Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection
Directory of Open Access Journals (Sweden)
R. A. Treumann
2017-08-01
Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is
Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection
Treumann, Rudolf A.; Baumjohann, Wolfgang
2017-08-01
The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular
ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS
International Nuclear Information System (INIS)
Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.
2015-01-01
We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field
2008-01-01
Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Rydberg atoms in strong fields
International Nuclear Information System (INIS)
Kleppner, D.; Tsimmerman, M.
1985-01-01
Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented
Cassie Meador; Mark Twery; Meagan. Leatherbury
2011-01-01
The Moving Field Guides (MFG) project is a creative take on site interpretation. Moving Field Guides provide an example of how scientific and artistic endeavors work in parallel. Both begin with keen observations that produce information that must be analyzed, understood, and interpreted. That interpretation then needs to be communicated to others to complete the...
International Nuclear Information System (INIS)
L'Huillier, A.
2002-01-01
When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)
Atoms and clusters in strong laser fields
Marchenko, T.
2008-01-01
This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.
Strong and superstrong pulsed magnetic fields generation
Shneerson, German A; Krivosheev, Sergey I
2014-01-01
Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.
Atom collisions in a strong electromagnetic field
International Nuclear Information System (INIS)
Smirnov, V.S.; Chaplik, A.V.
1976-01-01
It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed
Thermodynamical instabilities under strong magnetic fields
Chen, Y. J.
2017-03-01
The thermodynamical instabilities of low densities in the n p matter and n p e matter are studied within several relativistic nuclear models under some values of magnetic fields. The results are compared between each other and the effects of the symmetry energy slope at saturation density on the instability are investigated. The instability regions can exhibit bands due to the presence of Landau levels for very strong magnetic fields of the order of 1017 G, while for weaker magnetic fields, the bands are replaced by many diffused or scattered pieces. It also shows that the proton fraction in the inner crust of neutron stars may be complex under strong magnetic fields.
Super-strong Magnetic Field in Sunspots
Okamoto, Takenori J.; Sakurai, Takashi
2018-01-01
Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.
Experimental investigation of strong field trident production
Esberg, J.; Kirsebom, K.; Knudsen, H.; Thomsen, H.D.; Uggerhøj, E.; Uggerhøj, U.I.; Sona, P.; Mangiarotti, A.; Ketel, T.J.; Ditzdar, A.; Dalton, M.M.; Ballestrero, S.; Connell, S.H.
2010-01-01
We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single
Experimental investigation of strong field trident production
Esberg, J; Knudsen, H; Thomsen, H D; Uggerhøj, E; Uggerhøj, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Dalton, M M; Ballestrero, S; Connell, S H
2010-01-01
We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single crystals. For the amorphous material our data are in good agreement with theory, whereas a discrepancy with theory on the magnitude of the trident enhancement is found in the precisely aligned case where the strong electric field acts.
Electromagnetic processes in strong crystalline fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
Electromagnetic Processes in strong Crystalline Fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
Lankes, R David
2016-01-01
This book offers a guide for librarians who see their profession as a chance to make a positive difference in their communities -- librarians who recognize that it is no longer enough to stand behind a desk waiting to serve. R. David Lankes, author of "The Atlas of New Librarianship," reminds librarians of their mission: to improve society by facilitating knowledge creation in their communities. In this book, he provides tools, arguments, resources, and ideas for fulfilling this mission. Librarians will be prepared to become radical positive change agents in their communities, and other readers will learn to understand libraries in a new way. The librarians of Ferguson, Missouri, famously became positive change agents in August 2014 when they opened library doors when schools were closed because of civil unrest after the shooting of an unarmed teen by police. Working with other local organizations, they provided children and their parents a space for learning, lunch, and peace. But other libraries serve othe...
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Hydrogen atoms in a strong magnetic field
International Nuclear Information System (INIS)
Santos, R.R. dos.
1975-07-01
The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt
Thomson scattering in strong external fields
Varró, S.; Ehlotzky, F.
1992-09-01
In the present paper we shall investigate relativistic Thomson scattering in two external fields. A free classical electron will be embedded in a strong, constant and homogeneous magnetic field and in a powerful electromagnetic field. Both fields will be considered in the Redmond configuration, in which case the electromagnetic wave is circularly polarized and propagates in the direction of the homogeneous magnetic field. The electron will be allowed to have arbitrary initial conditions and the electromagnetic wave will be switched on either suddenly or adiabatically. We shall present the exact solution of the Lorentz equation of motion in the above external field configuration and we shall evaluate the spectrum and cross sections of the scattered radiation. In particular, we shall consider scattering close to resonance and we shall compare our results with the findings of earlier work.
Controlling Josephson dynamics by strong microwave fields
Chesca, B.; Savel'ev, E.; Rakhmanov, A.L.; Smilde, H.J.H.; Hilgenkamp, Johannes W.M.
2008-01-01
We observe several sharp changes in the slope of the current-voltage characteristics (CVCs) of thin-film ramp-edge Josephson junctions between YBa2Cu3O7−delta and Nb when applying strong microwave fields. Such behavior indicates an intriguing Josephson dynamics associated with the switching from a
Bound states in a strong magnetic field
International Nuclear Information System (INIS)
Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.
2013-01-01
We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB∼m 2 π ∼ 0.02 GeV 2 at the RHIC and eB∼ 15m 2 π ∼ 0.3 GeV 2 at the LHC. We investigate the effects of the magnetic field on B 0 and D 0 mesons, focusing on the changes of the energy levels and of the mass of the bound states.
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...
Neutrino oscillations in strong magnetic fields
International Nuclear Information System (INIS)
Likhachev, G.G.; Studenikin, A.I.
1994-07-01
Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs
Stable states in a strong IR field
Zhong, Changchun; Robicheaux, Francis
2015-05-01
It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.
Tripolar electric field Structure in guide field magnetic reconnection
S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng
2018-01-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation
DEFF Research Database (Denmark)
Dimitrovski, Darko; Martiny, Christian P. J.; Madsen, Lars Bojer
2010-01-01
We extend the molecular strong-field approximation for ionization, in the tunneling limit, to include systematically the linear and quadratic static Stark shifts of the ionizing molecular orbital. This approach, simple to implement, is capable of describing the essential physics of the process of...
Tripolar electric field Structure in guide field magnetic reconnection
Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua
2018-03-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Influence of a guide field on collisionless driven reconnection
International Nuclear Information System (INIS)
Horiuchi, Ritoku; Usami, Shunsuke; Ohtani, Hiroaki
2014-01-01
The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix. (author)
Waves in strong centrifugal fields: dissipationless gas
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2015-04-01
Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.
Strongly Interacting Matter in Magnetic Field
Mao, Shijun; Wu, Youjia; Zhuang, Pengfei
Inverse magnetic catalysis effect on the chiral phase transition is investigated in the frame of SU(2) NJL model with Pauli-Villars regularization scheme. We consider two scenarios, the chiral chemical potential μ5 caused by sphalerons and magnetic inhibition of mesons π0. With different chiral chemical potential, we always obtain magnetic catalysis in the mean field calculation, due to the enhancement of Fermi surface of the pairing fermions by μ5. On the other hand, when going beyond the mean field approximation by including the feed-down from mesons to quarks, the competition between the magnetic catalysis effect of quarks and magnetic inhibition effect of mesons leads to the transition from inverse magnetic catalysis to delayed magnetic catalysis with increasing magnetic field.
Strong terahertz field generation, detection, and application
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)
2016-05-22
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.
Strong terahertz field generation, detection, and application
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)
2016-05-15
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.
Electromagnetic processes in strong crystalline fields
Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A
2009-01-01
As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...
Electron Dynamics in Nanostructures in Strong Laser Fields
Energy Technology Data Exchange (ETDEWEB)
Kling, Matthias
2014-09-11
The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.
Electrodynamics of a hydrogenlike atom in a strong electromagnetic field
International Nuclear Information System (INIS)
Kovarskij, V.A.; Perel'man, N.F.
1974-01-01
The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)
A field guide to digital color
Stone, Maureen
2013-01-01
Maureen Stone's field guide to digital color presents a survey of digital color with special emphasis on those fields important for computer graphics. The book provides the foundation for understanding color and its applications, discusses color media and color management and the use of color in computer graphics, including color design and selection. The book provides a guide for anyone who wants to understand and apply digital color. An annotated bibliography provides in-depth references for further study on each topic.
Mamo, Kiminad A.
2013-08-01
We calculate the DC conductivity tensor of strongly coupled = 4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B ≫ T 2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in the presence of the strong external magnetic field B ≫ T 2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.
Strong-field-ionization suppression by light-field control
DEFF Research Database (Denmark)
Räsänen, Esa; Madsen, Lars Bojer
2012-01-01
in the intensity and thus preventing tunneling. In contrast, at high frequencies in the extreme ultraviolet regime the optimized pulses strongly couple with the (de)-excitations of the system, which leads to different pulse characteristics. Finally, we show that the applied target functional works, to some extent...
Probing strong field ionization of solids with a Thomson parabola ...
Indian Academy of Sciences (India)
2014-01-11
Jan 11, 2014 ... large electric field drives the electrons to a very high energy. These hot electrons quickly move out of the solid surface, long before the ions move and the electron drift creates a strong quasistatic charge separation sheath electric field. Ions are then accelerated in this sheath field preferentially along the ...
Electron dynamics in metals and semiconductors in strong THz fields
DEFF Research Database (Denmark)
Jepsen, Peter Uhd
2017-01-01
Semiconductors and metals respond to strong electric fields in a highly nonlinear fashion. Using single-cycle THz field transients it is possible to investigate this response in regimes not accessible by transport-based measurements. Extremely high fields can be applied without material damage...
Mechanism and Simulation of Generating Pulsed Strong Magnetic Field
Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao
2014-10-01
A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.
Book Review: Everyone's guide to divorce and separation | Strong ...
African Journals Online (AJOL)
Book Title: Everyone's guide to divorce and separation. Book Author: Bertus Preller. 2013, Zebra Press, Cape Town. 205 pages. ISBN number: 978 1 77022 5299 (Paperback). Price: ZAR 257.00. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.
Rhie-Chow interpolation in strong centrifugal fields
Bogovalov, S. V.; Tronin, I. V.
2015-10-01
Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.
Spectral confinement and current for atoms in strong magnetic fields
DEFF Research Database (Denmark)
Fournais, Søren
2007-01-01
e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B<3......e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B
Dynamic polarizability of a complex atom in strong laser fields
International Nuclear Information System (INIS)
Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.
1997-01-01
An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field
Colloquium: Strong-field phenomena in periodic systems
Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.
2018-04-01
The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.
Radial oscillations of neutron stars in strong magnetic fields
Indian Academy of Sciences (India)
Abstract. The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and ...
Resonances of the helium atom in a strong magnetic field
DEFF Research Database (Denmark)
Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter
2007-01-01
We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100 a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...
Attosecond Electron Wave Packet Dynamics in Strong Laser Fields
International Nuclear Information System (INIS)
Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.
2005-01-01
We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes
Vortex-lattice states at strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Akera, H.; MacDonald, A.H.; Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana (USA)); Norman, M.R. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois (USA))
1991-10-21
At strong magnetic fields, Landau quantization invalidates the semiclassical approximations which underly the Ginzburg-Landau (GL) theory of the mixed states of type-II superconductors. We have solved the {ital microscopic} mean-field equations for the case of a two-dimensional electron system in the strong magnetic-field limit. For delta-function attractive interactions there exist {ital n}+1 pairing channels in the {ital n}th Landau level. For {ital n}{gt}0, two channels share the maximum {ital T}{sub {ital c}}, and the order parameter differs markedly from expectations based on GL theory.
NATO Advanced Study Institute on Atoms in Strong Fields
Clark, Charles; Nayfeh, Munir
1990-01-01
This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc ture and dynamics. The specific topics treated in this volume fall into two general cater gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso lution laser spectroscop...
Graphene Plasmonics: Guiding, Excitation and Strong SERS Enhancement
DEFF Research Database (Denmark)
Xiao, Sanshui
Propagation of graphene plasmons in nanoribbon waveguides is numerically investigated and excitation of the graphene plasmons in a continuous graphene monolayer is experimentally demonstrated. Interaction between a graphene monolayer with metallic nanostructures is further experimentally studied......, and strong SERS enhancement for the graphene monolayer is observed with the aid of metallic nanostructures....
Interaction of neutral particles with strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)
2013-07-01
Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.
Atomic and Free Electrons in a Strong Light Field
International Nuclear Information System (INIS)
Fedorov, Mikhail V.
1998-02-01
This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students
Night sky a falcon field guide
Nigro, Nicholas
2012-01-01
Night Sky: A Falcon Field Guide covers both summer and winter constellations, planets, and stars found in the northern hemisphere. Conveniently sized to fit in a pocket and featuring detailed photographs, this informative guide makes it easy to identify objects in the night sky even from one's own backyard. From information on optimal weather conditions, preferred viewing locations, and how to use key tools of the trade, this handbook will help you adeptly navigate to and fro the vast and dynamic nighttime skies, and you'll fast recognize that the night sky's the limit.
Quantum theory of strong-field frustrated tunneling
Popruzhenko, S. V.
2018-01-01
We show how the strong-field approximation, widely used for description of multiphoton and tunneling ionization, can be extended to analyse the excitation of bound states in intense low-frequency laser pulses. The proposed theory is based on the formalism of quantum trajectories and fills the gap between the numerical solution of the time-dependent Schrödinger equation and classical simulations. In particular, it allows identifying non-adiabatic and interference effects in strong-field excitation of Rydberg states.
Atomic and free electrons in a strong light field
Fedorov, Mikhail V
1997-01-01
This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge
Pulsed field gel electrophoresis a practical guide
Birren, Bruce
1993-01-01
Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv
Empirical trials of plant field guides.
Hawthorne, W D; Cable, S; Marshall, C A M
2014-06-01
We designed 3 image-based field guides to tropical forest plant species in Ghana, Grenada, and Cameroon and tested them with 1095 local residents and 20 botanists in the United Kingdom. We compared users' identification accuracy with different image formats, including drawings, specimen photos, living plant photos, and paintings. We compared users' accuracy with the guides to their accuracy with only their prior knowledge of the flora. We asked respondents to score each format for usability, beauty, and how much they would pay for it. Prior knowledge of plant names was generally low (<22%). With a few exceptions, identification accuracy did not differ significantly among image formats. In Cameroon, users identifying sterile Cola species achieved 46-56% accuracy across formats; identification was most accurate with living plant photos. Botanists in the United Kingdom accurately identified 82-93% of the same Cameroonian species; identification was most accurate with specimens. In Grenada, users accurately identified 74-82% of plants; drawings yielded significantly less accurate identifications than paintings and photos of living plants. In Ghana, users accurately identified 85% of plants. Digital color photos of living plants ranked high for beauty, usability, and what users would pay. Black and white drawings ranked low. Our results show the potential and limitations of the use of field guides and nonspecialists to identify plants, for example, in conservation applications. We recommend authors of plant field guides use the cheapest or easiest illustration format because image type had limited bearing on accuracy; match the type of illustration to the most likely use of the guide for slight improvements in accuracy; avoid black and white formats unless the audience is experienced at interpreting illustrations or keeping costs low is imperative; discourage false-positive identifications, which were common; and encourage users to ask an expert or use a herbarium for
Discriminative deep inelastic tests of strong interaction field theories
International Nuclear Information System (INIS)
Glueck, M.; Reya, E.
1979-02-01
It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de
Near-field strong coupling of single quantum dots.
Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert
2018-03-01
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.
Synchrotron radiation in strongly coupled conformal field theories
Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna
2010-06-01
Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle α˜1/γ. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.
Statistical relationship of strong earthquakes with planetary geomagnetic field activity
Pogrebnikov, M. M.; Komarovski, N. I.; Kopytenko, Y. A.; Pushel, A. P.
1984-12-01
Earlier studies reported a significant decrease in the geomagnetic field before strong earthquakes. Possible relationships between earthquakes with magnitude greater than 7 (Soviet scale) and planetary terrestrial magnetic field activity as characterized by the K sub p index were investigated. A total of 100 cases of strong earthquakes on magnetically quiet days in 1965 to 1975 were studied. The K sub p indexes were studied for two days before and two days after the earthquakes. The dispersion curve shows a significant decrease one day before each event. The relationship of the planetary K sub p index with seismic activity indicates that the period of preparation for an earthquake and at the moment of the shock are reflected in the terrestrial magnetic field.
Matter in strong fields: from molecules to living cells
International Nuclear Information System (INIS)
Mathur, D
2007-01-01
Strong optical fields induce multiple ionization in irradiated molecules. The ionization dynamics are governed by optical-field-induced distortions of molecular potential energy surfaces and molecular dissociation is the expected by-product. Recent experiments have even shown, quite counter-intuitively, that strong optical fields may even induce bond formation processes in molecules. All such processes are all manifestations of how intense light affects matter. In turn, matter also affects intense light. A visually dramatic manifestation of matter affecting light is obtained when ultrashort pulses of intense light propagate though condensed matter. The temporal and spatial properties of the incident light pulse are modified, and such modifications manifest themselves in an enlarged optical frequency sweep, resulting in the generation of broadband radiation (white light) known as supercontinuum production. Although the physics that governs supercontinuum generation is not properly understood, some recent progress is summarized. Novel applications of strong field phenomena are reported that are of relevance in the biomedical and life sciences
Nonlinear dynamics of semiconductors in strong THz electric fields
DEFF Research Database (Denmark)
Tarekegne, Abebe Tilahun
weak THz and near infrared pulses as probes. Firstly, an intense THz pulse is used to study THz-induced impact ionization (IMI) dynamics in silicon. Local field enhancement by metallic dipole antenna arrays has been used to generate strong electric fields of several MV/cm in the hot spots near...... uniquely. Finally it is demonstrated for the first time that SiC can be tailored to have extremely fast THz-induced nonlinear behavior in moderate THz electric fields by addition of appropriate dopants. A 4H-SiC sample with high concentrations of nitrogen and boron dopants shows a nonlinear THz......In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...
Ion Motion in a Plasma Interacting with Strong Magnetic Fields
International Nuclear Information System (INIS)
Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.
1999-01-01
The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized
Approximation for a Coulomb-Volkov solution in strong fields
Reiss, H. R.; Krainov, V. P.
1994-08-01
A simple analytical approximation is found for the wave function of an electron simultaneously exposed to a strong, circularly polarized plane-wave field and an atomic Coulomb potential. The approximation is valid when α0>>1, where α0 is the classical radius of motion of a free electron in the plane-wave field. This constraint is sufficiently mild at low frequencies that it makes possible a major extension of the lower bound of laser intensities for which Volkov-solution-based approximations are useful.
Two-level atom in a strong polychromatic field
International Nuclear Information System (INIS)
Kazakov, A.Ya.
1991-01-01
The quasienergy spectrium of a two-level atom in a polychromatic electromagnetic field can be expressed in terms of the Floquet indexes of a linear set of ordinary differential equations with periodic coefficients. An analytic expression for the quasienergy spectrum is obtained by the asymptotic technique for the case of a strong polychromatic field. It is shown that on deep modulation of the radiation incident on the atom forbidden bands for the quasilevels may arise. The Stark effect for the physical system under consideration is described
Strong-field short-pulse nondipole dynamics
DEFF Research Database (Denmark)
Dimitrovski, Darko; Førre, Morten; Madsen, Lars Bojer
2009-01-01
We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer and cont......We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer...... and control of population can be achieved using nondipole effects. The relative importance of nondipole to dipole effects depends on the displacement imparted to a free classical electron....
Three dimensional density cavities in guide field collisionless magnetic reconnection
Markidis, S.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Andersson, L.
2012-03-01
Particle-in-cell simulations of collisionless magnetic reconnection with a guide field reveal for the first time the three dimensional features of the low density regions along the magnetic reconnection separatrices, the so-called cavities. It is found that structures with further lower density develop within the cavities. Because their appearance is similar to the rib shape, these formations are here called low density ribs. Their location remains approximately fixed in time and their density progressively decreases, as electron currents along the cavities evacuate them. They develop along the magnetic field lines and are supported by a strong perpendicular electric field that oscillates in space. In addition, bipolar parallel electric field structures form as isolated spheres between the cavities and the outflow plasma, along the direction of the low density ribs and of magnetic field lines.
Semicalssical quantization of interacting anyons in a strong magnetic field
International Nuclear Information System (INIS)
Levit, S.; Sivan, N.
1992-01-01
We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)
Strong field transient manipulation of electronic states and bands
Directory of Open Access Journals (Sweden)
I. Crassee
2017-11-01
Full Text Available In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.
Radiative electron-atom collision in a strong laser field
International Nuclear Information System (INIS)
Faisal, F.H.M.
1984-01-01
The comment is concerned with certain current problems and prospects in the theory of electron-atom collision in a strong radiation field. High energy off-shell electron-photon excitation of atoms; low-energy e-atom radiative scattering; steady state input distribution; typical distribution; low energy phenomena; and extensions of the close coupling and the algebraic methods, are all discussed. (U.K.)
Experiments on plasma turbulence induced by strong, steady electric fields
International Nuclear Information System (INIS)
Hamberger, S.M.
1975-01-01
The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)
Theoretical Femtosecond Physics Atoms and Molecules in Strong Laser Fields
Grossmann, Frank
2008-01-01
Theoretical femtosecond physics is a new field of research. Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers of up to atomic field strengths are leading to an understanding of many challenging experimental discoveries. Laser-matter interaction is treated on a nonperturbative level in the book using approximate and numerical solutions of the time-dependent Schrödinger equation. The light field is treated classically. Physical phenomena, ranging from ionization of atoms to the ionization and dissociation of molecules and the control of chemical reactions are presented and discussed. Theoretical background for experiments with strong and short laser pulses is given. Several exercises are included in the main text. Some detailed calculations are performed in the appendices.
Spin effects in strong-field laser-electron interactions
International Nuclear Information System (INIS)
Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C
2013-01-01
The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.
Entanglement via atomic coherence induced by two strong classical fields
Lü, Xin-You; Huang, Pei; Yang, Wen-Xing; Yang, Xiaoxue
2009-09-01
Based on the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we propose a scheme to achieve the fully tripartite continuous-variable (CV) entanglement in a Y -type atomic system driven by two strong classical fields. By numerically simulating the dynamics of system, we show that the generation of entanglement does not depend intensively on the initial condition of cavity field and the time for which the cavity modes remain entangled can be prolonged via enhancing the intensities of classical fields in our scheme. Moreover, our numerical results also show that a tripartite entanglement amplifier can be realized in the present scheme. The present research provides an efficient approach to achieve fully tripartite CV entangled state even when the three entangled modes have different frequencies and initial states, which may be useful for the progress of quantum information networks with many nodes.
Mann, Steven; Gazmuri, Pablo; Caravajal, Steve; Wheeler, Christina
2012-01-01
Hands-on solutions for common SharePoint 2010 challenges Aimed at the more than 100 million licensed SharePoint 2010 users, this indispensable field guide addresses an abundance of common SharePoint 2010 problems and offers proven solutions. A team of authors encourages you to customize SharePoint beyond the out-of-the-box functionality so that you can build more complex solutions to these challenges. You?ll discover intricate details and specific full-scale solutions that you can then implement to your own SharePoint 2010 solutions.Tackles a variety of SharePoint 2010 problems ranging from si
A guide to safe field operations
Yobbi, D.K.; Yorke, T.H.; Mycyk, R.T.
1996-01-01
Most functions of the U.S. Geological Survey (USGS), Water Resources Division (WRD) require employees to participate in numerous field activities ranging from routine meetings with cooperators, other federal and public officials, and private citizens to potentially hazardous assignments, such as making flood measurements and scuba diving to service underwater instruments. It is paramount that each employee be aware of safety procedures and operational policies of the WRD to ensure that (1) their activities avoid or minimize personal injury to the employee, coworkers, or anyone in the vicinity of the field activity, and (2) their conduct does not infringe on the personal or property rights of any individual or organization. The purpose of the guide is to familiarize employees with the operational and safety procedures expected to be followed by each employee as a representative of the WRD. It is also intended as a training tool for all new employees and a document to be reviewed by each employee before undertaking a field assignment. It includes general procedures that are standard and applicable to all field operations, such as communication, vehicle operation, and adequate preparation for anticipated weather conditions. It also includes a discussion of specific procedures and safety considerations for most of the routine field assignments undertaken by hydrologists and hydrologic technicians of the WRD. The guide is not intended to be a technical handbook outlining step-by-step procedures for performing specific tasks or a comprehensive discussion of every possible activity that may be undertaken by a USGS employee. Employees are referred to the Techniques for Water-Resources Investigations (TWRI) series for specific technical procedures and to the U.S. Geological Survey Safety and Environmental Health Handbook 445-1-H (USGS, August 1989), USGS Occupational Hazards and Safety Procedures Handbook 445-2-H (December 1993), the WRD notebook on Safety Policy and
Dynamics of dissociation versus ionization in strong laser fields
International Nuclear Information System (INIS)
In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon
Cooper Pair Breakup in YBCO under Strong Terahertz Fields
Glossner, Andreas; Zhang, Caihong; Kikuta, Shinya; Kawayama, Iwao; Murakami, Hironaru; Müller, Paul; Tonouchi, Masayoshi
2012-01-01
We show that strong electric fields of ~ 30 kV cm^(-1) at terahertz frequencies can significantly weaken the superconducting characteristics of cuprate superconductors. High-power terahertz time-domain spectroscopy (THz-TDS) was used to investigate the in-plane conductivity of YBa2Cu3O7-delta (YBCO) with highly intense single-cycle terahertz pulses. Even though the terahertz photon energy (~ 1.5 meV) was significantly smaller than the energy gap in YBCO (~ 20-30 meV), the optical conductivity...
Confinement and αs in a strong magnetic field
Directory of Open Access Journals (Sweden)
Yu.A. Simonov
2015-07-01
Full Text Available Hadron decay widths are shown to increase in strong magnetic fields as Γ(eB∼eBκΓ(0. The same mechanism is shown to be present in the production of the sea quark pair inside the confining string, which decreases the string tension with the growing eB parallel to the string. On the other hand, the average energy of the qq¯ holes in the string world sheet increases, when the direction of B is perpendicular to the sheet. These two effects stipulate the spectacular picture of the B dependent confinement and αs, discovered on the lattice.
Quark-gluon plasma in strong magnetic fields
International Nuclear Information System (INIS)
Kalaydzhyan, Tigran
2013-04-01
One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.
Helium atoms and molecules in strong magnetic fields
Mori, K.
Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features
Quark-gluon plasma in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran
2013-04-15
One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.
Electron-positron-photon cascades in the strong laser field
Legkov, Maxim; Fedotov, Alexander
2012-06-01
At nearest future several ambitious projects (such as ELI and HiPER) may provide laser filed intensity up to 10^23--10^24 W/cm^2. In such strong fields quantum effects are essential. The most important among them is production of QED cascades. In this paper external field intensity is considered as ultra-relativistic but subcritical. Using a model of two colliding counter-propagating laser beams it was shown that the number of particles during the process is growing exponentially in time. This leads to vast formation of electron-positron-photon plasma. According to numerical simulations, this plasma quickly absorbs an essential part of the energy of the laser field thus leading to its depletion. Numerical simulation has been also performed for a case of high-energetic particle and laser beam collision. Probability rates of direct and recombination processes have been theoretically studied. Under some conditions, recombination may come into play and suppress cascade development. Using approximation of radiation in forward direction, system of kinetic equations, which describes plasma evaluation, was constructed. According to qualitative estimations based on kinetic equations, it was shown that recombination processes can be neglected for optical frequencies range of external field.
