CERN Document Server

    Pomarol, A; Pomarol, Alex; Tommasini, Daniele

    1996-01-01

    The heaviness of the third family fermions and the experimental absence of large flavor violating processes suggest, in supersymmetric theories, that the three families belong to a 2+1 representation of a horizontal symmetry G_H. In this framework, we discuss a class of models based on the group U(2) that describe the fermion flavor structure and are compatible with an underlying GUT. We study the phenomenology of these models and focus on two interesting scenarios: In the first one, the first and second family scalars are assumed to be heavier than the weak scale allowing for complex soft supersymmetry breaking terms. In the second one, all the CP-violating phases are assumed to be small. Both scenarios present a rich phenomenology in agreement with constraints from flavor violating processes and electric dipole moments.

  10. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Science.gov (United States)

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  11. Automating horizontal boring and milling machine

    International Nuclear Information System (INIS)

    Naqvi, S.A.R.; Mahmood, T.; Choudhry, M.A.; Hanif, A.

    2012-01-01

    Aiming at the requirements of modification for many old import machine tools in industry, the schemes suited to the renovation are presented in this paper. A horizontal boring and milling machine (HBM) involved in machining of tank Al-Khalid has been modified using Mitsubishi FX-1N and FX-2N PLC. The developed software is for control of all the functions of the said machine. These functions include power on/off oil pump, spindle rotation and machine movement in all axes. All the decisions required by the machine for actuation of instructions are based on the data acquired from the control panel, timers and limit switches. Also the developed software minimize the down time, safety of operator and error free actuation of instructions. (author)

  12. Modelling the horizontal steam generator with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Ylijoki, J. [VTT Energy, Espoo (Finland); Palsinajaervi, C.; Porkholm, K. [IVO International Ltd, Vantaa (Finland)

    1995-12-31

    In this paper the capability of the five- and six-equation models of the simulation code APROS to simulate the behaviour of the horizontal steam generator is discussed. Different nodalizations are used in the modelling and the results of the stationary state runs are compared. Exactly the same nodalizations have been created for the five- and six-equation models. The main simulation results studied in this paper are void fraction and mass flow distributions in the secondary side of the steam generator. It was found that quite a large number of simulation volumes is required to simulate the distributions with a reasonable accuracy. The simulation results of the different models are presented and their validity is discussed. (orig.). 4 refs.

  13. Cues for localization in the horizontal plane

    DEFF Research Database (Denmark)

    Jeppesen, Jakob; Møller, Henrik

    2005-01-01

    Spatial localization of sound is often described as unconscious evaluation of cues given by the interaural time difference (ITD) and the spectral information of the sound that reaches the two ears. Our present knowledge suggests the hypothesis that the ITD roughly determines the cone of the perce...... to be necessary for localization in the sense that sources are localized well when the two types of cues are correct. When the cues are severely conflicting the localization performance is highly degraded....... manipulated in HRTFs used for binaural synthesis of sound in the horizontal plane. The manipulation of cues resulted in HRTFs with cues ranging from correct combinations of spectral information and ITDs to combinations with severely conflicting cues. Both the ITD and the spectral information seem...

  14. Horizontal Drop of 21- PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design

  15. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  16. Measurement of faecal sludge in-situ shear strength and density

    African Journals Online (AJOL)

    2014-01-10

    Jan 10, 2014 ... device to physically characterise pit latrine sludge through in-situ measurement of its shear strength. The machine produces ... These include studies on factors affecting pit function and fill-up rates as well as scientific tests on ..... ral degradation processes producing a thick, strong sludge, whereas in reality ...

  17. Quality of shear fractionated wheat gluten – comparison to commercial vital wheat gluten

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2011-01-01

    The functional properties of gluten obtained with a shear-induced separation process, recently proposed by Peighambardoust et al. (2008), are compared with a commercially available vital wheat gluten. Two tests were performed. First, a relatively strong wheat flour, Soissons, was enriched with

  18. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Directory of Open Access Journals (Sweden)

    Young-Sun Choun

    2015-10-01

    Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  19. Effect of cohesion on local compaction and granulation of sheared soft granular materials

    NARCIS (Netherlands)

    Roy, Sudeshna; Luding, Stefan; Weinhart, Thomas

    2017-01-01

    This paper results from an ongoing investigation of the effect of cohesion on the compaction of sheared soft wet granular materials. We compare dry non-cohesive and wet moderately-to-strongly cohesive soft almost frictionless granular materials and report the effect of cohesion between the grains on

  20. EFFECT OF SHEAR ON THE DESORPTION OF OLIGOMERS IN NANOSCOPICALLY CONFINED FILMS

    NARCIS (Netherlands)

    MANIAS, E; HADZIIOANNOU, G; TENBRINKE, G

    1994-01-01

    Bitsanis et al. J. Chem. Phys. 99, 5520 (1993) found that in nanoscopically confined films between strongly physisorbing surfaces chains with many contacts with the walls are irreversibly adsorbed. When shear is imposed to these systems molecular dynamics (MD) simulations show that the majority of

  1. Natural convection in a horizontal fluid layer periodically heated from above and below.

    Science.gov (United States)

    Hossain, M Z; Floryan, J M

    2015-08-01

    Natural convection in a horizontal slot heated from above and from below has been considered. Each heating has a certain spatial distribution. It has been demonstrated that a wide variety of convection patterns can be generated by changing the relative position of both heating patterns. A significant intensification of convection, compared to convection resulting from heating applied at one wall only, results if there is no phase shift between both patterns, while a significant reduction of convection results from the phase shift corresponding to half of the heating wavelength. The system generates a nonzero mean shear stress at each wall for all phase shifts except shifts corresponding to half of and one full heating wavelength. This effect, which is generated within one convection cell, gives rise to a global force which may lead to a thermally induced drift of the walls if such a drift was allowed.

  2. Natural convection - radiation interaction in boundary layer flow over horizontal surfaces

    International Nuclear Information System (INIS)

    Ali, M.M.; Chen, T.S.; Armaly, B.F.

    1982-01-01

    A numerical model is developed for natural convection-radiation interaction in the boundary layer over a semi-infinite horizontal flat plate with one hot and one cold surface. The fluid is assumed to be gray, to emit, absorb, be nonscattering, and constant with a density variation in the vertical direction, which induces a buoyancy force. Two-dimensional, boundary-layer equations are defined, and the radiative heat flux is simplified using a Rosseland approximation. Conservation equations are transformed into a system of nonlinear ordinary differential equations which can be solved simultaneously with a Runge-Kutta integration scheme, along with the Newton-Raphson shooting technique. The thermal radiation is found to enhance the wall shear stress and the surface heat transfer rate on both the hot and cold sides

  3. Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation

    Science.gov (United States)

    Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.

  4. Turbulent shear layers in confining channels

    Science.gov (United States)

    Benham, Graham; Castrejon-Pita, Alfonso; Hewitt, Ian; Please, Colin; Style, Rob; Bird, Paul

    2017-11-01

    The development of shear layers are ubiquitous in a wide range of situations, from diffusers, nozzles, turbines and ducts to urban air flow and geophysical flows. In this talk we present a simple model for the development of shear layers between flows that mix in confining channels. The model, comprising two plug flow regions separated by a linear shear layer, shows good agreement with both laboratory experiments and computational turbulence modelling (at a fraction of the computation time). Such efficient models, capable of capturing and exhibiting the main characteristics of the turbulent shear layers, are expected to be useful for both modelling and design purposes. We demonstrate the latter by showing how the model can be utilised to optimise pressure recovery in diffusers with non-uniform inflows. EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling, VerdErg Renewable Energy Limited, John Fell Fund (Oxford University Press).

  5. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  6. Electrostatic ion cyclotron velocity shear instability

    Science.gov (United States)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  7. Recent progress in shear punch testing

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Toloczko, M.B.; Lucas, G.E.

    1994-09-01

    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys

  8. Shear strength of clay and silt embankments.

    Science.gov (United States)

    2009-09-01

    Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...

  9. Immiscible blend morphology after shear and elongation

    Science.gov (United States)

    Batch, Gibson L.; Trifkovic, Milana; Hedegaard, Aaron; Macosko, Christopher W.