Strong-field control landscapes of coherent electronic excitation
Bayer, Tim; Wollenhaupt, Matthias; Baumert, Thomas
2008-04-01
We report on physical mechanisms behind resonant strong-field coherent control. To this end, we study multi-photon ionization of potassium atoms using intense shaped femtosecond laser pulses. The measured photoelectron spectra are discussed in terms of selective population of dressed states (SPODS). A physically motivated pulse parameterization is introduced which opens up two-dimensional parameter spaces comprising pulse sequences as well as chirped pulses. The control topologies of these subspaces are mapped out experimentally and are presented in the form of strong-field control landscapes (SFCLs). In the SFCLs, complementary realizations of SPODS via photon locking and rapid adiabatic passage are observed. Moreover, the combined effect, termed Multi-RAP, arises when both mechanisms are at play simultaneously. In order to better understand the performance of adaptive optimization procedures, we experimentally study their capability to find optimal solutions on a given parameter space. The evolution of different optimization procedures is visualized by means of control trajectories on the surface of the measured SFCL.
Malware Forensics Field Guide for Windows Systems Digital Forensics Field Guides
Malin, Cameron H; Aquilina, James M
2010-01-01
Dissecting the dark side of the Internet with its infectious worms, botnets, rootkits, and Trojan horse programs (known as malware) is a treaterous condition for any forensic investigator or analyst. Written by information security experts with real-world investigative experience, Malware Forensics Field Guide for Windows Systems is a "tool" with checklists for specific tasks, case studies of difficult situations, and expert analyst tips. *A condensed hand-held guide complete with on-the-job tasks and checklists *Specific for Windows-based systems, the largest running OS in the world
Theoretical femtosecond physics atoms and molecules in strong laser fields
Grossmann, Frank
2018-01-01
This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...
Anomalous electrodynamics of neutral pion matter in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)
2017-03-03
The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.
Strong-field relativistic processes in highly charged ions
Energy Technology Data Exchange (ETDEWEB)
Postavaru, Octavian
2010-12-08
In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)
An integral-field spectroscopic strong lens survey
Energy Technology Data Exchange (ETDEWEB)
Bolton, Adam S [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS-20, Cambridge, MA 02138 (United States); Burles, Scott [Department of Physics and Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)
2007-12-15
We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction.
Virtual detector theory for strong-field atomic ionization
Wang, Xu; Tian, Justin; Eberly, J. H.
2018-04-01
A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.
Coherence and quasistable states in a strong infrared field
Zhong, Changchun; Robicheaux, F.
2016-03-01
We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.
Mechanics of magnetic fluid column in strong magnetic fields
International Nuclear Information System (INIS)
Polunin, V.M.; Ryapolov, P.A.; Platonov, V.B.
2017-01-01
Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.
The ESRg matrix for strong field d5 systems
Directory of Open Access Journals (Sweden)
McGarvey Bruce R.
1998-01-01
Full Text Available This review has tried to collect and correlate all the various equations for the g matrix of strong field d5 systems obtained from different basis sets using full electron and hole formalism calculations. It has corrected mistakes found in the literature and shown how the failure to properly take in symmetry boundary conditions has produced a variety of apparently inconsistent equations in the literature. The review has reexamined the problem of spin-orbit interaction with excited t4e states and finds that the earlier reports that it is zero in octahedral symmetry is not correct. It has shown how redefining what x, y, and z are in the principal coordinate system simplifies, compared to previous methods, the analysis of experimental g values with the equations.
An integral-field spectroscopic strong lens survey
International Nuclear Information System (INIS)
Bolton, Adam S; Burles, Scott
2007-01-01
We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction
Probing strong-field general relativity near black holes
CERN. Geneva; Alvarez-Gaumé, Luís
2005-01-01
Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...
Self-Organization of Polymeric Fluids in Strong Stress Fields
Directory of Open Access Journals (Sweden)
A. V. Semakov
2015-01-01
Full Text Available Analysis of literature data and our own experimental observations have led to the conclusion that, at high deformation rates, viscoelastic liquids come to behave as rubbery materials, with strong domination by elastic deformations over flow. This can be regarded as a deformation-induced fluid-to-rubbery transition. This transition is accompanied by elastic instability, which can lead to the formation of regular structures. So, a general explanation for these effects requires the treatment of viscoelastic liquids beyond critical deformation rates as rubbery media. Behaviouristic modeling of their behaviour is based on a new concept, which considers the medium as consisting of discrete elastic elements. Such a type of modeling introduces a set of discrete rotators settled on a lattice with two modes of elastic interaction. The first of these is their transformation from spherical to ellipsoidal shapes and orientation in an external field. The second is elastic collisions between rotators. Computer calculations have demonstrated that this discrete model correctly describes the observed structural effects, eventually resulting in a “chaos-to-order” transformation. These predictions correspond to real-world experimental data obtained under different modes of deformation. We presume that the developed concept can play a central role in understanding strong nonlinear effects in the rheology of viscoelastic liquids.
Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field
International Nuclear Information System (INIS)
Chajkovskij, I.A.
1974-01-01
A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers
Theory of strong-field attosecond transient absorption
International Nuclear Information System (INIS)
Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B
2016-01-01
Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption
Eccentric binaries of compact objects in strong-field gravity
International Nuclear Information System (INIS)
Gold, Roman
2011-01-01
In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on to the
Eccentric binaries of compact objects in strong-field gravity
Energy Technology Data Exchange (ETDEWEB)
Gold, Roman
2011-09-27
In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on
First-order discrete Faddeev gravity at strongly varying fields
Khatsymovsky, V. M.
2017-11-01
We consider the Faddeev formulation of general relativity (GR), which can be characterized by a kind of d-dimensional tetrad (typically d = 10) and a non-Riemannian connection. This theory is invariant w.r.t. the global, but not local, rotations in the d-dimensional space. There can be configurations with a smooth or flat metric, but with the tetrad that changes abruptly at small distances, a kind of “antiferromagnetic” structure. Previously, we discussed a first-order representation for the Faddeev gravity, which uses the orthogonal connection in the d-dimensional space as an independent variable. Using the discrete form of this formulation, we considered the spectrum of (elementary) area. This spectrum turns out to be physically reasonable just on a classical background with large connection like rotations by π, that is, with such an “antiferromagnetic” structure. In the discrete first-order Faddeev gravity, we consider such a structure with periodic cells and large connection and strongly changing tetrad field inside the cell. We show that this system in the continuum limit reduces to a generalization of the Faddeev system. The action is a sum of related actions of the Faddeev type and is still reduced to the GR action.
Nonlinear quantum electrodynamic and electroweak processes in strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian
2015-06-24
Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.
Interplanetary Magnetic Field Guiding Relativistic Particles
Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.
2011-01-01
The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.
Probing Strong-field General Relativity with Gravitational Waves
Pretorius, Frans
We are on the verge of a new era in astrophysics as a world-wide effort to observe the universe with gravitational waves takes hold---ground based laser interferometers (Hz to kHz), pulsar timing (micro to nano Hz), measurements of polarization of the cosmic microwave background (sub-nano Hz), and the planned NASA/ESA mission LISA (.1 mHz to .1 Hz). This project will study the theoretical nature of gravitational waves (GWs) emitted by two sources in the LISA band, namely supermassive-black-hole (SMBH) binary mergers, and extreme-mass-ratio-inspirals (EMRI's)---the merger of a stellar mass black hole, neutron star, or white dwarf with a SMBH. The primary goal will be to ascertain how well LISA, by observing these sources, could answer the following related questions about the fundamental nature of strong-field gravity: Does Einstein's theory of general relativity (GR) describe the geometry of black holes in the universe? What constraints can GW observations of SMBH mergers and EMRIs place on alternative theories of gravity? If there are deviations from GR, are there statistics that could give indications of a deviation if sources are detected using a search strategy based solely on GR waveforms? The primary reasons for focusing on LISA sources to answer these questions are (a) binary SMBH mergers could be detected by LISA with exquisitely high signal-to- noise, allowing enough parameters of the system to be accurately extracted to perform consistency checks of the underlying theory, (b) EMRIs will spend numerous orbits close to the central black hole, and thus will be quite sensitive to even small near-horizon deviations from GR. One approach to develop the requisite knowledge and tools to answer these questions is to study a concrete, theoretically viable alternative to GR. We will focus on the dynamical variant of Chern-Simons modified gravity (CSMG), which is interesting for several reasons, chief among which are (1) that CSMG generically arises in both string
Correlated electron-ion collisions in a strong laser field
International Nuclear Information System (INIS)
Ristow, T.
2007-01-01
Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and
Towards strong field tests of beyond Horndeski gravity theories
Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo
2017-03-01
Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.
Experimental study of transport of relativistic electron beams in strong magnetic mirror field
Sakata, Shohei; Kondo, Kotaro; Bailly-Grandvaux, Mathiu; Bellei, Claudio; Santos, Joao; Firex Project Team
2015-11-01
Relativistic electron beams REB produced by ultra high intense laser pulses have generally a large divergence angle that results in degradation of energy coupling between the REB and a fuel core in the fast ignition scheme. Guiding and focusing of the REB by a strong external magnetic field was proposed to achieve high efficiency. We investigated REB transport through 50 μm or 250 μm thick plastic foils CuI doped under external magnetic fields, in magnetic mirror configurations of 1.2 or 4 mirror ratio. The experiment was carried out at the GEKKO XII and LFEX laser facility. Spatial pattern of the REB was measured by coherent transition radiation and/or Cu Ka x ray emission from the rear surface of the foil targets. Strong collimation of the REB by the external magnetic field was observed with 50 μm thick plastic targets, while the REB scattered in 250 μm thick targets. The experimental results are compared with computer simulations to understand the physical mechanisms of the REB transport in the external magnetic field. This work is supported by NIFS (Japan), MEXT/JSPS KAKENHI (Japan), JSPS Fellowship (Japan), ANR (France) and COST (Europe).
Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field
Bethe, H. A.
1972-09-01
The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.
Interaction between laser-produced plasma and guiding magnetic field
International Nuclear Information System (INIS)
Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko
2013-01-01
Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)
Synchrotron radiation in strongly coupled conformal field theories
Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna
2010-01-01
Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, and find the same angular distribution of radiated power, up to an overall prefactor. In both regimes, the angular distribution is in fact similar to that of synchrotron radiation produced by an electron in circula...
Ion H2+ can dissociate in a strong magnetic field
International Nuclear Information System (INIS)
Turbiner, A.V.; Lopez, J.C.; Flores-Riveros, A.
2001-01-01
In framework of a variational method the molecular ion H 2 + in a magnetic field is studied. An optimal form of the vector potential corresponding to a given magnetic field is chosen. It is shown that for any magnetic field strength as well as for any orientation of the molecular axis the system (ppe) possesses a minimum in the potential energy. The stable configuration always corresponds to elongation along the magnetic line. However, for magnetic fields B ≥ 5 x 10 11 G and some orientations the ion H 2 + becomes instable decaying to H-atom + p [ru
International Nuclear Information System (INIS)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.
Ionization of atoms in strong low-frequency electromagnetic field
International Nuclear Information System (INIS)
Krainov, V. P.
2010-01-01
The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.
Effective Field Theories and Strong Interactions. Final Technical Report
International Nuclear Information System (INIS)
Fleming, Sean
2011-01-01
The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can
Chiral spiral induced by a strong magnetic field
Directory of Open Access Journals (Sweden)
Abuki Hiroaki
2016-01-01
Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Operating a magnetic nozzle helicon thruster with strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Kazunori, E-mail: kazunori@ecei.tohoku.ac.jp; Komuro, Atsushi; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)
2016-03-15
A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.
Radial oscillations of neutron stars in strong magnetic fields
Indian Academy of Sciences (India)
The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic ﬁeld. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean ﬁeld theory is taken and extended to ...
Certain relativistic effects due to strong electromagnetic fields in plasmas
International Nuclear Information System (INIS)
Tsintsadze, N.L.
1974-01-01
It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)
Healthy Water Healthy People Field Monitoring Guide
Project WET Foundation, 2003
2003-01-01
This 100-page manual serves as a technical reference for the "Healthy Water, Healthy People Water Quality Educators Guide" and the "Healthy Water Healthy People Testing Kits". Yielding in-depth information about ten water quality parameters, it answers questions about water quality testing using technical overviews, data interpretation guidelines,…
A Guided Inquiry Activity for Teaching Ligand Field Theory
Johnson, Brian J.; Graham, Kate J.
2015-01-01
This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…
Inherent resistivity of graphene to strong THz fields
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Mics, Zoltán; Jensen, Søren
2014-01-01
The nonlinear THz conductivity of graphene is characterized using nonlinear ultrafast THz spectroscopy. Efficient carrier heating by the THz field reduces carrier scattering, yet, counter-intuitively, simultaneously suppresses the high-frequency conductivity of graphene. © 2014 OSA....
Field guide to fishes of the chesapeake bay
Murdy, Edward O.
2013-01-01
The only comprehensive field guide to the Chesapeake’s fishes, this book is an indispensable resource for both anglers and students of the Bay. Vivid illustrations by Val Kells complement the expertise of researchers Edward O. Murdy and John A. Musick. They describe fishes that inhabit waters ranging from low-salinity estuaries to the point where the Bay meets the Atlantic Ocean. Key features of this field guide include• full-color illustrations of more than 200 species• text that is presented adjacent to illustrations for easy reference• detailed descriptions of physical characteristics, range, occurrence in the Bay, reproduction, diet, and statistics from fisheries research• spot illustrations that highlight critical features of certain fish• illustrations of juveniles when they look different from adults• appendices that include identification keys Formatted as a compact field guide for students, scientists, researchers, and fishermen, Field Guide to Fishes of the Chesapeake Bay should be a ...
Field guide to terahertz sources, detectors, and optics
O'Sullivan, Créidhe
2012-01-01
This SPIE Field Guide provides readers with a concise description of the quasi-optical techniques used to design THz systems, as well as the basic principles of operation of the most common THz components in use today.
Channel-closing effects in strong-field ionization by a bicircular field
Milošević, D. B.; Becker, W.
2018-03-01
Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.
On tidal phenomena in a strong gravitational field
International Nuclear Information System (INIS)
Mashoon, B.
1975-01-01
A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center
Quantum processes in a strong electromagnetic field producing pairs. 3
International Nuclear Information System (INIS)
Gitman, D.M.; Gavrilov, S.P.
1977-01-01
The Furry picture in quantum electrodynamics with an external field producing real pairs has been generalized. For the required generalization to be achieved all operators of a spinor field are expressed through functions of production and annihilation operators and formulated are the rules for reduction to a generalized normal form, i.e., to such a form in which all the production operators in each term are on the left from all the annihilation operators. The diagram technique for matrix elements of random processes has been considered
Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.
Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne
2015-04-17
Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.
Observing the sun a pocket field guide
Jenkins, Jamey L
2013-01-01
A comprehensive solar observing guide for use at the telescope by amateur astronomers at all three levels: beginning, intermediate, and advanced. Users will find invaluable information for identifying features through photos, charts, diagrams in a logical, orderly fashion and then interpreting the observations. Because the Sun is a dynamic celestial body in constant flux, astronomers rarely know for certain what awaits them at the eyepiece. All features of the Sun are transient and sometimes rather fleeting. Given the number of features and the complex life cycles of some solar features, it can be a challenging hobby, and this guide provides all of the guidance necessary to inform observers about the sights and events unfolding before their eyes on the most active and powerful member of our Solar System.
Neutron star in the presence of strong magnetic field
Indian Academy of Sciences (India)
Stars: neutron stars; magnetic fields; equation of state. PACS Nos 26.60.Kp; 52.35.Tc; 97.10.Cv. 1. Introduction. The central density of neutron stars (NS) exceeds the nuclear saturation density (n0 ∼. 0.15 fm. −3. ), thereby giving the idea that compact stars might contain deconfined and chirally restored quark matter in them.
Effective magnetic moment of neutrinos in strong magnetic fields
Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
Multistage ionization of atoms in a very strong electromagnetic field
International Nuclear Information System (INIS)
Krajnov, V.P.; Manykin, Eh.A.
1980-01-01
Considered is a problem of multiple ionization of middle and heavy atoms as a function of the intensity of an electromagnetic field. The atom is considered in the Thomas -Fermi approximation. Presented are estimates of ionization degree for lead, tungsten and tantalum
Cigar-shaped quarkonia under strong magnetic field
Suzuki, Kei; Yoshida, Tetsuya
2016-03-01
Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.
The realization of strong, stray static magnetic fields
Czech Academy of Sciences Publication Activity Database
Žežulka, Václav; Straka, Pavel
2012-01-01
Roč. 9, č. 1 (2012), s. 71-77 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic fields * magnetic circuits * permanent NdFeB magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/7_Zezulka.pdf
Strong magnetic field induces superconductivity in a Weyl semimetal
Rosenstein, Baruch; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.
2017-12-01
Microscopic theory of the normal-to-superconductor coexistence line of a multiband Weyl superconductor subjected to magnetic field is constructed. It is shown that the Weyl semimetal that is nonsuperconducting or having a small critical temperature Tc at zero field might become a superconductor at higher temperatures when the magnetic field is tuned to a series of quantized values Hn. The pairing occurs on Landau levels. It is argued that the phenomenon is detectable much easier in Weyl semimetals than in parabolic band metals since the quantum limit already has been approached in several Weyl materials. The effect of Zeeman coupling leading to splitting of the reentrant superconducting regions on the magnetic phase diagram is considered. An experimental signature of the superconductivity on Landau levels is the reduction of magnetoresistivity. This has been observed already in Cd3As2 and several other compounds. The novel kind of quantum oscillations of magnetoresistance detected in ZrTe5 is discussed along these lines.
Electrohydrodynamics of drops in strong electric fields: Simulations and theory
Saintillan, David; Das, Debasish
2016-11-01
Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.
Spin and Angular Momentum in Strong-Field Ionization
Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.
2018-01-01
The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.
Study of the interaction of atoms with strong laser fields
International Nuclear Information System (INIS)
Edwards, M.
1984-01-01
Three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks that corresponded to the absorption of more than the minimum number of photons required to ionize the atom. A model approximation here showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis, namely: a study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a two-level atom. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) that attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. This study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm -2
Dynamics of Molecular Gyroscopes Created by Strong Optical Fields
Mullin, Amy
2015-03-01
We explore the behavior of molecules in ultra-high angular momentum states prepared in an optical centrifuge and detected with transient IR absorption spectroscopy. In the optical centrifuge, the polarizable electron cloud of molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. The centrifuge pulse is generated by combining oppositely chirped pulsed of light. Trapped molecules are driven into high angular momentum states that are spatially oriented with the optical field and have energies far above the average at 300 K. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for the super-rotors. Polarization-dependent studies show that the initial angular momentum orientation persists for many collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. Time-dependent population and energy profiles for individual J- states give information about the dynamics of super-rotors. Research support provided by NSF and the University of Maryland.
Theoretical femtosecond physics atoms and molecules in strong laser fields
Grossmann, Frank
2013-01-01
Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...
Annular billiard dynamics in a circularly polarized strong laser field
Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.
2012-01-01
We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.
Hydrogen atom in a strong uniform electric field
International Nuclear Information System (INIS)
Damburg, R.Ya.
1989-01-01
It has been shown that notwithstanding the separability of the Schroedinger equation for the Lo-Surdo s tark (LS-S) problem for hydrogen, the quasistationary states cannot be always characterized by parabolic quantum numbers of n 1 , n 2 ,m. It is a reason why any numerical procedure of the calculation of the LS-S parameters E 0 and Γ which ignores this circumstance can appear to be invalid for large values of n 1 and F and small ones of n 2 and m. Experimental data on the photoionization of atoms in the presence of an electric field in the vicinity of the Rydberg series limit E=0 are in an accord with theoretical predictions. 32 refs.; 6 figs
Radiation effects on relativistic electrons in strong external fields
International Nuclear Information System (INIS)
Iqbal, Khalid
2013-01-01
The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.
Strong-field physics with singular light beams
Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, Ch.
2012-10-01
Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons. The study of optical vortices has led to applications such as particle micro-manipulation, imaging, interferometry, quantum information and high-resolution microscopy and lithography. Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams. To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up. Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation. The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings, where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.
Field guide to forest plants of northern Idaho
Patricia A. Patterson; Kenneth E. Neiman; Jonalea K. Tonn
1985-01-01
This field guide -- designed for use by people with minimal botanical training -- is an identification aid for nearly 200 plant species having ecological indicator value in northern Idaho forest habitat types. It contains line drawings, simplified taxonomic descriptions , characteristics tables, conspectuses, and keys. It emphasizes characteristics useful for field...
Test of Horizontal Magnetic Field Measurements in the Presence of a Strong Vertical Field
Vasserman, Isaac
2004-01-01
Trajectory straightness is an important parameter defining the performance of free-electron laser (FEL) devices. The first test of horizontal field measurements using Hall probes was done in 1998 as a preparation to the tuning of undulators for the FEL project at the Advanced Photon Source. This work continues the 1998 work, now associated with Linac Coherent Light Source (LCLS) project. Tolerances for the LCLS FEL undulator specify 2 um trajectory excursion in both (horizontal and vertical) planes for a particle energy of 14.1 GeV, which means that measurements of a small horizontal field in presence of strong (up to 1.5 T) vertical field are required. Hall probe measurements under such conditions are complicated due to a planar Hall probe effect. Previous tests done in 1998 showed that a 2- axis Sentron probe is a possible choice. The high sensitivity of horizontal field integrals to the vertical position of the sensor was observed. It was shown that this probe could be used for fast measurements and tuning...
Numerical Hydrodynamics in Strong-Field General Relativity
East, William Edward
In this thesis we develop and test methods for numerically evolving hydrodynamics coupled to the Einstein field equations, and then apply them to several problems in gravitational physics and astrophysics. The hydrodynamics scheme utilizes high-resolution shock-capturing techniques with flux corrections while the Einstein equations are evolved in the generalized harmonic formulation using finite difference methods. We construct initial data by solving the constraint equations using a multigrid algorithm with free data chosen based on superposing isolated compact objects. One application we consider is the merger of black hole-neutron star and neutron star-neutron star binaries that form through dynamical capture, as may occur in globular clusters or galactic nuclei. These systems can merge with non-negligible orbital eccentricity and display significant variability in dynamics and outcome as a function of initial impact parameter. We study the electromagnetic and gravitational-wave transients that these mergers may produce and their prospects for being detected with upcoming observations. We also introduce a numerical technique that allows solutions to the full Einstein equations to be obtained for extreme-mass-ratio systems where the spacetime is dominated by a known background solution. This technique is based on using the knowledge of a background solution to subtract off its contribution to the truncation error. We use this to study the tidal effects and gravitational radiation from a solar-type star falling into a supermassive black hole. Finally, we utilize general-relativistic hydrodynamics to study ultrarelativistic black hole formation. We study the head-on collision of fluid particles well within the kinetic energy dominated regime (Lorentz factors of 8-12). We find that black hole formation does occur at energies a factor of a few below simple hoop conjecture estimates. We also find that near the threshold for black hole formation, the collision leads to
DEFF Research Database (Denmark)
Overgaard, Johannes; Sørensen, Jesper Givskov; A. Hoffmann, Ary
2008-01-01
Physiological and evolutionary responses to thermal variation are often investigated under controlled laboratory conditions. However, this approach may fail to account for the complexity of natural environments. Here we investigated the costs and benefits of developmental or adult cold acclimation...... that the ability to locate a field resource has a genetic basis with a high heritability since only round of selection on parental flies (F0) revealed clear differences in the ability of offspring (F1 and F2) to locate field resources at cold temperatures. Again we found a poor association between field...... and laboratory performance emphasising the importance of testing thermal resistance under relevant/natural conditions....
Field Guide to Meteors and Meteorites
Norton, O. Richard
2008-01-01
Imagine the unique experience of being the very first person to hold a newly-found meteorite in your hand – a rock from space, older than Earth! "Weekend meteorite hunting" with magnets and metal detectors is becoming ever more popular as a pastime, but of course you can’t just walk around and pick up meteorites in the same way that you can pick up seashells on the beach. Those fragments that survived the intense heat of re-entry tend to disguise themselves as natural rocks over time, and it takes a trained eye – along with the information in this book – to recognize them. Just as amateur astronomers are familiar with the telescopes and accessories needed to study a celestial object, amateur meteoriticists have to use equipment ranging from simple hand lenses to microscopes to study a specimen, to identify its type and origins. Equipment and techniques are covered in detail here of course, along with a complete and fully illustrated guide to what you might find and where you might find it. In fact, th...
Sujovolsky, N. E.; Mininni, P. D.
2016-09-01
We study the transition in dimensionality of a three-dimensional magnetohydrodynamic flow forced only mechanically when the strength of a magnetic guide field is gradually increased. We use numerical simulations to consider cases in which the mechanical forcing injects (or not) helicity in the flow. As the guide field is increased, the strength of the magnetic field fluctuations decreases as a power law of the guide field intensity. We show that for strong enough guide fields the helical magnetohydrodynamic flow can become almost two-dimensional. In this case, the mechanical energy can undergo a process compatible with an inverse cascade, being transferred preferentially towards scales larger than the forcing scale. The presence of helicity changes the spectral scaling of the small magnetic field fluctuations, and affects the statistics of the velocity field and of the velocity gradients. Moreover, at small scales the dynamics of the flow becomes dominated by a direct cascade of helicity, which can be used to derive scaling laws for the velocity field.
Investigation of the free electron laser with a guide magnetic field
International Nuclear Information System (INIS)
Kwan, T.; Dawson, J.M.
1979-01-01
The free electron laser with a static guide magnetic field has been investigated theoretically and by computer simulation using a fully relativistic electromagnetic particle code which has one spatial and three velocity dimensions. By passing a relativistic electron beam through a helical magnetic field, high frequency electromagnetic radiation is generated by its coupling to the negative energy electrostatic beam modes through the helical magnetic field. In the regime of strong guide field where Ω/sub c/e/γ>>k 0 v/sub 0z/, the dispersion relation is obtained by using a fluid model for the electron beam and the growth rates are solved for numerically. Reasonable agreement between the theory and the simulations has been obtained. It was found that the growth rate increases linearly with magnetic ripple strength but decreases with the strength of the guide field. In addition, the growth rates also increase slightly with the beam energy. For a reasonably strong guide field (e.g., Ω/sub c/e=6.0ω/sub p/e), the growth rate can be on the order of 0.1ω/sub p/e and the efficiency of radiation production has been found to be as high as 16%. However, the efficiency decreases with the strength of the guide field. A theory for the saturation level is developed which relates the efficiency to the continued growth of the electromagnetic wave after the onset of trapping by the electrostatic field. It is found that the growth continues for about one bounce time and the observed saturation levels are reasonably well explained
The wireshark field guide analyzing and troubleshooting network traffic
Shimonski, Robert
2013-01-01
The Wireshark Field Guide provides hackers, pen testers, and network administrators with practical guidance on capturing and interactively browsing computer network traffic. Wireshark is the world's foremost network protocol analyzer, with a rich feature set that includes deep inspection of hundreds of protocols, live capture, offline analysis and many other features. The Wireshark Field Guide covers the installation, configuration and use of this powerful multi-platform tool. The book give readers the hands-on skills to be more productive with Wireshark as they drill
A field guide to geophysics in archaeology
Oswin, John
2009-01-01
Geophysics operations in archaeology have become well known through exposure on television. However, the technique is presented as the action of specialists and something of a mystery, where people walk about with strange contraptions, and results appear from a computer. This is not the case, however. Some scientific knowledge is needed in order to understand how the machines work and what they detect but otherwise it is only necessary to know how to handle the instruments, how to survey a field and how to interpret the computer results. This book provides all the relevant information. It explains geophysics operations in archaeology, describes the science that gives the soil properties to measure and the means by which the instruments make their measurements. Dr John Oswin is in charge of the geophysics operation of the Bath and Camerton Archaeological Society and his work has recently been the subject of a television programme. He has taught many students how to use geophysical equipment.
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the
A field guide for well site geologists: Cable tool drilling
International Nuclear Information System (INIS)
Last, G.V.; Liikala, T.L.
1987-12-01
This field is intended for use by Pacific Northwest Laboratory well site geologists who are responsible for data collection during the drilling and construction of monitoring wells on the Hanford Site. This guide presents standardized methods for geologic sample collection and description, and well construction documentation. 5 refs., 5 figs., 2 tabs
Field guide for Ontario Hydro shipments involving radioactive material
International Nuclear Information System (INIS)
Howe, W.
1987-09-01
This field guide consists of two parts. Part I deals with the packages used by Ontario Hydro for shipment of its radioactive materials. Highly radioactive material must be transported in rugged containers which will survive a severe transportation accident. These containers are known at Type B Packages. Each container used by Ontario Hydro for shipments of highly radioactive material has been allotted a single page in this field guide with specific information for quick reference. Each package identification card includes a description of the package and contents and the required safety marking. Photographs of both the container and the vehicle as well as a cross-sectional diagram will assist Ontario Hydro personnel as well as emergency response personnel in quick identification of containers and contents. Containers used for transportation of material will low levels of radioactivity are also briefly discussed. These containers could fail in the event of an accident but the radioactivity is limited to low levels. Part I of this field guide also summarizes general emergency response instructions which are applicable to any transportation accident involving a package with radioactive material. Part II of this field guide provides information about the requirements which must be met by Ontario Hydro prior to any shipment of radioactive material in Ontario
Book Review Field Guide to the Birds of Macaronesia: Azores ...
African Journals Online (AJOL)
Book Review Field Guide to the Birds of Macaronesia: Azores, Madeira, Canary Islands, Cape Verde By Eduardo Garcia-del-Rey (2011). Ricardo Jorge Lopes. Abstract. Lynx Edicions, Montseny, 8, E-08193 Bellaterra, Barcelona, Spain 342 pages, including 150 colour plates and >230 detailed distribution maps, hardcover
On guided versus deflected fields in controlled-source electromagnetics
Swidinsky, Andrei
2015-06-01
The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.
International Nuclear Information System (INIS)
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field
Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke
2018-01-01
We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.
Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling
Liu, Jie
2014-01-01
The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...
Shvetsov-Shilovski, N. I.; Lein, M.
2018-01-01
Using the semiclassical two-step model for strong-field ionization we investigate the interference structures emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core. For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference patterns significantly.
Automated particulate sampler field test model operations guide
Energy Technology Data Exchange (ETDEWEB)
Bowyer, S.M.; Miley, H.S.
1996-10-01
The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.
One-loop QCD thermodynamics in a strong homogeneous and static magnetic field
Rath, Shubhalaxmi; Patra, Binoy Krishna
2017-12-01
We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.
Electromagnetic dissipation during asymmetric reconnection with a moderate guide field
Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali
2017-04-01
We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.
SU-E-T-227: Could the Alpha/Beta Ratio Change in a Strong Magnetic Field?
Energy Technology Data Exchange (ETDEWEB)
Pang, G [Odette Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5, Canada and Sunnybrook Research Institute and Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto (Canada)
2015-06-15
Purpose: Magnetic resonance imaging (MRI) is being integrated into radiotherapy delivery for MRI-guided radiotherapy. The presence of a strong magnetic field from a MRI machine during radiotherapy delivery presents a new challenge since the trajectories of electrons liberated by ionizing radiation in patients are strongly dependent on the applied magnetic field. The purpose of this work is to explore the potential effect of a strong magnetic field on the α/β ratio, an important radiobiological parameter in radiotherapy. Methods: Based on the theory of dual radiation action, the α/β ratio can be expressed by an integral of the product of two microdosimetry quantities γ(x) and t(x), where γ(x) is the probability that two energy transfers, a distance x apart, results in a lesion, and t(x) is the proximity function, which is the energy-weighted point-pair distribution of distances between energy transfer points in a track. The quantity t(x) depends on the applied magnetic field. An analytical approach has been used to derive a formula that can be used to calculate the α/β ratio in an extremely strong magnetic field. Results: The α/β ratio has been evaluated in the special case when the applied magnetic field approaches infinity, which gives the upper limit of the potential change of the α/β ratio due to the presence of a strong magnetic field. For V79 Chinese hamster cells it has been shown that the α/β ratio could be increased by 2.90 times for Pd-103, 2.97 times for I-125 and about 2.3 times for Co-60 sources when the applied magnetic field approaches infinity. Conclusion: It has been shown theoretically that the α/β ratio can change in a strong magnetic field, and there could be up to a nearly three-fold increase in the α/β ratio, depending on the strength of the applied magnetic field, the cell type and the radiation used.
High energy heavy ion collisions from the view point of the 'strong field physics'
International Nuclear Information System (INIS)
Itakura, Kazunori
2012-01-01
In the high energy heavy ion collisions at the facilities like RHIC and LHC, two strongest fields in the present universe are generated. First of all, a very strong electromagnetic field is generated, though its duration is very short due to the very high speed collisions of nuclei and the large electric charges. On the other hand, the nuclei are described as the high density saturation gluon state just before the moment of the collision and the high density gluon is released by the collision. A very strong color electromagnetic field is generated. The color glass condensate (CGC) is a reasonable picture. In this text, dynamics of the GLASMA (Glass + plasma), the new physics brought about by those 'strong fields', are introduced and are explained how the yet unsolved problems of the heavy ion collisions are going to be investigated on the new view point. The mechanism of the apparitions of the strong electromagnetic field and the strong color electromagnetic field are explained at first. The heavy ion collisions can be described as the process CGC to develop into QGP. As the phenomena under the strong electromagnetic field and the heavy ion collisions, their synchrotron radiations, the photon birefringence, the photon decay, the splitting of photons and the chiral phase transitions under high field are picked up. Concerning the strong color electromagnetic field dynamics and the heavy ion collisions, the plasma flux tube dynamics, the color magnetic flux tube, the color electric flux tube and the coexisting case of the color electric field and magnetic field are presented. (S. Funahashi)
Field Test of the World Health Organization Multi-Professional Patient Safety Curriculum Guide
Farley, Donna; Zheng, Hao; Rousi, Eirini; Leotsakos, Agnès
2015-01-01
Introduction Although the importance of training in patient safety has been acknowledged for over a decade, it remains under-utilized and under-valued in most countries. WHO developed the Multi-professional Patient Safety Curriculum Guide to provide schools with the requirements and tools for incorporating patient safety in education. It was field tested with 12 participating schools across the six WHO regions, to assess its effectiveness for teaching patient safety to undergraduate and graduate students in a global variety of settings. Methods The evaluation used a combined prospective/retrospective design to generate formative information on the experiences of working with the Guide and summative information on the impacts of the Guide. Using stakeholder interviews and student surveys, data were gathered from each participating school at three times: the start of the field test (baseline), soon after each school started teaching, and soon after each school finished teaching. Results Stakeholders interviewed were strongly positive about the Guide, noting that it emphasized universally important patient safety topics, was culturally appropriate for their countries, and gave credibility and created a focus on patient safety at their schools. Student perceptions and attitudes regarding patient safety improved substantially during the field test, and their knowledge of the topics they were taught doubled, from 10.7% to 20.8% of correct answers on the student survey. Discussion This evaluation documented the effectiveness of the Curriculum Guide, for both ease of use by schools and its impacts on improving the patient safety knowledge of healthcare students. WHO should be well positioned to refine the contents of the Guide and move forward in encouraging broader use of the Guide globally for teaching patient safety. PMID:26406893
Field Test of the World Health Organization Multi-Professional Patient Safety Curriculum Guide.
Farley, Donna; Zheng, Hao; Rousi, Eirini; Leotsakos, Agnès
2015-01-01
Although the importance of training in patient safety has been acknowledged for over a decade, it remains under-utilized and under-valued in most countries. WHO developed the Multi-professional Patient Safety Curriculum Guide to provide schools with the requirements and tools for incorporating patient safety in education. It was field tested with 12 participating schools across the six WHO regions, to assess its effectiveness for teaching patient safety to undergraduate and graduate students in a global variety of settings. The evaluation used a combined prospective/retrospective design to generate formative information on the experiences of working with the Guide and summative information on the impacts of the Guide. Using stakeholder interviews and student surveys, data were gathered from each participating school at three times: the start of the field test (baseline), soon after each school started teaching, and soon after each school finished teaching. Stakeholders interviewed were strongly positive about the Guide, noting that it emphasized universally important patient safety topics, was culturally appropriate for their countries, and gave credibility and created a focus on patient safety at their schools. Student perceptions and attitudes regarding patient safety improved substantially during the field test, and their knowledge of the topics they were taught doubled, from 10.7% to 20.8% of correct answers on the student survey. This evaluation documented the effectiveness of the Curriculum Guide, for both ease of use by schools and its impacts on improving the patient safety knowledge of healthcare students. WHO should be well positioned to refine the contents of the Guide and move forward in encouraging broader use of the Guide globally for teaching patient safety.
Spectrum of absorption of a weak signal by an atom in a strong field
International Nuclear Information System (INIS)
Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.
1985-01-01
An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit
Feasibility of MRI guided proton therapy: magnetic field dose effects
International Nuclear Information System (INIS)
Raaymakers, B W; Raaijmakers, A J E; Lagendijk, J J W
2008-01-01
Many methods exist to improve treatment outcome in radiotherapy. Two of these are image-guided radiotherapy (IGRT) and proton therapy. IGRT aims at a more precise delivery of the radiation, while proton therapy is able to achieve more conformal dose distributions. In order to maximally exploit the sharp dose gradients from proton therapy it has to be combined with soft-tissue based IGRT. MRI-guided photon therapy (currently under development) offers unequalled soft-tissue contrast and real-time image guidance. A hybrid MRI proton therapy system would combine these advantages with the advantageous dose steering capacity of proton therapy. This paper addresses a first technical feasibility issue of this concept, namely the impact of a 0.5 T magnetic field on the dose distribution from a 90 MeV proton beam. In contrast to photon therapy, for MR-guided proton therapy the impact of the magnetic field on the dose distribution is very small. At tissue-air interfaces no effect of the magnetic field on the dose distribution can be detected. This is due to the low-energy of the secondary electrons released by the heavy protons.
Endogenous electric fields as guiding cue for cell migration.
Funk, Richard H W
2015-01-01
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Regularity and Chaos in the Hydrogen Atom Highly Excited with a Strong Magnetic Field
Directory of Open Access Journals (Sweden)
M. Amdouni
2014-01-01
Full Text Available The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.
Computational strong-field quantum dynamics intense light-matter interactions
2017-01-01
This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.
Computational strong-field quantum dynamics. Intense light-matter interactions
Energy Technology Data Exchange (ETDEWEB)
Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik
2017-09-01
This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.
MgB2 superconducting particles in a strong electric field
International Nuclear Information System (INIS)
Tao, R.; Xu, X.; Amr, E.
2003-01-01
The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains
Hartle, R. Todd; Baviskar, Sandhya; Smith, Rosemary
2012-01-01
This field guide provides four essential criteria for constructivism as well as a guide for using these criteria to identify and assess the level of constructivism being used in an educational experience. The criteria include: 1) prior knowledge, 2) cognitive dissonance, 3) application with feedback, and 4) metacognition. This guide provides…
Hole dynamics and spin currents after ionization in strong circularly polarized laser fields
International Nuclear Information System (INIS)
Barth, Ingo; Smirnova, Olga
2014-01-01
We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)
Earth magnetism a guided tour through magnetic fields
Campbell, Wallace H
2001-01-01
An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates
Schaap, K.
2015-01-01
Magnetic resonance imaging (MRI) makes use of electromagnetic fields in the non-ionizing radiation frequency ranges. One of them is a continuously present strong static magnetic field (SMF), which extends up to several meters around the scanner. Each time an MRI worker performs tasks near the
Sensitivity Analysis and Simulation of Theoretical Response of Ceramics to Strong Magnetic Fields
2016-09-01
448. 23. Song Q, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. Journal of the American Chemical...Strong Magnetic Fields by Carli A Moorehead, Michael M Kornecki, Victoria L Blair, Raymond E Brennan Approved for... Magnetic Fields by Carli A Moorehead Drexel University, Philadelphia, Pennsylvannia Michael M Kornecki, Victoria L Blair, and Raymond E Brennan
Khine, Y. Y.; Walker, J. S.
1995-02-01
This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.
Directory of Open Access Journals (Sweden)
Maruyama Tomoyuki
2016-01-01
Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.
Strong field approximation within a Faddeev-like formalism for laser-matter interactions
International Nuclear Information System (INIS)
Popov, Y.; Galstyan, A.; Piraux, B.; Mota-Furtado, F.; O'Mahony, P.F.
2017-01-01
We consider the interaction of atomic hydrogen with an intense laser field within the strong-field approximation (SFA). By using a Faddeev-like formalism, we introduce a new perturbative series in the binding potential of the atom. As a first test of this new approach, we calculate the electron energy spectrum in the very simple case of a photon energy higher than the ionisation potential. We show that by contrast to the standard perturbative series in the binding potential obtained within the strong field approximation, the first terms of the new series converge rapidly towards the results we get by solving the corresponding time-dependent Schroedinger equation. (authors)
Charge states of high Z atoms in a strong laser field
International Nuclear Information System (INIS)
Susskind, S.M.; Valeo, E.J.; Oberman, C.R.; Bernstein, I.B.
1989-11-01
We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs
Imaginary potential in strongly coupled N = 4 SYM plasma in a magnetic field
Zhang, Zi-qiang; Hou, De-fu
2018-03-01
We study the effect of a constant magnetic field on the imaginary part of a quarkonia potential in a strongly-coupled N = 4 SYM plasma. We consider the pair axis to be aligned perpendicularly and parallel to the magnetic field, respectively. For both cases, we find that the presence of the magnetic field tends to enhance the imaginary potential thus decreasing the thermal width. In addition, the magnetic field has a stronger effect on the imaginary potential when the pair axis is perpendicular to the magnetic field rather than parallel.
Sharp-front wave of strong magnetic field diffusion in solid metal
Energy Technology Data Exchange (ETDEWEB)
Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian; Wang, Gang-hua; Zhao, Jian-heng [Institute of Fluid Physics, CAEP, P.O. Box 919-105, Mianyang 621900 (China)
2016-08-15
When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)
2013-02-26
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.
THE EXTRAORDINARY COMPLEX MAGNETIC FIELD OF THE HELIUM-STRONG STAR HD 37776
International Nuclear Information System (INIS)
Kochukhov, Oleg; Lundin, Andreas; Romanyuk, Iosif; Kudryavtsev, Dmitry
2011-01-01
The early-type chemically peculiar stars often show strong magnetic fields on their surfaces. These magnetic topologies are organized on large scales and are believed to be close to an oblique dipole for most of the stars. In a striking exception to this general trend, the helium-strong star HD 37776 shows an extraordinary double-wave rotational modulation of the longitudinal magnetic field measurements, indicating a topologically complex and, possibly, record-strong magnetic field. Here we present a new investigation of the magnetic field structure of HD 37776, using both simple geometrical interpretation of the longitudinal field curve and detailed modeling of the time-resolved circular polarization line profiles with the help of a magnetic Doppler imaging technique. We derive a model of the magnetic field structure of HD 37776, which reconciles for the first time all magnetic observations available for this star. We find that the local surface field strength does not exceed ∼30 kG, while the overall field topology of HD 37776 is dominated by a non-axisymmetric component and represents by far the most complex magnetic field configuration found among early-type stars.
Jorna, P.
2005-01-01
Electromagnetic field theory plays a very important role in present-day technology; examples of technologies based on electromagnetism that are inextricably bound up with every day life are: radar, remote sensing, geoelectromagnetics, bioelectromagnetics, antennas, wireless communication, optics,
Khine, Y. Y.; Walker, J. S.
1996-08-01
Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.
A Leader's Guide to the Struggle To Be Strong: How To Foster Resilience in Teens.
Wolin, Sybil; Desetta, Al; Hefner, Keith
This guide gives adults specific and practical methods for encouraging youth to identify their strengths and to develop resilience. It links 30 teen stories written in the Youth Communication youth development program with 7 resiliencies identified by Drs. Sybil and Steven Wolin of Project Resilience. The resiliencies of insight, independence,…
Jirsák, Jan; Moučka, Filip; Škvor, Jiří; Nezbeda, Ivo
2015-04-01
Exposing aqueous surfaces to a strong electric field gives rise to interesting phenomena, such as formation of a floating water bridge or an eruption of a jet in electrospinning. In an effort to account for the phenomena at the molecular level, we performed molecular dynamics simulations using several protocols on both pure water and aqueous solutions of sodium chloride subjected to an electrostatic field. All simulations consistently point to the same mechanisms which govern the rearrangement of the originally planar surface. The results show that the phenomena are primarily governed by an orientational reordering of the water molecules driven by the applied field. It is demonstrated that, for pure water, a sufficiently strong field yields a columnar structure parallel to the field with an anisotropic arrangement of the water molecules with their dipole moments aligned along the applied field not only in the surface layer but over the entire cross section of the column. Nonetheless, the number of hydrogen bonds per molecule does not seem to be affected by the field regardless of its strength and molecule's orientation. In the electrolyte solutions, the ionic charge is able to overcome the effect of the external field tending to arrange the water molecules radially in the first coordination shell of an ion. The ion-water interaction interferes thus with the water-electric field interaction, and the competition between these two forces (i.e., strength of the field versus concentration) provides the key mechanism determining the stability of the observed structures.
Efficient Injection of Electron Beams into Magnetic Guide Fields
International Nuclear Information System (INIS)
Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K.
1999-01-01
Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
Directory of Open Access Journals (Sweden)
Maruyama Tomoyuki
2016-01-01
Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.
Axion production from Landau quantization in the strong magnetic field of magnetars
Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2018-04-01
We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.
Plane Couette flow in the presence of a strong centrifugal field
International Nuclear Information System (INIS)
Johnson, E.A.
1982-05-01
The Pomraning problem of plane Couette flow in a strong centrifugal field is studied by several methods: a half-range polynomial expansion of the linearized BGK equation; the Liu-Lees method; and a new matching approximation constructed to give the correct solution in the free-molecule limit. The matching approximation, which appears valid for strong enough centrifugal field, predicts major differences from hydrodynamic behaviour, and suggests ways in which the lack of convergence of one method studied may be corrected. (author)
Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering
Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob
2017-01-01
Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771
Field-Free Alignment and Strong Field Control of Molecular Rotors
Spanner, Michael
2004-12-01
Methods of controlling molecular rotations using linearly polarized femtosecond and picosecond pulses are considered and analyzed theoretically. These laser pulses, typically in the infrared, are highly non-resonant with respect to the electronic degrees of freedom of the molecules and have intensities of ~ 10^13 to 10^14 W/cm?. It is shown how these laser pulses can force small linear molecules to align with the direction of the electric field vector of the laser both in the presence of the laser field as well as after the application of a short laser pulse. Recent experiments on laser-induced molecular alignment are modeled and excellent agreement between experiment and theory is found. Additional methods of controlling molecular rotational dynamics are outlined. The first method considers the forced rotational acceleration of diatomic molecules, called the optical centrifuge. Here, the direction of polarization of a linearly polarized laser field is made to smoothly rotate faster and faster. The molecules, which tend to align with the polarization vector of the laser field, follow the rotation of the laser polarization and are accelerated to high angular momentum. The second method considers the control of field-free rotational dynamics by applying phase shifts to the molecular wave function at select times called fractional revivals. At these select moments, an initially localized wave function splits into several copies of the initial state. Adding phase shifts to the copies then induces interference effects which can be used to control the subsequent evolution of the rotational wave function. This same control scheme has a close link to quantum information and this connection is outlined. Finally, a recently proposed method of controlling the quantum dynamics of the classically chaotic kicked rotor system [J. Gong and P. Brumer, Phys. Rev. Lett. 86, 1741 (2001)] is analyzed from a phase space perspective. It is shown that the proposed quantum control can be
Directory of Open Access Journals (Sweden)
Emmanuel Frenod
2002-01-01
Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.
Equation of state of strange quark matter in a strong magnetic field
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2012-01-01
Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars
One-electron atomic-molecular ions containing lithium in a strong magnetic field
International Nuclear Information System (INIS)
Olivares-Pilon, H; Turbiner, A V; Vieyra, J C Lopez; Baye, D
2010-01-01
The one-electron lithium-containing Coulomb systems of atomic type Li 2+ and molecular type Li 5+ 2 , LiHe 4+ and LiH 3+ are studied in the presence of a strong magnetic field B ≤ 10 7 au in a non-relativistic framework. They are considered at the Born-Oppenheimer approximation of zero order (infinitely massive centres) within the parallel configuration (molecular axis parallel to the magnetic field). The variational and Lagrange-mesh methods are employed, complementing each other. It is demonstrated that the molecular systems LiH 3+ , LiHe 4+ and Li 5+ 2 can exist for sufficiently strong magnetic fields B ∼> 10 4 au and that Li 5+ 2 can even be stable at magnetic fields typical of magnetars.
Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field
International Nuclear Information System (INIS)
Movsesyan, A.M.; Fedorov, M.V.
1989-01-01
The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration
Feng, Yan; Lin, Wei; Murillo, M S
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Practical guide to organic field effect transistor circuit design
Sou, Antony
2016-01-01
The field of organic electronics spans a very wide range of disciplines from physics and chemistry to hardware and software engineering. This makes the field of organic circuit design a daunting prospect full of intimidating complexities, yet to be exploited to its true potential. Small focussed research groups also find it difficult to move beyond their usual boundaries and create systems-on-foil that are comparable with the established silicon world.This book has been written to address these issues, intended for two main audiences; firstly, physics or materials researchers who have thus far designed circuits using only basic drawing software; and secondly, experienced silicon CMOS VLSI design engineers who are already knowledgeable in the design of full custom transistor level circuits but are not familiar with organic devices or thin film transistor (TFT) devices.In guiding the reader through the disparate and broad subject matters, a concise text has been written covering the physics and chemistry of the...
Direct URCA-processes in neutron star quark core with strong magnetic field.
Directory of Open Access Journals (Sweden)
Belyaev Vasily
2017-01-01
In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.
Heavy quark potential in a static and strong homogeneous magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)
2017-11-15
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)
Gor'kov, L P; Teitel'baum, G B
2014-01-29
We address recent experiments shedding light on the energy spectrum of under and optimally doped cuprates at temperatures above the superconducting transition. Angle resolved photoemission reveals coherent excitation only near nodal points on parts of the 'bare' Fermi surface known as the Fermi arcs. The question debated in the literature is whether the small normal pocket, seen via quantum oscillations, exists at higher temperatures or forms below a charge order transition in strong magnetic fields. Assuming the former case as a possibility, expressions are derived for the resistivity and the Hall coefficient (in weak and strong magnetic fields) with both types of carriers participating in the transport. There are two regimes. At higher temperatures (at a fixed field) electrons are dragged by the Fermi arcs' holes. The pocket being small, its contribution to conductivity and the Hall coefficient is negligible. At lower temperatures electrons decouple from holes behaving as a Fermi gas in the magnetic field. As the mobility of holes on the arcs decreases in strong fields with a decrease of temperature, below a crossover point the pocket electrons prevail, changing the sign of the Hall coefficient in the low temperature limit. Such behavior finds its confirmation in recent high-field experiments.
Bound-state β decay of a neutron in a strong magnetic field
International Nuclear Information System (INIS)
Kouzakov, Konstantin A.; Studenikin, Alexander I.
2005-01-01
The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology
Do strong, static magnetic fields act on living beings and chemical reactions
International Nuclear Information System (INIS)
Demmer, W.
1986-01-01
In general, magnetic fields are said to have no direct influence on living beings or simple chemical reactions. There is, however, evidence to confirm that changes in the earth's magnetic field or of artificially produced magnetic fields can alter the activity of different neuronal enzyme systems. An effect on the synthesis of β-galactosidase in the bacterium Escherichia coli by a feeble magnetic field (0.2 to 0.8 mT) and disturbances of the embryogenesis of frogs by a strong magnetic field (1.0 T) have been described. These and similar investigations with whole cells raise the question as to what the effect of magnetic fields on isolated and purified enzymes will be. (orig./SHA) [de
Monte Carlo solutions of Schroedinger's equation for H2+ ion in strong magnetic fields
International Nuclear Information System (INIS)
Ozaki, Jiro; Tomishima, Yasuo
1980-01-01
The analytical expressions suitable for the Monte Carlo calculation to obtain the solution of Schroedinger's equation of hydrogen molecular ion in a strong magnetic field are derived. The wave functions, the energy values and the equilibrium internuclear distances of 1σsub(g) state of H 2 + are obtained numerically through the Monte Carlo simulation and compared with other results based on the variational method. The agreement between them is fairly good over a wide range of magnetic field. The calculation of the energy values of 1πsub(g) state of H 2 + for various internuclear distances taking a constant magnetic field as a parameter, shows that the antibonding 1πsub(g) state in the absence of the external magnetic field changes to a bonding state with an increasing magnetic field. The lowest energy values and the equilibrium internuclear distances of 1πsub(g) state are also calculated for various magnetic field. (author)
Prediction and near-field observation of skull-guided acoustic waves
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Ehrenfest's theorem and the validity of the two-step model for strong-field ionization
DEFF Research Database (Denmark)
Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer
By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...
Parity violation effects in the hydrogen atom in the field of a strong electromagnetic wave
International Nuclear Information System (INIS)
Labzovsky, L.N.; Mitrushchenkov, A.O.
1989-01-01
The parity violation effects in the hydrogen atom in a strong electromagnetic laser field are considered. It is shown that there is the possibility of hyperrate measurements of different constants of the weak interaction in the hydrogen magnetic resonance experiments. (orig.)
Interaction of a neutral composite particle with a strong Coulomb field
International Nuclear Information System (INIS)
Wong, Cheuk-Yin.
1988-01-01
The author discusses the interaction of the quasi-composite (e/sup /plus//e/sup /minus//) system with an external electromagnetic field. This problem addresses the question of the origin of strong positron lines in quasi-elastic heavy-ion reactions. 3 refs
Kenjeres, S.
2008-01-01
The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations
The permanent magnet systems generating strong stray fields with large localization region
International Nuclear Information System (INIS)
Samofalov, V.N.; Belozorov, D.P.; Ravlik, A.G.
2008-01-01
Three systems of permanent magnets, which produce strong magnetic stray fields (SFs) with H>B r =4πM r were studied in this work. Remarkable feature of the developed systems is localization of the strong fields in large region with linear dimension Δr comparable to characteristic magnet dimension a. The first system composed of uniformly magnetized magnets generates sufficiently homogeneous strong SFs, which amounts up to 1.5 of magnets induction B r . The second system with nonuniform magnetization is represented by cylindrical and hemispheric magnets their magnetization vector directed at every point along the radius. Such distribution of magnetization is assumed to be the consequence of magnet radial crystal texture resulting in a high uniaxial anisotropy field H K . It is shown that maximal SFs can exist on the flat surface of cylindrical magnet at the distance r from its axis and their limiting value equals to 4πM r ln(2a/r). Here, the localization region of the fields is comparable to diameter of cylindrical magnet Δr∼2R. As for the hemisphere its SFs are less than corresponding SFs for the cylinder. The third so-called quasi-nonuniform system consists of uniformly magnetized cylindrical sectors their magnetization vector is directed along the sector bisectrix. The strong SFs and their localization region are calculated in details for this case. The passage to radial magnetized cylinder is considered
Teach Like a Champion Field Guide: A Practical Resource to Make the 49 Techniques Your Own
Lemov, Doug
2012-01-01
In his acclaimed book "Teach Like a Champion", Doug Lemov shared 49 essential techniques used by excellent teachers. In his companion Field Guide, he further explores those techniques in a practical guide. With the "Teach Like a Champion Field Guide", teachers will have an indispensable resource that complements their classroom application of…
The Bekenstein bound in strongly coupled O(N) scalar field theory
International Nuclear Information System (INIS)
Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.