    2015-05-01

    This work examines the role of shear and extensional strain on immiscible blend morphology, namely domain size, orientation, and co-continuity. The domain size reduces with surface tension similar to what is observed with isolated droplets. The domain size is shown to increase with shear strain due to coalescence. Hence the best mixing is found with low shear strains, i.e. low rates of shear and short durations of time. Extensional strain (extrusion draw ratio DR) reduces phase width and thickness with a DR-0.5 dependence, suggesting the transformation to a fibrilar morphology. The critical draw ratio for morphology transformation is approximately 7, in agreement with observations by Grace for droplet breakup in elongation. Fibrilar morphology is also consistent with a large increase in strain-to-break in the drawn film and with observed creep and optical scattering behavior.

  10. Recent progress in shear punch testing

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Toloczko, M.B.; Lucas, G.E. [Univ. of California, Santa Barbara, CA (United States)

    1994-09-01

    The shear punch test was developed in response to the needs of the materials development community for small-scale mechanical properties tests. Such tests will be of great importance when a fusion neutron simulation device is built, since such a device is expected to have a limited irradiation volume. The shear punch test blanks a circular disk from a fixed sheet metal specimen, specifically a TEM disk. Load-displacement data generated during the test can be related to uniaxial tensile properties such as yield and ultimate strength. Shear punch and tensile tests were performed at room temperature on a number of unirradiated aluminum, copper, vanadium, and stainless steel alloys and on several irradiated aluminum alloys. Recent results discussed here suggest that the relationship between shear punch strength and tensile strength varies with alloy class, although the relationship determined for the unirradiated condition remains valid for the irradiated aluminum alloys.

  11. Thermodynamics of dilute gases in shear flow

    Science.gov (United States)

    Jou, D.; Criado-Sancho, M.

    2001-03-01

    We consider the effect of shear and normal viscous pressures on the non-equilibrium entropy of ideal gases in Couette flow. These results extend the previous ones (Bidar et al., Physica A 233 (1996) 163), where normal pressure effects were ignored. Furthermore, we analyze the non-equilibrium contributions to the chemical potential, which may be useful in the analysis of shear-induced effects on colligative properties and chemical equilibrium.

  12. Modeling and implementation of wind shear data

    Science.gov (United States)

    Frost, Walter

    1987-01-01

    The problems of implementing the JAWS wind shear data are discussed. The data sets are described from the view of utilizing them in an aircraft performance computer program. Then, some of the problems of nonstandard procedures are described in terms of programming the equations of aircraft motion when the effects of temporal and spatially variable winds are included. Finally, some of the computed effects of the various wind shear terms are shown.

  13. Assessment of Shear Strength in Silty Soils

    Directory of Open Access Journals (Sweden)

    Stefaniak Katarzyna

    2015-06-01

    Full Text Available The article presents a comparison of shear strength values in silty soils from the area of Poznań, determined based on selected Nkt values recommended in literature, with values of shear strength established on the basis of Nkt values recommended by the author. Analysed silty soils are characterized by the carbonate cementation zone, which made it possible to compare selected empirical coefficients both in normally consolidated and overconsolidated soils

  14. Speckle Shearing Interferometry And Its Application

    Science.gov (United States)

    Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang

    1983-12-01

    The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.

  15. Measuring mixing efficiency in experiments of strongly stratified turbulence

    Science.gov (United States)

    Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.

    2017-12-01

    Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.

  16. Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG

    Science.gov (United States)

    Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar

    2018-03-01

    The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.

  17. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  18. Gyro-kinetic analysis of micro-instabilities in negative shear tokamaks

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro

    2001-01-01

    In order to study linear and nonlinear properties of micro-instabilities in negative shear tokamaks, a gyro-kinetic integral eigenvalue code and a gyro-kinetic finite element particle-in-cell (PIC) code are developed. Linear calculations show that both the slab ion temperature gradient driven (ITG) mode and the slab electron temperature gradient driven (ETG) mode become strongly unstable around the q min -surface, where q min is the minimum value of a safety factor q. Both modes have three types of branches in the negative shear configuration: a single mode-rational surface mode, a double mode-rational surface mode, and a non-resonant mode. The ETG turbulence in a slab configuration modeling the negative shear tokamak is studies using a gyro-kinetic finite element PIC code. It is found that quasi-steady E r x B zonal flows are generated in finite magnetic shear regions in both sides of the q min -surface, where the electron thermal transport is reduced substantially. Stability analyses of the electrostatic Kelvin-Helmholtz (K-H) mode show that the quasi-steady E r x B zonal flow profile is closely related to the q-profile or the magnetic shear, which has a stabilizing effect on the K-H mode. By changing the q-profile to reduce the magnetic shear, the K-H mode becomes unstable for the quasi-steady E r x B zonal flows, and the E r x B zonal flows disappear in the weak magnetic shear region. Numerical results show a possibility of controlling E r x B zonal flows with the magnetic shear, through the stability of the K-H mode. (author)

  19. On the interaction of deep water waves and exponential shear currents

    Science.gov (United States)

    Cheng, Jun; Cang, Jie; Liao, Shi-Jun

    2009-05-01

    A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.

  20. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    Science.gov (United States)

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  1. A new look on blood shear thinning

    Science.gov (United States)

    Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana

    2015-11-01

    Blood is a shear-thinning fluid. At shear rates γ˙ cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.

  2. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  3. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  4. Shear thinning in non-Brownian suspensions.

    Science.gov (United States)

    Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie

    2018-02-14

    We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.

  5. Turbulent Sediment Suspension and Induced Ripple Dynamics Absent Mean Shear

    Science.gov (United States)

    Johnson, B. A.; Cowen, E.

    2014-12-01

    The uprush and backwash phases in the swash zone, the region of the beach that is alternately covered and uncovered by wave run-up, are fundamentally different events. Backwash is dominated by a growing boundary layer where the turbulence is set by the bed shear stress. In this phase traditional boundary layer turbulence models and Shields-type critical stress pickup functions work well. However, the uprush phase, while often viewed in the context of traditional boundary layer turbulence models, has little in common with the backwash phase. During uprush, the entire water column is turbulent, as it rapidly advects well-stirred highly turbulent flow generated offshore from breaking waves or collapsing bores. Turbulence levels in the uprush are several times higher than turbulent boundary layer theory would predict and hence the use of a boundary layer model to predict turbulence levels during uprush grossly under predicts the turbulence and subsequent sediment suspension in the swash zone. To study the importance of this advected turbulence to sediment suspension we conduct experiments in a water tank designed to generate horizontally homogeneous isotropic turbulence absent mean shear using randomly actuated synthetic jet arrays suspended above both a solid glass plate and a narrowly graded sediment bed. Using jet arrays with different jet spacings allows the generation of high Reynolds number turbulence with variable integral length scales, which we hypothesize control the characteristic length scales in the induced ripple field. Particle image velocimetry and acoustic Doppler velocimetry measurements are used to characterize the near-bed flow and this unique turbulent boundary layer. Metrics include the mean flow and turbulence intensities and stresses, temporal and spatial spectra, dissipation of turbulent kinetic energy, and integral length scales of the turbulence. We leverage our unique dataset to compare the flows over impermeable fixed and permeable mobile

  6. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo

    2002-06-01

    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  7. Horizontal and Vertical Rule Bases Method in Fuzzy Controllers

    OpenAIRE

    Aminifar, Sadegh; bin Marzuki, Arjuna

    2013-01-01

    Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal...

  8. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  9. Shear Stress Drives Local Variation in Invertebrate Drift in a Large River

    Science.gov (United States)

    Muehlbauer, J. D.; Kennedy, T.; Yackulic, C. B.