2009-09-01
We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Light bending by nonlinear electrodynamics under strong electric and magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Young; Lee, Taekoon, E-mail: jykim@kunsan.ac.kr, E-mail: tlee@kunsan.ac.kr [Department of Physics, Kunsan National University, Daihakro 558, Kunsan 573-701 (Korea, Republic of)
2011-11-01
We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.
Cone-guided fast ignition with no imposed magnetic fields
Directory of Open Access Journals (Sweden)
Strozzi D.
2013-11-01
Full Text Available Simulations are presented of ignition-scale fast ignition targets with the integrated Zuma-Hydra PIC-hydrodynamic capability. We consider a spherical DT fuel assembly with a carbon cone, and an artificially-collimated fast electron source. We study the role of E and B fields and the fast electron energy spectrum. For mono-energetic 1.5 MeV fast electrons, without E and B fields, ignition can be achieved with fast electron energy Efig = 30kJ. This is 3.5× the minimal deposited ignition energy of 8.7 kJ for our fuel density of 450 g/cm3. Including E and B fields with the resistive Ohm's law E = ηJb gives Efig = 20kJ, while using the full Ohm's law gives Efig > 40 kJ. This is due to magnetic self-guiding in the former case, and ∇n ×∇T magnetic fields in the latter. Using a realistic, quasi two-temperature energy spectrum derived from PIC laser-plasma simulations increases Efig to (102, 81, 162 kJ for (no E/B, E = ηJb, full Ohm's law. Such electrons are too energetic to stop in the optimal hot spot depth.
Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions
Directory of Open Access Journals (Sweden)
Kirill Tuchin
2013-01-01
Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.
Guides to . . . Histories of . . . Who Delineates the Field? On Reading ...
African Journals Online (AJOL)
The question in the title above is prompted by my being invited to review the recently published 251-page Columbia Guide to South African Literature in English since 1945 (2010), by Gareth Cornwell, Dirk Klopper and Craig MacKenzie. It is a guide that follows closely on another guide, the A–Z of. African Writers: A Guide to ...
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields
International Nuclear Information System (INIS)
Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G
2014-01-01
Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)
Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion
International Nuclear Information System (INIS)
Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.
2007-01-01
Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field
International Nuclear Information System (INIS)
Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun
2015-01-01
In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector
Turbulent transport in 2D collisionless guide field reconnection
Muñoz, P. A.; Büchner, J.; Kilian, P.
2017-02-01
Transport in hot and dilute, i.e., collisionless, astrophysical and space, plasmas is called "anomalous." This transport is due to the interaction between the particles and the self-generated turbulence by their collective interactions. The anomalous transport has very different and not well known properties compared to the transport due to binary collisions, dominant in colder and denser plasmas. Because of its relevance for astrophysical and space plasmas, we explore the excitation of turbulence in current sheets prone to component- or guide-field reconnection, a process not well understood yet. This configuration is typical for stellar coronae, and it is created in the laboratory for which a 2.5D geometry applies. In our analysis, in addition to the immediate vicinity of the X-line, we also include regions outside and near the separatrices. We analyze the anomalous transport properties by using 2.5D Particle-in-Cell code simulations. We split off the mean slow variation (in contrast to the fast turbulent fluctuations) of the macroscopic observables and determine the main transport terms of the generalized Ohm's law. We verify our findings by comparing with the independently determined slowing-down rate of the macroscopic currents (due to a net momentum transfer from particles to waves) and with the transport terms obtained by the first order correlations of the turbulent fluctuations. We find that the turbulence is most intense in the "low density" separatrix region of guide-field reconnection. It is excited by streaming instabilities, is mainly electrostatic and "patchy" in space, and so is the associated anomalous transport. Parts of the energy exchange between turbulence and particles are reversible and quasi-periodic. The remaining irreversible anomalous resistivity can be parametrized by an effective collision rate ranging from the local ion-cyclotron to the lower-hybrid frequency. The contributions to the parallel and the perpendicular (to the magnetic
Dynamic chaos in the tunnelling ionization produced by a strong low-frequency electromagnetic field
International Nuclear Information System (INIS)
Krainov, V P
2014-01-01
Ionization of atoms by a strong low-frequency linearly polarized electromagnetic field (the photon energy is small compared to the atomic ionization potential) is considered under new conditions compared to the well known Keldysh approach. The field strength is supposed to be small in comparison to the atomic field strength. But the Coulomb interaction of an electron with atomic core is assumed to be of the same order of magnitude as the interaction between an electron and the external electromagnetic field. It was shown that then classical electron motion in the continuum becomes chaotic (this is so-called dynamic chaos). Using the averaging procedure of Chirikov about the chaotic variation of the phase of motion, the considered Newton problem is transformed into the problem of nonlinear electron diffusion over energy scale. In this work we derive the classical electron energy averaged over fast chaotic oscillations of an electron in the final continuum state which takes into account both the Coulomb field and electromagnetic field. This energy is used for analytic calculation of the ionization rate of the ground atomic state into the low lying continuum state based on the Landau–Dykhne approximation (with exponential accuracy). We found that the ionization rate depends significantly on the field frequency. When field frequency decreases, the well known tunnelling limit has been obtained, and then the ionization rate does not depend on the field frequency. (paper)
International Nuclear Information System (INIS)
Clauer, C.R.; Friis-Christensen, E.
1988-01-01
On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988
Scales of guide field reconnection at the hydrogen mass ratio
International Nuclear Information System (INIS)
Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.
2010-01-01
We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.
Neural field model of memory-guided search.
Kilpatrick, Zachary P; Poll, Daniel B
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Geologic field-trip guide to Long Valley Caldera, California
Hildreth, Wes; Fierstein, Judy
2017-07-26
This guide to the geology of Long Valley Caldera is presented in four parts: (1) An overview of the volcanic geology; (2) a chronological summary of the principal geologic events; (3) a road log with directions and descriptions for 38 field-trip stops; and (4) a summary of the geophysical unrest since 1978 and discussion of its causes. The sequence of stops is arranged as a four-day excursion for the quadrennial General Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), centered in Portland, Oregon, in August 2017. Most stops, however, are written freestanding, with directions that allow each one to be visited independently, in any order selected.
Neural field model of memory-guided search
Kilpatrick, Zachary P.; Poll, Daniel B.
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Scales of guide field reconnection at the hydrogen mass ratio
Lapenta, G.; Markidis, S.; Divin, A.; Goldman, M.; Newman, D.
2010-08-01
We analyze the signatures of component reconnection for a Harris current sheet with a guide field using the physical mass ratio of hydrogen. The study uses the fully kinetic particle in cell code IPIC3D to investigate the scaling with mass ratio of the following three main component reconnection features: electron density cavities along the separatrices, channels of fast electron flow within the cavities, and electron phase space holes due to the Buneman instability in the electron high speed channels. The width and strength of the electron holes and of the electron cavities are studied up the mass ratio proper of hydrogen, considering the effect of the simulation box size, and of the boundary conditions. The results compare favorably with the existing data from the Cluster and Themis missions and provide quantitative predictions for realistic conditions to be encountered by the planned magnetospheric multiscale mission.
Critical point in the QCD phase diagram for extremely strong background magnetic fields
International Nuclear Information System (INIS)
Endrödi, Gergely
2015-01-01
Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB<1 GeV 2 . On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB=3.25 GeV 2 . Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.
DEFF Research Database (Denmark)
Hansen, Jonas Lerche; Stapelfeldt, Henrik; Dimitrovski, Darko
2011-01-01
A nanosecond laser pulse confines the spatial orientation of naphthalene in 1D or 3D while a femtosecond kick pulse initiates rotation of the molecular plane around the fixed long axis. Time-dependent photoelectron angular distributions (PADs), resulting from ionization by an intense femtosecond...... probe pulse, exhibit pronounced changes as the molecular plane rotates. Enhanced 3D alignment, occurring shortly after the kick pulse, provides strongly improved contrast in molecular-frame PADs. Calculations in the strong-field approximation show that the striking structures observed in the PADs...
Drag force in strongly coupled { N }=4 supersymmetric Yang–Mills plasma in a magnetic field
Zhang, Zi-qiang; Ma, Ke; Hou, De-fu
2018-02-01
Applying AdS/CFT correspondence, we study the effect of a constant magnetic field { B } on the drag force associated with a heavy quark moving through a strongly-coupled { N }=4 supersymmetric Yang–Mills plasma. The quark is considered moving transverse and parallel to { B }. It is shown that for transverse case, the drag force is linearly dependent on { B } in all regions, while for parallel case, the drag force increases monotonously with increasing { B } and also reveals a linear behavior in the regions of strong { B }. In addition, we find that { B } has a more important effect in the transverse case than for the parallel.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-10
We propose a method of implementing projected wave functions for second-quantized auxiliary-field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. As such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.
Experimental observation of strong radiation reaction in the field of an ultra-intense laser
Sarri, G.; Poder, K.; Tamburini, M.; di Piazza, A.; Keitel, C. H.; Zepf, M.
2017-10-01
Describing radiation reaction in an electromagnetic field is one of the most fundamental outstanding problems in electrodynamics. It consists of determining the dynamics of a charged particle fully taking into account self-forces (loosely referred to as radiation reaction) resulting from the radiation fields generated by the particle whilst it is accelerated. Radiation reaction has only been invoked to explain the radiative properties of powerful astrophysical objects, such as pulsars and quasars. From a theoretical standpoint, this phenomenon is subject of fervent debate and this impasse is worsened by the lack of experimental data, due to extremely high fields required to trigger these effects. Here, we report on the first experimental evidence of strong radiation reaction during the interaction of an ultra-relativistic electron beam with an intense laser field, beyond a purely classical description.
A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation
Directory of Open Access Journals (Sweden)
David L. Spencer
2016-10-01
Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.
Electric conductivity of TlInTe2 monocrystal in strong electric fields
International Nuclear Information System (INIS)
Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.
1980-01-01
Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism
Strong-field effects in Rabi oscillations between a single state and a superposition of states
International Nuclear Information System (INIS)
Zhdanovich, S.; Milner, V.; Hepburn, J. W.
2011-01-01
Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.
Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields
Chakraborty, A.; Mishra, S. R.
2018-01-01
Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.
First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved
Berdyugina, S. V.; Harrington, D. M.; Kuzmychov, O.; Kuhn, J. R.; Hallinan, G.; Kowalski, A. F.; Hawley, S. L.
2017-09-01
We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55+/- 4{M}{{J}} and age of 22 ± 4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.
Quantum-orbit theory of high-order atomic processes in strong fields
International Nuclear Information System (INIS)
Milosevic, D.B.
2005-01-01
Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)
Acceleration of neutral atoms in strong short-pulse laser fields.
Eichmann, U; Nubbemeyer, T; Rottke, H; Sandner, W
2009-10-29
A charged particle exposed to an oscillating electric field experiences a force proportional to the cycle-averaged intensity gradient. This so-called ponderomotive force plays a major part in a variety of physical situations such as Paul traps for charged particles, electron diffraction in strong (standing) laser fields (the Kapitza-Dirac effect) and laser-based particle acceleration. Comparably weak forces on neutral atoms in inhomogeneous light fields may arise from the dynamical polarization of an atom; these are physically similar to the cycle-averaged forces. Here we observe previously unconsidered extremely strong kinematic forces on neutral atoms in short-pulse laser fields. We identify the ponderomotive force on electrons as the driving mechanism, leading to ultrastrong acceleration of neutral atoms with a magnitude as high as approximately 10(14) times the Earth's gravitational acceleration, g. To our knowledge, this is by far the highest observed acceleration on neutral atoms in external fields and may lead to new applications in both fundamental and applied physics.
Study of Strong Magnetic Fields Using Parametric Instability in a Magnetised Plasma
Ivanov, V. V.; Maximov, A. V.; Anderson, A. A.; Bauer, B. S.; Yates, K.
2014-10-01
Generation of strong magnetic fields with a strength of 10--50 MG plays a key role in some recent conceptions for controlled fusion. We suggest a laser method for measuring the local magnetic field, B > 10 MG, based on the parametric decay of the laser radiation to ω/2 and 3/2 ω harmonics which are generated in the area with the electron density of a quarter of the critical plasma density. Spectral components of parametric harmonics carry a signature of both the plasma temperature and strong magnetic field. A two-plasmon decay of laser radiation was studied in a magnetized plasma at the 1 MA pulsed power Zebra facility at the University of Nevada, Reno. Dense magnetized plasma with a magnetic field of 1--3 MG was created by the 1MA current flowing in the metal rod 0.7--2 mm in diameter. Radiation from the narrowband laser with intensity >1014 W/cm2 was focused on the surface plasma. Spectrum of the backscattering 3/2 ω harmonic included ``red'' and ``blue'' shifted components. Large 2-3 nm shifts of spectral components was identified with laser heating of plasma. Components with a small 0.1 nm spectral shift of may be linked to the magnetic field. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.
Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum
Directory of Open Access Journals (Sweden)
Psaltis Dimitrios
2008-11-01
Full Text Available Neutron stars and black holes are the astrophysical systems with the strongest gravitational fields in the universe. In this article, I review the prospect of using observations of such compact objects to probe some of the most intriguing general relativistic predictions in the strong-field regime: the absence of stable circular orbits near a compact object and the presence of event horizons around black-hole singularities. I discuss the need for a theoretical framework, within which future experiments will provide detailed, quantitative tests of gravity theories. Finally, I summarize the constraints imposed by current observations of neutron stars on potential deviations from general relativity.
Chiral soliton lattice and charged pion condensation in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Yamamoto, Naoki [Department of Physics, Keio University,Yokohama 223-8522 (Japan)
2017-04-21
The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.
Attosecond counter-rotating-wave effect in xenon driven by strong fields
Anand, M.; Pabst, Stefan; Kwon, Ojoon; Kim, Dong Eon
2017-05-01
We investigate the subfemtosecond dynamics of a highly excited xenon atom coherently driven by a strong control field at which the Rabi frequency of the system is comparable to the frequency of a driving laser. The widely used rotating-wave approximation breaks down at such fields, resulting in features such as the counter-rotating-wave (CRW) effect. We present a time-resolved observation of the CRW effect in the highly excited 4 d-1n p xenon using attosecond transient absorption spectroscopy. Time-dependent many-body theory confirms the observation and explains the various features of the absorption spectrum seen in experiment.
Samkharadze, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A
2011-05-01
We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK.
Fritz, Sean; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zwier, Timothy S.
2017-06-01
The 8-18 GHz conformer specific rotational spectrum of gauche- and anti-3-phenylpropionitrile (C6H5-CH2-CH2-CN) conformers has been recorded using the strong field coherence breaking (SFCB) technique [1] with a modified line picking scheme for multiple selective excitations (MSE). As the recombination product of benzyl and cyanomethyl resonance-stabilized radicals, 3-phenylpropionitrile is a likely component of the complex organics in Titan's atmosphere, motivating its structural characterization. Details of the modified line picking scheme, hyperfine constants and relative population ratios of the two conformers will be presented. [1] A.O Hernandez-Castillo, Chamara Abeysekera, Brian M. Hays, Timothy S. Zwier, "Broadband Multi-Resonant Strong Field Coherence Breaking as a Tool for Single Isomer Microwave Spectroscopy." J. Chem. Phys. 145, 114203 (2016).
Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole
International Nuclear Information System (INIS)
Iftikhar, Sehrish; Sharif, M.
2015-01-01
We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole
Spin polarization in high density quark matter under a strong external magnetic field
DEFF Research Database (Denmark)
Tsue, Yasuhiko; Da Providência, João; Providência, Constança
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact......In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....
Higher Order QED Contributions to the Atomic Structure at Strong Central Fields
International Nuclear Information System (INIS)
Mokler, P H
2007-01-01
An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory
Carrier envelope phase effects in molecular dissociation by few-cycle strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Dimitriou, K I [Hellenic Army Academy, Department of Natural Science and Applications, Vari (Greece); Constantoudis, V [Institute of Microelectronics, NCSR ' Demokritos' , Athens (Greece); Mercouris, Th [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Nicolaides, C A, E-mail: dimi@eie.g [Physics Department, National Technical University, Athens (Greece)
2009-11-01
Multiphoton molecular dissociation produced by few-cycle strong laser fields of mid-infrared wave lengths is studied theoretically. The dependence of the carrier envelope phase (CEP) on the photodissociation dynamics is investigated using both quantum and classical nonperturbative approaches. Our results show that dissociation is affected by the changes of the CEP. A detailed analysis shows that this dependence is sensitive to the duration and to the shape of the pulse.
Time profile of harmonics generated by a single atom in a strong electromagnetic field
International Nuclear Information System (INIS)
Antoine, P.; Piraux, B.; Maquet, A.
1995-01-01
We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse
Role of high-order dispersion on strong-field laser-molecule interactions
Dantus, Marcos; Nairat, Muath
2016-05-01
Strong-field (1012- 1016 W/ cm2) laser-matter interactions are characterized by the extent of fragmentation and charge of the resulting ions as a function of peak intensity and pulse duration. Interactions are influenced by high-order dispersion, which is difficult to characterize and compress. Fourth-order dispersion (FOD) causes a time-symmetric pedestal, while third-order dispersion (TOD) causes a leading (negative) or following (positive) pedestal. Here, we report on strong-field interactions with pentane and toluene molecules, tracking the molecular ion and the doubly charged carbon ion C2+ yields as a function of TOD and FOD for otherwise transform-limited (TL) 35fs pulses. We find TL pulses enhance molecular ion yield and suppress C2+ yield, while FOD reverses this trend. Interestingly, the leading pedestal in negative TOD enhances C2+ yield compared to positive TOD. Pulse pedestals are of particular importance in strong-field science because target ionization or alignment can be induced well before the main pulse arrives. A pedestal following an intense laser pulse can cause sequential ionization or accelerate electrons causing cascaded ionization. Control of high-order dispersion allows us to provide strong-field measurements that can help address the mechanisms responsible for different product ions in the presence and absence of pedestals. Financial support of this work comes from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, DOE SISGR (DE-SC0002325)
Miller Creek Demonstration Forest ecology activities - a teachers supplement to the field guide
Bill Schustrom; Reed Kuennen; Raymond C. Shearer
1998-01-01
Miller Creek, on the Flathead National Forest in northwestern Montana, is a demonstration forest, showing up to 30 years of forest change. This teachers supplement to the educational field guide (Miller Creek Demonstration Forest - a forest born of fire: a field guide; Gen. Tech. Rep. RMRS-GTR-7, 1998) outlines eight field and classroom activities that teach students a...
Angular-momentum-assisted dissociation of CO in strong optical fields
Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos
2017-04-01
Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.
Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Seipt, Daniel
2012-12-20
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton
Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering
International Nuclear Information System (INIS)
Seipt, Daniel
2012-01-01
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10 24 W/cm 2 and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An
International Nuclear Information System (INIS)
Kenjeres, Sasa
2008-01-01
The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell's equations (Biot-Savart/Ampere's law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery
Process γγ → νν-bar in a strong magnetic field
International Nuclear Information System (INIS)
Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.
2003-01-01
The three-vertex loop amplitude in a strong magnetic field are analyzed in a general form by using the asymptotic behavior of the electron propagator in an external field. The process γγ → νν-bar is studied in terms of the scalar-vector-vector (SVV), pseudoscalar-vector-vector (PVV), vector-vector-vector (VVV), and axial-vector-vector-vector (AVV) combinations of couplings. It is shown that only in the case of the SVV combination does the amplitude grow linearly with increasing magnetic-field strength, the amplitudes evaluated with the other combinations of couplings (PVV, VVV, and AVV) featuring no linearly increasing terms. The process γγ → νν-bar is also studied within the left-right model, which is an extension of the Standard Model of electroweak interactions and which may involve an effective scalar ννee coupling. Possible astrophysical manifestations of this process are discussed
Characteristics of electron emission from PZT ferroelectric cathode under strong accelerating field
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Yasushi [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan)]. E-mail: hayashi@es.titech.ac.jp; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan); Flechtner, Donald [High Voltage Laboratory, Cornell University, Ithaca, NY (United States)
2002-02-07
We have studied emission characteristics of a PZT ferroelectric cathode under the influence of a strong accelerating field by varying the triggering conditions. The beam current pulse reveals a rising and a steady phase. In the rising phase, the time variation of the beam current is found to be linearly dependent on both the trigger voltage and the diode voltage at the time when the current starts. In the steady phase, field emission characteristics are observed. The results show that the diode voltage is not only accelerating the emitted electrons but also assisting the electron emission from the ferroelectric cathode. An empirical model is proposed and is found to yield a reasonable beam current pulse when the electric field on the surface of the cathode is uniformly distributed. It also provides us with a new possibility to diagnose the emission process of a ferroelectric electron gun. (author)
Metal-insulator crossover in superconducting cuprates in strong magnetic fields
International Nuclear Information System (INIS)
Marchetti, P.A.; Su Zhaobin; Yu Lu
2001-02-01
The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)
The process γγ → νν-bar in a strong magnetic field
International Nuclear Information System (INIS)
Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.
2003-01-01
A general analysis of the three-vertex loop amplitude in a strong magnetic field, based on the asymptotic form of the electron propagator in the field, is performed. In order to investigate the photon-neutrino process γγ → νν-bar, the vertex combinations of the scalar-vector-vector (SVV), pseudoscalar- vector-vector (PVV), 3-vector (VVV), and axial-vector-vector (AVV) types are considered. It is shown that only the SVV amplitude grows linearly with the magnetic-field strength, while in the other amplitudes, PVV, VVV, and AVV, the linearly growing terms are cancelled. The process γγ → νν-bar is investigated in the left-right-symmetric extension of the standard model of electroweak interaction, where the effective scalar ννee coupling could exist. Possible astrophysical manifestations of the considered process are discussed [ru
Control and dynamics of attosecond electron wave packets in strong laser fields
International Nuclear Information System (INIS)
Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.
2005-01-01
Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum
Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi
2006-05-01
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.
Zhu, Wuming; Trickey, S. B.
2017-12-01
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
Zhu, Wuming; Trickey, S B
2017-12-28
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B
Monthus, Cécile; Garel, Thomas
2012-09-01
To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent νFS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent νtyp ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent {\
Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields
International Nuclear Information System (INIS)
Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.
2004-01-01
Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields
Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide
Li, Dehui; Cheng, Rui; Zhou, Hailong; Wang, Chen; Yin, Anxiang; Chen, Yu; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng
2015-07-01
The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN-Al2O3-MoS2 and GaN-Al2O3-MoS2-Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multilayer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multilayer MoS2 is comparable to or higher than that in monolayers. This strong electroluminescence can be attributed to electric-field-induced carrier redistribution from the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space. The electric-field-induced electroluminescence is general for other layered materials including WSe2 and can open up a new pathway towards transition metal dichalcogenide-based optoelectronic devices.
Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap
International Nuclear Information System (INIS)
Kuzmin, S.G.; O'Neil, T.M.
2005-01-01
The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP collaborations have produced antihydrogen atoms by recombination in a cryogenic antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the electric and magnetic field of the plasma and trap. The effective electric field in the moving frame of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An approximate equation of motion for the atom center of mass is obtained by averaging over the rapid internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and strongly magnetized (guiding center drift) atoms understood to be produced in the antihydrogen experiments. Application of the approximate equation of motion shows that the atoms can be trapped radially in the large space charge field near the edge of the positron column. Also, an example is presented for which there is full three-dimensional trapping, not just radial trapping. Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the important class of atoms that reach a field ionization diagnostic. Finally, the critical field for ionization is determined as an upper bound on the range of applicability of the theory
Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields
International Nuclear Information System (INIS)
Herrera, H.; Calderon, A.; Gonzalez de la Cruz, G.
2007-01-01
Full text: Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al x Ga 1-x N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work we solve analytically the Schrodinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)
Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields
Energy Technology Data Exchange (ETDEWEB)
Herrera, H.; Calderon, A. [CICATA-IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Gonzalez de la Cruz, G. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico)
2006-07-01
Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al{sub x}Ga{sub 1-x}N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work, we solve analytically the Schroedinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)
Two-photon annihilation of thermal pairs in strong magnetic fields
Baring, Matthew G.; Harding, Alice K.
1992-01-01
The annihilation spectrum of pairs with 1-D thermal distributions in the presence of a strong magnetic field is calculated. Numerical analysis of the spectrum are performed for mildly relativistic temperatures and for different angles of emission with respect to field lines. Teragauss magnetic fields are assumed so that conditions are typical of gamma ray burst and pulsar environments. The spectra at each viewing angle reveal asymmetric line profiles that are signatures of the magnetic broadening and red shifting of the line: these asymmetries are more prominent for small viewing angles. Thermal Doppler broadening tends to dominate in the right wing of the line and obscures the magnetic broadening more at high temperatures and smaller viewing angles. This angular dependence of the line asymmetry may prove a valuable diagnostic tool. For low temperatures and magnetic field strengths, useful analytic expressions are presented for the line width, and also for the annihilation spectrum at zero viewing angle. The results presented find application in gamma ray burst and pulsar models, and may prove very helpful in deducing field strengths and temperatures of the emission regions of these objects from line observations made by Compton GRO and future missions.
Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions
International Nuclear Information System (INIS)
Fritzsche, S.; Stoehlker, T.
2005-03-01
Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)
ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.
Schuster, D I; Wallraff, A; Blais, A; Frunzio, L; Huang, R-S; Majer, J; Girvin, S M; Schoelkopf, R J
2005-04-01
We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape with measurement power is observed and theoretically explained. For weak measurement a long intrinsic dephasing time of T2>200 ns of the qubit is found.
Peculiarities of two-electron atom ionization in strong electromagnetic field
International Nuclear Information System (INIS)
Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.
1997-01-01
One-dimensional model of helium atom in strong field of electromagnetic wave of femtosecond activity is plotted within the Hartree method frames. Comparison of 'exact' calculations with the calculations conducted within the frames of the 'frozen' and 'passive' electrons is made. The nonmonotonous dependence of one-dimensional ionization probability on the radiation intensity is found. It is shown that the ionization minima are connected with multiphoton resonances between various atomic states, originating due to the Stark effect. It is supposed that the effect of ionization suppression in this case is related to interference stabilization
International Nuclear Information System (INIS)
Zakharov, V.U.
1993-01-01
An analytical method for the investigation of special types of dispersion relations is presented. In particular, analysis of the propagation of small-amplitude hydromagnetic waves in a collisionless plasma in a strong magnetic field leads to such dispersion relations. The fifth-degree dispersion relation corresponding to a particular case is considered. The necessary stability condition for a steady state and conditions for the degeneration of small-amplitude waves are derived. A comparison with other methods for the analysis of similar dispersion relations is also presented. (author)
Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements
Directory of Open Access Journals (Sweden)
R. A. Ganeev
2013-01-01
Full Text Available New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications.
Vibrational Excitation of Diatomic Molecular Ions in Strong Field Ionization of Diatomic Molecules
International Nuclear Information System (INIS)
Kjeldsen, Thomas K.; Madsen, Lars Bojer
2005-01-01
A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse
Tian, Justin; Wang, Xu; Eberly, J. H.
2017-05-01
The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new numerical method to study the exiting electron's longitudinal momentum distribution under intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-called tunneling exit region without adopting a tunneling approximation.
Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
Czech Academy of Sciences Publication Activity Database
Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.
2015-01-01
Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015
Viscosity in strongly interacting quantum field theories from black hole physics.