    2013-12-01

    Recent advances in physical stream flow measurements using acoustic Doppler current profilers (ADCPs) have yielded important insights in hydrology and geomorphology related to discharge and processes such as bed sediment incipient motion. These measurements also have underappreciated potential for use in ecological studies. For example, invertebrate drift, or the downstream transport of benthic-derived invertebrates, is a fundamental process in streams and rivers: it is both critical to the maintenance of benthic invertebrate populations and provides a key mechanism of resource delivery to drift-feeding fishes. However, there is substantial uncertainty regarding the factors that drive spatial variation in invertebrate drift, particularly in large rivers. While laboratory studies in flumes have demonstrated the importance of shear stress in initiating invertebrate drift (similar to studies of bed sediment critical shear stress in fluvial geomorphology), field-based evaluations of the relationship between shear stress and drift would be beneficial. Such field studies, however, are rare. Here, we evaluate the relationship between localized shear stress (N/m2) and invertebrate drift concentrations (#/m3) for the Colorado River downstream of Glen Canyon Dam (steady discharge of 228 m3/s during study). Invertebrate drift was quantified at 25 stations throughout the 25 km long Glen Canyon tailwater segment. We link these drift measurements to empirical measurements of water column shear stress derived from ADCP data, taken at the location of each drift sample and 250 m upstream of each drift sampling location (50 total profiles). Invertebrate drift concentrations varied strongly throughout the 25 km reach, and much of this variation can be explained by localized differences in shear stress. Species composition in the drift also varied with shear stress, suggesting that shear stress exerts a differential control on drift initiation for individual taxa. These results

  10. Panel and planar experimental shear behavior of wood panels ...

    African Journals Online (AJOL)

    Panel and planar experimental shear behavior of wood panels laminated softwood oriented OSB conditioned at different environments. ... to that measured in the case of panel shear for different environments. Keywords : oriented strand board – panel shear strength- planar shear strength - environment – moisture content ...

  11. Evaluation of size dependent design shear strength of reinforced ...

    Indian Academy of Sciences (India)

    mate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength ... percentage of flexural reinforcement and depth of the beam constant) as (i) deep beams with 0. < a/d ≤ 1, (ii) ... the shear strength of deep beams when the shear span-to-depth ratio was 1.0 (Tan & Lu 1999;. Walraven ...

  12. Modelling shear wave splitting observations from Wellington, New Zealand

    Science.gov (United States)

    Marson-Pidgeon, Katrina; Savage, Martha K.

    2004-05-01

    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  13. The impact of coronal mass ejection on the horizontal geomagnetic fields and the induced geoelectric fields

    Science.gov (United States)

    Falayi, E. O.; Adebesin, B. O.; Bolaji, O. S.

    2018-02-01

    This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.

  14. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    Directory of Open Access Journals (Sweden)

    Na Wei

    2013-01-01

    Full Text Available Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.

  15. Spondylolysis and the sacro-horizontal angle in athletes

    International Nuclear Information System (INIS)

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L.; Sahlgrenska Sjukhuset, Goeteborg; King Faisal Specialist Hospital and Research Centre, Riyadh

    1989-01-01

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.)

  16. Spondylolysis and the sacro-horizontal angle in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Swaerd, L.; Hellstroem, M.; Jacobsson, B.; Peterson, L. (Oestra Sjukhuset, Goeteborg (Sweden). Dept. of Orthopaedics; Sahlgrenska Sjukhuset, Goeteborg (Sweden). Dept. of Diagnostic Radiology; King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Radiology)

    The frequency of spondylolysis and the relationship between spondylolysis and the sacro-horizontal angle in 143 athletes and 30 non-athletes is reported. Athletes had a larger sacro-horizontal angle than non-athletes. The sacro-horizontal angle was larger in athletes with spondylolysis as compared with those without. An increased incidence of spondylolysis with an increased angle was demonstrated. It is suggested that an increased sacro-horizontal angle may predispose to spondylolysis, especially in combination with the high mechanical loads sustained in certain sports. (orig.).

  17. Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report

    International Nuclear Information System (INIS)

    1992-01-01

    The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch reg-sign) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion

  18. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...

  19. Control of a three-dimensional turbulent shear layer by means of oblique vortices

    Science.gov (United States)

    Jürgens, Werner; Kaltenbach, Hans-Jakob

    2018-04-01

    The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.

  20. Hydrodynamic interaction between two vesicles in a linear shear flow: asymptotic study.

    Science.gov (United States)

    Gires, P Y; Danker, G; Misbah, C

    2012-07-01

    Interactions between two vesicles in an imposed linear shear flow are studied theoretically, in the limit of almost spherical vesicles, with a large intervesicle distance, in a strong flow, with a large inner to outer viscosity ratio. This allows to derive a system of ordinary equations describing the dynamics of the two vesicles. We provide an analytic expression for the interaction law. We find that when the vesicles are in the same shear plane, the hydrodynamic interaction leads to a repulsion. When they are not, the interaction may turn into attraction instead. The interaction law is discussed and analyzed as a function of relevant parameters.

  1. Formation of turbulent structures and the link to fluctuation driven sheared flows

    DEFF Research Database (Denmark)

    Windisch, T; Grulke, O; Naulin, Volker

    2011-01-01

    The formation of turbulent structures in weakly developed drift-wave turbulence is investigated using experimental data obtained in a linear laboratory device. The findings are compared with fully non-linear numerical simulation results. The formation of structures occurs in a region, in which...... the divergence of the Reynolds stress, which is one term in the momentum balance, has a maximum. The generation of a time-averaged shear layer is not observed, but for transient events the shearing rate can become sufficiently strong to decorrelate the fluctuations. This happens when the energy flow...

  2. A new electrical and mechanically detonatable shear wave source for near surface (0-30 m) seismic acquisition

    Science.gov (United States)

    Crane, J. M.; Lorenzo, J. M.; Harris, J. B.

    2013-04-01

    We present a new, impulsive, horizontal shear source capable of performing long shot profiles in a time-efficient and repeatable manner. The new shear source is ground-coupled by eight 1/2″ (1.27 cm) × 2″ (5.08 cm) steel spikes. Blank shotshells (12-gauge) used as energy sources can be either mechanically or electrically detonated. Electrical fuses have a start time repeatability of complete safety, the shotshell holder is surrounded by a protective 6″ (15.24 cm)-thick barrel, a push-and-twist-locked breach, and a safety pin. We conducted field tests at the 17th Street Canal levee breach site in New Orleans, Louisiana (30.017° N 90.121° W) and at an instrumented test borehole at Millsaps College in Jackson, Mississippi (32.325° N 93.182° W) to compare our new source and a traditional hammer impact source. The new shear source produces a broader-band of frequencies (30-100 Hz cf. 30-60 Hz). Signal generated by the new shear source has signal-to-noise ratios equivalent to ~ 3 stacked hammer blows to the hammer impact source. Ideal source signals must be broadband in frequency, have a high SNR, be consistent, and have precise start times; all traits of the new shear source.

  3. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening

    Science.gov (United States)

    Agius, Matthew R.; Lebedev, Sergei

    2017-09-01

    Of the two debated, end-member models for the late-Cenozoic thickening of Tibetan crust, one invokes 'channel flow' (rapid viscous flow of the mid-lower crust, driven by topography-induced pressure gradients and transporting crustal rocks eastward) and the other 'pure shear' (faulting and folding in the upper crust, with viscous shortening in the mid-lower crust). Deep-crustal deformation implied by each model is different and would produce different anisotropic rock fabric. Observations of seismic anisotropy can thus offer a discriminant. We use broad-band phase-velocity curves-each a robust average of tens to hundreds of measurements-to determine azimuthal anisotropy in the entire lithosphere-asthenosphere depth range and constrain its amplitude. Inversions of the differential dispersion from path pairs, region-average inversions and phase-velocity tomography yield mutually consistent results, defining two highly anisotropic layers with different fast-propagation directions within each: the middle crust and the asthenosphere. In the asthenosphere beneath central and eastern Tibet, anisotropy is 2-4 per cent and has an NNE-SSW fast-propagation azimuth, indicating flow probably driven by the NNE-ward, shallow-angle subduction of India. The distribution and complexity of published shear wave splitting measurements can be accounted for by the different anisotropy in the mid-lower crust and asthenosphere. The estimated splitting times that would be accumulated in the crust alone are 0.25-0.8 s; in the upper mantle-0.5-1.2 s, depending on location. In the middle crust (20-45 km depth) beneath southern and central Tibet, azimuthal anisotropy is 3-5 and 4-6 per cent, respectively, and its E-W fast-propagation directions are parallel to the current extension at the surface. The rate of the extension is relatively low, however, whereas the large radial anisotropy observed in the middle crust requires strong alignment of mica crystals, implying large finite strain and

  4. Variable anelastic attenuation and site effect in estimating source parameters of various major earthquakes including M w 7.8 Nepal and M w 7.5 Hindu kush earthquake by using far-field strong-motion data

    Science.gov (United States)

    Kumar, Naresh; Kumar, Parveen; Chauhan, Vishal; Hazarika, Devajit

    2017-10-01

    Strong-motion records of recent Gorkha Nepal earthquake ( M w 7.8), its strong aftershocks and seismic events of Hindu kush region have been analysed for estimation of source parameters. The M w 7.8 Gorkha Nepal earthquake of 25 April 2015 and its six aftershocks of magnitude range 5.3-7.3 are recorded at Multi-Parametric Geophysical Observatory, Ghuttu, Garhwal Himalaya (India) >600 km west from the epicentre of main shock of Gorkha earthquake. The acceleration data of eight earthquakes occurred in the Hindu kush region also recorded at this observatory which is located >1000 km east from the epicentre of M w 7.5 Hindu kush earthquake on 26 October 2015. The shear wave spectra of acceleration record are corrected for the possible effects of anelastic attenuation at both source and recording site as well as for site amplification. The strong-motion data of six local earthquakes are used to estimate the site amplification and the shear wave quality factor ( Q β) at recording site. The frequency-dependent Q β( f) = 124 f 0.98 is computed at Ghuttu station by using inversion technique. The corrected spectrum is compared with theoretical spectrum obtained from Brune's circular model for the horizontal components using grid search algorithm. Computed seismic moment, stress drop and source radius of the earthquakes used in this work range 8.20 × 1016-5.72 × 1020 Nm, 7.1-50.6 bars and 3.55-36.70 km, respectively. The results match with the available values obtained by other agencies.

  5. Energy considerations in accelerating rapid shear granular flows

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2009-05-01

    Full Text Available We present a complete expression for the total energy associated with a rapid frictional granular shear flow down an inclined surface. This expression reduces to the often used energy for a non-accelerating flow of an isotropic, ideal fluid in a horizontal channel, or to the energy for a vertically falling mass. We utilize thickness-averaged mass and momentum conservation laws written in a slope-defined coordinate system. Both the enhanced gravity and friction are taken into account in addition to the bulk motion and deformation. The total energy of the flow at a given spatial position and time is defined as the sum of four energy components: the kinetic energy, gravity, pressure and the friction energy. Total energy is conserved for stationary flow, but for non-stationary flow the non-conservative force induced by the free-surface gradient means that energy is not conserved. Simulations and experimental results are used to sketch the total energy of non-stationary flows. Comparison between the total energy and the sum of the kinetic and pressure energy shows that the contribution due to gravity acceleration and frictional resistance can be of the same order of magnitude, and that the geometric deformation plays an important role in the total energy budget of the cascading mass. Relative importance of the different constituents in the total energy expression is explored. We also introduce an extended Froude number that takes into account the apparent potential energy induced by gravity and pressure.

  6. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  7. Liquid films flowing concurrently with air in horizontal duct, 4

    International Nuclear Information System (INIS)

    Fukano, Tohru; Takamatsu, Yasuo; Akenaga, Hiroshi; Ikeda, Masayoshi; Itoh, Akihiko; Kuriwaki, Tessho.

    1984-01-01

    The effect of the aspect ratio of the duct cross-section on a liquid film flowing concurrently with an air stream was investigated using three horizontal ducts. The dimensions of the duct are 10 mm x 40 mm (height x width), 40 mm x 40 mm and 10 mm x 80 mm. The results are summarized as follows: The boundary of flow patterns between the pebble wave flow and the disturbance wave flow strongly depends on the duct height. On the other hand, the boundary between a smooth surface flow and a two-dimensional wave flow as well as the nonwetting regime depends mainly on the duct width. The reason is that the volumetric flux of the liquid flow in the vicinity of the side walls of the duct is considerably larger than that in the central part of the duct width due to the formation of meniscus. Therefore, only the experimental values for the film parameters obtained at the central part of duct width are useful for comparison with the theoretical results obtained by the assumption that the flow is two-dimensional, even if the aspect ratio of duct seems to be sufficiently small. (author)

  8. Transient Growth and Triggering in the Horizontal Rijke Tube

    Directory of Open Access Journals (Sweden)

    Matthew P. Juniper

    2011-09-01

    Full Text Available This theoretical paper examines a non-normal and non-linear model of a horizontal Rijke tube. Linear and non-linear optimal initial states, which maximize acoustic energy growth over a given time from a given energy, are calculated. It is found that non-linearity and non-normality both contribute to transient growth and that, for this model, linear optimal states are only a good predictor of non-linear optimal states for low initial energies. Two types of non-linear optimal initial state are found. The first has strong energy growth during the first period of the fundamental mode but loses energy thereafter. The second has weaker energy growth during the first period but retains high energy for longer. The second type causes triggering to self-sustained oscillations from lower energy than the first and has higher energy in the fundamental mode. This suggests, for instance, that low frequency noise will be more effective at causing triggering than high frequency noise.

  9. Horizontal two phase flow pattern identification by neural networks

    International Nuclear Information System (INIS)

    Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric

    1999-01-01

    A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)

  10. Maximal liquid bridges between horizontal cylinders

    Science.gov (United States)

    Huppert, Herbert E.; Neufeld, Jerome A.

    2016-01-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace–Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace–Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity. PMID:27616922

  11. Yaw dynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  12. Aerodynamic analysis of seamless horizontal stabilizer

    Science.gov (United States)

    Nithya, S.; Kanimozhi, S.

    2017-05-01

    This project presents an investigative view into the concept of seamless aeroelastic wing and hingeless flexible trailing edge. Wings are designed to provide maximum lift and minimal drag and weight. But with conventional wings where rivets are used and the control surfaces are separately hinged, parasite drag comes into play. This project is about analysing a smooth seamless wing with hinge-less flexible trailing edge. This type of wing reduces the drag considerably and the hinge-less trailing edge leads to a minimal control demand and reduces the noise produced when the aircraft comes for landing. Seamless aeroelastic wing will function as an integrated one piece lifting and control surface. It has been designed to enhance a desirable wing camber for control by deflecting a hinge-less flexible trailing edge part instead of a traditional hinged control surface. This kind of flexible wing can be achieved either by a curved beam and disc actuation mechanism or by piezo-electric materials, whose shape change can be achieved by electricity. The intent of this project is to analyze the effects of introducing the concept of Seamless Wing to the horizontal stabilizer. While the removal of rivets and serrations that hinge the elevators to the stabilizer reduces the overall drag by a reasonable value, the overall concept of a control surface-less stabilizer where the maneuvers are done by deflecting the trailing edge offers better maneuverability.

  13. Horizontal gene transfer in silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Li Bin

    2011-05-01

    Full Text Available Abstract Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.

  14. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    Science.gov (United States)

    Finocchio, Peter M.

    collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.

  15. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  16. Extreme model reduction of shear layers

    Science.gov (United States)

    Qawasmeh, Bashar Rafee

    The aim of this research is to develop nonlinear low-dimensional models (LDMs) to describe vortex dynamics in shear layers. A modified Proper Orthogonal Decomposition (POD)/Galerkin projection method is developed to obtain models at extremely low dimension for shear layers. The idea is to dynamically scale the shear layer along y direction to factor out the shear layer growth and capture the dynamics by only a couple of modes. The models are developed for two flows, incompressible spatially developing and weakly compressible temporally developing shear layers, respectively. To capture basic dynamics, the low-dimensional models require only two POD modes for each wavenumber/frequency. Thus, a two-mode model is capable of representing single-wavenumber/frequency dynamics such as vortex roll-up, and a four-mode model is capable of representing the nonlinear dynamics involving a fundamental wavenumber/frequency and its subharmonic, such as vortex pairing/merging. Most of the energy is captured by the first mode of each wavenumber/frequency, the second POD mode, however, plays a critical role and needs to be included. In the thesis, we first apply the approach on temporally developing weakly compressible shear layers. In compressible flows, the thermodynamic variables are dynamically important, and must be considered. We choose isentropic Navier-Stokes equations for simplicity, and choose a proper inner product to present both kinetic energy and thermal energy. Two cases of convective Mach numbers are studied for low compressibility and moderate compressibility. Moreover, we study the sensitivity of the compressible four-mode model to several flow parameters: Mach number, the strength of initial perturbations of the fundamental and its subharmonic, and Reynolds number. Secondly we apply the approach on spatially developing incompressible shear layers with periodicity in time. We consider a streamwise parabolic form of the Navier-Stokes equations. When we add arbitrary