Kovtun, P K; Son, D T; Starinets, A O
2005-03-25
The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of variant Planck's over 2pi/4pik(B) for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.
Transport coefficients of InSb in a strong magnetic field
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou
1998-02-01
Improvement of a superconducting magnet system makes induction of a strong magnetic field easier. This fact gives us a possibility of energy conversion by the Nernst effect. As the first step to study the Nernst element, we measured the conductivity, the Hall coefficient, the thermoelectric power and the Nernst coefficient of the InSb, which is one of candidates of the Nernst elements. From this experiment, it is concluded that the Nernst coefficient is smaller than the theoretical values. On the other hand, the conductivity, the Hall coefficient and the thermoelectric power has the values expected by the theory. (author)
Ehrenfest's theorem and the validity of the two-step model for strong-field ionization
DEFF Research Database (Denmark)
Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer
2013-01-01
with situations where the ensemble average of the force deviates considerably from the force calculated at the average position of the trajectories of the ensemble. We identify the general trends for the applicability of the semiclassical model in terms of intensity, ellipticity, and wavelength of the laser pulse......By comparison with the solution of the time-dependent Schrödinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...
Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field
Luo, Sui
Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its
Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field
Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.
2012-08-01
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Strong-field photoelectron holography of atoms by bicircular two-color laser pulses
Li, Min; Jiang, Wei-Chao; Xie, Hui; Luo, Siqiang; Zhou, Yueming; Lu, Peixiang
2018-02-01
We study photoelectron holography in strong bicircular two-color laser fields by solving the time-dependent Schrödinger equation (TDSE) and a semiclassical rescattering model with implementing interference effect. The holographic patterns observed in the TDSE are well recaptured by the semiclassical rescattering model. Four types of photoelectron holographic interferences between the forward scattered and nonscattered trajectories are predicted by the semiclassical rescattering model in the bicircular two-color laser field. We find that those holographic patterns are spatially separated from each other in the electron momentum distribution. We further show that the dependence of the initial transverse momentum at the tunnel exit on the ionization time for the rescattering electron is recorded by the holographic patterns.
International Nuclear Information System (INIS)
Sivan, N.; Levit, S.
1992-01-01
We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)
Influence of the initial angular distribution on strong-field molecular dissociation
Yu, Youliang; Zeng, Shuo; Hernández, J. V.; Wang, Yujun; Esry, B. D.
2016-08-01
We study few-cycle, strong-field dissociation of aligned H2+ by solving the time-dependent Schrödinger equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look at the dependence on the relative angle θ0 between the laser polarization and the symmetry axis of a well-aligned initial distribution, as well as the dependence on the delay between the "pump" pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for θ0=90∘ can be appreciable even though the transitions involved are purely parallel. We therefore address the limits of the commonly held "ball-and-stick" picture for molecules in intense fields as well as the validity of the axial recoil approximation.
Book review: Peeters, H. 2007. Field guide to owls of California and the West
Eric D. Forsman
2010-01-01
Field Guide to Owls of California and the West. Written primarily for nonprofessionals,this little field guide is a treasure trove of published and unpublished information on the natural history and distribution of owls in the western United States. It covers just about everything you could want to know about owls, from why they take dust baths, to facultative...
Le, A.; Daughton, W. S.; Ohia, O.; Chen, L. J.; Liu, Y. H.
2017-12-01
We present 3D fully kinetic simulations of asymmetric reconnection with plasma parameters matching MMS magnetopause diffusion region crossings with varying guide fields of 0.1 [Burch et al., Science (2016)], 0.4 [Chen et al. JGR (2017)], and 1 [Burch and Phan, GRL (2016] of the reconnecting sheath field. Strong diamagnetic drifts across the magnetopause current sheet drive lower-hybrid drift instabilities (LHDI) over a range of wavelengths [Daughton, PoP (2003); Roytershteyn et al., PRL (2012)] that develop into a turbulent state. Magnetic field tracing diagnostics are employed to characterize the turbulent magnetic geometry and to evaluate the global reconnection rate. The contributions to Ohm's law are evaluated field line by field line, including time-averaged diagnostics that allow the quantification of anomalous resistivity and viscosity. We examine how fluctuating electric fields and chaotic magnetic field lines contribute to particle mixing across the separatrix, and we characterize the accelerated electron distributions that form under varying magnetic shear or guide field. The LHDI turbulence is found to strongly enhance transport and parallel electron heating in 3D compared to 2D, particularly along the magnetospheric separatrix [Le et al., GRL (2017)]. The PIC simulation results are compared to MMS observations.
A strong magnetic field around the supermassive black hole at the centre of the Galaxy.
Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N
2013-09-19
Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.
Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field
Hernández, D.; Karcher, Ch
2017-07-01
Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.
Nonlinear propagation of strong-field THz pulses in doped semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2012-01-01
We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields......-effective-mass states in the energy-momentum space of the conduction band. Further, we observe the typical accompanying effects of saturable absorption on the THz pulses, such as an increase of the group delay, as the peak electric field of the pulse increases. In this paper we present the results of nonlinear THz time....... The semiconductor conductivity, and hence the THz absorption, is modulated due to the acceleration of carriers in strong THz fields, leading to an increase of the effective mass of the electron population, as the electrons are redistributed from the low-momentum, low-effective-mass states to the high-momentum, high...
Breakdown of the Chiral Anomaly in Weyl Semimetals in a Strong Magnetic Field
Kim, Pilkwang; Ryoo, Ji Hoon; Park, Cheol-Hwan
2017-12-01
The low-energy quasiparticles of Weyl semimetals are a condensed-matter realization of the Weyl fermions introduced in relativistic field theory. Chiral anomaly, the nonconservation of the chiral charge under parallel electric and magnetic fields, is arguably the most important phenomenon of Weyl semimetals and has been explained as an imbalance between the occupancies of the gapless, zeroth Landau levels with opposite chiralities. This widely accepted picture has served as the basis for subsequent studies. Here we report the breakdown of the chiral anomaly in Weyl semimetals in a strong magnetic field based on ab initio calculations. A sizable energy gap that depends sensitively on the direction of the magnetic field may open up due to the mixing of the zeroth Landau levels associated with the opposite-chirality Weyl points that are away from each other in the Brillouin zone. Our study provides a theoretical framework for understanding a wide range of phenomena closely related to the chiral anomaly in topological semimetals, such as magnetotransport, thermoelectric responses, and plasmons, to name a few.
Radiative Processes in Graphene and Similar Nanostructures in Strong Electric Fields
Gavrilov, S. P.; Gitman, D. M.
2017-03-01
Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is taken into account perturbatively, following the general theory (the generalized Furry representation). We consider the effective theory of photon emission in the first-order approximation and construct the corresponding total probabilities, taking into account the unitarity relation.
International Nuclear Information System (INIS)
Gelis, Francois; Venugopalan, Raju
2006-01-01
We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory
He2+ molecular ion and the He- atomic ion in strong magnetic fields
Vieyra, J. C. Lopez; Turbiner, A. V.
2017-08-01
We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.
Pair production in a strong electric field with back-reaction
International Nuclear Information System (INIS)
Eisenberg, J.M.; Kluger, Y.; Svetitsky, B.
1992-01-01
We present a summary of the present status of efforts to solve the problem in which pairs are produced in a strong electric field, are accelerated by it, and then react back on it through the counter-field produced by their current. This picture has been used by Bialas and Czyz and others as a model for effects that may possibly arise in the study of the quark-gluon plasma. We here give a didactic review of recent developments in this back-reaction problem. We first present a simple version of the theory of pair tunneling from a fixed electric field, and then sketch how this has been applied to the quark-gluon plasma. Then we turn to a field formulation of the problem for charged bosons, which leads to the need to carry out a renormalization program, outlined again in simple terms. Numerical results for this program are presented for one spatial dimension, the corresponding physical behaviour of the system is discussed, and the implications for three spatial dimensions are considered. We exhibit a phenomenological transport equation embodying physics that is essentially identical to that of the field formulation, thus helping to tie the model of Bialas and Czyz for the quark-gluon plasma to a field-theory formulation. Last, we note the status of extensions to the problem with three space dimensions; the fermion case; the formulation in terms of boost-invariant variables (as desirable for the quark-gluon plasma); and transport equations derived in a fundamental and consistent fashion. 5 figs., 13 refs. (author)
Variation-Aware Design of Custom Integrated Circuits A Hands-on Field Guide A Hands-on Field Guide
McConaghy, Trent; Dyck, Jeffrey; Gupta, Amit
2013-01-01
This book targets custom IC designers who are encountering variation issues in their designs, especially for modern process nodes at 45nm and below, such as statistical process variations, environmental variations, and layout effects. The authors have created a field guide to show how to handle variation proactively, and to understand the benefits of doing so. Readers facing variation challenges in their memory, standard cell, analog/RF, and custom digital designs will find easy-to-read, pragmatic solutions. Reviews the most important concepts in variation-aware design, including types of variables and variation, useful variation-aware design terminology, and an overview and comparison of high-level design flows. Describes and compares a suite of approaches and flows for PVT corner-driven design and verification. Presents Fast PVT, a novel, confidence-driven global optimization technique for PVT corner extraction and verification that is both rapid and reliable. Presents a visually-oriented overview of ...
Charge transfer of He2 + with H in a strong magnetic field
Liu, Chun-Lei; Zou, Shi-Yang; He, Bin; Wang, Jian-Guo
2015-09-01
By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He2 + +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. Project supported by the National Natural Science Foundation of China (Grants Nos. 11104017, 11025417, 11275029, and 11474032), the National Basic Research Programm of China (Grant No. 2013CB922200), and the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics (Grant Nos. 2014B09036 and 2013A0102005).
Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field
Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.
2017-03-01
We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.
Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields
Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.
2014-01-01
Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.
Morishita, Toru; Tolstikhin, Oleg I.
2017-11-01
We present a comprehensive treatise on the derivation of the factorization formula describing strong-field photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental photoelectron momentum distributions.
Describing nonequilibrium behavior in strongly correlated materials via dynamical mean-field theory
Freericks, James
2010-03-01
Dynamical mean-field theory was introduced in 1989 and has become one of the most successful methods for solving models of strongly correlated electrons in equilibrium (it becomes exact in the infinite-dimensional limit). In this talk, I show how to generalize dynamical mean-field theory to nonequilibrium situations. For transient response, one discretizes the Kadanoff-Baym-Keldysh contour then solves the discrete problem directly. For steady-state response, one can formulate a theory directly in the long-time limit for the retarded Green's functions. These techniques are applied to the problem of the quenching of Bloch oscillations due to electron-electron interactions and to the problem of time-resolved pump/probe photoemission spectroscopy of strongly correlated electrons when a system is driven to a nonequilibrium steady state and cannot be described by the quasiequilibrium approximation with an effective temperature. This work was completed in collaboration with Tom Devereaux, Sasha Joura, Hulikal Krishnamurthy, Brian Moritz, Thomas Pruschke, Volodomyr Turkowski, and Velko Zlati'c. Recent references include: J. K. Freericks, V. M. Turkowski, and V. Zlati'c, Phys. Rev. Lett. 97, 266408 (2006); J. K. Freericks, Phys. Rev. B 77, 075109 (2008); A. V.Joura, J. K. Freericks, and Th. Pruschke, Phys. Rev. Lett. 101, 196401 (2008); J. K. Freericks, H. R. Krishnamurthy and Th. Pruschke, Phys. Rev. Lett. 102, 136401 (2009); and B. Moritz, T. P. Devereaux, and J. K. Freericks, arXiv:0908.1807.
Study on propagation properties of laser guiding EMP in a finite magnetic field
International Nuclear Information System (INIS)
Xia Xinren; Yin Chengyou
2009-01-01
The geometric model of laser plasma channel (LPC) guiding electromagnetic pulse (EMP) in a finite electromagnetic field is created; when LPC is in lossy gas the propagation properties of the normal modes of LPC guiding EMP are studied; and then the wave equation of longitudinal electormagnetic field and the relationship between transverse and longitudinal electromagnetic field in anisotropic medium are derived under the generalized cylindrical coordinate system. By applying the boundary conditions of electromagnetic fields, the strict characteristic equation of mode propagation for LPC guiding EMP is deduced, and the effects of plasma parameters, surrounding material and external magnetic field on propagation are discussed. The results show that the propagation properties of magnetized LPC guiding EMP are easy to be controlled compared with those without external magnetic field or an infinite external magnetic field applied. (authors)
International Nuclear Information System (INIS)
Monthus, Cécile; Garel, Thomas
2012-01-01
To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent ν FS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent ν typ ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent ν pure Q (d=2)≅0.6 3 of the pure two-dimensional quantum Ising model), and the typical exponent ν h ≃ 1 for the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at infinite-disorder critical points. We also measure, within the disordered phase, the fluctuation exponent ω ≃ 0.35 which is compatible with the directed polymer exponent ω DP (1+1)= 1/3 in (1 + 1) dimensions. (paper)
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately
Molecules in strong laser fields. In depth study of H2 molecule
International Nuclear Information System (INIS)
Awasthi, Manohar
2009-01-01
-threshold-ionization peaks is also demonstrated. The CI-TDSE results for H 2 are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H 2 molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B 1 Σ u + of H 2 is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H 2 molecule, the results for larger molecules like N 2 , O 2 and C 2 H 2 in the DFT-SAE framework are presented. (orig.)
Molecules in strong laser fields. In depth study of H{sub 2} molecule
Energy Technology Data Exchange (ETDEWEB)
Awasthi, Manohar
2009-10-29
above-threshold-ionization peaks is also demonstrated. The CI-TDSE results for H{sub 2} are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H{sub 2} molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B{sup 1}{sigma}{sub u}{sup +} of H{sub 2} is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H{sub 2} molecule, the results for larger molecules like N{sub 2}, O{sub 2} and C{sub 2}H{sub 2} in the DFT-SAE framework are presented. (orig.)
Nonlinear instability of thin current sheets in antiparallel and guided magnetic fields
Silin, I.; Büchner, J.
2003-09-01
The influence of a current-aligned guide magnetic field on the nonlinear resonant instability of thin current sheets is investigated by means of three-dimensional Vlasov-code simulations. Similarly to the zero-guide field case, the pressure gradient excites lower-hybrid-drift (LHD) waves at the current sheet edges. However, since the LHD waves are excited perpendicular to the local magnetic field they propagate obliquely to the current direction. As a result, the number of resonant particles, i.e., the drift-resonance efficiency, decreases with increasing guide field strength. Hence, the driving of global current sheet kink/sausage instabilities becomes less efficient.
Nonlinear instability of thin current sheets in antiparallel and guided magnetic fields
International Nuclear Information System (INIS)
Silin, I.; Buechner, J.
2003-01-01
The influence of a current-aligned guide magnetic field on the nonlinear resonant instability of thin current sheets is investigated by means of three-dimensional Vlasov-code simulations. Similarly to the zero-guide field case, the pressure gradient excites lower-hybrid-drift (LHD) waves at the current sheet edges. However, since the LHD waves are excited perpendicular to the local magnetic field they propagate obliquely to the current direction. As a result, the number of resonant particles, i.e., the drift-resonance efficiency, decreases with increasing guide field strength. Hence, the driving of global current sheet kink/sausage instabilities becomes less efficient
International Nuclear Information System (INIS)
Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires
2008-01-01
Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution
Energy Technology Data Exchange (ETDEWEB)
Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)
2015-10-28
An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.
The mass limit of white dwarfs with strong magnetic fields in general relativity
International Nuclear Information System (INIS)
Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong
2014-01-01
Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)
Photogeneration of neutrino and axions under stimulating effect of strong magnetic field
Skobelev, V V
2001-01-01
The processes of the neutrino and axions photoproduction on the gamma(Ze) -> gamma(nu nu-bar), gamma alpha nuclei, as well as the photon inelastic scattering on the gamma gamma -> gamma(nu nu-bar), gamma alpha photon are considered within the frames of the developed two-dimensional co-variant theory for calculating the matrix of the Feynman diagrams in the strong magnetic field. The contribution of the neutrino radiative photoproduction on the nuclei to the luminosity of the magnetic neutron stars on the early stages of their evolution may compete with the URCA-processes, because the matrix elements in the four-pole diagram depend linearly on the induction of B magnetic field by the B values approx 10 sup 3 -10 sup 4 B sub 0 (B sub 0 = m sub e sup 2 /|e| = 4.41 x 10 sup 1 sup 3 Gs). The evaluation of the axion mass upper boundary, compatible with other independent results, is obtained from the condition of the neutrino luminosity prevailing over the axion one at supposed temperature and magnetic field inducti...
Calculation of low-frequency sound fields in irregular waveguides with strong backscattering
Gulin, O. E.
2008-07-01
An approach is developed for calculating the sound fields in a non-stratified sea medium with irregularities that are not weak. The method of cross sections for horizontal parts of acoustic modes is used to obtain first-order causal equations that are equivalent to the boundary-value problem. A matrix equation describing the backscattered field of modes is analyzed, and the conditions that determine the weakness of the irregularities of the medium and the validity of the known approximate methods of sound field calculations are considered. The approximation of unidirectional propagation is represented in the form of quadratures. The example of a 2D shallow-water waveguide with a strongly irregular profile of a perfectly rigid bottom is considered to illustrate the advantages of the proposed approach in comparison with the approximate methods for specific low frequencies. The qualitative and quantitative differences that arise because of taking into account the backscattering between the curves of propagation losses corresponding to the exact solution and the conventional approximate methods are discussed.
International Nuclear Information System (INIS)
Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.
2010-01-01
The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.
Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.
2010-11-01
The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.
Energy Technology Data Exchange (ETDEWEB)
Ek-In, Surapat; Ruffolo, David [Department of Physics, Faculty of Science, Mahidol University, Bangkok (Thailand); Malakit, Kittipat [Department of Physics, Faculty of Science and Techonology, Thammasat University, Pathum Thani (Thailand); Shay, Michael A. [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Cassak, Paul A., E-mail: kmalakit@gmail.com [Department of Physics and Astronomy, West Virginia University, Morgantown, WV (United States)
2017-08-20
We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.
Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields
Wolf, Michael; Blackmore, James C.; Kuwata, Yoshiaki
2011-01-01
Lighter-than-air vehicles such as hot-air balloons have been proposed for exploring Saturn s moon Titan, as well as other bodies with significant atmospheres. For these vehicles to navigate effectively, it is critical to incorporate the effects of surrounding wind fields, especially as these winds will likely be strong relative to the control authority of the vehicle. Predictive models of these wind fields are available, and previous research has considered problems of planning paths subject to these predicted forces. However, such previous work has considered the wind fields as known a priori, whereas in practical applications, the actual wind vector field is not known exactly and may deviate significantly from the wind velocities estimated by the model. A probabilistic 3D path-planning algorithm was developed for balloons to use uncertain wind models to generate time-efficient paths. The nominal goal of the algorithm is to determine what altitude and what horizontal actuation, if any is available on the vehicle, to use to reach a particular goal location in the least expected time, utilizing advantageous winds. The solution also enables one to quickly evaluate the expected time-to-goal from any other location and to avoid regions of large uncertainty. This method is designed for balloons in wind fields but may be generalized for any buoyant vehicle operating in a vector field. To prepare the planning problem, the uncertainty in the wind field is modeled. Then, the problem of reaching a particular goal location is formulated as a Markov decision process (MDP) using a discretized space approach. Solving the MDP provides a policy of what actuation option (how much buoyancy change and, if applicable, horizontal actuation) should be selected at any given location to minimize the expected time-to-goal. The results provide expected time-to-goal values from any given location on the globe in addition to the action policy. This stochastic approach can also provide
Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes
Directory of Open Access Journals (Sweden)
Jennifer Tang
2015-09-01
Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.
Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.
Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C
2015-09-29
NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.
Willingham, D; Brenes, D A; Winograd, N; Wucher, A
2011-01-01
Molecular depth profiles of model organic thin films were performed using a 40 keV C 60 + cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C 60 + primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data.
Spatial characterization of Bessel-like beams for strong-field physics.
Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A
2017-02-06
We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.
Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation
Fortin, Jean-Francois
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.
Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics
Lloyd, David T.; O'Keeffe, Kevin; Wyatt, Adam S.; Anderson, Patrick N.; Treacher, Daniel; Hooker, Simon M.
2017-02-01
We report the operation of an optical parametric amplifier (OPA) capable of producing gigawatt peak-power laser pulses with tunable wavelength in either the visible or near-infrared spectrum. The OPA has two distinct operation modes (i) generation of > 350 μJ, sub 100 fs pulses, tunable between 1250 - 1550 nm; (ii) generation of > 170 μJ, sub 150 fs pulses tunable between 490 - 530 nm. We have recorded high-order harmonic spectra over a wide range of driving wavelengths. This flexible source of femtosecond pulses presents a useful tool for exploring the wavelength-dependence of strong-field phenomena, in both the multi-photon and tunnel ionization regimes.
Resonance fluorescence spectrum of two atoms, coherently driven by a strong resonant laser field
International Nuclear Information System (INIS)
Ficek, Z.; Tanas, R.; Kielich, S.
1981-01-01
In Lehmberg's approach, we consider the resonance fluorescence spectrum of two radiatively interacting atoms. In the strong field limit we have obtained analytical solutions for the spectrum of the symmetric and antisymmetric modes without decoupling approximation. Our solutions are valid for all values of the distance r 12 separating the atoms. The spectrum of the symmetric modes contains additional sidebands in 2Ω (Ω is the Rabi frequency) with amplitude dependent on (a/Ω) 2 , where a is a parameter dependent on r 12 . The antisymmetric part of the spectrum has no additional sidebands in 2Ω. For small distances r 12 (a = 1) our results for the symmetric modes are identical with those of Agarwal et al. apart from the so-called scaling factor. For large distance r 12 (a = 0) the spectra of the symmetric and antisymmetric modes are identical with the well-known one-atom spectrum. (orig.)
Influence of strong magnetic fields on laser pulse propagation in underdense plasma
Wilson, T. C.; Li, F. Y.; Weikum, M.; Sheng, Z. M.
2017-06-01
We examine the interaction between intense laser pulses and strongly magnetised plasmas in the weakly relativistic regime. An expression for the electron Lorentz factor coupling both relativistic and cyclotron motion nonlinearities is derived for static magnetic fields along the laser propagation axis. This is applied to predict modifications to the refractive index, critical density, group velocity dispersion and power threshold for relativistic self-focusing. It is found that electron quiver response is enhanced under right circularly-polarised light, decreasing the power threshold for various instabilities, while a dampening effect occurs under left circularly-polarised light, increasing the power thresholds. Derived theoretical predictions are tested by one- and three-dimensional particle-in-cell simulations.
Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography
He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang
2018-03-01
Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.
Numerical simulations of a cylinder wake under a strong axial magnetic field
Dousset, Vincent; Pothérat, Alban
2008-01-01
We study the flow of a liquid metal in a square duct past a circular cylinder in a strong externally imposed magnetic field. In these conditions, the flow is quasi-two-dimensional, which allows us to model it using a two-dimensional (2D) model. We perform a parametric study by varying the two control parameters Re and Ha (Ha2 is the ratio of Lorentz to viscous forces) in the ranges [0…6000] and [0…2160], respectively. The flow is found to exhibit a sequence of four regimes. The first three regimes are similar to those of the non-magnetohydrodynamic (non-MHD) 2D circular wake, with transitions controlled by the friction parameter Re /Ha. The fourth one is characterized by vortices raising from boundary layer separations at the duct side walls, which strongly disturbs the Kármán vortex street. This provides the first explanation for the breakup of the 2D Kármán vortex street first observed experimentally by Frank, Barleon, and Müller [Phys. Fluids 13, 2287 (2001)]. We also show that, for high values of Ha (Ha⩾1120), the transition to the fourth regime occurs for Re ∝0.56Ha, and that it is accompanied by a sudden drop in the Strouhal number. In the first three regimes, we show that the drag coefficient and the length of the steady recirculation regions located behind the cylinder are controlled by the parameter Re /Ha4/5. Also, the free shear layer that separates the recirculation region from the free stream is similar to a free MHD parallel layer, with a thickness of the order of Ha-1/2 that is quite different to that of the non-MHD case, and therefore strongly influences the dynamics of this region. We also present one case at Re =3×104 and Ha =1120, where this layer undergoes an instability of the Kelvin-Helmholtz-type.
Contribution to the study of molecular multi-ionisation and multifragmentation in strong laser field
International Nuclear Information System (INIS)
Hering, P.
1999-12-01
Molecular multi-ionization in strong laser field is studied using different experimental and theoretical techniques. In the 10 13 -10 16 W/cm 2 laser intensity range, the strong non-linear laser-molecule coupling allows the absorption of energies necessary to the ejection of valence electrons. The double ionization is characterized by the production of doubly charged molecular ions and by charge separation channels such as A + + B + . For molecular charge states greater than two, the multi-ionization dynamics study is based on the observables due to the multifragmentation, which are the fragments charge states and initial momenta. For strong intensities in the 1015-1016 w/cm 2 range, the multicharged atomic ions production efficiency depends on the initial electronic density localization of the molecule. For intensities less than 5 x 10 14 w/cm 2 , double ionization leads to the simultaneous emission of two electrons from the molecule. The two-missing electrons fragmentation channels appear at internuclear equilibrium distance following the Franck-Condon principle. For more than two-missing electrons channels, the internuclear distance of excitation is more difficult to determine. However the reported different experiments show that the multifragmentation dynamics is independent of the electronic emission dynamics. The theoretical approach is based on the Thomas-Fermi equations and allows a non-perturbative description of the laser-molecule coupling. The calculated fragmentation kinetic energies are smaller than the coulombic repulsion energies calculated at the internuclear equilibrium distance because of an electronic screening effect. This model reproduce the experimental fragmentation 'energy releases obtained experimentally for molecules such as N 2 , CO 2 or N 2 O. (author)
STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS
International Nuclear Information System (INIS)
Wang Yan; Li Xiangdong
2012-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images
Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.
2018-01-01
We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.
State-resolved attosecond reversible and irreversible dynamics in strong optical fields
Sabbar, Mazyar; Timmers, Henry; Chen, Yi-Jen; Pymer, Allison K.; Loh, Zhi-Heng; Sayres, Scott G.; Pabst, Stefan; Santra, Robin; Leone, Stephen R.
2017-02-01
Strong-field ionization (SFI) is a key process for accessing real-time quantum dynamics of electrons on the attosecond timescale. The theoretical foundation of SFI was pioneered in the 1960s, and later refined by various analytical models. While asymptotic ionization rates predicted by these models have been tested to be in reasonable agreement for a wide range of laser parameters, predictions for SFI on the sub-laser-cycle timescale are either beyond the scope of the models or show strong qualitative deviations from full quantum-mechanical simulations. Here, using the unprecedented state specificity of attosecond transient absorption spectroscopy, we follow the real-time SFI process of the two valence spin-orbit states of xenon. The results reveal that the irreversible tunnelling contribution is accompanied by a reversible electronic population that exhibits an observable spin-orbit-dependent phase delay. A detailed theoretical analysis attributes this observation to transient ground-state polarization, an unexpected facet of SFI that cannot be captured by existing analytical models that focus exclusively on the production of asymptotic electron/ion yields.