  17. Del Horizonte Medio al Horizonte Tardío en la Costa Sur Central: el caso del valle de Asia

    Directory of Open Access Journals (Sweden)

    2004-01-01

    Full Text Available DE L’HORIZON MOYEN A L’HORIZON RECENT SUR LA COTE CENTRALE : LE CAS DE LA VALLEE DE ASIA. La vallée de Asia, située à quelque 100 km au sud de Lima, a joué un rôle important durant l’Horizon moyen. En effet, les contextes funéraires de la Huaca Malena et les textiles élaborés qui en sont issus, suggèrent d’étroites relations avec Huari, Pachacamac, et les côtes centrale et nord. L’étude des textiles nous permet de voir que la transition de l’Horizon moyen à la période Intermédiaire récent se marque par une croissance des relations avec la côte centrale. Selon les données ethnohistoriques, la vallée de Asia était durant la période Intermédiaire récent habitée par les Coyallo, qui versaient tribut à Pachacamac. À l’Horizon récent, les Incas construisirent d’importants centres administratifs dans la vallée, et durant cette période le matériel céramique montre de fortes relations avec les styles des vallées voisines au nord, comme Mala, Chilca, et la côte aux alentours de Lima. El valle de Asia, situado a 100 kilómetros al sur de Lima, jugó un rol de importancia durante el Horizonte Medio. En efecto, los contextos funerarios de Huaca Malena, así como los finos textiles que los acompañan indican una fuerte relación con Wari, Pachacamac, la Costa Central y la Costa Norte. De acuerdo con la evidencia textil, el tránsito del Horizonte Medio al periodo Intermedio Tardío incrementó las relaciones con la costa central. Para el periodo Intermedio Tardío, de acuerdo a la información etnohistórica, el valle estuvo habitado por los coayllo, quienes tributaban a Pachacamac. Durante el Horizonte Tardío, los incas construyen importantes centros administrativos en el valle, y la cerámica durante este periodo se relacionó fuertemente con los estilos propios de los vecinos valles norteños de Mala, Chilca y la costa de Lima. FROM THE MIDDLE HORIZON TO THE LATE HORIZON ON THE SOUTH CENTRAL COAST: THE CASE OF THE

  18. Stochastic parametric resonance in shear flows

    Directory of Open Access Journals (Sweden)

    F. J. Poulin

    2005-01-01

    Full Text Available Time-periodic shear flows can give rise to Parametric Instability (PI, as in the case of the Mathieu equation (Stoker, 1950; Nayfeh and Mook, 1995. This mechanism results from a resonance between the oscillatory basic state and waves that are superimposed on it. Farrell and Ioannou (1996a, b explain that PI occurs because the snap-shots of the velocity profile are subject to transient growth. If the flows were purely steady the transient growth would subside and not have any long lasting effect. However, the coupling between transient growth and the time variation of the basic state create PI. Mathematically, transient growth, and therefore PI, are due to the nonorthogonal eigenspace in the linearized system. Poulin et al. (2003 studied a time-periodic barotropic shear flow that exhibited PI, and thereby produced mixing at the interface between Potential Vorticity (PV fronts. The instability led to the formation of vortices that were stretched. A later study of an oscillatory current in the Cape Cod Bay illustrated that PI can occur in realistic shear flows (Poulin and Flierl, 2005. These studies assumed that the basic state was periodic with a constant frequency and amplitude. In this work we study a shear flow similar to that found in Poulin et al. (2003, but now where the magnitude of vorticity is a stochastic variable. We determine that in the case of stochastic shear flows the transient growth of perturbations of the snapshots of the basic state still generate PI.

  19. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  20. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  1. Evaluation of shear mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  2. Electrostatic ion cyclotron velocity shear instability

    International Nuclear Information System (INIS)

    Lemons, D.S.; Winske, D.; Gary, S.P.

    1992-01-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, κρ i ∼ 0.5, and one at short wavelength, κρ i > 1.5 (κρ i is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit

  3. Colloidal Aggregate Structure under Shear by USANS

    Science.gov (United States)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  4. Pressure-shear experiments on granular materials.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)

    2011-10-01

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  5. Low Fluid Shear Culture of Staphylococcus Aureus Represses hfq Expression and Induces an Attachment-Independent Biofilm Phenotype

    Science.gov (United States)

    Ott, C. Mark; Castro, S. L.; Nickerson, C. A.; Nelman-Gonzalez, M.

    2011-01-01

    Background: The opportunistic pathogen, Staphylococcus aureus, experiences fluctuations in fluid shear during infection and colonization of a human host. Colonization frequently occurs at mucus membrane sites such as in the gastrointestinal tract where the bacterium may experience low levels of fluid shear. The response of S. aureus to low fluid shear remains unclear. Methods: S. aureus was cultured to stationary phase using Rotating-Wall Vessel (RWV) bioreactors which produce a physiologically relevant low fluid shear environment. The bacterial aggregates that developed in the RWV were evaluated by electron microscopy as well as for antibiotic resistance and other virulence-associated stressors. Genetic expression profiles for the low-shear cultured S. aureus were determined by microarray analysis and quantitative real-time PCR. Results: Planktonic S. aureus cultures in the low-shear environment formed aggregates completely encased in high amounts of extracellular polymeric substances. In addition, these aggregates demonstrated increased antibiotic resistance indicating attachment-independent biofilm formation. Carotenoid production in the low-shear cultured S. aureus was significantly decreased, and these cultures displayed an increased susceptibility to oxidative stress and killing by whole blood. The hfq gene, associated with low-shear growth in Gram negative organisms, was also found to be down-regulated in S. aureus. Conclusions: Collectively, this data suggests that S. aureus decreases virulence characteristics in favor of a biofilm-dwelling colonization phenotype in response to a low fluid shear environment. Furthermore, the identification of an Hfq response to low-shear culture in S. aureus, in addition to the previously reported responses in Gram negative organisms, strongly suggests an evolutionarily conserved response to mechanical stimuli among structurally diverse prokaryotes.

  6. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  7. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  8. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  9. A modified calculation model for groundwater flowing to horizontal ...

    Indian Academy of Sciences (India)

    well pipe and aquifer couples the turbulent flow inside the horizontal seepage well with laminar flow in the aquifer. .... In the well pipe, the relationship between hydraulic head loss and flow velocity .... the steady-state mathematic model is developed for groundwater flowing to the horizontal seepage well under a river valley.

  10. Towards a new natural theology based on horizontal transcendence ...

    African Journals Online (AJOL)

    As a result the article rejects absolute transcendence, replacing it with a horizontal transcendence that accords with humans' biological makeup and with presentday scientifi c thinking. In the framework of horizontal transcendence the pivotal problem of the human condition is no longer death, but life. This has radical ...

  11. Horizontal and vertical seismic isolation of a nuclear power plant

    International Nuclear Information System (INIS)

    Ikonomou, A.S.

    1983-01-01

    This paper presents a study for the horizontal and vertical seismic isolation of a nuclear power plant with a base isolation system, developed by the author, called the Alexisismon. This system -- which comprises different schemes for horizontal or vertical or both horizontal and vertical isolation -- is a linear system based on the principle of separation of functions. That is, horizontal and vertical isolation are realized through different components and act independently from each other. As far as horizontal isolation is concerned, the role of transmitting vertical loads is uncoupled from the role of inducing horizontal restoring forces so that both functions can be performed without instability. It is possible either to provide both horizontal and vertical isolation to the whole nuclear plant or to isolate the whole plant horizontally and to provide vertical isolation to sensitive and costly equipment only. When the fundamental period of the plant or equipment is 2 seconds and when the vertical displacements are of the order of + or - 20 inches, the structure or equipment are protected against earthquakes up to 1.10 and 1.30 g for actual and 0.60 and 1.50 g for artificial accelerograms. In both cases all the isolation elements behave elastically up to these acceleration limits as well as the superstructure and equipment

  12. Horizontal variation in trace elements and soil characteristics at ...

    African Journals Online (AJOL)

    The aim of this study was to determine the horizontal variation in trace element concentrations and soil indicators in surface soil associated with the geothermal springs at Siloam and Tshipise. Results show that, in general, the trace element concentrations present in the soil decrease with horizontal distance from the ...

  13. Horizontal biases in rats’ use of three-dimensional space

    Science.gov (United States)

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  14. Investigation of blade performance of horizontal axis wind turbine ...

    African Journals Online (AJOL)

    The shape of rotor blade plays an important role in determining the overall aerodynamic performance of a horizontal axis wind turbine. In this work, blade is designed for a 5KW horizontal axis wind turbine which is already in market. For designing blade, blade element momentum theory (BEMT) is used and a computer ...

  15. District Power Equalization, Horizontal Equity and the Property Mix.

    Science.gov (United States)

    Hilley, John

    1980-01-01

    Argues that the traditional district power equalization (DPE) grant formula achieves horizontal equity, that the formula must be modified when the measure of fiscal capacity differs from the legal tax base, and that the inclusion of a tax exporting variable leads to the breakdown of horizontal equity. (Author/IRT)

  16. The Interplay of Different Types of Governance in Horizontal Cooperations

    DEFF Research Database (Denmark)

    Raue, Jan Simon; Wieland, Andreas

    2015-01-01

    Purpose – Over the last decades, horizontal cooperations between logistics service providers (LSPs) have become a well-established organizational form and their use is expected to grow even further in the future. In spite of this increasing importance of horizontal LSP cooperations, little research...

  17. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension

    DEFF Research Database (Denmark)

    Jansen, Christian; Bogs, Christopher; Verlinden, Wim

    2017-01-01

    BACKGROUND & AIMS: Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis...... of CSPH. We recently showed the algorithm to rule-out CSPH using sequential liver- (L-SWE) and spleen-Shear-wave elastography (S-SWE). This study investigated the diagnostic value of S-SWE for diagnosis of CSPH. METHODS: One hundred and fifty-eight cirrhotic patients with pressure gradient measurements...... were included into this prospective multicentre study. L-SWE was measured in 155 patients, S-SWE in 112 patients, and both in 109 patients. RESULTS: Liver-shear-wave elastography and S-SWE correlated with clinical events and decompensation. SWE of liver and spleen revealed strong correlations...

  18. Stress growth and relaxation of dendritically branched macromolecules in shear and uniaxial extension

    DEFF Research Database (Denmark)

    Huang, Qian; Costanzo, S.; Das, C.

    2017-01-01

    stress relaxation, suggesting a strong ‘elastic memory’ of the material. These results are 2 described by BoB semi-quantitatively, both in linear and nonlinear shear and extensional regimes. Given the fact that the segments between branch points are less than 3 entanglements long, this is a very...... of the remarkable properties of these highly branched macromolecules. In particular, we address three questions pertinent to the specific molecular structure: (i) is steady state attainable during uniaxial extension? (ii) what is the respective transient response in simple shear? and (iii) how does stress relax...... the Branch-on-Branch (BoB) algorithm. The data indicates that the extensional viscosity reaches a steady state value, whose dependence on extension rate is identical to that of entangled linear and other branched polymer melts. Nonlinear shear is characterized by transient stress overshoots and the validity...

  19. A thermodynamic approach to analyze shear localization in semi-solid materials

    Science.gov (United States)

    Sheikh-Ansari, M. H.; Aghaie-Khafri, M.

    2018-03-01

    A theoretical framework of the shear localization analysis was developed for semi-solid materials taking into account a non-equilibrium relationship between viscous deformation, pressure and interfacial surface energy. Considering a shear layer model, the necessary condition of perturbation growth and subsequent shear localization was derived. The results revealed that the localization phenomenon in the semi-solid deformation strongly depends on the difference between irreversible viscous work done on pores and grains and the reversible viscous deformational work stored as the interfacial surface energy. This thermodynamic quantity indicates the possibility of a perturbation growth or decade in terms of the process parameters such as dilatancy, permeability and also the fraction of the solid skeleton.

  20. Bulk and shear viscosities of the gluon plasma in a quasiparticle description

    CERN Document Server

    Bluhm, M; Redlich, K

    2011-01-01

    Bulk and shear viscosities of deconfined gluonic matter are investigated within an effective kinetic theory by describing the strongly interacting medium phenomenologically in terms of quasiparticle excitations with medium-dependent self-energies. In this approach, local conservation of energy and momentum follows from a Boltzmann-Vlasov type kinetic equation and guarantees thermodynamic self-consistency. We show that the resulting transport coefficients reproduce the parametric dependencies on temperature and coupling obtained in perturbative QCD at large temperatures and small running coupling. The extrapolation into the non-perturbative regime results in a decreasing specific shear viscosity with decreasing temperature, exhibiting a minimum in the vicinity of the deconfinement transition temperature, while the specific bulk viscosity is sizeable in this region falling off rapidly with increasing temperature. The temperature dependence of specific bulk and shear viscosities found within this quasiparticle d...

  1. Particle Pressure in a Sheared Suspension: A Bridge from Osmosis to Granular Dilatancy

    Science.gov (United States)

    Deboeuf, Angélique; Gauthier, Georges; Martin, Jérôme; Yurkovetsky, Yevgeny; Morris, Jeffrey F.

    2009-03-01

    The normal stress exerted by particles in a sheared suspension is measured by analogy with a method used to measure osmotic pressure in solutions. Particles in a liquid are confined by a fine screen to a gap between two vertical concentric cylinders, the inner of which rotates. Pressure in the liquid is sensed either by a manometer or by a pressure transducer across the screen. The particles are large enough so that Brownian motion and equilibrium osmotic pressure are vanishingly small. The measured pressure yields the shear-induced particle pressure Π, the nonequilibrium continuation of equilibrium osmotic pressure. For volume fractions 0.3≤ϕ≤0.5, Π is strongly dependent on ϕ, and linear in shear rate. Comparisons of the measured particle pressure with modeling and simulation show good agreement.

  2. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....... This paper presents theoretical model which can predict the response of transversely compressed and restrained single- and double lap shear joints. The interface material model is based on a cohesive law in the shear-slip plane with a descending branch and a uniform frictional stress added due...... to the friction in the crack, emanating from the transverse pressure or restraint. The theoretical model is compared with experimental results from transversely compressed single- and double shear joints. Also theoretical predictions of a mechanical integrated sleeve-wedge anchorage load capacity are carried out...

  3. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. A horizontal well analysis from a view of its productivity

    Directory of Open Access Journals (Sweden)

    Lucia Sciranková

    2006-10-01

    Full Text Available The 1990s may become known in the oil field as the decade of the horizontal well. Horizontal wells can increase the production rate and the ultimate recovery, and can reduce the number of platforms on wells required to develop a reservoir.An empirical equation to calculate the inflow performance of two-phase flow for a vertical and a horizontal well in regime of dissolved gas presented by Vogel in 1968. His equation was based on the results of reservoir simulation. The created model whore result (output is the ratio of the productivity of a horizontal well to the productivity of a vertical well for a given area expressed by anumber of vertical wells the replaced by one horizontal well. The model is applied for a concrete ideological model.

  5. E × B flow shear drive of the linear low-n modes of EHO in the QH-mode regime [E × B flow shear drive of EHO in the QH-mode regime

    International Nuclear Information System (INIS)

    Xu, G. S.; Wan, B. N.; Wang, Y. F.

    2017-01-01

    A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drive as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.

  6. Optimal Synthesis of Horizontally Aligned Single-Walled Carbon Nanotubes and Their Biofunctionalization for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Dawoon Jung

    2016-01-01

    Full Text Available As an influential candidate for highly sensitive biomolecule sensor, which can capture disease related biomolecules, carbon nanotube is useful material due to its unique properties. To adopt as a sensing platform, it is strongly needed to find optimal refined synthetic condition. In order to find the optimal synthetic conditions of horizontally aligned CNT, we performed quantity control of the mixed gases of H2 and CH4 injected. We successfully find that the formation of amorphous-like carbon was critically affected by some gas condition such as the flow rate of injected gases and ratios of gas mixture. Moreover, it should be noted that our horizontally aligned carbon nanotube array platform developed would offer another potential in developing nanoscale light source, where light emission results from electron-hole carrier recombination.

  7. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  8. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  9. Shear viscosity coefficient of liquid lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakore@rediffmail.com; Prajapati, A. V., E-mail: anand0prajapati@gmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  10. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults

    Science.gov (United States)

    Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.