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-11-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately
International Nuclear Information System (INIS)
Kapuria, S; Yaqoob Yasin, M
2013-01-01
In this work, we present an electromechanically coupled efficient layerwise finite element model for the static response of piezoelectric laminated composite and sandwich plates, considering the nonlinear behavior of piezoelectric materials under strong electric field. The nonlinear model is developed consistently using a variational principle, considering a rotationally invariant second order nonlinear constitutive relationship, and full electromechanical coupling. In the piezoelectric layer, the electric potential is approximated to have a quadratic variation across the thickness, as observed from exact three dimensional solutions, and the equipotential condition of electroded piezoelectric surfaces is modeled using the novel concept of an electric node. The results predicted by the nonlinear model compare very well with the experimental data available in the literature. The effect of the piezoelectric nonlinearity on the static response and deflection/stress control is studied for piezoelectric bimorph as well as hybrid laminated plates with isotropic, angle-ply composite and sandwich substrates. For high electric fields, the difference between the nonlinear and linear predictions is large, and cannot be neglected. The error in the prediction of the smeared counterpart of the present theory with the same number of primary displacement unknowns is also examined. (paper)
Mass evaporation rate of globular clusters in a strong tidal field
Madrid, Juan P.; Leigh, Nathan W. C.; Hurley, Jarrod R.; Giersz, Mirek
2017-09-01
The mass evaporation rate of globular clusters evolving in a strong Galactic tidal field is derived through the analysis of large, multimass N-body simulations. For comparison, we also study the same evaporation rates using mocca Monte Carlo models for globular cluster evolution. Our results show that the mass evaporation rate is a dynamical value, that is, far from a constant single number found in earlier analytical work and commonly used in the literature. Moreover, the evaporation rate derived with these simulations is higher than values previously published. These models also show that the value of the mass evaporation rate depends on the strength of the tidal field. We give an analytical estimate of the mass evaporation rate as a function of time and galactocentric distance ξ(RGC, t). Upon extrapolating this formula to smaller RGC values, our results provide tentative evidence for a very high ξ value at small RGC. Our results suggest that the corresponding mass-loss in the inner Galactic potential could be high and it should be accounted for when star clusters pass within it. This has direct relevance to nuclear cluster formation/growth via the infall of globular clusters through dynamical friction. As an illustrative example, we estimate how the evaporation rate increases for an ˜105 M⊙ globular cluster that decays through dynamical friction into the Galactic Centre. We discuss the findings of this work in relation to the formation of nuclear star clusters by inspiralling globular clusters.
Anomaly disturbances of the magnetic fields before the strong earthquake in Japan on March 11, 2011
Directory of Open Access Journals (Sweden)
Masashi Hayakawa
2012-04-01
Full Text Available
One of the strongest earthquakes, with magnitude M 8.9, occurred at the sea bottom near to the east coast of Japan on March 11, 2011. This study is devoted to the investigation of anomaly disturbances in the main magnetic field of the Earth and in ultra-low frequency magnetic variations (F <10 Hz observed before this earthquake. Secular variations of the main geomagnetic field were investigated using three-component 1-h data from three magnetic observatories over the 11-year period of January 1, 2000, to January 31, 2011. The Esashi and Mizusawa magnetic stations are situated northwest of the earthquake epicenter, at distances of around 170 km to 200 km, and the Kakioka observatory is situated southwest of the earthquake epicenter, at a distance of about 300 km. During this period, there were four local anomalies in the secular variations. The last anomaly was the biggest, which began around 3 years prior to the earthquake moment. All of the anomalies can be most distinctly recognized, in the form of differences in the corresponding magnetic components at these remote magnetic stations. For investigations of the ultra-low frequency magnetic field disturbances, three-component 1-s data at two magnetic stations (Kakioka and Uchiura were used. The Uchiura station is situated 119 km south of Kakioka, at a distance of about 420 km from the earthquake epicenter. Data from the time interval of February 18, 2011 to March 10, 2011 (only at night-time: 01:00 to 04:00 local time were investigated in a wide frequency range. In the frequency range of 0.033 Hz to 0.01 Hz, there was the clearest anomaly, seen as a decrease in the correlation coefficients of the corresponding magnetic components at these two stations, from February 22, 2011. Differences in the Z components showed an increase, and became positive after this date. This might suggest that the ultra-low frequency lithospheric source appeared north of the Kakioka station. Outside this specified
A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG
Energy Technology Data Exchange (ETDEWEB)
Wilson, Michelle L.; Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, Physics Division L-210, 7000 East Avenue, Livermore, CA 94550 (United States); Momcheva, Ivelina G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Williams, Kurtis A. [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX, 75428 (United States); Keeton, Charles R. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)
2016-12-20
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z {sub grp} ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z {sub grp} < 0.6. The groups have radial velocity dispersions of 60 ≤ σ {sub grp} ≤ 1200 km s{sup −1} with a median of 350 km s{sup −1}. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ∼85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ {sub grp}, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive ( σ {sub grp} ≥ 500 km s{sup −1}) group or group candidate projected within 2′ of the lens.
Tiny Stars, Strong Fields: Exploring the Origin of Intense Magnetism in M Stars
Toomre, Juri
. We bring to this our prior experience with studying dynamo processes in the outer convective envelopes of G- (the Sun) and Ftype stars, briefly of M dwarfs, and in full convective cores within more massive A- and B-type stars. Our previous work suggests that M dwarfs could display a broad range of dynamo behavior, from cyclic reversals to more chaotic variations, and further to both weak and strong dynamo states. We will focus on the latter, exploring how superequipartition magnetic fields could be achieved by dynamo action in M dwarfs, as are likely needed to energize super-flares and huge active regions, and what limits the peak field strengths. M-type stars are distinctive in becoming fully convective with decreasing mass at about M3.5 in spectral type (or about 0.35 solar masses). At this transition, a steep rise in the fraction of magnetically active stars is observed that is accompanied by an increasing rotational velocity. Clearly how mass-loss and spin-down can lead to this is of interest in itself. However, here we propose to study the manner in which dynamos operating in fully convective M dwarf interiors beyond the transition may be able to achieve very strong magnetic fields, and how field strengths and apparent magnetic activity increases with rotation rate as suggested by observations. We believe that global connectivity of flows and fields across the core center will admit new classes of strong behavior, as revealed by our B star core dynamos, not realized when a convective envelope is bounded below by a tachocline. These ideas need to be tested in a self-consistent manner with global ASH simulations to gain theoretical insights into what is the origin of the fierce magnetic activity in some of M dwarfs that may be potential hosts to Earth-like planets. Such 3-D MHD simulations, though challenging, are now feasible and would complement the intensive observational searches under way.
Fox, W.
2017-10-01
Magnetic reconnection enables explosive conversion of magnetic field energy to plasma kinetic energy in space and laboratory plasmas. In many reconnecting plasmas in space, solar, and laboratory plasmas, reconnection proceeds in the presence of a finite guide field (GF) such that the magnetic field lines meet at an angle less than 180°, and in magnetic fusion devices the guide field can be the largest component of the field. We report detailed laboratory observations of the structure of reconnection current sheets in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection. I discuss connections to observations of reconnection with finite guide field by spacecraft missions, and implications for two-fluid reconnection in magnetic fusion devices.
Suitability for field service in 4 breeds of guide dogs
Ennik, E.; Liinamo, A.E.; Leighton, E.; Arendonk, van J.A.M.
2006-01-01
This study examines the relative importance of a longer than normal 4-month training period, or being ¿passed back¿ from the original training class to join a class in which dogs are at an earlier stage of their training, on the overall probability that a dog entering guide dog training will
Chen, Chih-Hung; Liu, Guan-Zhi; Hwang, Gwo-Jen
2016-01-01
In this study, an integrated gaming and multistage guiding approach was proposed for conducting in-field mobile learning activities. A mobile learning system was developed based on the proposed approach. To investigate the interaction between the gaming and guiding strategies on students' learning performance and motivation, a 2 × 2 experiment was…
Electronic Field Guides and User Communities in the Eco-informatics Revolution
Directory of Open Access Journals (Sweden)
R. D. Stevenson
2003-07-01
Full Text Available The recognition that taxonomy is central to the conservation of biodiversity has reestablished the critical role of taxonomy in biology. However, many of the tools taxonomists produce for the identification and characterization of species, e.g., dichotomous keys, have been difficult to use and largely ignored by the general public in favor of field guides, which are essentially browsable picture guides. We review the role of field guides in species identification and discuss the application of a host of digital technologies to produce user-friendly tools for identification that are likely to greatly enhance species identification in the field by nonspecialists. We suggest that wider adoption of the citizen science model and the use of electronic field guides will enhance public understanding and participation in biodiversity monitoring.
Book Review Helm Field Guides — Birds of Chile including the ...
African Journals Online (AJOL)
Book Review Helm Field Guides — Birds of Chile including the Antarctic Peninsula, the Falkland Islands and South Georgia by Albaro Jaramillo with illustrations by Peter Burke and David Beadle (2003)
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail (eds.)
2017-04-15
The Helmholtz International Summer School (HISS) entitled ''Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (SF→HQ)'', was held in the period July 18-30, 2016 at the Bogolyubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, as part of the activities of the Dubna International Advanced School of Theoretical Physics (DIAS-TH). It was co-organized by Ahmed Ali (DESY Hamburg), David Blaschke (JINR Dubna, MEPhI and Univ. Wroclaw), Holger Gies (HI Jena), and Mikhail Ivanov (JINR Dubna), and was attended by 82 participants (faculty+students), not counting the JINR physicists who attended some lectures as non-registered participants. The school (SF→HQ) continued the workshops and schools of the HISS series held earlier in Dubna (1993, 1996, 2000, 2005, 2008, 2013), Bad Honnef (1994) and Rostock (1997). The scientific program of the school consisted of five regular (one-hour long) lectures in the morning and afternoon sessions, with typically two contributed talks given by younger participants (students and postdocs), each half-hour long, in the late afternoons. Altogether, we had sixty lectures by the faculty and participants. In addition, black-board exercises were held in the post-lunch periods on selected aspects of strong fields and field theory. The HISS series of schools has played an important role in bringing together an international faculty and young physicists (Ph.D. and postdocs), mostly from Russia and Germany, but increasingly also from other countries, including those affiliated to JINR Dubna. They participate in two-week long intense scientific discourse, mainly dedicated lectures on selected topics covering the foundation and the frontiers of high energy physics and cosmology. The novelty of this year's school was its bifocal interest, which brought together two different physical science communities - particle and laser physicists. There were
International Nuclear Information System (INIS)
Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail
2017-04-01
The Helmholtz International Summer School (HISS) entitled ''Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (SF→HQ)'', was held in the period July 18-30, 2016 at the Bogolyubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, as part of the activities of the Dubna International Advanced School of Theoretical Physics (DIAS-TH). It was co-organized by Ahmed Ali (DESY Hamburg), David Blaschke (JINR Dubna, MEPhI and Univ. Wroclaw), Holger Gies (HI Jena), and Mikhail Ivanov (JINR Dubna), and was attended by 82 participants (faculty+students), not counting the JINR physicists who attended some lectures as non-registered participants. The school (SF→HQ) continued the workshops and schools of the HISS series held earlier in Dubna (1993, 1996, 2000, 2005, 2008, 2013), Bad Honnef (1994) and Rostock (1997). The scientific program of the school consisted of five regular (one-hour long) lectures in the morning and afternoon sessions, with typically two contributed talks given by younger participants (students and postdocs), each half-hour long, in the late afternoons. Altogether, we had sixty lectures by the faculty and participants. In addition, black-board exercises were held in the post-lunch periods on selected aspects of strong fields and field theory. The HISS series of schools has played an important role in bringing together an international faculty and young physicists (Ph.D. and postdocs), mostly from Russia and Germany, but increasingly also from other countries, including those affiliated to JINR Dubna. They participate in two-week long intense scientific discourse, mainly dedicated lectures on selected topics covering the foundation and the frontiers of high energy physics and cosmology. The novelty of this year's school was its bifocal interest, which brought together two different physical science communities - particle and laser physicists. There were
Application of discrete variable representation to planar H2+ in strong xuv laser fields.
Ning, Qi-Cheng; Peng, Liang-You; Hou, Xue-Feng; Xu, Zhen; Gong, Qihuang
2012-09-07
We present an efficient and accurate grid method to study the strong field dynamics of planar H(2)(+) under Born-Oppenheimer approximation. After introducing the elliptical coordinates to the planar H(2)(+), we show that the Coulomb singularities at the nuclei can be successfully overcome so that both bound and continuum states can be accurately calculated by the method of separation of variables. The time-dependent Schrödinger equation (TDSE) can be accurately solved by a two-dimensional discrete variable representation (DVR) method, where the radial coordinate is discretized with the finite-element discrete variable representation for easy parallel computation and the angular coordinate with the trigonometric DVR which can describe the periodicity in this direction. The bound states energies can be accurately calculated by the imaginary time propagation of TDSE, which agree very well with those computed by the separation of variables. We apply the TDSE to study the ionization dynamics of the planar H(2)(+) by short extreme ultra-violet (xuv) pulses, in which case the differential momentum distributions from both the length and the velocity gauge agree very well with those calculated by the lowest order perturbation theory.
Using vibrational Cooper minima to determine strong-field molecular-dissociation pathways
Severt, T.; Zohrabi, M.; Armstrong, G. S. J.; McKenna, J.; Gaire, B.; Kling, Nora G.; Ablikim, U.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2015-05-01
We explore the possibility of using vibrational ``Cooper minima'' (VCM) locations as a method to determine dissociation pathways of molecules in a strong laser field. As a test case, we study the laser-induced dissociation of an O2+ion beam by several wavelengths (λ = 800 , 400, and 266 nm) using a coincidence three-dimensional momentum imaging technique. Vibrational structure is observed in the kinetic energy release spectra, revealing a suppression of the dissociation of certain vibrational levels, which is a manifestation of the VCM effect. Previously, it has been shown in H2+that first-order time-dependent perturbation theory can be used to predict the locations of the VCM. We explore if the VCM locations predicted by perturbation theory can help uniquely identify dissociation pathways in O2+and consider its utility for other systems. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. TS was partially supported by NSF-REU under Grant No. PHY-0851599.
Coherence and quasi-stable states in a strong infrared field
Zhong, Changchun; Robicheaux, Francis
2016-05-01
We study the quasi-stability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV-pulse-train relative to the IR laser. The UV-pulse-train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence which can be explained classically. When the two frequencies are one IR-photon apart, the angular symmetry of the quasi-stable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012193.
Disorder effects on helical edge transport in graphene under a strong tilted magnetic field
Huang, Chunli; Cazalilla, Miguel A.
2015-10-01
In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.
Resonant excitation and the decay of autoionization states in a strong electromagnetic field
International Nuclear Information System (INIS)
Andryushin, A.I.; Kazakov, A.E.; Fedorov, M.V.
1985-01-01
Photoionization of atoms involving resonant excitation of the auto-ionization state is studied. The evolution of the total ionization probability, its dependence on the frequency of the resonance radiation and also the photoelectron energy spectrum are investigated. It is shown that the energy of the final state of the system may be localized either in the vicinity of E approximately Esub(α), where Esub(α) is the auto-ionization energy, or in the vicinity of E approximately Esub(α)+h/2πω where h/2πω is the quantum energy of the resonance radiation. The photoelectron specturum in the region E approximately Esub(α)+h/2πω as a whole is similar to the electron spectrum on photoionization of atoms involving resonance excitation of the bound state. A strong effect on the photoelectron spectrum in the region E approximately Esub(α) is exerted by interference of various decay channels of the ground state in the resonance field which leads to the appearance in the spectrum of a characteristic structure of the Fano type. Interence also affects the widths of the two spectral curves, the relatve amount of electrons in the two energy ranges and also other characteristics of the ionization process. It is shown that the presence of a noninterfering photoionization channel of the autoionization state ensures the finiteness of the swidths and heights of the spectral curves and the absence of complete ''coherency merging''
Control and identification of strong field dissociative channels in CO2+ via molecular alignment
International Nuclear Information System (INIS)
Oppermann, M; Weber, S J; Marangos, J P; Morales, F; Richter, M; Patchkovskii, S; Ivanov, M; Smirnova, O; Csehi, A; Vibók, Á
2014-01-01
The dissociative excitation of CO 2 + was studied in the molecular frame as a function of probe laser intensity, ellipticity and polarization with respect to the molecular bond at laser wavelengths of 800 nm and 1350 nm. This allowed the identification of the main excitation pathway consisting of tunnel ionization from HOMO-2 followed by a parallel dipole transition from the second excited state B to the predissociating, third excited state C. Recollision excitation was shown to play a negligible role. Using laser induced impulsive alignment, the strong field induced coupling at 800 nm and 1350 nm of the ionic states B and C could thus be controlled by the laser polarization. This leads to a suppression of the fragmentation yield of up to 70% when the laser polarization was perpendicular to the molecular axis compared to parallel polarization. We have performed simulations of various ionization channels of CO 2 . Our simulations reflect the experimental findings and show that dissociation of CO 2 + is induced by tunnelling from deeper molecular orbitals HOMO-1, HOMO-2, HOMO-3, followed by laser driven hole dynamics in the ion. (paper)
International Nuclear Information System (INIS)
Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.
1987-01-01
A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs
Nonadiabaticity of electron-tunneling-ionization processes in elliptical strong laser fields
Cai, Jun; Chen, Yan-jun; Xia, Qin-zhi; Ye, Di-fa; Liu, Jie; Fu, Li-bin
2017-09-01
We theoretically investigate the electron-tunneling process for a helium atom irradiated by an elliptical strong laser field. The momentum distribution for an electron ionized during the cycle when the laser intensity reaches its maximum is captured, such that we can ignore the interference between the wave packets ionized in different laser cycles and precisely determine the center of the momentum distribution. The quantum mechanical prediction of the center position is further compared to the semiclassical single-trajectory simulation as well as the experimental data. We find that the electron momentums along the minor axis of the laser polarization show good agreement with the nonadiabatic semiclassical calculation for a wide range of laser intensities, indicating the existence of a nonzero lateral momentum when the electron exits the barrier. On the other hand, the offset angles obtained by our quantum mechanical approach for different laser intensities are larger than the nonadiabatic semiclassical results, indicating the importance of the quantum effects during the electron's under-the-barrier dynamics.
International Nuclear Information System (INIS)
Backes, Steffen
2017-04-01
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
High resolution field study of sediment dynamics on a strongly heterogeneous bed
Bailly Du Bois, P.; Blanpain, O.; Lafite, R.; Cugier, P.; Lunven, M.
2010-12-01
Extensive field measurements have been carried out at several stations in a macrotidal inner continental shelf in the English Channel (around 25 m depth) during spring tide period. The strong tidal current measured (up to 1.6 m.s-1) allowed sediment dynamics on a bed characterised by a mixture of size with coarse grains to be dominant. Data acquired in such hydro-sedimentary conditions are scarce. A new instrument, the DYnamic Sediment Profile Imagery (DySPI) system, was specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected covered: 1) grain size range (side scan sonar, video observations, Shipeck grab samples, DySPI images) and vertical sorting (stratigraphic sampling by divers) of sediment cover, 2) hydrodynamic features (acoustic Doppler velocimeter, acoustic Doppler profiler), 3) suspended load nature and dynamics (optical backscatter, chlorophyll fluorometer, particle size analyser, Niskin bottles, scanning electron microscopy), 4) sand and gravel bedload transport estimates (DySPI image processing), 5) transfer dynamics of fine grains within a coarse matrix and their depth of penetration (radionuclides measurements in stratigraphic samples). The four stations present different grain size vertical sorting from a quasi-permanent armouring to a homogenous distribution. The sediment cover condition is directly linked to hydrodynamic capacity and sediment availability. Fine grain ratio within deep sediment layers (up to 10 cm) is higher when the bed armouring is durable. However, fine sediments are not permanently depth trapped: deep layers are composed of few years-old radionuclide tracers fixed on fine grains and a vertical mixing coefficient has been evaluated for each sediment cover. Fine grain dynamics within a coarse matrix is inversely proportional to the robustness of the armour layer. For current
Field Guide to Marine Ecology of Kenyan Coast.
2000-01-01
This guide introduces you to a model of Kenyan coast: from sandy shore across a lagoon of shallow water with sea grass and coral garden, out to the flinging reef where the waves break and the coral rises like a wall from the depths of the ocean. The beach and lagoon are in a marine park where shells, plants, fish and other marine life is protected. In the marine ecosystem here there are 6 habitats, which have their own plants and animals that adapted to the particular environment.
Energy Technology Data Exchange (ETDEWEB)
Benguria, Rafael [Pontificia Universidad Catolica de Chile, Departamento de Fisica, Casilla 306, Santiago 22, Chile (Chile); Brummelhuis, Raymond [School of Economics, Mathematics and Statistics, 7-15 Gresse Street, University of London (United Kingdom); Duclos, Pierre [Centre de Physique Theorique UMR 6207-Unite Mixte de Recherche du CNRS et des Universites Aix-Marseille I, Aix-Marseille II et de l' Universite du Sud Toulon-Var-Laboratoire affilie a la FRUMAM, Luminy Case 907, F-13288 Marseille Cedex 9 (France); Perez-Oyarzun, Santiago [Instituto de Ciencias Basicas, Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito 441, Casilla 298-v, Santiago (Chile); Vytras, Petr [Katedra Matematiky, FJFI, CVUT, Trojanova 13, CZ-Prague 12000 (Czech Republic)
2006-06-30
We consider the hydrogen molecular ion H{sup +}{sub 2} in the fixed nuclear approximation, in the presence of a strong homogeneous magnetic field. We determine the leading asymptotic behaviour for the equilibrium distance between the nuclei of this molecule in the limit when the strength of the magnetic field goes to infinity.
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il
2000-09-01
The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)
Quantum field theory a tourist guide for mathematicians
Folland, Gerald B
2008-01-01
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...
Standard Guide for Conducting Corrosion Tests in Field Applications
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This guide covers procedures for conducting corrosion tests in plant equipment or systems under operating conditions to evaluate the corrosion resistance of engineering materials. It does not cover electrochemical methods for determining corrosion rates. 1.1.1 While intended primarily for immersion tests, general guidelines provided can be applicable for exposure of test specimens in plant atmospheres, provided that placement and orientation of the test specimens is non-restrictive to air circulation. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See also 10.4.2.
Ionization of highly excited states of a hydrogen atom by a strong low-frequency field
International Nuclear Information System (INIS)
Bersons, I.Y.
1984-01-01
The probability of ionization of highly excited states of a hydrogen atom by a low-frequency field is estimated by using the previously derived quasi-classical wave function of an electron in a Coulomb field and in a radiation field. The expression obtained predicts an ionization threshold at field intensities approximately equal to those observed experimentally, but predicts an increase in ionization probability that is approximately ten times the increase observed experimentally when the field intensity in the threshold region is increased. The approximations underlying the derivation of the equation for the ionization probability are discussed
Collisional ionization of Na by HBr in weak to strong electric fields
International Nuclear Information System (INIS)
Safinya, K.A.; Gallagher, T.F.; Sandner, W.; Gounand, F.
1985-01-01
We report the effect of static electric fields on the collisional ionization of highly excited sodium atoms by HBr. The binding energy dependence of the collisional ionization cross section is measured at zero field and in static electric fields up to that point at which the atom field ionizes. The applied electric field lowers the ionization threshold of the atom from its zero field value. Therefore an atom near the ionization threshold in an electric field is of smaller size than a free field atom with the same binding energy. Thus measuring the binding energy dependence of the cross section at different values of the electric field allows us to study the effects of the physical size of the atom on the cross section. The effect of the electric field was to lower the measured ionization cross section. However, the binding energy dependence of the cross section remains unchanged at the level of our measurement accuracy. The measured cross sections are larger for larger atoms, exhibit a drop with increasing binding energy characteristic of rotational to electronic excitation transfer, and are of order 10 -12 --10 -11 cm 2 . A simple calculation based on dipole (J→ J-1) excitation transfer from the molecule to the atom predicts, with good agreement, the binding energy dependence of the cross section. The electric field dependence of the data however, is not shown in the theory
Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex
2017-09-22
The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.
Ultra High Field MRI-Guided Deep Brain Stimulation.
Forstmann, Birte U; Isaacs, Bethany R; Temel, Yasin
2017-10-01
Deep brain stimulation (DBS) is a neurosurgical treatment for neurological disorders often planned with 1.5-T or 3-T MRI. The clinical efficacy of DBS can be improved using ultrahigh-field (UHF) MRI for planning by increasing the level of precision required for an individualized approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kool, Th.W.; Bollegraaf, B.
2010-01-01
Numerical and analytical methods are used to investigate the calculation of the zero field splitting |2D| and g(perp) parameters in EPR for octahedrally surrounded d3 spin systems (S = 3/2) in strong and moderate axial crystal fields (|D|>=h{\
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
Th?berge, Francis; Daigle, Jean-Fran?ois; Kieffer, Jean-Claude; Vidal, Fran?ois; Ch?teauneuf?, Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electr...
Moonwalk with Your Eyes A Pocket Field Guide
Plotner, Tammy
2010-01-01
Are you ready to take a quarter of a million mile journey with just your eyes? Then welcome to "Moon Walk with Your Eyes"! We often take the beauty of our nearest astronomical neighbor for granted. How often do we really stop to think about why it looks the way it does or what a closer look will reveal? In this book, written in easy-to-understand language by one backyard astronomer to another, we'll explore the Moon night by night, as it goes through a full cycle. Every lunar day has something new to learn! And along your journey, you will be reading about the history, mystery, poetry, and legends that are associated with our Moon. Charts will help guide you to specific lunar features, as well as annotated photographic maps that pinpoint important or unusual craters. You'll soon learn to identify major features at just a glance and be able to create your own world-class images. You'll have right at hand the times and dates for every lunar day, phase, and eclipse for years to come. Imagine yourself at the tele...
Active gas adsorption-promoted evaporation of tungsten and niobium in strong electric fields
International Nuclear Information System (INIS)
Ksenofontov, V.A.; Kul'ko, V.B.; Mikhajlovskij, I.M.
1980-01-01
Field-ion methods and pulsed mass-spectrometeric analysis are used to study field evaporation of tungsten and niobium affected by nitrogen and hydrogen. Active gas-promoted evaporation is found to take place at field intensities high enough for the field ionization of active gases. The evaporating field intensity is established to increase from 1.45x10 8 to 5.5x10 8 V/cm while passing from continuous to pulsed conditions of evaporation, this testifies to the change of the mechanism of the promoted evaporation. Under the effect of active gases, the evaporation rate essentially depends on the surface state. It is shown that in the microcrystals irradiated with 1-3 kV helium ions, the dependence of the evaporation rate of Nb in hydrogen on the field intensity gets monotonous. The obtained results are in fair agreement with the recombination model of a promoted evaporation [ru
Highly controlled orientation of CaBi4Ti4O15 using a strong magnetic field
Suzuki, Tohru S.; Kimura, Masahiko; Shiratsuyu, Kosuke; Ando, Akira; Sakka, Yoshio; Sakabe, Yukio
2006-09-01
The texture of feeble magnetic ceramics can be controlled by a strong magnetic field. When the magnetic susceptibility of the c axis is smaller than that of the other axes, the c axis aligns perpendicular to the magnetic field; however, the direction is randomly oriented on the plane perpendicular to the magnetic field. The authors demonstrate in this letter that a highly controlled texture in bismuth titanate, which has a c-axis susceptibility smaller than the other axes, can be achieved using a two-step magnetic field procedure. This highly controlled orientation is effective for improving the electromechanical coupling coefficient.
H2+ molecule in strong magnetic fields, studied by the method of linear combinations of orbitals
International Nuclear Information System (INIS)
de Melo, L.C.; Das, T.K.; Ferreira, R.C.; Miranda, L.C.M.; Brandi, H.S.
1978-01-01
We have studied the ground state of the H 2 + molecular ion in the presence of a homogeneous magnetic field, basing this study on a linear combination of atomic orbitals obtained from the hydrogen atom in a magnetic field. The calculations have shown that this scheme is adequate to describe the binding energy of the molecule at field strengths up to approximately 10 10 G
Electromagnetic processes in pulsars under strong electric and magnetic field conditions
International Nuclear Information System (INIS)
Ayasli, S.; Hacinliyan, A.; Oegelman, H.B.; Daugherty, I.K.