    2017-07-01

    The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.

  11. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  12. The significance of relative density for particle damage in loaded and sheared gravels

    Directory of Open Access Journals (Sweden)

    Fityus Stephen

    2017-01-01

    Full Text Available For granular assemblages of strong particles, an increase in the relative density usually leads to a significant increase in shear strength, which is evident as a peak strength, accompanied by significant dilation as the peak strength is attained. This paper describes an experimental study of shearing in assemblages of weak particles, where particle breakage offsets dilation for all but the lowest of confining stresses. In such materials, prone to particle breakage, the shear strengths of loose and dense assemblages rapidly converge to similar values as confining stress increases, and any benefit of greater relative density is lost. This is attributed to the densification effect associated with the loading under a high stress prior to shearing, which is characterised by widespread particle breakage and the formation of smaller particles to occupy space between coarser ones. Interestingly, under both low and high stresses, there was a tendency for greater particle breakage in the loose samples, as a result of both shearing and compression. This result suggests that, despite the denser assemblage having its particles more rigidly constrained and less able to rearrange to avoid direct loading, the influence of greater load-spreading capacity afforded by an increased number of particle contacts in a denser sample, is more dominant in controlling breakage.

  13. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    Science.gov (United States)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  14. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    Science.gov (United States)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2018-01-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  15. The effect of shear force on ink transfer in gravure offset printing

    International Nuclear Information System (INIS)

    Lee, Taik-Min; Lee, Seung-Hyun; Noh, Jae-Ho; Kim, Dong-Soo; Chun, Sangki

    2010-01-01

    This paper asserts that shear force plays an important role in the printing mechanism of gravure offset line printing. To that end, a theoretical printing model showing shear force dependence on the printing angle is proposed. The decrement of the internal angle between the printing direction and the pattern-line direction increases shear force, thereby enhancing the amount of transferred ink in the off stage. A printing experiment using pattern-line widths of 80 µm and 20 µm shows the angle dependence of the line width, thickness and amount of transferred ink, reflecting the effect of shear force. The effect of the internal angle on cross-sectional differences in lines with a width of 20 µm and with angle variation is greater than that in lines with a width of 80 µm, which corresponds with the theoretical prediction that shear force has greater influence on a narrower line. The strong correlation between the experimental data and the theoretical model supports the validation of the theoretical model

  16. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  17. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow.

    Science.gov (United States)

    Ji, Shichen; Jiang, Run; Winkler, Roland G; Gompper, Gerhard

    2011-10-07

    In order to study the dynamics of colloidal suspensions with viscoelastic solvents, a simple mesoscopic model of the solvent is required. We propose to extend the multiparticle collision dynamics (MPC) technique--a particle-based simulation method, which has been successfully applied to study the hydrodynamic behavior of many complex fluids with Newtonian solvent--to shear-thinning viscoelastic solvents. Here, the normal MPC particles are replaced by dumbbells with finite-extensible nonlinear elastic (FENE) springs. We have studied the properties of FENE-dumbbell fluids under simple shear flow with shear rate ̇γ. The stress tensor is calculated, and the viscosity η and the first normal-stress coefficient Ψ(1) are obtained. Shear-thinning behavior is found for reduced shear rates Γ= ̇γτ>1, where τ is a characteristic dumbbell relaxation time. Here, both η and Ψ(1) display power-law behavior in the shear-thinning regime. Thus, the FENE-dumbbell fluid with MPC collisions provides a good description of viscoelastic fluids. As a first application, we study the flow behavior of a colloid in a shear-thinning viscoelastic fluid in two dimensions. A slowing down of the colloid rotation in a viscoelastic fluid compared to a Newtonian fluid is obtained, in agreement with recent numerical calculations and experimental results. © 2011 American Institute of Physics

  18. Shear thinning and shear thickening of a confined suspension of vesicles

    Science.gov (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  19. Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays

    International Nuclear Information System (INIS)

    Fuhrmann, Alexander; Engler, Adam J

    2015-01-01

    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. (paper)

  20. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  1. Wake of inertial waves of a horizontal cylinder in horizontal translation

    Science.gov (United States)

    Machicoane, Nathanaël; Labarre, Vincent; Voisin, Bruno; Moisy, Frédéric; Cortet, Pierre-Philippe

    2018-03-01

    We analyze theoretically and experimentally the wake behind a horizontal cylinder of diameter d horizontally translated at constant velocity U in a fluid rotating about the vertical axis at a rate Ω . Using particle image velocimetry measurements in the rotating frame, we show that the wake is stabilized by rotation for Reynolds number Re =U d /ν much larger than in a nonrotating fluid. Over the explored range of parameters, the limit of stability is Re ≃(275 ±25 )/Ro , with Ro =U /2 Ω d the Rossby number, indicating that the stabilizing process is governed by the Ekman pumping in the boundary layer. At low Rossby number, the wake takes the form of a stationary pattern of inertial waves, similar to the wake of surface gravity waves behind a ship. We compare this steady wake pattern to a model, originally developed by Johnson [E. R. Johnson, J. Fluid Mech. 120, 359 (1982), 10.1017/S0022112082002808], assuming a free-slip boundary condition and a weak streamwise perturbation. Our measurements show quantitative agreement with this model for Ro ≲0.3 . At larger Rossby number, the phase pattern of the wake is close to the prediction for an infinitely small line object. However, the wake amplitude and phase origin are not correctly described by the weak-streamwise-perturbation model, calling for an alternative model for the boundary condition at moderate rotation rate.

  2. Horizontal versus familial transmission of Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    2008-10-01

    Full Text Available Transmission of Helicobacter pylori is thought to occur mainly during childhood, and predominantly within families. However, due to the difficulty of obtaining H. pylori isolates from large population samples and to the extensive genetic diversity between isolates, the transmission and spread of H. pylori remain poorly understood. We studied the genetic relationships of H. pylori isolated from 52 individuals of two large families living in a rural community in South Africa and from 43 individuals of 11 families living in urban settings in the United Kingdom, the United States, Korea, and Colombia. A 3,406 bp multilocus sequence haplotype was determined for a total of 142 H. pylori isolates. Isolates were assigned to biogeographic populations, and recent transmission was measured as the occurrence of non-unique isolates, i.e., isolates whose sequences were identical to those of other isolates. Members of urban families were almost always infected with isolates from the biogeographic population that is common in their location. Non-unique isolates were frequent in urban families, consistent with familial transmission between parents and children or between siblings. In contrast, the diversity of H. pylori in the South African families was much more extensive, and four distinct biogeographic populations circulated in this area. Non-unique isolates were less frequent in South African families, and there was no significant correlation between kinship and similarity of H. pylori sequences. However, individuals who lived in the same household did have an increased probability of carrying the same non-unique isolates of H. pylori, independent of kinship. We conclude that patterns of spread of H. pylori under conditions of high prevalence, such as the rural South African families, differ from those in developed countries. Horizontal transmission occurs frequently between persons who do not belong to a core family, blurring the pattern of familial

  3. Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2017-01-01

    This paper presents a new and construction-friendly shear connection for assembly of precast reinforced concrete shear wall elements. In the proposed design, the precast elements have indented interfaces and are connected by a narrow zone grouted with mortar and reinforced with overlapping U......-bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...