1977-01-01
It is believed that pulsars possess huge electric and magnetic fields. However, the electric field is commonly neglected in calculations of the rate of pair production, a process which is thought to be greatly important in the radiation mechanisms of pulsars. To see the effect of the electric field, the pair production is calculated for arbitrary electric and magnetic field configurations. The formulae thus obtained are then applied to pulsars. It is shown that the correction to the ''polar gap'' height calculated in the Ruderman and Sutherland model is negligible, although it might be important for the spectrum of emerging photons. (author)
International Nuclear Information System (INIS)
Grishanin, B.A.; Shatalova, G.G.
1984-01-01
Calculation is made of a coherent part of response to a weak test field of an atom located in a strong resonance field. The latter bads to a suppression of phase relaxation. This response is shown to appear both at a test field freq uency ω and at a combination frequency 2ωsub(l)-ω, where ωsub(l) is a resona nce field frequency. The spectrum of test field absorption by such a system has a symmetric form and consist of two parts, one of which corresponds to a test f ield absorption and another - to its amplification
2016-04-15
AFRL-AFOSR-VA-TR-2016-0166 Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid- IR Probe Spectroscopy Jeffery...Pump/Strong- Field Mid- IR Probe Spectroscopy 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0080 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...sequentially controlling ionization and dissociation steps in the H2+ molecule using tightly synchronized few-fs EUV and few-cycle mid- IR pulses. We
Orientation of glutaraldehyde-fixed erythrocytes in strong static magnetic fields.
Higashi, T; Sagawa, S; Ashida, N; Takeuchi, T
1996-01-01
In a uniform static magnetic field up to 8 Telsa, glutaraldehyde-fixed erythrocytes showed an orientation in which their disk plane was perpendicular to the magnetic field. The paramagnetism of membrane-bound hemoglobin was through to contribute significantly to this orientation. The observation of magnetic orientation is directed toward understanding the fundamental microstructural aspects of the erythrocyte.
Strong compression of a magnetic field with a laser-accelerated foil.
Yoneda, Hitoki; Namiki, Tomonori; Nishida, Akinori; Kodama, Ryosuke; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Nishio, Kento; Ide, Takao
2012-09-21
We demonstrate the generation of high magnetic fields for condensed matter research using a high-power laser system. A cavity in which a seed magnetic field is applied is compressed by a kJ ns laser pulse. The time history of the compressed magnetic field is monitored by observing the Faraday effect rotation of polarization of a probe pulse in a glass fiber. To maintain a low-temperature condition in the final high-field region, we put a high-resistance foil around the final compression area. If we assume the length of the compression region is equal to the laser spot size, a magnetic field of more than 800 T is observed by Faraday rotation. Because of the large mass of the compression foil, this high magnetic field is sustained during almost 2 ns. During compression, a rarefaction wave from the backside of the accelerated foil and expanding material from the inner protection foil affect the magnetic field compression history, but the final compressed magnetic field strength agrees with the ratio between the initial sample area and the compressed cavity area.
Investigation of energy spectrum structure in a system atom + strong external electromagnetic field
International Nuclear Information System (INIS)
Volkova, E.A.; Popov, A.M.; Tikhonova, O.V.
1996-01-01
Method of direct numerical integration of nonstationary Schroedinger equation is used for investigation into dynamics of quantum system with short-range potential under the cooperative effect of high-frequency electromagnetic field with super atomic value of intensity and low-frequency field with low radiation intensity
A strong, highly-tilted interstellar magnetic field near the Solar System.
Opher, M; Bibi, F Alouani; Toth, G; Richardson, J D; Izmodenov, V V; Gombosi, T I
2009-12-24
Magnetic fields play an important (sometimes dominant) role in the evolution of gas clouds in the Galaxy, but the strength and orientation of the field in the interstellar medium near the heliosphere has been poorly constrained. Previous estimates of the field strength range from 1.8-2.5 microG and the field was thought to be parallel to the Galactic plane or inclined by 38-60 degrees (ref. 2) or 60-90 degrees (ref. 3) to this plane. These estimates relied either on indirect observational inferences or modelling in which the interstellar neutral hydrogen was not taken into account. Here we report measurements of the deflection of the solar wind plasma flows in the heliosheath to determine the magnetic field strength and orientation in the interstellar medium. We find that the field strength in the local interstellar medium is 3.7-5.5 microG. The field is tilted approximately 20-30 degrees from the interstellar medium flow direction (resulting from the peculiar motion of the Sun in the Galaxy) and is at an angle of about 30 degrees from the Galactic plane. We conclude that the interstellar medium field is turbulent or has a distortion in the solar vicinity.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Field guide to Muddy Formation outcrops, Crook County, Wyoming
Energy Technology Data Exchange (ETDEWEB)
Rawn-Schatzinger, V.
1993-11-01
The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.
Energy Technology Data Exchange (ETDEWEB)
Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)
2016-11-15
We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)
International Nuclear Information System (INIS)
Multiple scale methods are used to treat several ingredients of the theory of atoms in strong electromagnetic fields. First, a focused electromagnetic field is expanded. Second, a classical electron is described giving the ponderomotive potential. Third, the quantum electron is treated in the WKB approximation. Fourth, the one dimensional quantum harmonic oscillator is solved; and last the one dimensional square well, showing the low intensity limit of the theory
Gray, William J.; McKee, Christopher F.; Klein, Richard I.
2018-01-01
Star-forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently, the formation of protostellar discs is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disc formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming discs, preventing their formation. However, once turbulence is included, discs can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here, we present several high-resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar discs. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported discs are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar discs in the presence of realistic magnetic fields.
González-Férez, R; Dehesa, J S
2003-09-12
Avoided crossings are the most distinctive atomic spectroscopic features in the presence of magnetic and electric fields. We point out the role of Shannon's information entropy as an indicator or predictor of these phenomena by studying the dynamics of some excited states of hydrogen in the presence of parallel magnetic and electric fields. Moreover, in addition to the well-known energy level repulsion, it is found that Shannon's entropy manifests the informational exchange of the involved states as the magnetic field strength is varied across the narrow region where an avoided crossing occurs.
Mistry, R.; Eastwood, J. P.; Phan, T.; Cassak, P.; Shay, M. A.; Haggerty, C. C.; Oieroset, M.; Goldman, M. V.; Giles, B. L.; Gershman, D. J.; Paterson, W. R.; Russell, C. T.; Lindqvist, P. A.; Ergun, R.; Torbert, R. B.; Burch, J. L.; Zhao, C.; Strangeway, R. J.
2016-12-01
MMS has allowed, for the first time, particle observations of reconnection to be made on ion and electron scales. These extremely high resolution measurements can be used to investigate the kinetic physics of reconnection that are known to be essential to the dissipation mechanisms at play in the diffusion region. Kinetic effects, however, are not limited to the diffusion region, and both simulations and observations have shown that kinetic processes can occur in the exhaust region downstream of the reconnection site. Whilst the primary targets of MMS are reconnection at the magnetopause and magnetotail, excursions of the spacecraft into the magnetosheath allow for observations in the less frequently accessible reconnection regime of symmetric reconnection with large guide fields. Here we present MMS observations of magnetosheath reconnection exhausts made approximately 75 ion inertial lengths downstream of the X-line. These exhausts are observed in the magnetosheath-proper, and as such have relatively symmetric inflow conditions. Furthermore, these exhausts have guide fields of a strength comparable to that of the reconnecting magnetic field. We use high resolution MMS observations of these events to study the effects of guide fields on the exhausts that form in symmetric reconnection. We find that non-uniform electron heating which occurs near the X-line in the presence of a guide field persists downstream, at least to the distance of these observations. Additionally, the electron velocity is resolved below the ion kinetic scale, where it is highly disrupted compared to the case of anti-parallel reconnection, with narrow field-aligned electron flows towards the X-line. These flows result in the generation of Hall currents and magnetic fields within the exhaust region itself, allowing Hall effects to persist beyond the ion diffusion region. The effects of the guide field on counter-streaming ion beams within the exhaust are also presented, as well as brief periods
Linux malware incident response an excerpt from malware forensic field guide for Linux systems
Malin, Cameron H; Aquilina, James M
2013-01-01
Linux Malware Incident Response is a ""first look"" at the Malware Forensics Field Guide for Linux Systems, exhibiting the first steps in investigating Linux-based incidents. The Syngress Digital Forensics Field Guides series includes companions for any digital and computer forensic investigator and analyst. Each book is a ""toolkit"" with checklists for specific tasks, case studies of difficult situations, and expert analyst tips. This compendium of tools for computer forensics analysts and investigators is presented in a succinct outline format with cross-references to suppleme
Adding Bite to the Bark: Using LibGuides2 Migration as Impetus to Introduce Strong Content Standards
Fritch, Melia; Pitts, Joelle E.
2016-01-01
The authors discuss the long-term accumulation of unstandardized and inaccessible content within the Libguides system and the decision-making process to create and implement a set of standards using the migration to the LibGuides2 platform as a vehicle for change. Included in the discussion are strategies for the creation of standards and…
Flow of a two-dimensional liquid metal jet in a strong magnetic field
International Nuclear Information System (INIS)
Reed, C.B.; Molokov, S.
2002-01-01
Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the presence of a transverse, nonuniform magnetic field is studied. The surface tension has been neglected, while gravity is shown to be not important. The main aim of the study is to evaluate the importance of the inertial effects. It has been shown that for gradually varying fields characteristic for the divertor region of a tokamak, inertial effects are negligible for N > 10, where N is the interaction parameter. Thus the inertialess flow model is expected to give good results even for relatively low magnetic fields and high jet velocity. Simple relations for the jet thickness and velocity have been derived. The results show that the jet becomes thicker if the field increases along the flow and thinner if it decreases
Variational Monte Carlo calculations of lithium atom in strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Doma, S. B., E-mail: sbdoma@alexu.edu.eg [Alexandria University, Mathematics Department, Faculty of Science (Egypt); Shaker, M. O.; Farag, A. M. [Tanta University, Mathematics Department, Faculty of Science (Egypt); El-Gammal, F. N., E-mail: famta-elzahraa4@yahoo.com [Menofia University, Mathematics Department, Faculty of Science (Egypt)
2017-01-15
The variational Monte Carlo method is applied to investigate the ground state and some excited states of the lithium atom and its ions up to Z = 10 in the presence of an external magnetic field regime with γ = 0–100 arb. units. The effect of increasing field strength on the ground state energy is studied and precise values for the crossover field strengths were obtained. Our calculations are based on using accurate forms of trial wave functions, which were put forward in calculating energies in the absence of magnetic field. Furthermore, the value of Y at which ground-state energy of the lithium atom approaches to zero was calculated. The obtained results are in good agreement with the most recent values and also with the exact values.
A few more comments on secularly growing loop corrections in strong electric fields
International Nuclear Information System (INIS)
Akhmedov, E.T.; Popov, F.K.
2015-01-01
We extend the observations of our previous paper http://dx.doi.org/10.1007/JHEP09(2014)071 [http://arxiv.org/abs/1405.5285]. particular, we show that the secular growth of the loop corrections to the two-point correlation functions is gauge independent: we observe the same growth in the case of the static gauge for the constant background electric field. Furthermore we solve the kinetic equation describing photon production from the background fields, which was derived in our previous paper and allows one to sum up leading secularly growing corrections from all loops. Finally, we show that in the constant electric field background the one-loop correction to the current of the produced pairs is not zero: it also grows with time and violates time translational and reversal invariance of QED on the constant electric field background.
Simulation and experimental study on transportation of dual-beam guided by confining magnetic-field
International Nuclear Information System (INIS)
Bai Xianchen; Zhang Jiande; Yang Jianhua
2008-01-01
Using external longitudinal magnetic-field to guide dual-beam out of the dual-shift tubes is a key step for the practicality of synchronizing dual-beam produced by a single accelerator. On the basis of the simulation of the confining magnetic-field for the solid dual-beam, the experiment of magnetic-field guiding annular dual-beam was presented. When the diode voltage was 380 kV, dual-beam currents of 5.10 kA and 4.92 kA were obtained. The experimental results indicate that the designed magnetic-field system could confine the annular dual-beam effectively, and the critical confining magnetic-field is about 0.5 T. (authors)
International Nuclear Information System (INIS)
Fox, W.; Sciortino, F.; Stechow, A. von; Jara-Almonte, J.
2017-01-01
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.
On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field
Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.
2016-01-01
Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.
Field-trip guide to the geologic highlights of Newberry Volcano, Oregon
Jensen, Robert A.; Donnelly-Nolan, Julie M.
2017-08-09
Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes
Czech Academy of Sciences Publication Activity Database
Gunn, J. P.; Fuchs, Vladimír; Kočan, M.
2013-01-01
Roč. 55, č. 4 (2013), 045012-045012 ISSN 0741-3335 R&D Projects: GA MŠk 7G10072 Institutional support: RVO:61389021 Keywords : plasma * collisions * magnetic field * retarding field analyzer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013 http://iopscience.iop.org/0741-3335/55/4/045012/pdf/0741-3335_55_4_045012.pdf
General properties of quantum optical systems in a strong field limit
Chumakov, S. M.; Klimov, Andrei B.
1994-01-01
We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.
Tachyons and virtual fields for elementary particles in strong interactions. Part 1
International Nuclear Information System (INIS)
Van der Spuy, E.
1978-01-01
An infinite component free field is constructed and carries an infinite tower of unstable selfcompounds which is defined by a mass-squared trajectory. The field transforms locally under the Poincare group, being a direct sum of spinor representations. The norm or propagator of the field can be written as an infinite partial series (in spin j) of contributions of positive definite metric, which permits transformation to a Regge pole plus background contribution. The Regge pole dominates in the relativistic domain p→infinity. The associated continuation to complex j values introduces an indefinite metric into the propagator and has associated oscillatory characteristic functions of the spinor representation. The constraint on the mass-squared function permits the propogator to be written in terms of partial propagators such that the resonances appear in the correct position on the second z sheet and the Regge poles in the correct Regge j-quadrants. The partial propagator can be written in a TCP invariant form in terms of a spectral function determined by the dispersion integral for a particular condition on the mass-squared trajectory and involving continua of the real mass-squared variable r (r>=4m 2 0 and r 0 is the stable mass corresponding to spin j=0). This allows the complete infinite component free field corresponding to the real mass-squared and spin spectrum to be constructed in such a way that it transforms locally under Lorentz transformatons and has a propagator which has the right resonances and motion of Regge poles. Since there is one mass spectral function, the field should be considered in toto and as a fully virtual field, and furthermore as a possible solution of nonlinear field equation of motion. The tachyonic field component r [af
Investigation of thin manganite films at strong pulsed electric and magnetic fields
Cimmperman, Piotras
2006-01-01
The main aim of this work was to investigate electrical conductivity of La-Ca(Sr)-MnO thin films at high pulsed electric and magnetic fields and to clear up the possibilities to use these materials for high pulsed magnetic field sensor and fault current limiter applications. The dissertation consists of the preface, six chapters, summary and main conclusions, references, list of publications and abstract (in Lithuanian). The main objectives of the work, scientific novelty, goals, valida...
The Six-Inch Lunar Atlas A Pocket Field Guide
Spain, Don
2009-01-01
The Six-Inch Lunar Atlas has been designed specifically for use in the field by lunar observers so it’s perfect for fitting into an observer’s pocket! The author’s own lunar photographs were taken with a 6-inch (150mm) telescope and CCD camera, and closely match the visual appearance of the Moon when viewed through 3-inch to 8-inch telescopes. Each picture is shown oriented "as the Moon really is" when viewed from the northern hemisphere, and is supplemented by exquisite computer sketches that list the main features. Two separate computer sketches are provided to go with each photograph, one oriented to appear as seen through an SCT telescope (e.g. the Meade and Celestron ranges), the other oriented for Newtonian and refracting telescopes. Observers using the various types telescopes will find it extremely helpful to identify lunar features as the human brain is very poor at making "mirror-image" visual translations.
Witte, S.; Hickstein, D.D.; Ranitovic, P.; Tong, X.-M.; Huismans, Y.; Arpin, P.; Zhou, X.; Keister, K.E.; Hogle, C.W.; Zhang, B.; Ding, C.; Johnsson, P.; Toshima, N.; Vrakking, M.J.J.; Murnane, M.M.; Kapteyn, H.C.
2012-01-01
Using a simple model of strong-field ionization of atoms that generalizes the well-known 3-step model from 1D to 3D, we show that the experimental photoelectron angular distributions resulting from laser ionization of xenon and argon display prominent structures that correspond to electrons that
Kihara Rurimo, G.; Schardt, M.; Quabis, S.; Malzer, S.; Dotzler, C.; Winkler, A.; Leuchs, G.; Döhler, G.H.; Driscoll, D.; Hanson, M.; Gossard, A.C.; Pereira, S.F.
2006-01-01
We report a method to measure the electric energy density of longitudinal and transverse electric field components of strongly focused polarized laser beams. We used a quantum well photodetector and exploited the polarization dependent optical transitions of light holes and heavy holes to probe the
Ekanayake, N.; Nairat, M.; Kaderiya, B.; Feizollah, P.; Jochim, B.; Severt, T.; Berry, B.; Kanaka Raju, P.; Carnes, K. D.; Pathak, S.; Rolles, D.; Rudenko, A.; Ben-Itzhak, I.; Jackson, J. E.; Levine, B. G.; Dantus, M.
2017-04-01
Strong-field laser-matter interactions often lead to exotic chemical reactions. H3+formation from organic molecules is one such case which requires multiple bonds to break and form. Here, we present the first experimental evidence for the existence of two different reaction mechanisms for H3+formation from organic molecules irradiated by a strong-field laser. The assignment of the two different mechanisms was accomplished through the strong-field ionization of methanol isotopomers, ethylene glycol, and acetone. Our findings are supported by femtosecond time-resolved measurements, coincidence measurements, and ab initio calculations with the most plausible transition states involved in the two mechanisms. This exotic chemical reaction is important as it shows that a strong laser field can not only selectively break multiple bonds but also can lead to the formation of multiple new bonds within an extremely short timescale, on the order of 100 femtoseconds. This work is supported by the U.S. Department of Energy under Grants DOE SISGR (DE-SC0002325) and DE-FG02-86ER13491.
Usman, Muhammad
2015-10-21
Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel (Ep) and anti-parallel (Ea) to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small Ea electric field, of the order of 1 kV cm(-1). The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm(-1) electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical
Geologic guide to the island of Hawaii: A field guide for comparative planetary geology
Greeley, R. (Editor)
1974-01-01
With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.
Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.
2018-02-01
Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.
Shumilin, A. V.
2016-10-01
We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices.
International Nuclear Information System (INIS)
Glushkov, A. V.; Khetselius, O. Yu.; Svinarenko, A. A.; Lovett, L.
2010-01-01
A consistent energy approach to nuclei and atoms in a strong electromagnetic (laser) field is presented. The photon emission and absorption lines are described by the moments of different orders, which are calculated with the use of the Gell-Mann and Low S-matrix adiabatic formalism. In relativistic version the Gell-Mann and Low formulae expresses an imaginary part of the energy shift ImE through the scattering matrix, including interaction of quantum system as with laser field as with a field of photon vacuum.
Energy Technology Data Exchange (ETDEWEB)
Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)
2009-05-21
A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.
Strong coupling operation of a free-electron-laser amplifier with an axial magnetic field
Energy Technology Data Exchange (ETDEWEB)
Rullier, J.L.; Devin, A.; Gardelle, J.; Labrouche, J.; Le Taillandier, P. [Commissariat a lEnergie Atomique, Boite Postale 2, 33114 Le Barp (France); Donohue, J.T. [Centre dEtudes Nucleaires de Bordeaux-Gradignan, Boite Postale 120, 33175 Gradignan (France)
1996-03-01
We present the results of a free-electron-laser (FEL) experiment at 35 GHz, using a strongly relativistic electron beam ({ital T}=1.75 MeV). The electron pulse length is 30 ns full width at half maximum with a peak current of 400 A. The FEL is designed to operate in the high-gain Compton regime, with a negative coupling parameter ({Phi}{lt}0) leading to a strong growth rate. More than 50 MW of rf power in the TE{sub 1}{sub 1} mode (43 dB gain) has been obtained with good reproducibility. The experimental results are in good agreement with predictions made using the three-dimensional stationary simulation code solitude. {copyright} {ital 1996 The American Physical Society.}
Strong field line shapes and photon statistics from a single molecule under anomalous noise.
Sanda, Frantisek
2009-10-01
We revisit the line-shape theory of a single molecule with anomalous stochastic spectral diffusion. Waiting time profiles for bath induced spectral jumps in the ground and excited states become different when a molecule, probed by continuous-wave laser field, reaches the steady state. This effect is studied for the stationary dichotomic continuous-time-random-walk spectral diffusion of a single two-level chromophore with power-law distributions of waiting times. Correlated waiting time distributions, line shapes, two-point fluorescence correlation function, and Mandel Q parameter are calculated for arbitrary magnitude of laser field. We extended previous weak field results and examined the breakdown of the central limit theorem in photon statistics, indicated by asymptotic power-law growth of Mandel Q parameter. Frequency profile of the Mandel Q parameter identifies the peaks of spectrum, which are related to anomalous spectral diffusion dynamics.
Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma
Energy Technology Data Exchange (ETDEWEB)
NONE
1991-11-17
The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.
MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD
International Nuclear Information System (INIS)
Jaeggli, S. A.
2016-01-01
Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s −1 . The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium
MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD
Energy Technology Data Exchange (ETDEWEB)
Jaeggli, S. A., E-mail: sarah.jaeggli@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)
2016-02-10
Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s{sup −1}. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.
Magnetic study of a few antiferromagnets in very-strong pulsed fields (450 kOE)
International Nuclear Information System (INIS)
Krebs, J.
1968-01-01
In this thesis we describe a pulsed field device with which we obtain magnetization curves up to 450 kOE at all temperatures between 1. 6 and 300. We have studied the 'spin-flopping'(and therefore the anisotropy) in MnF 2 versus temperature, below the Neel point. We have also studied the antiferromagnets MnSO 4 . and MnSO 4 .H 2 O which have revealed saturation fields respectively of 250 kOE and 320 kOE. (author) [fr
Binary and Recoil Collisions in Strong Field Double Ionization of Helium
International Nuclear Information System (INIS)
Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.
2007-01-01
We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10 14 W/cm 2 laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model
Energy Technology Data Exchange (ETDEWEB)
Shaw, K.C.; Bitzer, R.J.; Galliart, L. [Iowa State Univ., Ames, IA (United States)] [and others
1995-05-01
We investigated the effect of a strong, DC-induced electromagnetic field (EMF) on the circadian singing activity of the house cricket, Acheta domesticus (L.). Groups of 10 crickets were exposed to strong, DC-induced EMFs under two light regimes, 12:12 (L:D) h and 0:24 (L:D) h. Exposure to the strong EMF resulted in an increase in mean time per hour during which one or more crickets were singing and in number of crickets singing per hour. Correcting for phase shift during O:24 (L:D) h, the daily pattern of singing was apparently unaffected by any treatment. The greatest percentage of singing and number of crickets singing per hour occurred during actual or expected scotophase. This is the first report of an increase in insect activity during exposure to a strong DC-induced EMF.
Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay
Energy Technology Data Exchange (ETDEWEB)
Jansen, Martin J.A.; Müller, Carsten, E-mail: c.mueller@tp1.uni-duesseldorf.de
2017-03-10
Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.
Aversive responses of captive sandbar sharks Carcharhinus plumbeus to strong magnetic fields
Siegenthaler, A.; Niemantsverdriet, P.R.W.; Laterveer, M.; Heitkönig, I.M.A.
2016-01-01
This experimental study focused on the possible deterrent effect of permanent magnets on adult sandbar sharks Carcharhinus plumbeus. Results showed that the presence of a magnetic field significantly reduced the number of approaches of conditioned C. plumbeus towards a target indicating that
Polarization of high harmonics generated from a hydrogen atom in a strong laser field
International Nuclear Information System (INIS)
Melezhik, V.S.
1996-01-01
The high harmonic spectrum of a hydrogen atom subject to an intense (>10 13 W/cm 2 ), elliptically polarized laser field is analyzed with a nonperturbative method of global approximation on a subspace grid. Considerable alteration of harmonics polarization with respect to laser polarization is found. 12 refs., 3 figs., 1 tab
Dynamical mean-field approach to materials with strong electronic correlations
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Leonov, I.; Kollar, M.; Byczuk, K.; Anisimov, V.I.; Vollhardt, D.
2010-01-01
Roč. 180, - (2010), s. 5-28 ISSN 1951-6355 Institutional research plan: CEZ:AV0Z10100521 Keywords : dynamical mean-field * electronic correlations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.838, year: 2010
High-latitude ionospheric convection during strong interplanetary magnetic field B-y
DEFF Research Database (Denmark)
Huang, C.S.; Sofko, G.J.; Murr, D.
1999-01-01
. The interplanetary magnetic field (IMF) conditions corresponding to the occurrence of the ionospheric convection were B-x approximate to 1 nT, B-y approximate to 10 nT, and B-z y). We have compared our observations with statistical patterns and MHD numerical models for similar IMF...
Field trip guide to the Valles Caldera and its geothermal systems
Energy Technology Data Exchange (ETDEWEB)
Goff, F.E.; Bolivar, S.L.
1983-12-01
This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.
International Nuclear Information System (INIS)
Picologlou, B.F.; Reed, C.B.; Dauzvardis, P.V.; Walker, J.S.
1986-01-01
A program of analytical and experimental investigations in MHD flows has been established at Argonne National Lab. (ANL) within the framework of the Blanket Technology Program. An experimental facility for such investigations has been built and is being operated at ANL. The investigations carried out on the Argonne Liquid-Metal engineering EXperiment (ALEX) are complemented by analysis carried out at the Univ. of Illinois. The first phase of the experimental program is devoted to investigations of well-defined cases for which analytical solutions exist. Such testing will allow validation and increased confidence in the theory. Because analytical solutions exist for only a few cases, which do not cover the entire range of anticipated flow behavior, confining testing to these cases will not be an adequate validation of the theory. For this reason, this phase involves testing and a companion analytical effort aimed toward obtaining solutions for a broad range of cases, which, although simple in geometry, are believed to encompass the range of flow phenomena relevant to fusion. This parallel approach is necessary so that analysis will guide and help plan the experiments, whereas the experimental results will provide information needed to validate and/or refine the analysis
Koochaki Kelardeh, Hamed; Apalkov, Vadym; Stockman, Mark I.
2017-08-01
We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale information processing.
Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.;
2016-01-01
We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
Influence of calculation error of total field anomaly in strongly magnetic environments
Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin
2016-04-01
An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can
Management and techniques for riparian restorations: roads field guide, vol. I
Roads/Riparian Restoration Team
2002-01-01
Improperly constructed or maintained roads near riparian and wetland areas may degrade these valuable sites. Degradation affects many aspects of the riparian and wetland ecosystems. This field guide presents information in a practical, user friendly format to help resource managers and professionals. Well-documented evaluation and monitoring strategies are critical in...
Management and techniques for riparian restorations: roads field guide, vol. II
Roads/Riparian Restoration Team
2002-01-01
Improperly constructed or maintained roads near riparian and wetland areas may degrade these valuable sites. Degradation affects many aspects of the riparian and wetland ecosystems. This field guide presents information in a practical, user friendly format to help resource managers and professionals. Well-documented evaluation and monitoring strategies are critical in...
Levin, Paula; And Others
This field guide was used as a basis for documenting classroom events at five community school sites in Papua New Guinea, as part of the Indigenous Mathematics Project in its ongoing research into primary mathematics learning. Methodology for evaluating the appropriateness of curriculum form and content is described and specific sections focus on…
Trees of Laos and Vietnam: a field guide to 100 economically or ecologically important species
Sam, Hoang Van; Nanthavong, Khamseng; Keßler, P.J.A.
2004-01-01
This field guide to 100 economically or ecologically important tree species from Laos and Vietnam enables the user to identify the included taxa with user-friendly keys. It includes scientific names, botanical descriptions of families, genera, and species. Specific information on distribution,
A wave guide model of lightning currents and their electromagnetic field
Volland, H.
1980-01-01
Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.
A guiding vector field algorithm for path following control of nonholonomic mobile robots
Kapitaniuk, Iurii; Proskurnikov, Anton; Cao, Ming
2018-01-01
In this paper we propose an algorithm for path following control of the nonholonomic mobile robot based on the idea of the guiding vector field (GVF). The desired path may be an arbitrary smooth curve in its implicit form, that is, a level set of a predefined smooth function. Using this function and
California State Univ., Sacramento. Dept. of Civil Engineering.
The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…
California State Univ., Sacramento. Dept. of Civil Engineering.
The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…
California State Univ., Sacramento. Dept. of Civil Engineering.
The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…
Field guide for the identification of snags and logs in the interior Columbia River basin.
Catherine G. Parks; Evelyn L. Bull; Torolf R. Torgersen
1997-01-01
This field guide contains descriptions and color photographs of snags and logs of 10 coniferous and 3 deciduous tree species found in the interior Columbia River basin. Methods arc described to distinguish among the different species when various amounts of branches, cones, and bark arc missing. Wildlife use of the different species of snags and logs are listed. Snags...
H32+ molecular ion in a strong magnetic field: Triangular configuration
International Nuclear Information System (INIS)
Lopez Vieyra, J.C.; Turbiner, A.V.
2002-01-01
The existence of the molecular ion H 3 2+ in a magnetic field in a triangular configuration is revised. A variational method with an optimization of the form of the vector potential (gauge fixing) is used. It is shown that in the range of magnetic fields 10 8 11 G the system (pppe), with the protons forming an equilateral triangle perpendicular to the magnetic line, has a well-pronounced minimum in the total energy. This configuration is unstable under the decays (H atom)+p+p and H 2 + +p. The triangular configuration of H 3 2+ complements H 3 2+ in the linear configuration that exists for B > or approx. 10 10 G
Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia
2017-10-01
LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.
High-latitude ionospheric convection during strong interplanetary magnetic field B-y
DEFF Research Database (Denmark)
Huang, C.S.; Sofko, G.J.; Murr, D.
1999-01-01
. The interplanetary magnetic field (IMF) conditions corresponding to the occurrence of the ionospheric convection were B-x approximate to 1 nT, B-y approximate to 10 nT, and B-z ...An unusual high-latitude ionospheric pattern was observed on March 23, 1995. ionospheric convection appeared as clockwise merging convection cell focused at 84 degrees magnetic latitude around 1200 MLT. No signature of the viscous convection cell in the afternoon sector was observed...
Properties of epitaxial films of indium phosphides alloyed with erbium in strong electric fields
International Nuclear Information System (INIS)
Borisov, V.I.; Dvoryankin, V.F.; Korobkin, V.A.; Kudryashov, A.A.; Lopatin, V.V.; Lyubchenko, V.E.; Telegin, A.A.
1986-01-01
Temperature dependences of specific resistance and free charge-carrier mobility at low temperatures for indium phosphide films grown by liquid-phase epitaxial method with erbium additions (0.01-0.1 mass%). The main mechanisms of scattering for different temperature regions: scattering on ionized impurities in the rage from 20 to 40 K and lattice scattering at the temperature above 90 K are determined. The current density dependences on applied electric field strength are presented
H2+ molecular ion in a strong magnetic field: Ground state
International Nuclear Information System (INIS)
Turbiner, A. V.; Lopez Vieyra, J. C.
2003-01-01
A detailed quantitative analysis of the system of two protons and one electron (ppe) placed in magnetic field ranging from 10 9 -4.414x10 13 G is presented. The present study is focused on the question of the existence of the molecular ion H 2 + in a magnetic field. A variational method with an optimization of the form of the vector potential (optimal gauge fixing) is used as a tool. It is shown that in the domain of applicability of the nonrelativistic approximation the (ppe) system in the Born-Oppenheimer approximation has a well-pronounced minimum in the total energy at a finite interproton distance for B(less-or-similar sign)10 11 G, thus manifesting the existence of H 2 + . For B(greater-or-similar sign)10 11 G and large inclinations (of the molecular axis with respect to the magnetic line) the minimum disappears and hence the molecular ion H 2 + does not exist. It is shown that the most stable configuration of H 2 + always corresponds to protons situated along the magnetic line. With magnetic field growth the H 2 + ion becomes more and more tightly bound and compact, and the electronic distribution evolves from a two-peak to a one-peak pattern. The domain of inclinations where the H 2 + ion exists reduces with magnetic field increase and finally becomes 0 degree sign -25 degree sign at B=4.414x10 13 G. Phase-transition-type behavior of variational parameters for some interproton distances related to the beginning of the chemical reaction H 2 + ↔H+p is found
Czech Academy of Sciences Publication Activity Database
Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.
2014-01-01
Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014
A Solar Eruption from a Weak Magnetic Field Region with Relatively Strong Geo-Effectiveness
Wang, R.
2017-12-01
A moderate flare eruption giving rise to a series of geo-effectiveness on 2015 November 4 caught our attentions, which originated from a relatively weak magnetic field region. The associated characteristics near the Earth are presented, which indicates that the southward magnetic field in the sheath and the ICME induced a geomagnetic storm sequence with a Dst global minimum of 90 nT. The ICME is indicated to have a small inclination angle by using a Grad-Shafranov technique, and corresponds to the flux rope (FR) structure horizontally lying on the solar surface. A small-scale magnetic cancelling feature was detected which is beneath the FR and is co-aligned with the Atmospheric Imaging Assembly (AIA) EUV brightening prior to the eruption. Various magnetic features for space-weather forecasting are computed by using a data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs), which help us identify the changes of the photospheric magnetic fields during the magnetic cancellation process and prove that the magnetic reconnection associated with the flux cancellation is driven by the magnetic shearing motion on the photosphere. An analysis on the distributions at different heights of decay index is carried out. Combining with a filament height estimation method, the configurations of the FR is identified and a decay index critical value n = 1 is considered to be more appropriate for such a weak magnetic field region. Through a comprehensive analysis to the trigger mechanisms and conditions of the eruption, a clearer scenario of a CME from a relatively weak region is presented.
DEFF Research Database (Denmark)
Johnsen, Kristinn; Yngvason, Jakob
1996-01-01
We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...
Bhattacharya, Mukul; Mukhopadhyay, Banibrata; Mukerjee, Subroto
2018-03-01
We investigate the luminosity and cooling of highly magnetized white dwarfs with electron-degenerate cores and non-degenerate surface layers where cooling occurs by diffusion of photons. We find the temperature and density profiles in the surface layers or envelope of white dwarfs by solving the magnetostatic equilibrium and photon diffusion equations in a Newtonian framework. We also obtain the properties of white dwarfs at the core-envelope interface, when the core is assumed to be practically isothermal. With the increase in magnetic field, the interface temperature increases whereas the interface radius decreases. For a given age of the white dwarf and for fixed interface radius or interface temperature, we find that the luminosity decreases significantly from about 10-6 L⊙ to 10-9 L⊙ as the magnetic field strength increases from about 109 G to 1012 G at the interface and hence the envelope. This is remarkable because it argues that magnetized white dwarfs are fainter and can be practically hidden in an observed H-R diagram. We also find the cooling rates corresponding to these luminosities. Interestingly, the decrease in temperature with time, for the fields under consideration, is not found to be appreciable.
Faraday effect in rare-earth ferrite garnets located in strong magnetic fields
International Nuclear Information System (INIS)
Valiev, U.V.; Zvezdin, A.K.; Krinchik, G.S.; Levitin, R.Z.; Mukimov, K.M.; Popov, A.I.
1983-01-01
The Faraday effect is investigated experimentally in single crystal specimens of rare earth iron garnets (REIG) R 3 Fe 5 O 12 (R=Y, Gd, Tb, Dy, Er, Tm, Yb, Eu, Sm and Ho) and also in mixed iron garnets Rsub(x)Ysub(3-x)Fesub(5)Osub(12) (R=Tb, Dy). The m.easurements are carried out in pulsed magnetic fields of intensity up to 200 kOe, in a temperature range from 4.2 to 300 K and at a wavelength of the light lambda=1.15 μm. The field dependence of the Faraday effect observed in the REIG cannot be explained if only the usually considered ''paramagnetic'' contribution to the Faraday effect is taken into account. A theory is developed which, besides the paramagnetic mechanism, takes into account a diamagnetic mechanism and also the mixing of the wave functions of the ground and excited multiplets. The contributions of each of these three mechanisms to the angle of rotation of the plane of polarization by the rare earth sublattice of the iron garnet are estimated theoretically. It is concluded that the mixing mechanism contributes significantly to the field and temperature dependences of the Faraday effect in REIG
Directory of Open Access Journals (Sweden)
Sawrab Chowdhury
2017-04-01
Full Text Available In this article, porous core porous cladding photonic crystal fiber (P-PCF has been proposed for aqueous analytes sensing applications. Guiding properties of the proposed P-PCF has been numerically investigated by utilizing the full vectorial finite element method (FEM. The relative sensitivity and confinement loss are obtained by varying distinct geometrical parameters like the diameter of air holes, a pitch of the core and cladding region over a wider range of wavelength. The proposed P-PCF is organized with five rings air hole in the cladding and two rings air hole in a core territory which maximizes the relative sensitivity expressively and minimizes confinement loss depressively compare with the prior-PCF structures. After completing all investigations, it is also visualized that the relative sensitivity is increasing with the increment of the wavelength of communication band (O + E + S + C + L + U. Higher sensitivity is gained by using higher band for all applied liquids. Finally the investigating effects of different structural parameters of the proposed P-PCF are optimized which shows the sensitivity of 60.57%, 61.45% and 61.82%; the confinement loss of 8.71 × 10−08 dB/m, 1.41 × 10−10 dB/m and 6.51 × 10−10 dB/m for Water (n = 1.33, Ethanol (n = 1.354 and Benzene (n = 1.366 respectively at 1.33 μm wavelength. The optimized P-PCF with higher sensitivity and lower confinement loss has high impact in the area of the chemical as well as gas sensing purposes. Keywords: Porous shaped PCF, Sensitivity, Optical sensing, Liquid sensor, Confinement loss
Construction of Specialty Guide Field Coils Using an Industrial Robotic Arm
Berry, William; Crawford, Christopher; Fugal, Mario; Martin, Elise; Wagner, Daniel; Milburn, Robert
2011-10-01
Many contemporary nuclear physics experiments require precise control of the magnetic field within key regions of the experimental apparatus. The nEDM experiment, for instance, requires uniform guide fields (produced by guide field coils) to transport neutron spin polarization from the polarizer to the measurement cell. Guide field coils in general are subject to tight geometrical constraints, and must not produce any external fields which would affect the results of the experiment. In order to produce a satisfactory coil in light of these constraints, a systematic design technique is needed. We introduce the magnetic scalar potential technique, which calculates the exact coil windings required on a specified boundary to produce any desired field distribution inside that satisfies Maxwell's equations. Realizing the designs produced by this technique introduces an additional difficulty: winding many turns according to the exact calculated paths. This is addressed by ``printing'' our coils onto a copper-plated G10 form using a calibrated robot arm and spindle, resulting in a 3-d printed circuit board. To correct for deviations in the actual shape of the form, we use a laser displacement sensor to capture the actual geometry as input into the calculation of the windings. Supported in part by NSF grant PHY-0855584.
International Nuclear Information System (INIS)
Koinov, Z.G.; Yanchev, I.Y.
1981-09-01
The density of states in heavily doped strongly compansated semiconductors in a strong magnetic field is calculated by using the path-integral method. The case is considered when correlation exists in the impurity positions owing to the Coulomb interactions between the charged donors and acceptors during the high-temperature preparation of the samples. The semiclassical formula is rederived and corrections to it due to the long-range character of the potential and its short-range fluctuations are obtained. The density of states in the tail is studied and analytical results are given in the classical and quantum cases. (author)
Vikas, Hash(0xb7f6e60)
2012-01-01
Hydrogen molecule in a strong ultrashort magnetic field is investigated through a current-density functional theory (CDFT) and quantum fluid dynamics (QFD) based approach employing current-density dependent vector exchange-correlation potential and energy density functional derived with a vorticity variable. The numerical computations through the CDFT based approach are performed for the H2 molecule, starting initially from its field-free ground state, in a parallel internuclear axis and magnetic field-axis configuration with the internuclear separation R ranging from 0.1 a.u. to 14.0 a.u., and the strength of the time-dependent (TD) magnetic field varying between 0-1011 G over a few femtoseconds. The numerical results are compared with that obtained using an approach based on the current-density independent approximation under similar computational constraints but employing only scalar exchange-correlation potential dependent on the electronic charge-density alone. The current-density based approach yields exchange- and correlation energy as well as electronic charge-density of the H2 molecule drastically different from that obtained using current-independent approach, in particular, at TD magnetic field-strengths >109 G during a typical time-period of the field when the magnetic-field had attained maximum applied field-strength and is switched to a decreasing ramp function. This nonadiabatic behavior of the TD electronic charge-density is traced to the TD vorticity-dependent vector exchange-correlation potential of the CDFT based approach. The interesting electron dynamics of the H2 molecule in strong TD magnetic field is further elucidated by treating electronic charge-density as an `electron-fluid'. The present work also reveals interesting real-time dynamics on the attosecond time-scale in the electronic charge-density distribution of the hydrogen molecule.
International Nuclear Information System (INIS)
Presnyakov, L.P.; Uskov, D.B.
1997-01-01
The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data
Ionization of a two-electron atom in a strong electromagnetic field
International Nuclear Information System (INIS)
Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.
1997-01-01
A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case
Nonlinear dispersion of resonance extraordinary wave in a plasma with strong magnetic field
International Nuclear Information System (INIS)
Krasovitskiy, V. B.; Turikov, V. A.; Sotnikov, V. I.
2007-01-01
In this paper, the efficiency of electron acceleration by a short, powerful laser pulse propagating across an external magnetic field is investigated. Conditions for the decay of a laser pulse with frequency close to the upper hybrid resonance frequency are analyzed. It is also shown that a laser pulse propagating as an extraordinary wave in cold, magnetized, low-density plasma takes the form of a nonlinear wave with the modulated amplitude (envelope soliton). Finally, simulation results on the interaction of an electromagnetic pulse with a semi-infinite plasma, obtained with the help of an electromagnetic relativistic PIC code, are discussed and a comparison with the obtained theoretical results is presented
Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves
Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.
2018-01-01
The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.
International Nuclear Information System (INIS)
Ohsawa, Yukiharu.
1984-12-01
A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the ExB drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B 2 , and hence the ExB drift velocity of the trapped ions is proportional to B. (author)
Study of helium and beryllium atoms with strong and short laser field
International Nuclear Information System (INIS)
Laulan, St.
2004-09-01
We present a theoretical study of the interaction between a two-active electron atom and an intense (10 14 to 10 15 W/cm 2 ) and ultrashort (from a few 10 -15 to a few 10 -18 s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)
International Nuclear Information System (INIS)
Kling, M.F.; Ni, Yongfeng; Lepine, F.; Khan, J.I.; Vrakking, M.J.J.; Johnsson, P.; Remetter, T.; Varju, K.; Gustafsson, E.; L'Huillier, A.; Lopez-Martens, R.; Boutu, W.
2005-01-01
Full text: In the past decade, the dynamics of atomic and small molecular systems in strong laser fields has received enormous attention, but was mainly studied with femtosecond laser fields. We report on first applications of attosecond extreme ultraviolet (XUV) pulse trains (APTs) from high-order harmonic generation (HHG) for the study of atomic and molecular electron and ion dynamics in strong laser fields utilizing the Velocity Map Imaging Technique. The APTs were generated in argon from harmonics 13 to 35 of a 35 fs Ti:sapphire laser, and spatially and temporally overlapped with an intense IR laser field (up to 5x10 13 W/cm 2 ) in the interaction region of a Velocity Map Imaging (VMI) machine. In the VMI setup, electrons and ions that were created at the crossing point of the laser fields and an atomic or molecular beam were accelerated in a dc-electric field towards a two-dimensional position-sensitive detector, allowing to reconstruct the full initial three-dimensional velocity distribution. The poster will focus on results that were obtained for argon atoms. We recorded the velocity distribution of electron wave packets that were strongly driven in the IR laser field after their generation in Ar via single-photon ionization by attosecond XUV pulses. The 3D evolution of the electron wave packets was observed on an attosecond timescale. In addition to earlier experiments with APTs using a magnetic bottle electron time-of-flight spectrometers and with single attosecond pulses, the angular dependence of the electrons kinetic energies can give further insight into the details of the dynamics. Initial results that were obtained for molecular systems like H 2 , D 2 , N 2 , and CO 2 using the same powerful approach will be highlighted as well. We will show, that detailed insight into the dynamics of these systems in strong laser fields can be obtained (e.g. on the alignment, above-threshold ionization, direct vs. sequential two-photon ionization, dissociation, and
International Nuclear Information System (INIS)
Dahmen, Bernd
1994-01-01
A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))
Formation of excited neutral D* fragments from D2 by a strong laser field
Berry, Ben; Zohrabi, M.; Jochim, Bethany; Severt, T.; Ablikim, U.; Hayes, D.; Rajput, Jyoti; Kanaka Raju, P.; Feizollah, Peyman; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2015-05-01
Excited neutral D* fragments from D2 are produced by intense, ultra-short laser pulses (5-85 fs). The kinetic energy release (KER) upon fragmentation is found to be very sensitive to laser parameters such as chirp, peak intensity, and pulse duration. Furthermore, using field ionization of highly excited D* fragments, we are able to determine the n population in a range of excited states (17 process in order to link the measured population to that created by the laser. On the technical side, we also present a scheme for determining the detection efficiency of an MCP detector for excited neutral atoms. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ is also supported by DOE-SCGF (DE-AC05-06OR23100).
Strongly γ -Deformed N =4 Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory
Grabner, David; Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory
2018-03-01
We demonstrate by explicit multiloop calculation that γ -deformed planar N =4 supersymmetric Yang-Mills (SYM) theory, supplemented with a set of double-trace counterterms, has two nontrivial fixed points in the recently proposed double scaling limit, combining vanishing 't Hooft coupling and large imaginary deformation parameter. We provide evidence that, at the fixed points, the theory is described by an integrable nonunitary four-dimensional conformal field theory. We find a closed expression for the four-point correlation function of the simplest protected operators and use it to compute the exact conformal data of operators with arbitrary Lorentz spin. We conjecture that both conformal symmetry and integrability should survive in γ -deformed planar N =4 SYM theory for arbitrary values of the deformation parameters.
Optimization of confinement in a toroidal plasma subject to strong radial electric fields
International Nuclear Information System (INIS)
Roth, J.R.
1977-01-01
A preliminary report on the identification and optimization of independent variables which affect the ion density and confinement time in a bumpy torus plasma is presented. The independent variables include the polarity, position, and number of the midplane electrode rings, the method of gas injection, and the polarity and strength of a weak vertical magnetic field. Some characteristic data taken under condition when most of the independent variables were optimized are presented. The highest value of the electron number density on the plasma axis is 3.2 x 10 to the 12th power/cc, the highest ion heating efficiency is 47 percent, and the longest particle containment time is 2.0 milliseconds
Comparative studies of density-functional approximations for light atoms in strong magnetic fields
Zhu, Wuming; Zhang, Liang; Trickey, S. B.
2014-08-01
For a wide range of magnetic fields, 0≤B≤2000 a.u., we present a systematic comparative study of the performance of different types of density-functional approximations in light atoms (2≤Z≤6). Local, generalized-gradient approximation (GGA; semilocal), and meta-GGA ground-state exchange-correlation (xc) functionals are compared on an equal footing with exact-exchange, Hartree-Fock (HF), and current-density-functional-theory (CDFT) approximations. Comparison also is made with published quantum Monte Carlo data. Though all approximations give qualitatively reasonable results, the exchange energies from local and GGA functionals are too negative for large B. Results from the Perdew-Burke-Ernzerhof ground-state GGA and Tao-Perdew-Staroverov-Scuseria (TPSS) ground-state meta-GGA functionals are very close. Because of confinement, self-interaction error in such functionals is more severe at large B than at B =0, hence self-interaction correction is crucial. Exact exchange combined with the TPSS correlation functional results in a self-interaction-free (xc) functional, from which we obtain atomic energies of comparable accuracy to those from correlated wave-function methods. Specifically for the B and C atoms, we provide beyond-HF energies in a wide range of B fields. Fully self-consistent CDFT calculations were done with the Vignale-Rasolt-Geldart (VRG) functional in conjunction with the PW92 xc functional. Current effects turn out to be small, and the vorticity variable in the VRG functional diverges in some low-density regions. This part of the study suggests that nonlocal, self-interaction-free functionals may be better than local approximations as a starting point for CDFT functional construction and that some basic variable other than the vorticity could be helpful in making CDFT calculations practical.
International Nuclear Information System (INIS)
Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco
2006-01-01
Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation
Donnelly-Nolan, Julie M.; Grove, Timothy L.
2017-08-17
Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.
Stagg, Bethan C.; Donkin, Maria E.
2017-01-01
We investigated usability of mobile computers and field guide books with adult botanical novices, for the identification of wildflowers and deciduous trees in winter. Identification accuracy was significantly higher for wildflowers using a mobile computer app than field guide books but significantly lower for deciduous trees. User preference…
International Nuclear Information System (INIS)
Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V
2009-01-01
We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.
Energy Technology Data Exchange (ETDEWEB)
Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu
2009-05-15
We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.
International Nuclear Information System (INIS)
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2010-01-01
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field
International Nuclear Information System (INIS)
Thompson, Christopher; Gill, Ramandeep
2014-01-01
The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10 3 -10 8 ). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m e c 2 in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F ω ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10 –5 of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle) –1 at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
International Nuclear Information System (INIS)
Shchelkunov, Sergey V.; Marshall, T. C.; Hirshfield, J. L.; Wang, Changbiao; LaPointe, M. A.
2006-01-01
LACARA (laser cyclotron auto-resonance accelerator) is a vacuum laser accelerator of electrons that is under construction at the Accelerator Test Facility (ATF), Brookhaven National Laboratory. It is expected that the experiment will be assembled by September 2006; this paper presents progress towards this goal. According to numerical studies, as an electron bunch moves along the LACARA solenoidal magnetic field (∼5.2 T, length ∼1 m), it will be accelerated from 50 to ∼75 MeV by interacting with a 0.8 TW Gaussian-mode circularly polarized optical pulse provided by the ATF CO2 10.6μm laser system. The LACARA laser transport optics must handle 10 J and be capable of forming a Gaussian beam inside the solenoid with a 1.4 mm waist and a Rayleigh range of 60 cm. The electron optics must transport a bunch having input emittance of 0.015 mm-mrad and 100 μm waist through the magnet. Precision alignment between the electron beam and the solenoid magnetic axis is required, and a method to achieve this is described in detail. Emittance- filtering may be necessary to yield an accelerated bunch having a narrow (∼1%) energy-spread
International Nuclear Information System (INIS)
Heilmann, D.B.
2007-02-01
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Wang, Hao; Liu, Pu; Ke, Yanlin; Su, Yunkun; Zhang, Lei; Xu, Ningsheng; Deng, Shaozhi; Chen, Huanjun
2015-01-27
Steering incident light into specific directions at the nanoscale is very important for future nanophotonics applications of signal transmission and detection. A prerequisite for such a purpose is the development of nanostructures with high-efficiency unidirectional light scattering properties. Here, from both theoretical and experimental sides, we conceived and demonstrated the unidirectional visible light scattering behaviors of a heterostructure, Janus dimer composed of gold and silicon nanospheres. By carefully adjusting the sizes and spacings of the two nanospheres, the Janus dimer can support both electric and magnetic dipole modes with spectral overlaps and comparable strengths. The interference of these two modes gives rise to the narrow-band unidirectional scattering behaviors with enhanced forward scattering and suppressed backward scattering. The directionality can further be improved by arranging the dimers into one-dimensional chain structures. In addition, the dimers also show remarkable electromagnetic field enhancements. These results will be important not only for applications of light emitting devices, solar cells, optical filters, and various surface enhanced spectroscopies but also for furthering our understanding on the light-matter interactions at the nanoscale.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Tunneling time, exit time and exit momentum in strong field tunnel ionization
International Nuclear Information System (INIS)
Teeny, Nicolas
2016-01-01
Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.
Tunneling time, exit time and exit momentum in strong field tunnel ionization
Energy Technology Data Exchange (ETDEWEB)
Teeny, Nicolas
2016-10-18
Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.
International Nuclear Information System (INIS)
Fuchs, G; Nenkov, K; Krabbes, G; Weinstein, R; Gandini, A; Sawh, R; Mayes, B; Parks, D
2007-01-01
Flux pinning properties and irreversibility fields B irr (T) of melt-textured YBCO with discontinuous or multiple-in-line-damage (MILD) columnar defects produced by irradiation with high-energy U 238 ions were studied at a constant matching field of B φ = 10 T and for several energy losses between S e = 1.67 and 2.4 keV A -1 . With increasing S e and increasing length of the MILD pins, the critical current density j c (H,T) strongly increases and B irr (T) for fields along the c axis progressively shifts upwards reaching 9 T at 77 K. For S e = 2.4 keV A -1 , a pronounced kink is observed in B irr (T) at 8 T which is a strong indication of Bose-glass behaviour. The j c (H) dependence of this sample shows a peak at a low applied field B p . This peak effect is explained by the entanglement of vortices. It is argued that for MILD pins single vortices interact simultaneously with many short columnar defects in neighbouring ion trails resulting in an automatic splay in the vortex orientation. The observed decrease of B p with increasing temperature is estimated taking the increasing thermal fluctuations into account
Energy Technology Data Exchange (ETDEWEB)
Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India); Department of Physics, College of Engineering, Pune 411005, Maharashtra (India); Tanty, Narendra; Patra, Ananya; Prasad, V. [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India)
2016-08-22
We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.
Field-trip guides to selected volcanoes and volcanic landscapes of the western United States
,
2017-06-23
The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes. Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff. Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments.
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc
2017-01-05
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.
International Nuclear Information System (INIS)
Kappes, U.; Schmelcher, P.
1995-01-01
A large number of magnetically dressed states of the hydrogen molecular ion for parallel internuclear and magnetic field axes are investigated. The numerical calculations of the molecular states and potential-energy curves in the fixed-nuclei approximation are based on a recently established and optimized atomic orbital basis set. We study electronic states within the range 0≤|m|≤10 of magnetic quantum numbers and for several field strengths. In particular, we also investigate many excited states within a subspace for fixed magnetic quantum number and parity. In order to understand the influence of the magnetic field on theof excited molecular states, we perform a detailed comparison of the electronic probability distributions and potential-energy curves in the field-free space with those in the presence of a magnetic field. As a major result we observe the existence of two different classes of strongly bound, i.e., stable, magnetically dressed states whose corresponding counterparts in the field-free space exhibit purely repulsive potential-energy curves, i.e., are unstable. Corrections which are going beyond the fixed-nuclei approach, i.e., the coupling of the center of mass to the electronic motion, as well as the mass corrections are investigated in order to ensure the physical validity of our results
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-04-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.