  4. Influence of Coherent Structures on the Wall Shear Stress in Axial Flow Between a Cylinder and a Plane Wall

    International Nuclear Information System (INIS)

    Khabbouchi, Imed; Guellouz, Mohamed Sadok; Tavoularis, Stavros

    2009-01-01

    Synchronised hot-film and hot-wire measurements were made in the narrower region of a rectangular channel containing a cylindrical rod. The hot-film probe was mounted flush with the channel bottom wall to measure the wall shear stress, while the hot-wire probe was placed at a fixed position, selected in order to easily detect the passage of coherent structures. Mean and rms profiles of the wall shear stress show the influence of the gap to diameter ratio on their respective distributions. The latter presented peculiarities that could only be explained by the presence of coherent structures in the flow between the rod and the wall. Evidence of this presence is seen in the velocity power spectra. The strong influence of the coherent structures on the wall shear stress spatial and temporal distributions is established through velocity-wall shear stress cross-correlations functions and through conditionally sampled measurements

  5. Possibility of submarine landslide triggering due to dissociation of hydrates - an approach through ring shear tests

    Science.gov (United States)

    Fukuoka, Hiroshi; Dok, Atitkagna

    2015-04-01

    In Japan, the MH21 Research Consortium is developing the advanced technology of mining submarine methane hydrates by reducing pressure of hydrates to induce dissociation and gasification of hydrates. However, assessment and prediction technology of dissociation is still under development through intensive study. On the other hands, authors have pointed out the possibility of large-scale submarine landslides by the sliding surface liquefaction of the hydrate bearing- layers. Author has tested dry-ice and silica-sands mixture specimen as a methane hydrate substitutes in a series of partially-drained high speed / stress-controlled ring shear tests. Their results strongly suggest the possibility of sliding surface liquefaction under strong seismic condition, while the possibility of extensive dissociation especially under mining by reducing pressure is not clear. Author modified the ring shear apparatus DPRI-7 of Kyoto University so that it can cool down the specimen and measure the specimen temperature during shearing. Silica sands #7 submerged in TBAB (Tetra-butyl-ammonium bromide) solution was used for the specimen. This TBAB solution was frozen at around room temperature of 8 - 12 degrees Celsius under 1 atmospheric pressure. A series of constant speed shearing test was conducted to examine the rate-effect. Frictional characteristics was achieved under 0.1 - 10 cm/s of shear speed which was changed in stepping-up and down. The results show rather the temperature effect was obvious than the speed. At the first shearing of the specimen immediately after frozen, extreme high peak stress was obtained. Then the residual shear strength showed medium peak at temperature of about 4 degrees, then gradually decreased up to about 10 degrees. The medium peak of shear strength may come from the generation of angular grains due to crushing the specimen during initial shearing. The decreasing thereafter may have resulted from further crushing, rounding of the hydrates and

  6. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  7. Marcos, horizontes visuales y experiencia del lugar

    Directory of Open Access Journals (Sweden)

    Enrique de Teresa

    2012-12-01

    Full Text Available

    <strong>Resumen>

    "Habiendo educado mis ojos en el espectáculo de las cosas, intento deciros lo bello que he encontrado" Le Corbusier (El viaje de Oriente

    Desde la temprana fecha de 1911, en que realiza su viaje a Oriente, Le Corbusier nos muestra la capacidad mediadora que tiene la arquitectura para vincular los espacios, para conectar visualmente interior y exterior, para hacernos redescubrir la naturaleza acentuando nuestra percepción consciente. Sus dibujos sobre Villa Adriana, Pompeya, Atenas, etc., son un ejemplo de cómo percibir y plasmar en croquis su observación de la arquitectura y su ámbito exterior, de la captación del papel mediador entre arquitectura y lugar.
    En sus textos posteriores, y especialmente en "Vers une  architecture" (1923, así como a través de la experiencia de sus casas en los años veinte, nos mostrará el valor de las  operaciones que acotan, enmarcan y proporcionan una   dimensión de los espacios y del paisaje. Lo que hace de manera explícita y precisa en el texto "Une petite maison" (1923.
    Alvar Aalto y, posteriormente, Álvaro Siza, recogerán esta  capacidad de mediación entre arquitectura y lugar, buscando estimular la mirada para alentar la consciencia y el goce de los espacios y de la naturaleza. Las estrategias de la visión que  proponen, sobre todo en el último caso, lo llegan a  emparentar con el compromiso de enseñarnos a mirar y  experimentar del Land Art.
    Más allá de las imágenes expresivas y del lenguaje se tratará de ver, mediante ejemplos concretos, como la arquitectura se configura como vehículo de una percepción renovada y  alentadora de los espacios y del lugar.

    <strong>Palabras clavestrong>

    percepción, arquitectura, mediación, lugar, espacio<strong>

    Abstract>

    "Having educated my eyes in the spectacle of things, I try to tell you what I have found beautiful." Le Corbusier (The

  8. Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

    International Nuclear Information System (INIS)

    Ishiyama, Chiemi

    2012-01-01

    Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter

  9. Inhomogeneities in sheared ultrathin lubricating films

    NARCIS (Netherlands)

    Manias, E; Hadziioannou, G; ten Brinke, G.

    1996-01-01

    Nonequilibrium molecular dynamics computer simulations have been used to study nanoscopically confined oligomer films under shear. Beyond the well-known density layering across such films, other structural and dynamical inhomogeneities exist across such films and are discussed here. When these films

  10. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  11. Vane shear test for cohesionless soils

    Science.gov (United States)

    Park, Sung-Sik; An, Zhou; Ye, Sung-Ryol; Lee, Sae-Byeok; Chae, Kyung-Hyeon

    2015-04-01

    The vane shear test (VST) is a simple and rapid testing method for determining the undrained shear strength of cohesive soils. It has not been applied for granular soils because the failure surface was irregular and hardly determined due to their cohesionless property. In this study, the VST was used to determine the shear strength of cohesionless soils such as sand. A small laboratory vane with 5 cm in diameter and 10 cm in height was inserted into sand within pressurized cell. When the vane rotates within sand, a failure surface can be assumed to be cylindrical shape because the sand is pressurized with loading frame. Dry Nakdong River sand was prepared for loose and dense conditions in the cell and the axial pressure of 50, 100, and 200 kPa was applied on the surface of sand. The relationship between measured torque and resistant force along cylindrical shape due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. It was possible for the VST to determine the shear strength of sand under confined condition.

  12. Lightweight concrete modification factor for shear friction.

    Science.gov (United States)

    2013-10-01

    This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...

  13. Size Segregation in Sheared Jammed Colloids

    Science.gov (United States)

    Mbi, Armstrong; Blair, Daniel

    2013-03-01

    It is well known that granular materials can spontaneously size segregate when continuously driven. However, in jammed colloidal suspensions, this phenomenon is not well understood. Colloidal dispersions provide a unique system to study the structure and dynamics of jammed matter. In this talk, we present results of size segregation of a continuously sheared binary colloidal suspension well above point J. Our colloidal system is comprised of indexed-matched bi-disperse silica particles with diameters a = { 2 . 3 μm and 3 . 2 μm } and at ϕ 61 % , well above the colloidal glass transition. We apply a highly controlled shear at a constant shear rate through the use of a rheometer. By coupling our rheometer with a high-speed laser scanning confocal microscope, we directly image the structure and flow profiles of the suspension as it un-jams. We observe migration of the small and large species; large particles move to the top while the small particles move toward the bottom conserving the total volume fraction in all regions. Moreover, we find that an associating feature of segregation is a sustained shear band. Our results are consistent with a recently proposed void filling and squeeze expulsion mechanism. Funding is provided by NSF DMR #0847490.

  14. Shear-wave splitting and moonquakes

    Science.gov (United States)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.

    2017-12-01

    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  15. Shearing DNA for genomic library construction.

    Science.gov (United States)

    Hengen, P N

    1997-07-01

    Methods and reagents is a unique monthly column that highlights current discussion in the newsgroup bionet.molibio.methds-reagnts, available on the internet. This month's column discusses the pros and cons of various techniques used to shear DNA for shotgun cloning. For details on how to partake in the newsgroup, see the accompanying box.

  16. ESTIMATION OF SHEAR STRENGTH PARAMETERS OF ...

    African Journals Online (AJOL)

    This research work seeks to develop models for predicting the shear strength parameters (cohesion and angle of friction) of lateritic soils in central and southern areas of Delta State using artificial neural network modeling technique. The application of these models will help reduce cost and time in acquiring geotechnical ...

  17. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  18. Measurement of cavitation induced wall shear stress

    NARCIS (Netherlands)

    Dijkink, R.J.; Ohl, C.D.

    2008-01-01

    The wall shear stress from cavitation bubbles collapsing close to a rigid boundary is measured with a constant temperature anemometer. The bubble is created with focused laser light, and its dynamics is observed with high-speed photography. By correlating the frames, a hydrophone signal, and the

  19. Longitudinal shear vibrations of composite poroelastic cylinders ...

    African Journals Online (AJOL)

    Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic materials. The dilatations of liquid and solid media are zero, hence liquid ...

  20. A comparative study of the effects of cone-plate and parallel-plate geometries on rheological properties under oscillatory shear flow

    Science.gov (United States)

    Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu

    2017-11-01

    In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift