WorldWideScience

Sample records for strong gravitational lens

  1. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  2. Deep convolutional neural networks as strong gravitational lens detectors

    Science.gov (United States)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  3. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Weaver, Benjamin A., E-mail: bolton@astro.utah.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  4. DISSECTING THE GRAVITATIONAL LENS B1608+656. I. LENS POTENTIAL RECONSTRUCTION

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Blandford, R. D.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.; Treu, T.

    2009-01-01

    Strong gravitational lensing is a powerful technique for probing galaxy mass distributions and for measuring cosmological parameters. Lens systems with extended source-intensity distributions are particularly useful for this purpose since they provide additional constraints on the lens potential (

  5. Discovery of two new gravitation lens systems

    International Nuclear Information System (INIS)

    Guertler, J.

    1988-01-01

    The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures

  6. Analytic models of plausible gravitational lens potentials

    International Nuclear Information System (INIS)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2009-01-01

    Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sérsic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sérsic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses

  7. The discovery of a gravitational lens

    International Nuclear Information System (INIS)

    Chaffee, F.H. Jr.

    1981-01-01

    A recently discovered pair of quasars turns out to be not a pair at all but two images of a single quasar formed by a gravitational lens: an elliptical galaxy halfway between the quasar and our own galaxy. (orig.) [de

  8. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  9. Can strong gravitational lensing constrain dark energy?

    International Nuclear Information System (INIS)

    Lee, Seokcheon; Ng, K.-W.

    2007-01-01

    We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy

  10. Lenstronomy: Multi-purpose gravitational lens modeling software package

    Science.gov (United States)

    Birrer, Simon; Amara, Adam

    2018-04-01

    Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.

  11. Gravitational Lens Time Delays Using Polarization Monitoring

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-11-01

    Full Text Available Gravitational lens time delays provide a means of measuring the expansion of the Universe at high redshift (and therefore in the ‘Hubble flow’ that is independent of local calibrations. It was hoped that many of the radio lenses found in the JVAS/CLASS survey would yield time delays as these were selected to have flat spectra and are dominated by multiple compact components. However, despite extensive monitoring with the Very Large Array (VLA, time delays have only been measured for three of these systems (out of 22. We have begun a programme to reanalyse the existing VLA monitoring data with the goal of producing light curves in polarized flux and polarization position angle, either to improve delay measurements or to find delays for new sources. Here, we present preliminary results on the lens system B1600+434 which demonstrate the presence of correlated and substantial polarization variability in each image.

  12. Astronomers Discover Six-Image Gravitational Lens

    Science.gov (United States)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  13. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  14. Constraints on cosmological models from strong gravitational lensing systems

    International Nuclear Information System (INIS)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz

    2012-01-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D ds /D s from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future

  15. Constraints on cosmological models from strong gravitational lensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Biesiada, Marek [Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Godlowski, Wlodzimierz, E-mail: baodingcaoshuo@163.com, E-mail: panyu@cqupt.edu.cn, E-mail: biesiada@us.edu.pl, E-mail: godlowski@uni.opole.pl, E-mail: zhuzh@bnu.edu.cn [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)

    2012-03-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.

  16. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  17. The edge-on spiral gravitational lens B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG; Jackson, N

    1998-01-01

    We present new observations of the gravitational lens (GL) system B1600 + 434, strongly suggesting that the lens is an edge-on spiral galaxy. These observations are used to constrain the mass model of the system? in particular the oblateness and velocity dispersion of the dark matter halo around the

  18. THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.

    2011-01-01

    Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.

  19. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  20. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  1. Dissecting the Gravitational lens B1608+656 : II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Koopmans, L. V. E.; Fassnacht, C. D.; Treu, T.

    2010-01-01

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the "time-delay distance" to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep

  2. IMPROVED CONSTRAINTS ON THE GRAVITATIONAL LENS Q0957+561. I. WEAK LENSING

    International Nuclear Information System (INIS)

    Nakajima, R.; Bernstein, G. M.; Fadely, R.; Keeton, C. R.; Schrabback, T.

    2009-01-01

    Attempts to constrain the Hubble constant using the strong gravitational lens system Q0957+561 are limited by systematic uncertainties in the mass model, since the time delay is known very precisely. One important systematic effect is the mass-sheet degeneracy, which arises because strong lens modeling cannot constrain the presence or absence of a uniform mass sheet κ, which rescales H 0 by the factor (1 - κ). In this paper, we present new constraints on the mass sheet derived from a weak-lensing analysis of the Hubble Space Telescope imaging of a 6 arcmin square region surrounding the lensed quasar. The average mass sheet within a circular aperture (the strong lens model region) is constrained by integrating the tangential weak gravitational shear over the surrounding area. We find the average convergence within a 30'' radius around the lens galaxy to be κ(<30'') = 0.166 ± 0.056 (1σ confidence level), normalized to the quasar redshift. This includes contributions from both the lens galaxy and the surrounding cluster. We also constrain a few other low-order terms in the lens potential by applying a multipole aperture mass formalism to the gravitational shear in an annulus around the strong-lensing region. Implications for strong lens models and the Hubble constant are discussed in an accompanying paper.

  3. CTQ 327: A New Gravitational Lens

    Science.gov (United States)

    Morgan, N. D.; Gregg, M. D.; Wisotzki, L.; Becker, R.; Maza, J.; Schechter, P. L.; White, R. L.

    2003-08-01

    We present the second gravitationally lensed quasar discovered during the course of a Hubble Space Telescope Space Telescope Imaging Spectrograph snapshot survey for small-separation gravitational lenses. CTQ 327 is a double quasar with an image separation of 1.22" and a g-band flux ratio of roughly 5 to 1. Spectra reveal both components to be z=1.37 quasars, and the lensing galaxy is clearly visible after point-spread function subtraction of the two quasar components. The light profile of the lensing galaxy is well modeled by an r1/4 law, indicative of an early-type elliptical galaxy. An estimate of the lens galaxy redshift is z~0.4-0.6, based on the Faber-Jackson relationship and photometric considerations, although values outside this range are still consistent with the present data. Resolved spectra of the two quasars show similar, but not identical, continuum and emission-line features: component A exhibits weaker emission lines with respect to the continuum than does component B, and there is evidence of intrinsic differences in the emission-line profiles between the two components. Optical monitoring of the quasar pair also shows a change in the g-band flux ratio of 0.14 mag over a 3 month period. These spectral and photometric differences may be due to microlensing fluctuations from stars in the lensing galaxy, intrinsic quasar variability coupled with the system's differential time delay, or some combination of the two. The observed variability makes CTQ 327 an attractive target for future flux monitoring, aimed at time-delay or microlensing studies. Based on observations obtained with the NASA/ESA Hubble Space Telescope, the W. M. Keck Observatory, and the Magellan Consortium's Walter Baade Telescope. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of

  4. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...

  5. Strong gravitational lensing by a charged Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)

    2017-06-15

    We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter w{sub q}. For all w{sub q}, we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner-Nordstroem black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated. (orig.)

  6. Gravitational-Like Lens Based on Graphene Ripple.

    Science.gov (United States)

    Liu, Daqing; Chen, Shuyue; Ma, Ning; Zhao, Xiang; Xu, Zhuo

    2015-10-01

    We conducted a semiclassical study on carrier movement in curved graphene. A previous attempt was made to show that curved graphene is a readily available and cheap laboratory material used to study general relativity effects, especially if the electron energies satisfy 4μeV ≪ |E| ≪ 3eV. Furthermore, a gravitational-like lens can be constructed based on a special graphene ripple; this lens has neither chromatic nor cometic aberration. One can design an ideal electron lens using a graphene ripple.

  7. Gravitational leptogenesis, C, CP and strong equivalence

    International Nuclear Information System (INIS)

    McDonald, Jamie I.; Shore, Graham M.

    2015-01-01

    The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.

  8. Gravitational leptogenesis, C, CP and strong equivalence

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)

    2015-02-12

    The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.

  9. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  10. Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens

    Science.gov (United States)

    Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit

    2014-12-01

    We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.

  11. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  12. Strong gravitational lensing by Sgr A*

    International Nuclear Information System (INIS)

    Bin-Nun, Amitai Y

    2011-01-01

    In recent years, there has been increasing recognition of the potential to use the galactic center as a probe of general relativity in the strong field. There is almost certainly a black hole at Sgr A* in the galactic center, and this would allow us to have the opportunity to probe dynamics near the exterior of the black hole. In the last decade, there has been theoretical research into extreme gravitational lensing in the galactic center. Unlike in most applications of gravitational lensing, where the bending angle is of the order of, at most, an arc minute, very large bending angles are possible for light that closely approaches a black hole. Photons may even loop multiple times around a black hole before reaching the observer. There have been many proposals to use light's close approach to the black hole as a probe of the black hole metric. Of particular interest are the properties of images formed from the light of S stars orbiting in the galactic center. This paper will review some of the attempts made to study extreme lensing as well as extend the analysis of S star lensing. In particular, we are interested in the effect of a Reissner-Nordstrom like 1/r 2 term in the metric and how this would affect the properties of relativistic images.

  13. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    International Nuclear Information System (INIS)

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-01-01

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω k =0.00 −0.02 +0.01 (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52 −0.20 +0.19 (68% CI)

  14. Comparison of approximate gravitational lens equations and a proposal for an improved new one

    International Nuclear Information System (INIS)

    Bozza, V.

    2008-01-01

    Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens, and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.

  15. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  16. Strong field gravitational lensing by a charged Galileon black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  17. A new VLA/e-MERLIN limit on central images in the gravitational lens system CLASS B1030+074

    NARCIS (Netherlands)

    Quinn, Jonathan; Jackson, Neal; Tagore, Amitpal; Biggs, Andrew; Birkinshaw, Mark; Chapman, Scott; De Zotti, Gianfranco; McKean, John; Pérez-Fournon, Ismael; Scott, Douglas; Serjeant, Stephen

    2016-01-01

    We present the new Very Large Array 22 GHz and extended Multi-Element Remote-Linked Interferometer Network 5 GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of

  18. SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays

    NARCIS (Netherlands)

    Chen, Geoff C. -F; Suyu, Sherry H.; Wong, Kenneth C.; Fassnacht, Christopher D.; Chiueh, Tzihong; Halkola, Aleksi; Hu, I. Shing; Auger, Matthew W.; Koopmans, Léon V. E.; Lagattuta, David J.; McKean, John P.; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the

  19. Gravitational lens produces an odd number of images

    International Nuclear Information System (INIS)

    McKenzie, R.H.

    1985-01-01

    Rigorous results are given to the effect that a transparent gravitational lens produces an odd number of images. Suppose that p is an event and T the history of a light source in a globally hyperbolic space-time (M,g). Uhlenbeck's Morse theory of null geodesics is used to show under quite general conditions that if there are at most a finite number n of future-directed null geodesics from T to p, then M is contractible to a point. Moreover, n is odd and 1/2 (n-1) of the images of the source seen by an observer at p have the opposite orientation to the source. An analogous result is noted for Riemannian manifolds with positive definite metric

  20. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    Science.gov (United States)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  1. Power spectrum of dark matter substructure in strong gravitational lenses

    Science.gov (United States)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  2. Method to measure a relative transverse velocity of a source-lens-observer system using gravitational lensing of gravitational waves

    International Nuclear Information System (INIS)

    Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto

    2009-01-01

    Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.

  3. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106 (United States); Fassnacht, Christopher D.; Rumbaugh, Nicholas [Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616 (United States); Treu, Tommaso; Liao, Kai [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Marshall, Phil [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Hojjati, Alireza [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada); Linder, Eric, E-mail: tt@astro.ucla.edu [Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 (United States)

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  4. Interstellar communication. II. Application to the solar gravitational lens

    Science.gov (United States)

    Hippke, Michael

    2018-01-01

    We have shown in paper I of this series [1] that interstellar communication to nearby (pc) stars is possible at data rates of bits per second per Watt between a 1 m sized probe and a large receiving telescope (E-ELT, 39 m), when optimizing all parameters such as frequency at 300-400 nm. We now apply our framework of interstellar extinction and quantum state calculations for photon encoding to the solar gravitational lens (SGL), which enlarges the aperture (and thus the photon flux) of the receiving telescope by a factor of >109 . For the first time, we show that the use of the SGL for communication purposes is possible. This was previously unclear because the Einstein ring is placed inside the solar coronal noise, and contributing factors are difficult to determine. We calculate point-spread functions, aperture sizes, heliocentric distance, and optimum communication frequency. The best wavelength for nearby (meter-sized telescopes, an improvement of 107 compared to using the same receiving telescope without the SGL. A 1 m telescope in the SGL can receive data at rates comparable to a km-class "normal" telescope.

  5. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    Science.gov (United States)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  6. CLASS B2108+213 : a new wide-separation gravitational lens system

    NARCIS (Netherlands)

    McKean, JP; Browne, IWA; Jackson, NJ; Koopmans, LVE; Norbury, MA; Treu, T; York, TD; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Mao, S; Myers, ST; Pearson, TJ; Phillips, PM; Readhead, ACS; Rusin, D; Wilkinson, PN

    2005-01-01

    We present observations of CLASS B2108 + 213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which

  7. Class B0739+366 : A new two-image gravitational lens system

    NARCIS (Netherlands)

    Marlow, DR; Rusin, D; Norbury, M; Jackson, N; Browne, IWA; Wilkinson, PN; Fassnacht, CD; Myers, ST; Koopmans, LVE; Blandford, RD; Pearson, TJ; Readhead, ACS; de Bruyn, AG

    We present the discovery of CLASS B0739 + 366, a new gravitational lens system from the Cosmic Lens All-Sky Survey. Radio imaging of the source with the Very Large Array shows two compact components separated by with a flux density ratio of similar to6:1. High-resolution follow-up observations using

  8. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  9. Gravitational waves from a very strong electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar [IFIMAR (UNMdP-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, (7600) Mar del Plata (Argentina)

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  10. Candidate gravitational microlensing events for future direct lens imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. B.; Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Department of Physics, University of Salerno, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  11. Candidate gravitational microlensing events for future direct lens imaging

    International Nuclear Information System (INIS)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr –1 . Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  12. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    Science.gov (United States)

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  13. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    Science.gov (United States)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  14. Strong lensing of gravitational waves as seen by LISA.

    Science.gov (United States)

    Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C

    2010-12-17

    We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).

  15. Strong gravitational lensing in f (χ) = χ{sup 3/2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Campigotto, M.C.; Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Torino (Italy); Hernandez, X. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico 04510 (Mexico); Fatibene, L., E-mail: martacostanza.campigotto@to.infn.it, E-mail: antonaldo.diaferio@unito.it, E-mail: xavier@astro.unam.mx, E-mail: lorenzo.fatibene@unito.it [Dipartimento di Matematica, Università di Torino, Via C. Alberto 10, 10123, Torino (Italy)

    2017-06-01

    We discuss the phenomenology of gravitational lensing in the purely metric f (χ) gravity, an f ( R ) gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy lens systems and in clusters of galaxies. By adopting point-like lenses and using an approximate metric solution accurate to second order of the velocity field v / c , we show how, in the f (χ) = χ{sup 3/2} gravity, the same light deflection can be produced by lenses with masses smaller than in General Relativity (GR); this mass difference increases with increasing impact parameter and decreasing lens mass. However, for sufficiently massive point-like lenses and small impact parameters, f (χ) = χ{sup 3/2} and GR yield indistinguishable light deflection angles: this regime occurs both in observed galaxy-galaxy lens systems and in the central regions of galaxy clusters. In the former systems, the GR and f (χ) masses are compatible with the mass of standard stellar populations and little or no dark matter, whereas, on the scales of the core of galaxy clusters, the presence of substantial dark matter is required by our point-like lenses both in GR and in our approximate f (χ) = χ{sup 3/2} solution. We thus conclude that our approximate metric solution of f (χ) = χ{sup 3/2} is unable to describe the observed phenomenology of the strong lensing regime without the aid of dark matter.

  16. A Strong-Lens Survey in AEGIS: the influence of large scalestructure

    Energy Technology Data Exchange (ETDEWEB)

    Moustakas, Leonidas A.; Marshall, Phil; Newman, Jeffrey A.; Coil,Alison L.; Cooper, Michael C.; Davis, Marc; Fassnacht, Christopher D.; Guhathakurta, Puragra; Hopkins, Andrew; Koekemoer, Anton; Konidaris,Nicholas P.; Lotz, Jennifer M.; Willmer, Christopher N. A.

    2006-10-13

    We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin{sup 2} of HST/ACS (F606W and F814W) imaging in the DEEP2-Extended Groth Strip (EGS). In addition to a previously-known Einstein Cross also found by our search (the 'Cross', HSTJ141735+52264, z{sub lens} = 0.8106, z{sub source} = 3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HSTJ141820+52361 (the 'Dewdrop'; z{sub lens} = 0.5798), lenses two distinct extended sources into two pairs of arcs (z{sub source} = 0.9818), while the second, HSTJ141833+52435 (the 'Anchor'; z{sub lens} = 0.4625), produces a single pair of arcs (z{sub lens} not yet known). Four less convincing arc/counter-arc and two-image lens candidates are also found and presented for completeness. Lenses are found in a both underdense and overdense local environments, as characterized by a robust measure, 1+{delta}{sub 3}, a normalized density that uses the distance to the third nearest neighbor. All three definite lenses are fit reasonably well by simple singular isothermal ellipsoid models including external shear, giving {chi}{sub {nu}}{sup 2} values close to unity. These shears are much greater than those implied by a simple consideration of the three-dimensional convergence and shear from galaxies along the line of sight, where each galaxy is approximated by a singular isothermal sphere halo truncated at 200 h{sup -1} kpc. This shows how a realistic treatment of galaxies and the large scale structure they are embedded in is necessary, and that simply characterizing the very-local environment may be insufficient.

  17. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    Science.gov (United States)

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  18. A new quadruple gravitational lens system : CLASS B0128+437

    NARCIS (Netherlands)

    Phillips, PM; Norbury, MA; Koopmans, LVE; Browne, IWA; Jackson, NJ; Wilkinson, PN; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Helbig, P; Mao, S; Marlow, DR; Myers, ST; Pearson, TJ; Readhead, ACS; Rusin, D; Xanthopoulos, E

    2000-01-01

    High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration;

  19. The gravitational lens system B1030+074. Discovery and follow-up.

    NARCIS (Netherlands)

    Xanthopoulos, E; Browne, IWA; King, LJ; Jackson, NJ; Marlow, DR; Wilkinson, PN; Koopmans, LVE; Patnaik, AR; Porcas, RW; Terzian, Y; Weedman, D; Khachikian, E

    1999-01-01

    We report the discovery of a new double image gravitational lens system B1030+074 which was found during the Jodrell Bank - VLA Astrometric Survey (JVAS). We have collected extensive radio data on the system using the VLA, MERLIN, the EVN and the VLBA as well as HST WFPC2 and NICMOS observations.

  20. The edge-on spiral gravitational lens B1600+434

    NARCIS (Netherlands)

    Koopmans, LVE; de Bruyn, AG; Jackson, N; Muller,; Gottlober, S; Mucket, JP; Wambsganss, J

    1998-01-01

    New HST and NOT observations of the gravitational lens B1600+434(1) suggest that the lensing galaxy is an edge-on spiral galaxy.(3) We have used these observations to constrain the velocity dispersion (sigma(parallel to) > 150 km/s) and oblateness (q(halo) = (c/a)(rho) > 0.5) of dark matter halo

  1. The gravitational lens candidate HE 1104-1805 and the size of absorption systems

    NARCIS (Netherlands)

    Smette, A; Robertson, JG; Shaver, PA; Reimers, D; Wisotzki, L; Kohler, T; Kochanek, CS; Hewitt, JN

    1996-01-01

    We obtained 1.2 Angstrom resolution spectra over the range 3175 - 7575 Angstrom for the two components of the gravitational lens candidate HE 1104-1805 (z = 2.31, m(B) = 16.7 and 18.6, separation = 3.0 arcsec; cf. Wisotzki et al. 1993), with the aim of setting limits on the sizes of the clouds

  2. Strong deflection gravitational lensing by a modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2017-05-15

    A modified Hayward black hole is a nonsingular black hole. It is proposed that it would form when the pressure generated by quantum gravity can stop matter's collapse as the matter reaches the Planck density. Strong deflection gravitational lensing occurring nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and we estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands a very high resolution, beyond current stage. (orig.)

  3. Using Strong Gravitational Lensing to Identify Fossil Group Progenitors

    Science.gov (United States)

    Johnson, Lucas E.; Irwin, Jimmy A.; White, Raymond E., III; Wong, Ka-Wah; Maksym, W. Peter; Dupke, Renato A.; Miller, Eric D.; Carrasco, Eleazar R.

    2018-04-01

    Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems’ galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.

  4. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    Science.gov (United States)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  5. Fermat's principle, caustics, and the classification of gravitational lens images

    International Nuclear Information System (INIS)

    Blandford, R.; Narayan, R.

    1986-01-01

    A scalar description of gravitational lensing based on Fermat's principle is described. The lensing mass is assumed to be confined to a single plane between the source and the observer, and a time delay is associated with each position in the sky of a potential image. The extrema of this time surface then give the true positions of the images. A topological classification of image configurations is presented, and the results are generalized to cases of three and five-image lensing geometries. A computer-graphical approach to the study of lensing by model galaxies and clusters is described, and the design of a simple optical apparatus which could be used for fast modelling of image geometries is outlined. The connection between the Fermat approach and the classical theory of caustics and the more recent general theory of catastrophies is developed. The extension of the results to multiple scattering is considered. 42 references

  6. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Kaplinghat, Manoj [Department of Physics and Astronomy, University of California, Irvine CA 92697 (United States); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-20

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  7. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  8. Gravitational lens effect of wall-like objects and its cosmological implications

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1990-08-01

    First we derive the gravitational deflection angle of light rays passing through a disk consisting of pressureless matter, and show that it behaves like a convex lens. Next we derive the two-ray difference of deflection angles by help of the Raychaudhuri equation, in the cases when the wall-like objects are dust walls and domain-walls. Moreover we derive the two-ray difference of deflection angles in a low mass-density regions lying between wall-like objects. This region plays a role of a concave lens, but it is shown that its effect is minor, compared with the effect of wall-like objects. On the basis of these deflection angle differences, we consider the gravitational lens effect of uniform wall-like objects which may exist homogeneously on the cosmological scale, and show that, in the case when the wall-like objects appear at the epoch of z = 5, the measured angles of the cosmic background radiation may be increased about 3-2 times owing to the integrated convex lens effect and so its measured anisotropy may be smaller by a factor of about 10-6 than the intrinsic one. (author)

  9. Testing strong gravity with gravitational waves and Love numbers

    International Nuclear Information System (INIS)

    Franzin, E; Cardoso, V; Raposo, G; Pani, P

    2017-01-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects. (paper)

  10. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  11. Dark matter distributions in early-type galaxies from strong gravitational lensing

    International Nuclear Information System (INIS)

    Eichner, Thomas Martin

    2013-01-01

    Dark matter constitutes a large fraction of the mass of early-type galaxies. However, the exact amount and spatial distribution of the dark matter, especially in the galaxies' center is still unclear. Furthermore, galaxies in dense environments such as the centers of galaxy clusters shrink in size, since parts of their outer dark matter halo is stripped away. The aim of this thesis is to measure the dark matter content in the centers and outskirts of elliptical galaxies by analyzing the strong gravitational lensing effect they produce. Gravitational lensing is well-suited for investigating dark matter, since it is sensitive to all forms of matter, regardless of its dynamical or evolutionary state. We present gravitational lensing studies of the exceptional strong lensing systems SDSS J1538+5817 and SDSS J1430+4105, identified by the Sloan Lens ACS survey. The lenses are elliptical galaxies at z l =0.143 and z l =0.285, respectively. For SDSS J1538+5817 we show that both multiple imaged sources are located at the same redshift z s =0.531. Its multiple images span a range from 1 to 4 kpc in the plane of the lens. For SDSS J1430+4105, the source at redshift z s =0.575 is imaged into a broad Einstein ring, covering radii from 4 kpc to 10 kpc in the plane of the lens. In both cases, the lensed images can be accurately and consistently reproduced with different modeling approaches. We get projected total masses of 8.11 +0.27 -0.59 x 10 10 M s un within the Einstein radius of 2.5 kpc for SDSS J1538+5817 and 5.37±0.06 x 10 11 M s un within 6.5 kpc for SDSS J1430+4105. The luminous and dark matter were traced separately, resulting in dark matter fractions within the Einstein radius of 0.1 +0.2 -0.1 and 0.40 +0.14 -0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively. We assume a de Vaucouleurs profile to trace the light distribution of both galaxies. From the stellar mass associated with this light, we can explicitly derive a stellar mass-to-light ratio of (M de

  12. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    Science.gov (United States)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  13. RXJ 0921+4529: A BINARY QUASAR OR A GRAVITATIONAL LENS?

    International Nuclear Information System (INIS)

    Popovic, L. C.; Jovanovic, P.; Kovacevic, J.; Moiseev, A. V.; Mediavilla, E.; Ilic, D.; Munoz, J. A.

    2010-01-01

    We report the new spectroscopic observations of the gravitational lens RXJ 021+4529 with the multi-mode focal reducer SCORPIO of the SAO RAS 6 m telescope. The new spectral observations were compared with the previously observed spectra of components A and B of RXJ 0921+4529, i.e., the same components observed in different epochs. We found a significant difference in the spectrum between the components that cannot be explained with microlensing and/or spectral variation. We conclude that RXJ 0921+4529 is a binary quasar system, where redshifts of quasars A and B are 1.6535 ± 0.0005 and 1.6625 ± 0.0015, respectively.

  14. Detection of a compact radio source near the center of a gravitational lens: quasar image or galactic core

    International Nuclear Information System (INIS)

    Gorenstein, M.V.; Shapiro, I.I.; Cohen, N.L.

    1983-01-01

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q0957 + 561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives

  15. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Z.; Lin, W. P. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, G. L. [Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China); Kang, X., E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn [Partner Group of MPI for Astronomy, Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008 (China)

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  16. Towards a unified gauge theory of gravitational and strong interactions

    International Nuclear Information System (INIS)

    Hehl, F.W.; Sijacki, D.

    1980-01-01

    The space-time properties of leptons and hadrons is studied and it is found necessary to extend general relativity to the gauge theory based on the four-dimensional affine group. This group translates and deforms the tetrads of the locally Minkowskian space-time. Its conserved currents, momentum, and hypermomentum, act as sources in the two field equations of gravity. A Lagrangian quadratic in torsion and curvature allows for the propagation of two independent gauge fields: translational e-gravity mediated by the tetrad coefficients, and deformational GAMMA-gravity mediated by the connection coefficients. For macroscopic matter e-gravity coincides with general relativity up to the post-Newtonian approximation of fourth order. For microscopic matter GAMMA-gravity represents a strong Yang-Mills type interaction. In the linear approximation, for a static source, a confinement potential is found. (author)

  17. Cusp-core problem and strong gravitational lensing

    International Nuclear Information System (INIS)

    Li Nan; Chen Daming

    2009-01-01

    Cosmological numerical simulations of galaxy formation have led to the cuspy density profile of a pure cold dark matter halo toward the center, which is in sharp contradiction with the observations of the rotation curves of cold dark matter-dominated dwarf and low surface brightness disk galaxies, with the latter tending to favor mass profiles with a flat central core. Many efforts have been devoted to resolving this cusp-core problem in recent years, among them, baryon-cold dark matter interactions are considered to be the main physical mechanisms erasing the cold dark matter (CDM) cusp into a flat core in the centers of all CDM halos. Clearly, baryon-cold dark matter interactions are not customized only for CDM-dominated disk galaxies, but for all types, including giant ellipticals. We first fit the most recent high resolution observations of rotation curves with the Burkert profile, then use the constrained core size-halo mass relation to calculate the lensing frequency, and compare the predicted results with strong lensing observations. Unfortunately, it turns out that the core size constrained from rotation curves of disk galaxies cannot be extrapolated to giant ellipticals. We conclude that, in the standard cosmological paradigm, baryon-cold dark matter interactions are not universal mechanisms for galaxy formation, and therefore, they cannot be true solutions to the cusp-core problem.

  18. Detectable gravitational waves from very strong phase transitions in the general NMSSM

    International Nuclear Information System (INIS)

    Huber, Stephan J.; Nardini, Germano; Bern Univ.

    2015-12-01

    We study the general NMSSM with an emphasis on the parameter regions with a very strong first-order electroweak phase transition (EWPT). In the presence of heavy fields coupled to the Higgs sector, the analysis can be problematic due to the existence of sizable radiative corrections. In this paper we propose a subtraction scheme that helps to circumvent this problem. For simplicity we focus on a parameter region that is by construction hidden from the current collider searches. The analysis proves that (at least) in the identified parameter region the EWPT can be very strong and striking gravitational wave signals can be produced. The corresponding gravitational stochastic background can potentially be detected at the planned space-based gravitational wave observatory eLISA, depending on the specific experiment design that will be approved.

  19. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    Science.gov (United States)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  20. H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts★

    Science.gov (United States)

    Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique; Hilbert, Stefan; Wong, Kenneth C.; Huang, Kuang-Han; Suyu, Sherry H.; Collett, Thomas E.; Marshall, Philip J.; Treu, Tommaso; Koopmans, Leon V. E.

    2017-06-01

    Based on spectroscopy and multiband wide-field observations of the gravitationally lensed quasar HE 0435-1223, we determine the probability distribution function of the external convergence κext for this system. We measure the under/overdensity of the line of sight towards the lens system and compare it to the average line of sight throughout the Universe, determined by using the CFHTLenS (The Canada France Hawaii Lensing Survey) as a control field. Aiming to constrain κext as tightly as possible, we determine under/overdensities using various combinations of relevant informative weighting schemes for the galaxy counts, such as projected distance to the lens, redshift and stellar mass. We then convert the measured under/overdensities into a κext distribution, using ray-tracing through the Millennium Simulation. We explore several limiting magnitudes and apertures, and account for systematic and statistical uncertainties relevant to the quality of the observational data, which we further test through simulations. Our most robust estimate of κext has a median value κ^med_ext = 0.004 and a standard deviation σκ = 0.025. The measured σκ corresponds to 2.5 per cent relative uncertainty on the time delay distance, and hence the Hubble constant H0 inferred from this system. The median κ^med_ext value varies by ˜0.005 with the adopted aperture radius, limiting magnitude and weighting scheme, as long as the latter incorporates galaxy number counts, the projected distance to the main lens and a prior on the external shear obtained from mass modelling. This corresponds to just ˜0.5 per cent systematic impact on H0. The availability of a well-constrained κext makes HE 0435-1223 a valuable system for measuring cosmological parameters using strong gravitational lens time delays.

  1. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  2. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Maddumage, Prasad [Research Computing Center, Department of Scientific Computing, Florida State University, Tallahassee, FL 32306 (United States); Kantowski, Ronald; Dai, Xinyu; Baron, Eddie, E-mail: bchen3@fsu.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  3. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  4. A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing

    NARCIS (Netherlands)

    Koopmans, LVE; Fassnacht, CD

    1999-01-01

    We present mass models of the four-image gravitational lens system B1608 + 656, based on information obtained through VLBA imaging, VLA monitoring, and Hubble Space Telescope (HST) WFPC2 and NICMOS imaging. We have determined a mass model for the lens galaxies that reproduces (1) all image positions

  5. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  6. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2016-11-01

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case of the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.

  7. The SWELLS survey - III. Disfavouring 'heavy' initial mass functions for spiral lens galaxies

    NARCIS (Netherlands)

    Brewer, Brendon J.; Dutton, Aaron A.; Treu, Tommaso; Auger, Matthew W.; Marshall, Philip J.; Barnabè, Matteo; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We present gravitational lens models for 20 strong gravitational lens systems observed as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) project. 15 of the lenses are taken from Paper I, while five are newly discovered systems. The systems are galaxy-galaxy lenses where the foreground

  8. Dissecting the Gravitational Lens B1608 656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Suyu, S.H.; /Argelander Inst. Astron.; Marshall, P.J.; /KIPAC, Menlo Park /UC, Santa Barbara; Auger, M.W.; /UC, Santa Barbara /UC, Davis; Hilbert, S.; /Argelander Inst. Astron. /Garching, Max Planck Inst.; Blandford, R.D.; /KIPAC, Menlo Park; Koopmans, L.V.E.; /Kapteyn Astron. Inst., Groningen; Fassnacht, C.D.; /UC, Davis; Treu, T.; /UC, Santa Barbara

    2009-12-11

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the 'time-delay distance' to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep Hubble Space Telescope (HST) observations, (2) a new velocity dispersion measurement of 260 {+-} 15 km s{sup -1} for the primary lens galaxy, and (3) an updated study of the lens environment. Our analysis of the HST images takes into account the extended source surface brightness, and the dust extinction and optical emission by the interacting lens galaxies. When modeling the stellar dynamics of the primary lens galaxy, the lensing effect, and the environment of the lens, we explicitly include the total mass distribution profile logarithmic slope {gamma}{prime} and the external convergence {kappa}{sub ext}; we marginalize over these parameters, assigning well-motivated priors for them, and so turn the major systematic errors into statistical ones. The HST images provide one such prior, constraining the lens mass density profile logarithmic slope to be {gamma}{prime} = 2.08 {+-} 0.03; a combination of numerical simulations and photometric observations of the B1608+656 field provides an estimate of the prior for {kappa}{sub ext}: 0.10{sub -0.05}{sup +0.08}. This latter distribution dominates the final uncertainty on H{sub 0}. Fixing the cosmological parameters at {Omega}{sub m} = 0.3, {Omega}{sub {Lambda}} = 0.7, and w = -1 in order to compare with previous work on this system, we find H{sub 0} = 70.6{sub -3.1}{sup +3.1} km s{sup -1} Mpc{sup -1}. The new data provide an increase in precision of more than a factor of two, even including the marginalization over {kappa}{sub ext}. Relaxing the prior probability density function for the cosmological parameters to that derived from the WMAP 5-year data set, we find that the B1608+656 data set breaks the degeneracy

  9. Possible Cosmological consequences of thermodynamics in a unified approach to gravitational and strong interactions

    International Nuclear Information System (INIS)

    Recami, E.; Tonin Zanchin, V.; Martinez, J.M.

    1986-01-01

    A unified geometrical approach to strong and gravitational interactions has been recently proposed, based on the classical methods of General Relativity. According to it, hadrons can be regarded as black-hole type solutions of new field equations describing two tensorial metric-field (the ordinary gravitational field, and the strong one). In this paper, we first seize the opportunity for an improved exposition of some elements of the theory relevant to our present scope. Secondly, by extending the Bekenstein-Hawking thermodynamics to the above mentioned strong black-holes (SBH), it is shown: 1) that SBH thermodynamics seems to require a new expansion of our cosmos after its Big Crunch (i.e. that a recontraction of our cosmos has to be followed by a new creation); 2) that a collapsing star with mass M approximately in the range 3 to 5 solar masses, once reached the neutron-star density, could re-explode tending to form a (radiating) object with a diameter of the order of 1 light-day: thus failing to create a gravitational black-hole

  10. The first detection of neutral hydrogen in emission in a strong spiral lens

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  11. Gauge unification of basic forces particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    Corresponding to the two known types of gauge theories, Yang-Mills with spin-one mediating particles and Einstein Weyl with spin-two mediating particles, it is speculated that two distinct gauge unifications of the basic forces appear to be taking place. One is the familiar Yang-Mills unification of weak and electromagnetic forces with the strong. The second is the less familiar gauge unification of gravitation with spin-two tensor-dominated aspects of strong interactions. It is proposed that there are strongly interacting spin-two strong gravitons obeying Einstein's equations, and their existence gives a clue to an understanding of the (partial) confinement of quarks, as well as of the concept of hadronic temperature, through the use of Schwarzschild de-Sitter-like partially confining solitonic solutions of the strong gravity Einstein equation

  12. The double quasar 0957+561: examination of the gravitational lens hypothesis using the very large array.

    Science.gov (United States)

    Greenfield, P E; Roberts, D H; Burke, B F

    1980-05-02

    A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.

  13. What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?

    Science.gov (United States)

    Smith, Graham P.; Jauzac, Mathilde; Veitch, John; Farr, Will M.; Massey, Richard; Richard, Johan

    2018-04-01

    Motivated by the preponderance of so-called `heavy black holes' in the binary black hole (BBH) gravitational wave (GW) detections to date, and the role that gravitational lensing continues to play in discovering new galaxy populations, we explore the possibility that the GWs are strongly lensed by massive galaxy clusters. For example, if one of the GW sources were actually located at z = 1, then the rest-frame mass of the associated BHs would be reduced by a factor of ˜2. Based on the known populations of BBH GW sources and strong-lensing clusters, we estimate a conservative lower limit on the number of BBH mergers detected per detector year at LIGO/Virgo's current sensitivity that are multiply-imaged, of Rdetect ≃ 10-5 yr-1. This is equivalent to rejecting the hypothesis that one of the BBH GWs detected to date was multiply-imaged at ≲4σ. It is therefore unlikely, but not impossible, that one of the GWs is multiply-imaged. We identify three spectroscopically confirmed strong-lensing clusters with well-constrained mass models within the 90 per cent credible sky localizations of the BBH GWs from LIGO's first observing run. In the event that one of these clusters multiply-imaged one of the BBH GWs, we predict that 20-60 per cent of the putative next appearances of the GWs would be detectable by LIGO, and that they would arrive at Earth within 3yr of first detection.

  14. Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila; Khandaker, Jahirul Islam; Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Iguchi, Yusuke [Department of Solid State Physics, Debrecen University, 4032 Debrecen (Hungary); Ono, Masao [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan)

    2015-03-28

    To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normal to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.

  15. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    International Nuclear Information System (INIS)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-01-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z ∼ 0.2. Located ∼20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z ∼ 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 ± 0.4) x 10 13 M sun within 37 h -1 kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  16. The deflection angle of a gravitational source with a global monopole in the strong field limit

    International Nuclear Information System (INIS)

    Cheng Hongbo; Man Jingyun

    2011-01-01

    We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.

  17. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  18. A determination of H-0 with the class gravitational lens B1608+656. I. Time delay measurements with the VLA

    NARCIS (Netherlands)

    Fassnacht, CD; Pearson, TJ; Readhead, ACS; Browne, IWA; Koopmans, LVE; Myers, ST; Wilkinson, PN

    1999-01-01

    We present the results of a program to monitor the four-image gravitational lens B1608 + 656 with the VLA. The system was observed over a 7 month period from 1996 October to 1997 May. The 64 epochs of observation have an average spacing of 3.6 days. The light curves of the four images of the

  19. Questioning the quark model. Strong interaction, gravitation and time arrows. An approach to asymptotic freedom

    International Nuclear Information System (INIS)

    Basini, G.

    2003-01-01

    Asymptotic freedom, as a natural result of a theory based on a general approach, derived by a new interpretation of phenomena like the EPR paradox, the black-hole formation and the absence of primary cosmic antimatter is presented. In this approach, conservation laws are considered always and absolutely valid, leading to the possibility of topology changes, and recovering the mutual influence between fundamental forces. Moreover, a new consideration of time arrows leads to asymptotic freedom as a necessary consequence. In fact, asymptotic freedom of strong interactions seems to be a feature common also to gravitational interaction, if induced-gravity theories (t → ∞) are taken into account and a symmetric-time dynamics is recovered in the light of a general conservation principle. (authors)

  20. Questioning the quark model. Strong interaction, gravitation and time arrows. An approach to asymptotic freedom

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Capozziello, S. [E.R. Caianiello, Dipt. di Fisica, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Universita di Salerno, Boronissi, SA (Italy)

    2003-09-01

    Asymptotic freedom, as a natural result of a theory based on a general approach, derived by a new interpretation of phenomena like the EPR paradox, the black-hole formation and the absence of primary cosmic antimatter is presented. In this approach, conservation laws are considered always and absolutely valid, leading to the possibility of topology changes, and recovering the mutual influence between fundamental forces. Moreover, a new consideration of time arrows leads to asymptotic freedom as a necessary consequence. In fact, asymptotic freedom of strong interactions seems to be a feature common also to gravitational interaction, if induced-gravity theories (t {yields} {infinity}) are taken into account and a symmetric-time dynamics is recovered in the light of a general conservation principle. (authors)

  1. Strong Nuclear Gravitational Constant and the Origin of Nuclear Planck Scale

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-07-01

    Full Text Available Whether it may be real or an equivalent, existence of strong nuclear gravitational con- stant G S is assumed. Its value is obtained from Fermi’s weak coupling constant as G S = 6 : 9427284 10 31 m 3 / kg sec 2 and thus “nuclear planck scale” is defined. For strong interaction existence of a new integral charged “confined fermion” of mass 105.383 MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97 MeV and assumed 105.383 MeV. 1 s = X s is defined as the strong interaction mass gen- erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak coupling constant, strong interaction upper limit and Bohr radius are fitted at funda- mental level. Considering Fermi’s weak coupling constant and nuclear planck length a new number X e = 294.8183 is defined for fitting the electron, muon and tau rest masses. Using X s , X e and 105 : 32 = 0 : 769 MeV as the Coulombic energy constant = E c , en- ergy coe cients of the semi-empirical mass formula are estimated as E v = 16 : 32 MeV ; E s = 19 : 37 MeV ; E a = 23 : 86 MeV and E p = 11 : 97 MeV where Coulombic energy term contains [ Z ] 2 : Starting from Z = 2 nuclear binding energy is fitted with two terms along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited levels are fitted.

  2. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars

    International Nuclear Information System (INIS)

    Freire, Paulo C C; Kramer, Michael; Wex, Norbert

    2012-01-01

    In this paper, we review tests of the strong equivalence principle (SEP) derived from pulsar–white dwarf binary data. The extreme difference in the binding energy between both components and the precise measurement of the orbital motion provided by pulsar timing allow the only current precision SEP tests for strongly self-gravitating bodies. We start by highlighting why such tests are conceptually important. We then review previous work where limits on SEP violation are obtained with an ensemble of wide binary systems with small eccentricity orbits. Then, we propose a new SEP violation test based on the measurement of the variation of the orbital eccentricity (ė). This new method has the following advantages: (a) unlike previous methods it is not based on probabilistic considerations, (b) it can make a direct detection of SEP violation and (c) the measurement of ė is not contaminated by any known external effects, which implies that this SEP test is only restricted by the measurement precision of ė. In the final part of the review, we conceptually compare the SEP test with the test for dipolar radiation damping, a phenomenon closely related to SEP violation, and speculate on future prospects by new types of tests in globular clusters and future triple systems. (paper)

  3. Gravitational lens optical scalars in terms of energy-momentum distributions in the cosmological framework

    Science.gov (United States)

    Boero, Ezequiel F.; Moreschi, Osvaldo M.

    2018-04-01

    We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).

  4. Strong gravitational lensing and the stellar IMF of early-type galaxies

    Science.gov (United States)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  5. Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions

    International Nuclear Information System (INIS)

    Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng

    2012-01-01

    We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.

  6. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  7. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ E ∼ 0.08 mas combined with the short timescale of t E ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  8. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  9. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies

    NARCIS (Netherlands)

    Bolton, AS; Burles, S; Koopmans, LVE; Treu, T; Moustakas, LA

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple

  10. Gravitational lenses

    International Nuclear Information System (INIS)

    Turner, E.L.

    1989-01-01

    The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies

  11. Explaining the large numbers by a hierarchy of ''universes'': a unified theory of strong and gravitational interactions

    International Nuclear Information System (INIS)

    Caldirola, P.; Recami, E.

    1978-01-01

    By assuming covariance of physical laws under (discrete) dilatations, strong and gravitational interactions have been described in a unified way. In terms of the (additional, discrete) ''dilatational'' degree of freedom, our cosmos as well as hadrons can be considered as different states of the same system, or rather as similar systems. Moreover, a discrete hierarchy can be defined of ''universes'' which are governed by force fields with strengths inversely proportional to the ''universe'' radii. Inside each ''universe'' an equivalence principle holds, so that its characteristic field can be geometrized there. It is thus easy to derive a whole ''numerology'', i.e. relations among numbers analogous to the so-called Weyl-Eddington-Dirac ''large numbers''. For instance, the ''Planck mass'' happens to be nothing but the (average) magnitude of the strong charge of the hadron quarks. However, our ''numerology'' connects the (gravitational) macrocosmos with the (strong) microcosmos, rather than with the electromagnetic ones (as, e.g., in Dirac's version). Einstein-type scaled equations (with ''cosmological'' term) are suggested for the hadron interior, which - incidentally - yield a (classical) quark confinement in a very natural way and are compatible with the ''asymptotic freedom''. At last, within a ''bi-scale'' theory, further equations are proposed that provide a priori a classical field theory of strong interactions (between different hadrons). The relevant sections are 5.2, 7 and 8. (author)

  12. The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231

    International Nuclear Information System (INIS)

    Birrer, Simon; Amara, Adam; Refregier, Alexandre

    2016-01-01

    We present extended modelling of the strong lens system RXJ1131-1231 with archival data in two HST bands in combination with existing line-of-sight contribution and velocity dispersion estimates. Our focus is on source size and its influence on time-delay cosmography. We therefore examine the impact of mass-sheet degeneracy and especially the degeneracy pointed out by Schneider and Sluse (2013) [1] using the source reconstruction scale. We also extend on previous work by further exploring the effects of priors on the kinematics of the lens and the external convergence in the environment of the lensing system. Our results coming from RXJ1131-1231 are given in a simple analytic form so that they can be easily combined with constraints coming from other cosmological probes. We find that the choice of priors on lens model parameters and source size are subdominant for the statistical errors for H 0 measurements of this systems. The choice of prior for the source is sub-dominant at present (2% uncertainty on H 0 ) but may be relevant for future studies. More importantly, we find that the priors on the kinematic anisotropy of the lens galaxy have a significant impact on our cosmological inference. When incorporating all the above modeling uncertainties, we find H 0 = 86.6 +6.8 -6.9 km s -1 Mpc -1 , when using kinematic priors similar to other studies. When we use a different kinematic prior motivated by Barnabè et al. (2012) [2] but covering the same anisotropic range, we find H 0 = 74.5 +8.0 -7.8 km s -1 Mpc -1 . This means that the choice of kinematic modeling and priors have a significant impact on cosmographic inferences. The way forward is either to get better velocity dispersion measures which would down weight the impact of the priors or to construct physically motivated priors for the velocity dispersion model.

  13. Gravitational lensing by a regular black hole

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F; Sendra, Carlos M

    2011-01-01

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  14. Gravitational lensing by a regular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)

    2011-04-21

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  15. Generalised model-independent characterisation of strong gravitational lenses. II. Transformation matrix between multiple images

    Science.gov (United States)

    Wagner, J.; Tessore, N.

    2018-05-01

    We determine the transformation matrix that maps multiple images with identifiable resolved features onto one another and that is based on a Taylor-expanded lensing potential in the vicinity of a point on the critical curve within our model-independent lens characterisation approach. From the transformation matrix, the same information about the properties of the critical curve at fold and cusp points can be derived as we previously found when using the quadrupole moment of the individual images as observables. In addition, we read off the relative parities between the images, so that the parity of all images is determined when one is known. We compare all retrievable ratios of potential derivatives to the actual values and to those obtained by using the quadrupole moment as observable for two- and three-image configurations generated by a galaxy-cluster scale singular isothermal ellipse. We conclude that using the quadrupole moments as observables, the properties of the critical curve are retrieved to a higher accuracy at the cusp points and to a lower accuracy at the fold points; the ratios of second-order potential derivatives are retrieved to comparable accuracy. We also show that the approach using ratios of convergences and reduced shear components is equivalent to ours in the vicinity of the critical curve, but yields more accurate results and is more robust because it does not require a special coordinate system as the approach using potential derivatives does. The transformation matrix is determined by mapping manually assigned reference points in the multiple images onto one another. If the assignment of the reference points is subject to measurement uncertainties under the influence of noise, we find that the confidence intervals of the lens parameters can be as large as the values themselves when the uncertainties are larger than one pixel. In addition, observed multiple images with resolved features are more extended than unresolved ones, so that

  16. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress

    Directory of Open Access Journals (Sweden)

    J. B. T. Scott

    2009-05-01

    Full Text Available Pine Island Glacier, Antarctica, has been undergoing several related changes for at least two decades; these include acceleration, thinning and grounding line retreat. During the first major ground-based study between 2006 and 2008, GPS receivers were used to monitor ice flow from 55 km to 171 km inland, along the central flowline. At four sites both acceleration and thinning rates over the last two years exceeded rates observed at any other time over the last two decades. At the downstream site acceleration was 6.4% over 2007 and thinning was 3.5±0.5 ma−1. Acceleration and thinning have spread rapidly inland with the acceleration 171 km inland at 4.1% over 2007, greater than any measured annual flow increase along the whole glacier prior to 2006. Increases in surface slope, and hence gravitational driving stress, correlate well with the acceleration and no sustained change in longitudinal stress gradient is needed to explain the force balance. There is no indication that the glacier is approaching a new steady state.

  17. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    Science.gov (United States)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  18. The Continuum Limit of a Fermion System Involving Leptons and Quarks: Strong, Electroweak and Gravitational Interactions

    OpenAIRE

    Finster, Felix

    2014-01-01

    The causal action principle is analyzed for a system of relativistic fermions composed of massive Dirac particles and neutrinos. In the continuum limit, we obtain an effective interaction described by classical gravity as well as the strong and electroweak gauge fields of the standard model.

  19. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  20. Gauge unification of basic forces, particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    An attempt is made to present a case for the use of both the Einstein--Weyl spin-two and the Yang--Mills spin-one gauge structures for describing strong interactions. By emphasizing both spin-one and -two aspects of this force, it is hoped that a unification of this force, on the one hand, with gravity theory and, on the other, with the electromagnetic and weak interactions can be achieved. A Puppi type of tetrahedral interralation of fundamental forces, with the strong force playing a pivotal role due to its mediation through both spin-one and -two quanta, is proposed. It is claimed that the gauge invariance of gravity theory permits the use of ambuguity-free nonpolynomial techniques and thereby the securing of relistic regularization in gravity-modified field theories with the Newtonian constant G/sub N/ providing a relistic cutoff. 37 references

  1. Null Geodesics and Strong Field Gravitational Lensing in a String Cloud Background

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole

  2. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu [University of Michigan, Department of Astronomy, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States)

    2016-11-20

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.

  3. Infrared behavior of closed superstrings in strong magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Kiritsis, E.; Kounnas, C.

    1995-01-01

    A large class of four-dimensional supersymmetric ground states of closed superstrings with a non-zero mass gap are constructed. For such ground states we turn on chromo-magnetic fields as well as curvature. The exact spectrum as function of the chromo-magnetic fields and curvature is derived. We examine the behavior of the spectrum, and find that there is a maximal value for the magnetic field H max similar M planck 2 . At this value all states that couple to the magnetic field become infinitely massive and decouple. We also find tachyonic instabilities for strong background fields of the order O (μM planck ) where μ is the mass gap of the theory. Unlike the field theory case, we find that such ground states become stable again for magnetic fields of the order O (M 2 planck ). The implications of these results are discussed. (orig.)

  4. On the evolution of the density probability density function in strongly self-gravitating systems

    International Nuclear Information System (INIS)

    Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.

    2014-01-01

    The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P V (ρ)∝ρ –1.54 for the (volume-weighted) PDF and P M (ρ)∝ρ –0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.

  5. THE SLOAN BRIGHT ARCS SURVEY: TEN STRONG GRAVITATIONAL LENSING CLUSTERS AND EVIDENCE OF OVERCONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Lin, Huan; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Tucker, Douglas [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2012-12-10

    We describe 10 strong lensing galaxy clusters of redshift 0.26 {<=} z {<=} 0.56 that were found in the Sloan Digital Sky Survey. We present measurements of richness (N{sub 200}), mass (M{sub 200}), and velocity dispersion for the clusters. We find that in order to use the mass-richness relation from Johnston et al., which was established at mean redshift of 0.25, it is necessary to scale measured richness values up by 1.47. Using this scaling, we find richness values for these clusters to be in the range of 22 {<=} N{sub 200} {<=} 317 and mass values to be in the range of 1 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun} {<=} M{sub 200} {<=} 30 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun }. We also present measurements of Einstein radius, mass, and velocity dispersion for the lensing systems. The Einstein radii ({theta}{sub E}) are all relatively small, with 5.''4 {<=} {theta}{sub E} {<=} 13''. Finally, we consider if there is evidence that our clusters are more concentrated than {Lambda}CDM would predict. We find that six of our clusters do not show evidence of overconcentration, while four of our clusters do. We note a correlation between overconcentration and mass, as the four clusters showing evidence of overconcentration are all lower-mass clusters. For the four lowest mass clusters the average value of the concentration parameter c{sub 200} is 11.6, while for the six higher-mass clusters the average value of c{sub 200} is 4.4. {Lambda}CDM would place c{sub 200} between 3.4 and 5.7.

  6. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  7. Measuring the total and baryonic mass profiles of the very massive CASSOWARY 31 strong lens

    DEFF Research Database (Denmark)

    Grillo, Claudio; Christensen, L.; Gallazzi, A.

    2013-01-01

    We investigate the total and baryonic mass distributions in deflector number 31 (CSWA 31) of the Cambridge And Sloan Survey Of Wide ARcs in the skY (CASSOWARY). We confirm spectroscopically a four-image lensing system at redshift 1.4870 with Very Large Telescope/X-shooter observations. The lensed...... find that the CSWA 31 deflector has properties suggesting it to be among the most distant and massive fossil systems studied so far. The unusually strong central dark matter dominance and the possible fossil nature of this system render it an interesting target for detailed tests of cosmological models...

  8. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kai [School of Science, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhengxiang; Wang, Guo-Jian [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk [Department of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205 (China)

    2017-04-20

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  9. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    International Nuclear Information System (INIS)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long

    2017-01-01

    We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  10. Fermat's least-time principle and the embedded transparent lens

    Science.gov (United States)

    Kantowski, R.; Chen, B.; Dai, X.

    2013-10-01

    We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.

  11. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; Costa, L. N. da; Neto, A. Fausti; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-09-01

    We report the results of our searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verication and Year 1 observations. The Science Verication data spans approximately 250 sq. deg. with median i

  12. Red nuggets grow inside-out: evidence from gravitational lensing

    NARCIS (Netherlands)

    Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; Treu, Tommaso; Brewer, Brendon J.; Koopmans, L. V. E.; Lagattuta, David; Marshall, Philip; McKean, John; Vegetti, Simona

    We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that

  13. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  14. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    International Nuclear Information System (INIS)

    Shatskiy, A. A.; Kovalev, Yu. Yu.; Novikov, I. D.

    2015-01-01

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations

  15. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D. [Russian Academy of Sciences, Astro Space Center, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.

  16. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Odden, C.; Pellico, A.; Tucker, D. L.; Kuropatkin, N.; Soares-Santos, M. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Collett, T. E. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Furlanetto, C.; Nightingale, J. [University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD (United Kingdom); Gill, M. S. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); More, A. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Costa, L. N. da; Neto, A. Fausti, E-mail: diehl@fnal.gov [Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Collaboration: DES Collaboration; and others

    2017-09-01

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i -band limiting magnitude for extended objects (10 σ ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i -band limiting magnitude for extended objects (10 σ ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

  17. Golden gravitational lensing systems from the Sloan Lens ACS Survey - II. SDSS J1430+4105: a precise inner total mass profile from lensing alone

    Science.gov (United States)

    Eichner, Thomas; Seitz, Stella; Bauer, Anne

    2012-12-01

    We study the Sloan Lens ACS (SLACS) survey strong-lensing system SDSS J1430+4105 at zl = 0.285. The lensed source (zs = 0.575) of this system has a complex morphology with several subcomponents. Its subcomponents span a radial range from 4 to 10 kpc in the plane of the lens. Therefore, we can constrain the slope of the total projected mass profile around the Einstein radius from lensing alone. We measure a density profile that is slightly but not significantly shallower than isothermal at the Einstein radius. We decompose the mass of the lensing galaxy into a de Vaucouleurs component to trace the stars and an additional dark component. The spread of multiple-image components over a large radial range also allows us to determine the amplitude of the de Vaucouleurs and dark matter components separately. We get a mass-to-light ratio of M de Vauc LB ≈ (5.5±1.5) M⊙L⊙,B and a dark matter fraction within the Einstein radius of ≈20 to 40 per cent. Modelling the star formation history assuming composite stellar populations at solar metallicity to the galaxy's photometry yields a mass-to-light ratio of M, salp LB ≈ 4.0-1.3+0.6 M⊙L⊙,B and M, chab LB ≈ 2.3-0.8+0.3 M⊙L⊙,B for Salpeter and Chabrier initial mass functions, respectively. Hence, the mass-to-light ratio derived from lensing is more Salpeter like, in agreement with results for massive Coma galaxies and other nearby massive early-type galaxies. We examine the consequences of the galaxy group in which the lensing galaxy is embedded, showing that it has little influence on the mass-to-light ratio obtained for the de Vaucouleurs component of the lensing galaxy. Finally, we decompose the projected, azimuthally averaged 2D density distribution of the de Vaucouleurs and dark matter components of the lensing signal into spherically averaged 3D density profiles. We can show that the 3D dark and luminous matter density within the Einstein radius (REin ≈ 0.6 Reff) of this SLACS galaxy is similar to the

  18. Gravitational Waves - New Perspectives

    International Nuclear Information System (INIS)

    Biesiada, M.

    1999-01-01

    Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)

  19. Recognition of possible strong earthquake epicenters. VII. Use of gravitational Bouguer anomaly for California and adjacent regions

    Energy Technology Data Exchange (ETDEWEB)

    Artem' ev, M E; Rotvain, I M; Sadovskii, A M

    1977-01-01

    The possibility of using gravimetric data (Bouguer anomalies) as initial material for determining possible strong earthquake epicenters is determined with the aid of recognition algorithms. This was done for the purpose of correlating geological-geomorphological results and analyzing gravimetric indicators obtained in the study. 9 references, 4 figures, 6 tables.

  20. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  1. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  2. Characterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.

    2012-01-01

    ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation...

  3. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data

  4. The Master Lens Database and The Orphan Lenses Project

    Science.gov (United States)

    Moustakas, Leonidas

    2012-10-01

    Strong gravitational lenses are uniquely suited for the study of dark matter structure and substructure within massive halos of many scales, act as gravitational telescopes for distant faint objects, and can give powerful and competitive cosmological constraints. While hundreds of strong lenses are known to date, spanning five orders of magnitude in mass scale, thousands will be identified this decade. To fully exploit the power of these objects presently, and in the near future, we are creating the Master Lens Database. This is a clearinghouse of all known strong lens systems, with a sophisticated and modern database of uniformly measured and derived observational and lens-model derived quantities, using archival Hubble data across several instruments. This Database enables new science that can be done with a comprehensive sample of strong lenses. The operational goal of this proposal is to develop the process and the code to semi-automatically stage Hubble data of each system, create appropriate masks of the lensing objects and lensing features, and derive gravitational lens models, to provide a uniform and fairly comprehensive information set that is ingested into the Database. The scientific goal for this team is to use the properties of the ensemble of lenses to make a new study of the internal structure of lensing galaxies, and to identify new objects that show evidence of strong substructure lensing, for follow-up study. All data, scripts, masks, model setup files, and derived parameters, will be public, and free. The Database will be accessible online and through a sophisticated smartphone application, which will also be free.

  5. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Lijing Shao

    2017-10-01

    Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  6. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    Energy Technology Data Exchange (ETDEWEB)

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Seitz, Stella [University Observatory Munich, Scheinstrasse 1, 81679 Muenchen (Germany); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Wood-Vasey, W. Michael [Pittsburgh Center for Particle Physics, Astrophysics, and Cosmology (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  7. Variations in the geomagnetic and gravitational background associated with two strong earthquakes of the May 2012 sequence in the Po Valley Plain (Italy).

    Science.gov (United States)

    Straser, Valentino

    2013-04-01

    Reawakening of seismic activity in the Emilian Po Valley Plain (Italy) resulted in 2,492 earthquakes over five and a half months: 2,270 with M= 7. The mainshock was recorded during the night of 20 May 2012, at 04:03:52 Italian time (02:03:52 UTC) with epicentre in Finale Emilia, at a depth of 6.3km, by the Italian National Institute of Geophysics and Vulcanology (INGV). A long sequence of telluric shocks occurred in the same seismic district in the areas between the provinces of Modena, Ferrara, Mantua, Reggio Emilia, Bologna and Rovigo. In addition to the general devastation plus damage to civil and industrial buildings and the historical heritage, the earthquakes resulted in a total of 27 victims. Concomitant with the two strongest quakes, recorded on 20 and 29 May 2012, respectively, as in the case of others, variations were noted in the geomagnetic background by the LTPA monitoring station in Rome (Italy). The geomagnetic background variations were associated with the appearance of radio-anomalies in a frequency range from 0.1 to 3.0Hz, as well as gravimetric variations found around 60km from the epicentre. The peak accelerations, detected in correspondence with the strongest shocks on 20 and 29 May 2012, were respectively 0.31g and 0.29g. The appearance of the radio-anomalies coincided, from a temporal point of view, with average gravimetric variations of approximately 30µGal around the epicentre areas, concurrent with the mainshock. In this study, both the appearance of radio-anomalies and the gravitational variations recorded before strong earthquakes were related to the dynamics of the fault and a progressive reduction in granulometry in the core of the fracture, until the point of dislocation was reached. The intense friction in the fault and the damping factors produced before the shock are hypothesized as being proportional to the number of radio-anomalies measured. The radio anomaly is an unknown radio emission that has no characteristics (duration

  8. Amplification caused by gravitational bending of light

    International Nuclear Information System (INIS)

    Schneider, P.

    1985-01-01

    Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent

  9. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  10. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    Science.gov (United States)

    Chen, Bin

    2015-11-17

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.

  11. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    Science.gov (United States)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  12. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  13. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  14. Gravitational Lens: Deep Space Probe Design

    Science.gov (United States)

    2012-03-01

    Following the calculation of the semi-major axis is the eccentricity e, which measures the eccentricity of the gravity assist orbit. e = 1 + rpv2... eccentricity and the semi-major axis. The parameter is a property of conic sections dictated by the expression p = a(1 − e2) [10] (3.24) After the parameter...term attitude actuation. They were chosen over the inclusion of CMGs and reaction wheels because while CMGs and reaction wheels would decrease the

  15. Vortex gas lens

    Science.gov (United States)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  16. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  17. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  18. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  19. Dynamics of Fermat potentials in nonperturbative gravitational lensing

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Newman, Ezra T.

    2002-01-01

    We present a framework, based on the null-surface formulation of general relativity, for discussing the dynamics of Fermat potentials for gravitational lensing in a generic situation without approximations of any kind. Additionally, we derive two lens equations: one for the case of thick compact lenses and the other one for lensing by gravitational waves. These equations in principle generalize the astrophysical scheme for lensing by removing the thin-lens approximation while retaining the weak fields

  20. QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S.

    2012-01-01

    Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.

  1. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  2. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  3. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  4. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  5. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  6. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  7. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    International Nuclear Information System (INIS)

    Capelo, Pedro R; Natarajan, Priyamvada

    2007-01-01

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution

  8. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    Energy Technology Data Exchange (ETDEWEB)

    Capelo, Pedro R [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Natarajan, Priyamvada [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States)

    2007-12-15

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution.

  9. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  10. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  11. Astrometric Observation of MACHO Gravitational Microlensing

    Science.gov (United States)

    Boden, A. F.; Shao, M.; Van Buren, D.

    1997-01-01

    This paper discusses the prospects for astrometric observation of MACHO gravitational microlensing events. We derive the expected astrometric observables for a simple microlensing event assuming a dark MACHO, and demonstrate that accurate astrometry can determine the lens mass, distance, and proper motion in a very general fashion.

  12. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  13. CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING

    International Nuclear Information System (INIS)

    Grillo, C.; Suyu, S. H.; Umetsu, K.; Rosati, P.; Caminha, G. B.; Mercurio, A.; Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M.; Lombardi, M.; Gobat, R.; Coe, D.; Koekemoer, A. M.; Postman, M.; Zitrin, A.; Halkola, A.

    2015-01-01

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M * /M ☉ ) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing

  14. CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Suyu, S. H.; Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Rosati, P.; Caminha, G. B. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Mercurio, A. [INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M. [INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143, Trieste (Italy); Lombardi, M. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universitè Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Coe, D.; Koekemoer, A. M.; Postman, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Zitrin, A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Halkola, A., E-mail: grillo@dark-cosmology.dk; and others

    2015-02-10

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M {sub *}/M {sub ☉}) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide

  15. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  16. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  17. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    progressed rapidly. That cosmic shear is now regarded as a key element of major missions aimed at probing dark energy is a feat of scientific persuasion—a decade ago not many believed it was realistic to even detect this tiny shear signal, let alone measure it with the percent-level accuracy needed to advance dark energy measurements. If weak lensing measurements deliver on their promise, then, in combination with other imaging and spectroscopic probes, they may well impact fundamental physics and cosmology. For example they may find evidence for an evolving dark energy component or signatures of departures from general relativity. These exciting prospects rest on new optical surveys planned for the next five years which will image a thousand square degrees or more of the sky to redshifts ~1 (compared to about a hundred square degrees imaged currently). Further, through photometric redshifts based on galaxy colors, lensing tomography methods will be applied to learn about the three-dimensional distribution of dark matter. Lensing measurements in other wavelengths, such as planned 21-cm surveys and CMB lensing, would add valuable diversity to measurement techniques. The case for the next generation optical surveys from the ground and space is compelling as well: they will produce another order of magnitude in data quantity and deliver images with minimal distortions due to the atmosphere and telescope optics. The coming decade therefore has the potential for exciting discoveries in gravitational lensing. Focus on Gravitational Lensing Contents A Bayesian approach to strong lensing modelling of galaxy clusters E Jullo, J-P Kneib, M Limousin, Á Elíasdóttir, P J Marshall and T Verdugo Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance Masahiro Takada and Sarah Bridle How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test? Pedro R Capelo and Priyamvada Natarajan Dark energy constraints

  18. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil...

  19. New case of gravitational lensing

    Energy Technology Data Exchange (ETDEWEB)

    Surdej, J.; Swings, J.-P.; Magain, P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-10-22

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10/sup 11/ M solar masses for the mass of the lensing galaxy and to ..delta..t approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO.

  20. Gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references

  1. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  2. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  3. Gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  4. Gravitational microlensing

    International Nuclear Information System (INIS)

    Zakharov, Aleksandr F; Sazhin, Mikhail V

    1998-01-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  5. Evidence for secondary gravitationally lensed images in radio quasistellar objects

    International Nuclear Information System (INIS)

    Rousey, C.E.

    1977-01-01

    Evidence is sought for the observability of the gravitational lens effect by studying the internal radio structures of quasistellar objects. Since the majority of the radio emitting quasars were observed to be multiply structured at radio wavelengths, and since the gravitational deflection of light is essentially frequency independent, these sources are very suitable objects for the investigation of gravitational imaging. From the theoretical framework of gravitational imaging, particularly in the treatment of the gravitational lenses as ''point-mass'' deflectors, several selection criteria were imposed on a sample of 208 radio emitting quasars in order to filter out only those sources which may be exhibiting radio imaging. The employment of further selection criteria, obtained from the consideration of the observed optical fields around the quasars, resulted in a small filtered sample of 10 quasars which are good candidates for exhibiting the gravitational lens effect. In particular, two quasars, 3C 268.4 and 3C 286, are observed to have good evidence for the presence of suitable gravitational lenses. Image models were computed for the image candidates which predict the masses and distances of the gravitational deflectors as well as estimations of the ''time delays'' of the images. It is also suggested that measurements of these image time delays may enable one to place stringent limits on the value of the Hubble constant

  6. Towards an understanding of dark matter: Precise gravitational lensing analysis complemented by robust photometric redshifts

    Science.gov (United States)

    Coe, Daniel Aaron

    The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve

  7. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  8. A gravitationally lensed quasar discovered in OGLE

    Science.gov (United States)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  9. Astrophysical Applications of Gravitational Lensing

    Science.gov (United States)

    Mediavilla, Evencio; Muñoz, Jose A.; Garzón, Francisco; Mahoney, Terence J.

    2016-10-01

    Contributors; Participants; Preface; Acknowledgements; 1. Lensing basics Sherry H. Suyu; 2. Exoplanet microlensing Andrew Gould; 3. Case studies of microlensing Veronica Motta and Emilio Falco; 4. Microlensing of quasars and AGN Joachim Wambsganss; 5. DM in clusters and large-scale structure Peter Schneider; 6. The future of strong lensing Chris Fassnacht; 7. Methods for strong lens modelling Charles Keeton; 8. Tutorial on inverse ray shooting Jorge Jimenez-Vicente.

  10. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.

  11. Solar gravitational redshift

    International Nuclear Information System (INIS)

    Lopresto, J.C.; Chapman, R.D.

    1980-01-01

    Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe 1 lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (Δlambdasub(observed)) averaged for the strong lines agrees well with the theoretically predicted shift (Δlambdasub(theoretical)). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data. By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion. (orig.)

  12. Two families of astrophysical diverging lens models

    Science.gov (United States)

    Er, Xinzhong; Rogers, Adam

    2018-03-01

    In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.

  13. Converging or Diverging Lens?

    Science.gov (United States)

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  14. Gravitational lensing statistics with extragalactic surveys - II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    NARCIS (Netherlands)

    Helbig, P; Marlow, D; Quast, R; Wilkinson, PN; Browne, IWA; Koopmans, LVE

    We present constraints on the cosmological constant lambda(0) from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical

  15. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    Science.gov (United States)

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  16. Infrared observations of the dark matter lens candidate Q2345+007

    Science.gov (United States)

    Mcleod, Brian; Rieke, Marcia; Weedman, Daniel

    1994-01-01

    Deep K-band observations are presented of the double image quasar Q2345+007. This has the largest separation (7.1 sec) of any quasar image pair considered as gravitationally lensed, so the required lens is massive (10(exp 13) solar masses). No lens has been detected in previous deep images at visible wavelengths, and we find no lens to limiting K magnitude 20.0 in the infrared image. This constrains any lens to being much less luminous than brightest cluster galaxies, while the lens must be much more massive than such galaxies to produce the observed separation. Because spectral data indicate exceptional intrinsic similarity in the quasar image components, this pair remains as the most intriguing example of an observed configuration requiring the presence of massive, concentrated dark matter acting as a gravitational lens.

  17. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  18. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  19. Gravitational lensing by spinning and radially moving lenses

    International Nuclear Information System (INIS)

    Sereno, M.

    2002-01-01

    The effect of currents of mass on bending of light rays is considered in the weak field regime. Following Fermat's principle and the standard theory of gravitational lensing, we derive the gravito-magnetic correction to time delay function and deflection angle caused by a geometrically-thin lens. The cases of both rotating and shifting deflectors are discussed

  20. General Relativity and Gravitation

    Science.gov (United States)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  1. Fermat potentials for nonperturbative gravitational lensing

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Kling, Thomas P.; Newman, Ezra T.

    2002-01-01

    The images of many distant galaxies are displaced, distorted and often multiplied by the presence of foreground massive galaxies near the line of sight; the foreground galaxies act as gravitational lenses. Commonly, the lens equation, which relates the placement and distortion of the images to the real source position in the thin-lens scenario, is obtained by extremizing the time of arrival among all the null paths from the source to the observer (Fermat's principle). We show that the construction of envelopes of certain families of null surfaces constitutes an alternative variational principle or version of Fermat's principle that leads naturally to a lens equation in a generic spacetime with any given metric. We illustrate the construction by deriving the lens equation for static asymptotically flat thin lens spacetimes. As an application of the approach, we find the bending angle for moving thin lenses in terms of the bending angle for the same deflector at rest. Finally we apply this construction to cosmological spacetimes (FRW) by using the fact they are all conformally related to Minkowski space

  2. Theory and experiment in gravitational physics

    Science.gov (United States)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  3. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  4. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  5. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  6. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  7. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  8. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  9. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  10. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  11. Constraints on Dark Energy Models from Galaxy Clusters and Gravitational Lensing Data

    Directory of Open Access Journals (Sweden)

    Alexander Bonilla

    2018-01-01

    Full Text Available The Sunyaev–Zel’dovich (SZ effect is a global distortion of the Cosmic Microwave Background (CMB spectrum as a result of its interaction with a hot electron plasma in the intracluster medium of large structures gravitationally viralized such as galaxy clusters (GC. Furthermore, this hot gas of electrons emits X-rays due to its fall in the gravitational potential well of the GC. The analysis of SZ and X-ray data provides a method for calculating distances to GC at high redshifts. On the other hand, many galaxies and GC produce a Strong Gravitational Lens (SGL effect, which has become a useful astrophysical tool for cosmology. We use these cosmological tests in addition to more traditional ones to constrain some alternative dark energy (DE models, including the study of the history of cosmological expansion through the cosmographic parameters. Using Akaike and Bayesian Information Criterion, we find that the w C D M and Λ C D M models are the most favoured by the observational data. In addition, we found at low redshift a peculiar behavior of slowdown of the universe, which occurs in dynamical DE models when we use data from GC.

  12. Single lens to lens duplication: The missing link

    OpenAIRE

    Bhatt, Rupal; Jethani, Jitendra; Saluja, Praveen; Bharti, Vinay

    2008-01-01

    Congenital anomalies of the lens include a wide range from lens coloboma to primary aphakia and doubling of lens. There have been few case reports of double lens; the etiology suggested is metaplastic changes in the surface ectoderm that leads to formation of two lens vesicles and hence resulting in double lens. We report a case with bilobed lens, which raises the possibility of explaining the etiology of double lens.

  13. An unusually strong Einstein ring in the radio source PKS1830-211

    International Nuclear Information System (INIS)

    Jauncey, D.L.

    1991-01-01

    RADIO observations of the strong, flat-spectrum radio source PKS1830-211 revealed a double structure, with a separation of 1 arcsec, suggesting that it might be a gravitationally lensed object. We have now obtained high-resolution radio images of PKS1830-211 from several interferometric radiotelescope networks, which show an unusual elliptical ring-like structure connecting the two brighter components. The presence of the ring, and the similarity of the two brighter spots, argue strongly that this is indeed a gravitationally lensed system, specifically an Einstein ring in which lens and lensed object are closely aligned. Although the source is close to the galactic plane, it seems that both the lens and background (lensed) object are extragalactic. This object is one hundred times brighter than either of the two previously discovered radio Einstein rings, and is among the six brightest flat-spectrum sources in the sky. Its brightness makes it a peculiar object: it must involve either a chance alignment of a lensing object with an unusually bright background source, or an alignment with a less bright object but amplified to an unusual degree. (author)

  14. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  15. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  16. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  17. Accelerating Photons with Gravitational Radiation

    CERN Document Server

    Shore, Graham M

    2001-01-01

    The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.

  18. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Science.gov (United States)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  19. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  20. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  1. Resonant interaction of photons with gravitational waves

    International Nuclear Information System (INIS)

    Mendonca, J.T.; Drury, L. O'C.

    2002-01-01

    The interaction of photons with a low-amplitude gravitational wave propagating in a flat space-time is studied by using an exact model of photon dynamics. The existence of nearly resonant interactions between the photons and the gravitational waves, which can take place over large distances, can lead to a strong photon acceleration. Such a resonant mechanism can eventually be useful to build consistent new models of gamma-ray emitters

  2. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  3. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  4. A new case of gravitational lensing

    International Nuclear Information System (INIS)

    Surdej, J.; Swings, J.-P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-01-01

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10 11 M solar masses for the mass of the lensing galaxy and to Δt approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO. (author)

  5. Poisson equation for weak gravitational lensing

    International Nuclear Information System (INIS)

    Kling, Thomas P.; Campbell, Bryan

    2008-01-01

    Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system

  6. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi [Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-20

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}( f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.

  7. High-intensification regions of gravitational lenses

    International Nuclear Information System (INIS)

    Benson, J.R.; Cooke, J.H.

    1979-01-01

    We examine the intensification, I, near the singular points in the object plane of an extended spherical gravitational lens. Geometrical optics predicts an infinite I for a point object located on a singularity. The function I, however, turns out to be integrable over the object plane. We make a detailed physical optics calculation for I. No singularities appear, and there are some interesting, marginally detectable diffraction phenomena. The two types of bright regions, the ''halo'' and the ''spike,'' behave very differently. Simple order-of-magnitude expressions give estimates for the brightness and duration of a high-intensification event

  8. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  9. EXTRACTION OF THE MEAN RADIAL MASS-DISTRIBUTION IN CLUSTERS OF GALAXIES BY OBSERVATIONS OF WEAK GRAVITATIONAL IMAGING

    NARCIS (Netherlands)

    BREIMER, TG

    The gravitational fields of clusters of galaxies cause systematic distortions of the images of background galaxies. Recently, the lens inversion problem, reconstruction of the mean surface density distribution in the lens from the pattern of systematic distortions, has been the object of several

  10. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  11. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  12. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  13. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  14. Gravitational lensing and extra dimensions

    International Nuclear Information System (INIS)

    He, X-G.; University of Melbourne, Parkville, VIC; Joshi, G.C.; McKellar, B.H.J.

    1999-08-01

    We study gravitational tensing and the bending of light in low energy scale (M s ) gravity theories with extra space-time dimensions 'n'. We find that due to the presence of spin-2 Kaluza-Klein states from compactification, a correction to the deflection angle with a strong quadratic dependence on the photon energy is introduced. No deviation from the Einstein General Relativity prediction for the deflection angle for photons grazing the Sun in the visible band with 15% accuracy (90% c.l.) implies that the scale M s has to be larger than 1.4(2/(n-2)) 1/4 TeV and approximately 4 TeV for n=2. This lower bound is comparable with that from collider physics constraints. Gravitational tensing experiments with higher energy photons can provide stronger constraints. (authors)

  15. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  16. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  17. Gravitational Waves: A New Observational Window

    Science.gov (United States)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  18. Gravitational Waves from Oscillons after Inflation.

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-06

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  19. Feynman Lectures on Gravitation

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40

  20. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  1. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  2. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  3. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  4. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  5. Post-lens tear turbidity and visual quality after scleral lens wear.

    Science.gov (United States)

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p turbidity. © 2017 Optometry Australia.

  6. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  7. Refractive neutron lens

    International Nuclear Information System (INIS)

    Petrov, P.V.; Kolchevsky, N.N.

    2013-01-01

    Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)

  8. Probing a gravitational cat state

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2015-01-01

    We investigate the nature of a gravitational two-state system (G2S) in the simplest setup in Newtonian gravity. In a quantum description of matter a single motionless massive particle can in principle be in a superposition state of two spatially separated locations. This superposition state in gravity, or gravitational cat state, would lead to fluctuations in the Newtonian force exerted on a nearby test particle. The central quantity of importance for this inquiry is the energy density correlation. This corresponds to the noise kernel in stochastic gravity theory, evaluated in the weak field nonrelativistic limit. In this limit quantum fluctuations of the stress–energy tensor manifest as the fluctuations of the Newtonian force. We describe the properties of such a G2S system and present two ways of measuring the cat state for the Newtonian force, one by way of a classical probe, the other a quantum harmonic oscillator. Our findings include: (i) mass density fluctuations persist even in single particle systems, and they are of the same order of magnitude as the mean; (ii) a classical probe generically records a non-Markovian fluctuating force; (iii) a quantum probe interacting with the G2S system may undergo Rabi oscillations in a strong coupling regime. This simple prototypical gravitational quantum system could provide a robust testing ground to compare predictions from alternative quantum theories, since the results reported here are based on standard quantum mechanics and classical gravity. (paper)

  9. Gravitational waves from phase transition in split NMSSM

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2018-04-01

    We discuss gravitational wave signal from the strongly first order electroweak phase transition in the split NMSSM. We find that for sets of parameters predicting successful electroweak baryogenesis the gravitational wave signal can be within the reach of future experiments LISA, BBO and Ultimate DECIGO.

  10. Problem of energy-momentum and theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy

  11. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  12. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  13. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  14. Gravitational lensing by eigenvalue distributions of random matrix models

    Science.gov (United States)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  15. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  16. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  17. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  18. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  19. Capsular 'pits' in the human lens.

    OpenAIRE

    Harris, M. L.; Brown, N. A.; Shun-Shin, G. A.; Smith, G. T.

    1992-01-01

    The lens capsule is an atypical basement membrane surrounding the lens epithelial cells and lens fibres which make up the remainder of the human lens. A seemingly unreported morphological change visible in the lens capsule with the biomicroscope is described.

  20. Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe

    International Nuclear Information System (INIS)

    Linde, A.D.

    1980-01-01

    It is shown that the interaction of the gravitational field with matter leads to a strong modification of the effective gravitational constant in the early universe. In certain cases this leads even to the change of sign of the gravitational constant, i.e. to antigravity in the early universe. (orig.)

  1. The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing

    Science.gov (United States)

    Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk; van der Burg, Remco F. J.; Viola, Massimo

    2018-07-01

    We measure the gravitational lensing signal around satellite galaxies in a sample of galaxy clusters at z measurements of faint, background sources in the vicinity of bright satellite galaxies. We find a small but significant bias, as light from the lenses makes the shapes of background galaxies appear radially aligned with the lens. We account for this bias by applying a correction that depends on both lens size and magnitude. We also correct for contamination of the source sample by cluster members. We use a physically motivated definition of subhalo mass, namely the mass bound to the subhalo, mbg, similar to definitions used by common subhalo finders in numerical simulations. Binning the satellites by stellar mass we provide a direct measurement of the subhalo-to-stellar-mass relation, log mbg/M⊙ = (11.54 ± 0.05) + (0.95 ± 0.10)log [m⋆/(2 × 1010 M⊙)]. This best-fitting relation implies that, at a stellar mass m⋆ ˜ 3 × 1010 M⊙, subhalo masses are roughly 50 per cent of those of central galaxies, and this fraction decreases at higher stellar masses. We find some evidence for a sharp change in the total-to-stellar mass ratio around the clusters' scale radius, which could be interpreted as galaxies within the scale radius having suffered more strongly from tidal stripping, but remain cautious regarding this interpretation.

  2. Listening music of gravitation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru

  3. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  4. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  5. The sloan lens ACS survey. VI. Discovery and analysis of a double Einstein ring

    NARCIS (Netherlands)

    Gavazzi, Raphael; Treu, Tommaso; Koopmans, Leon V. E.; Bolton, Adam S.; Moustakas, Leonidas A.; Burles, Scott; Marshall, Philip J.

    2008-01-01

    We report the discovery of two concentric Einstein rings around the gravitational lens SDSS J0946+ 1006. The main lens is at redshift z(l) = 0.222, while the inner ring ( 1) is at redshift z(s1) 0.609 (R-Ein1 = 1.43 '' +/- 0.01 ''). The wider image separation ( R-Ein2 = 2.07 '' +/- 0.02 '') of the

  6. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M.

    1993-01-01

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  7. Intrinsic problems of the gravitational baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzova, E.V., E-mail: arbuzova@uni-dubna.ru [Novosibirsk State University, Novosibirsk, 630090 (Russian Federation); Department of Higher Mathematics, Dubna State University, 141980 Dubna (Russian Federation); Dolgov, A.D., E-mail: dolgov@fe.infn.it [Novosibirsk State University, Novosibirsk, 630090 (Russian Federation); ITEP, Bol. Cheremushkinsaya ul., 25, 117259 Moscow (Russian Federation)

    2017-06-10

    Modification of gravity due to the curvature dependent term in the gravitational baryogenesis scenario is considered. It is shown that this term leads to the fourth order differential equation of motion for the curvature scalar instead of the algebraic one of General Relativity (GR). The fourth order gravitational equations are generically unstable with respect to small perturbations. Non-linear in curvature terms may stabilize the solution but the magnitude of the stabilized curvature scalar would be much larger than that dictated by GR, so the standard cosmology would be strongly distorted.

  8. Intrinsic problems of the gravitational baryogenesis

    Science.gov (United States)

    Arbuzova, E. V.; Dolgov, A. D.

    2017-06-01

    Modification of gravity due to the curvature dependent term in the gravitational baryogenesis scenario is considered. It is shown that this term leads to the fourth order differential equation of motion for the curvature scalar instead of the algebraic one of General Relativity (GR). The fourth order gravitational equations are generically unstable with respect to small perturbations. Non-linear in curvature terms may stabilize the solution but the magnitude of the stabilized curvature scalar would be much larger than that dictated by GR, so the standard cosmology would be strongly distorted.

  9. Intraocular lens fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  10. Intraocular lens fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  11. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  12. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  13. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  14. Deflection of light and particles by moving gravitational lenses

    International Nuclear Information System (INIS)

    Wucknitz, Olaf; Sperhake, Ulrich

    2004-01-01

    Various authors have investigated the problem of light deflection by radially moving gravitational lenses, but the results presented so far do not appear to agree on the expected deflection angles. Some publications claim a scaling of deflection angles with 1-v to first order in the radial lens velocity v, while others obtained a scaling with 1-2v. In this paper we generalize the calculations for arbitrary lens velocities and show that the first result is the correct one. We discuss the seeming inconsistency of relativistic light deflection with the classical picture of moving test particles by generalizing the lens effect to test particles of arbitrary velocity, including light as a limiting case. We show that the effect of radial motion of the lens is very different for slowly moving test particles and light and that a critical test particle velocity exists for which the motion of the lens has no effect on the deflection angle to first order. An interesting and not immediately intuitive result is obtained in the limit of a highly relativistic motion of the lens towards the observer, where the deflection angle of light reduces to zero. This phenomenon is elucidated in terms of moving refractive media. Furthermore, we discuss the dragging of inertial frames in the field of a moving lens and the corresponding Lense-Thirring precession, in order to shed more light on the geometrical effects in the surroundings of a moving mass. In a second part we discuss the effect of transversal motion on the observed redshift of lensed sources. We demonstrate how a simple kinematic calculation explains the effects for arbitrary velocities of the lens and test particles. Additionally we include the transversal motion of the source and observer to show that all three velocities can be combined into an effective relative transversal velocity similar to the approach used in microlensing studies

  15. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  16. A new theory of space-time and gravitation

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1982-01-01

    Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  19. The lens and cataracts.

    Science.gov (United States)

    Matthews, Andrew G

    2004-08-01

    It is conservatively estimated that some form of lens opacity is present in 5% to 7% of horses with otherwise clinically normal eyes.These opacities can range from small epicapsular remnants of the fetal vasculature to dense and extensive cataract. A cataract is defined technically as any opacity or alteration in the optical homogeneity of the lens involving one or more of the following: anterior epithelium, capsule, cortex, or nucleus. In the horse, cataracts rarely involve the entire lens structure (ie, complete cataracts) and are more usually localized to one anatomic landmark or sector of the lens. Complete cataracts are invariably associated with overt and significant visual disability. Focal or incomplete cataracts alone seldom cause any apparent visual dysfunction in affected horses,however.

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contacto de color Sep. 26, 2013 It started as an impulsive buy from a souvenir shop, but ... require the same level of care or consideration as a standard contact lens because they can be ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... With Proper Contact Lens Care Apr 23, 2018 Solar Eclipse Inflicts Damage in the Shape of the ... edging closer, thanks to a wave of new technologies aiming to fix failing eye parts with human- ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... glow-in-the-dark lizard lenses, costume contacts can certainly add a spooky, eye-popping touch. But ... consideration as a standard contact lens because they can be purchased over-the-counter or on the ...

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... valid prescription that includes the brand name, lens measurements, and expiration date. Purchase the colored contact lenses ... with human-made versions. U.S. News Highlights the Value of Ophthalmologists APR 20, 2018 By Dan T. ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... had not been properly fitted by an eye care professional, the lenses stuck to my eye like ... lenses do not require the same level of care or consideration as a standard contact lens because ...

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  11. Gravitational waves from cosmic bubble collisions

    International Nuclear Information System (INIS)

    Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han

    2015-01-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  12. Spherically symmetric radiation in gravitational collapse

    International Nuclear Information System (INIS)

    Bridy, D.J.

    1983-01-01

    This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases

  13. Gravitational waves and antennas

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...

  14. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  15. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  16. The ring cycle: an iterative lens reconstruction technique applied to MG1131 + 0456

    International Nuclear Information System (INIS)

    Kochanek, C.S.; Blandford, R.D.; Lawrence, C.R.; Narayan, R.

    1989-01-01

    A new technique is described for the analysis of well-resolved gravitational lens images. This method allows us to solve for the brightness distribution of the unlensed source as well as a parametrized model of the lens. Our algorithm computes a figure of merit for a lens model based on the scatter in the surface brightnesses of image elements that, according to the model, come from the same source element. Minimization of the figure of merit leads to an optimum solution for the source and the lens. We present a successful application of the method to VLA maps of the 'Einstein ring' radio source MG1131 + 0456 observed by previous authors. The inversion gives a normal galaxy-like elliptical potential for the lens and an ordinary double-lobed structure for the background radio source. (author)

  17. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    transition to superconductivity in neutron stars. If the neutrons and protons in the cores of the neutron stars in low-mass X-ray binary systems are superfluid and superconducting, respectively, the resultant strong coupling between different regions of the core and between the core and the solid crust appears likely to prevent gravitational radiation by r-wave fluid motions from amplifying them. If so, gravitational radiation by r-waves would not play a significant role in determining the spin rates of these neutron stars, in accordance with the standard picture in which their spins are determined by magnetic spin evolution. (author)

  18. Investigations of Galaxy Clusters Using Gravitational Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  19. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    Science.gov (United States)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  20. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  1. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  2. The energy-momentum problem and gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy

  3. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  4. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  5. Glitches and gravitational waves

    Indian Academy of Sciences (India)

    A M Srivastava

    2017-10-09

    Oct 9, 2017 ... We also discuss gravitational wave production due to rapidly changing ... efficient source of energy loss during the cooling of the neutron star. ..... [3] U S Gupta, R K Mohapatra, A M Srivastava and V K. Tiwari, Phys. Rev. D 82 ...

  6. Extragalactic Gravitational Collapse

    Science.gov (United States)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  7. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...

  8. Gauge theory and gravitation

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu

    1983-01-01

    These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)

  9. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  10. Radiation, photon orbits, and torsion in strongly curved spacetimes

    International Nuclear Information System (INIS)

    Sandberg, V.D.

    1975-01-01

    Four topics on the strong field aspects of general relativity are presented. These are the role of constraining forces for ultrarelativistic particle motion as a source of gravitational radiation, the study of electromagnetic radiation due to space-time oscillations, the light scattering properties of a class of naked singularities, and the relation of gravitation theories with torsion to general relativity. The astrophysical implications and unusual physical phenomena associated with very intense gravitational fields are discussed for these four topics

  11. Symmetric lens with extended depth of focus

    OpenAIRE

    Cho, Sung Nae

    2008-01-01

    The lens surface profile is derived based on the instantaneous focal length versus the lens radius data. The lens design based on instantaneous focal length versus the lens radius data has many useful applications in software assisted image focusing technology.

  12. Predicting gravitational lensing by stellar remnants

    Science.gov (United States)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  13. A catoptric lens

    International Nuclear Information System (INIS)

    Rambauske, W.R.

    1973-01-01

    The invention relates to a catoptric lens for combining energies transmitted by several sources such as lasers; said lens comprising mirrors, the reflective surfaces of which have their focuses spaced from a common axis of symmetry. By means of these reflecting surfaces, which are generated by the nutation of portions of quadratic conics about the axis of symmetry, it is possible to focus the energy emmited by several lasers at the focus of the exit-mirror reflecting surface. This can be applied to thermonuclear fusion [fr

  14. VELOCITY AND GRAVITATIONAL EFFECTS ON GPS SATELLITES: AN OUTLINE OF EARLY PREDICTION AND DETECTION OF STRONG EARTHQUAKES EFECTOS DE VELOCIDAD Y DE GRAVITACIÓN EN GPS SATELITALES: UN ESQUEMA PARA LA PREDICCIÓN Y DETECCIÓN TEMPRANA DE FUERTES TERREMOTOS

    Directory of Open Access Journals (Sweden)

    H Torres-Silva

    2010-12-01

    Full Text Available Today, the global navigation satellite systems, GPS used as global positioning systems, are based on a gravitational model and hence they are only operative when several relativistic effects are taken into account. The most important relativistic effects (to order 1/c² are: the Doppler red shift of second order, due to the motion of the satellite (special relativity and the Einstein gravitational blue shift effect of the satellite clock frequency (equivalence principle of general relativity. Both of these effects can be treated at a basic level, making for an appealing application of relativity to every life. This paper examines the significant effects that must be taken into account in the design and operation of systems GPS without resorting to the theory of special and general relativity, yielding the same results for these systems, where one of the effects can be treated with the time contraction approach proposed here and the other using the Newton's theory as an approximation of the General Relativity. This approach allow us to propose an outline of early prediction and detection on strong earthquake phenomena.Hoy en día, los sistemas de navegación global por satélite, GPS utilizados como sistemas de posicionamiento global, se basan en un modelo gravitacional y por lo tanto solo son operativos cuando varios efectos relativistas son tenidos en cuenta. Los efectos relativistas más importantes (hasta el orden 1/c² son: el desplazamiento Doppler al rojo de segundo orden, debido al movimiento del satélite (la relatividad especial y el efecto gravitacional de Einstein corrimiento al azul de la frecuencia de reloj del satélite (principio de equivalencia de la relatividad general. Ambos efectos pueden ser tratados en un nivel básico, apelando a la relatividad del día a día. Este artículo examina los efectos significativos que deben tenerse en cuenta en la operación de sistemas de GPS sin tener que recurrir a las teorías de la

  15. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  16. Gravitational Waves From a Dark (Twin) Phase Transition

    CERN Document Server

    Schwaller, Pedro

    2015-01-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.

  17. Chiral gravitational waves and baryon superfluid dark matter

    Science.gov (United States)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  18. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy – PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  19. Contact lens wear and dry eyes: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Markoulli M

    2017-02-01

    Full Text Available Maria Markoulli, Sailesh Kolanu School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia Abstract: The number of contact lens wearers worldwide has remained relatively stable over the past decade, despite the investment that has gone into contact lens technology. This is largely because 10%–50% of wearers dropout of contact lens wear within 3 years of commencement; the most common reason cited being contact lens discomfort (CLD. Of the symptoms reported, sensation of dry eye is the most common. Given the outcome of reduced wearing time, increased chair time, and ultimate contact lens discontinuation, the challenge is to identify the warning signs of CLD early on. Clinically detectable changes such as conjunctival staining, conjunctival indentation, conjunctival epithelial flap formation, lid wiper epitheliopathy, Demodex blepharitis, and meibomian gland dysfunction have been linked to CLD, highlighting the need to perform regular aftercare visits to identify these changes. At a cellular level, conjunctival metaplasia and reduced goblet cell density have been linked to CLD, leading to a downstream effect on the tear film breakup time of contact lens wearers. These factors suggest a strong link between CLD and friction, raising the need to target this as a means of minimizing CLD. The purpose of this review is to identify the clinical signs that relate to CLD as a means of earlier detection and management in order to combat contact lens dropout. Keywords: contact lens discomfort, dry eye disease, lid wiper epitheliopathy, tear film biomarkers, meibomian gland dysfunction

  20. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  1. Gravitational lensing by a Horndeski black hole

    International Nuclear Information System (INIS)

    Badia, Javier; Eiroa, Ernesto F.

    2017-01-01

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  2. On the variation of the gravitational constant G

    International Nuclear Information System (INIS)

    De Sabbata, V.

    1980-01-01

    We consider the variation of the gravitational constant G starting from Dirac's large number hypothesis. After a brief description of the various gravitational theories which, other than General Relativity, incorporate the variation of G, we consider the geophysical and astrophysical consequences of the variation of G and the present status of the performed experiments. Finally, a short account on strong gravity is given which seems to provide a basis for Dirac's large number hypothesis. (author)

  3. A Tribute to Len Barton

    Science.gov (United States)

    Tomlinson, Sally

    2010-01-01

    This article constitutes a short personal tribute to Len Barton in honour of his work and our collegial relationship going back over 30 years. It covers how Len saw his intellectual project of providing critical sociological and political perspectives on special education, disability and inclusion, and his own radical political perspectives. Len's…

  4. Luneburg lens in silicon photonics.

    Science.gov (United States)

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  5. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  6. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  7. Spacetime and gravitation.

    Science.gov (United States)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. There is no such thing as a "one size fits all" contact lens. Lenses that are not properly fitted may scratch the eye or cause blood vessels to grow into the cornea. Even if you have perfect vision, you need to get an eye exam and a prescription ...

  9. Contact Lens Risks

    Science.gov (United States)

    ... There is a risk of eye infection from bacteria in swimming pool water, hot tubs, lakes and the ocean Replace your contact lens storage case every 3 months or as directed by your eye care professional. Other Risks of Contact Lenses Other risks of contact lenses include pink eye ( ...

  10. MISSING: BUBBLE CHAMBER LENS

    CERN Multimedia

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  11. The Lens of Chemistry

    Science.gov (United States)

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her with a corneal ... A recent article from U.S. News and World Report explains what ophthalmologists are and how they can ...

  13. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... can be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. Lenses that are not properly fitted may scratch the eye or cause blood vessels to grow into ...

  15. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  16. Bimetric Machian gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, R

    1980-11-22

    A bimetric theory of gravitation within a Machian framework is developed on the basis of considerations which are completely divorced from Newton's theory. The theory is assumed to hold in any conceivable cosmos and possesses the Machian properties of being singular in the absence of matter and of explicitly incorporating the idea that properties of space-time are determined not only by local matter, but also by the average distribution of cosmological matter.

  17. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  18. Gravitational field mass

    International Nuclear Information System (INIS)

    Penrose, R.

    1986-01-01

    The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented

  19. General Relativity and Gravitation

    Science.gov (United States)

    Ehlers, J.; Murdin, P.

    2000-11-01

    The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...

  20. Fivebrane gravitational anomalies

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie

    2000-01-01

    Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten

  1. Nondissipative gravitational turbulence

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Zybin, K.P.

    1988-01-01

    The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence

  2. Gravitational lensing beyond the weak-field approximation

    Science.gov (United States)

    Perlick, Volker

    2014-01-01

    Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat's principle and the exact lens map of Frittelli and Newman.

  3. Gravitational lensing beyond the weak-field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Perlick, Volker, E-mail: perlick@zarm.uni-bremen.de [ZARM, University of Bremen, 28359 Bremen (Germany)

    2014-01-14

    Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.

  4. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  5. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  6. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  7. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  8. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  9. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  10. 3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Sánchez-Janssen, Rubén; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Van der Wel, Arjen; Erb, Dawn K.; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.; Marchesini, Danilo; Quadri, Ryan

    2012-01-01

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] λ5007 and Hβ emission lines with rest-frame equivalent widths of 2000 ± 100 and 520 ± 40 Å, respectively. The source has a stellar mass ∼10 8 M ☉ , sSFR ∼ 100 Gyr –1 , and detection of [O III] λ4363 yields a metallicity of 12 + log (O/H) = 7.5 ± 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size r e ∼300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey.

  11. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  12. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  13. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  14. SDSS J2222+2745: A GRAVITATIONALLY LENSED SEXTUPLE QUASAR WITH A MAXIMUM IMAGE SEPARATION OF 15.''1 DISCOVERED IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Dahle, H.; Groeneboom, N.; Gladders, M. D.; Abramson, L. E.; Sharon, K.; Bayliss, M. B.; Wuyts, E.; Koester, B. P.; Brinckmann, T. E.; Kristensen, M. T.; Lindholmer, M. O.; Nielsen, A.; Krogager, J.-K.; Fynbo, J. P. U.

    2013-01-01

    We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a z s = 2.82 quasar lensed by a foreground galaxy cluster at z l = 0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.''1. Both the large image separations and the high image multiplicity are in themselves rare among known lensed quasars, and observing the combination of these two factors is an exceptionally unlikely occurrence in present data sets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow-up and verification with the 2.56 m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from 2011 September to 2012 September reveals significant variability at the ∼10%-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system, we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z s = 2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ∼100 days to ∼6 yr

  15. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  16. Properties of quantum self-gravitating gases

    International Nuclear Information System (INIS)

    Rumyantseva, E.N.

    1981-01-01

    Ways of development of the quantum field theory in the general relativity theory are under consideration. A direction, where consideration of quantum fields in strong nonstatic gravitational fields leads to such effects as particle production, is found out. Authors managed to explain properties of quantum self-gravitating gases on the base of an expansion the fugacity in power series for bose- and fermi gases. Expressions for fluctuations in statistical models of the Fridmann universe are presented. The spectrum density of relict neutrinos in Fridmann models is calculated. A characteristic low boundary of the neutrino energy spectrum constitutes 1 MeV. A number of neutrinos with such energies practically is equal to zero. A great number of neutrinos has energies 0 . It is precisely these neurinos, which are responsible for the closed state of the universe according to the built up model

  17. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  18. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  19. Superstatistics and Gravitation

    Directory of Open Access Journals (Sweden)

    Octavio Obregón

    2010-09-01

    Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.

  20. Nuclear limits on gravitational waves from elliptically deformed pulsars

    International Nuclear Information System (INIS)

    Krastev, Plamen G.; Li Baoan; Worley, Aaron

    2008-01-01

    Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the star's quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude h 0 depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances 0.18 kpc to 0.35 kpc from Earth, the maximalh 0 is found to be in the range of ∼[0.4-1.5]x10 -24 . This prediction serves as the first direct nuclear constraint on the gravitational radiation. Its implications are discussed

  1. Gravitational entropy of nonstationary black holes and spherical shells

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1989-01-01

    The problem of defining the gravitational entropy of a nonstationary black hole is considered in a simple model consisting of a spherical shell which collapses into a preexisting black hole. The second law of black-hole mechanics strongly suggests identifying one-quarter of the area of the event horizon as the gravitational entropy of the system. It is, however, impossible to accurately locate the position of the global event horizon using only local measurements. In order to maintain a local thermodynamics, it is suggested that the entropy of the black hole be identified with one-quarter the area of the apparent horizon. The difference between the event-horizon entropy (to the extent it can be determined) and the apparent-horizon entropy may then be interpreted as the gravitational entropy of the collapsing shell. The total (event-horizon) gravitational entropy evolves in a smooth (C 0 ) fashion, even in the presence of δ-functional shells of matter

  2. The potential for very high-frequency gravitational wave detection

    International Nuclear Information System (INIS)

    Cruise, A M

    2012-01-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)

  3. SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies

    Science.gov (United States)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-06-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  4. A Correlation of Thin Lens Approximation to Thick Lens Design by Using Coddington Factors in Lens Design and Manufacturing

    OpenAIRE

    FARSAKOĞLU, Ö. Faruk

    2014-01-01

    The effect of Coddington factors on aberration functions has been analysed using thin lens approximation. Minimizing spherical aberrations of singlet lenses using Coddington factors in lens design depending on lens manufacturing is discussed. Notation of lens test plate pairs used in lens manufacturing is also presented in terms of Coddington shape factors.

  5. Gravitational field self-limitation and its role in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Gershtein, Semen S; Logunov, Anatolii A; Mestvirishvili, Mirian A [State Research Center ' Institute of High Energy Physics' , Protvino, Moscow Region (Russian Federation)

    2006-11-30

    It is shown that according to the relativistic theory of gravity, the gravitational field slows down the rate of time flow but stops doing so when the field is strong, thus displaying its tendency toward self-limitation of the gravitational potential. This property of the gravitational field prevents massive bodies from collapsing and allows a homogeneous isotropic universe to evolve cyclically. (physics of our days)

  6. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  7. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  8. UCN gravitational spectrometer

    International Nuclear Information System (INIS)

    Kawabata, Yuji

    1988-01-01

    Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)

  9. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  10. Gravitating lepton bag model

    International Nuclear Information System (INIS)

    Burinskii, A.

    2015-01-01

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system

  11. Two theorems on flat space-time gravitational theories

    International Nuclear Information System (INIS)

    Castagnino, M.; Chimento, L.

    1980-01-01

    The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)

  12. Effect of undetected gravitational lenses on statistical measures of quasar evolution

    International Nuclear Information System (INIS)

    Turner, E.L.

    1980-01-01

    Brightness amplifications by undetected gravitational lenses could be responsible in part for the apparent evolution of quasars, particularly for those which appear to be of high luminosity. It is shown that values of Vover-bar/over-barVover-bar/sub M/> or =0.6 and number-magnitude slopes > or =0.9 need not necessarily imply source density evolution if lensing events are common. Quasar samples which are defined by flux limits and minimum luminosities will preferentially include gravitational lens systems. Even if lensing events are quite rare, a large fraction of the lensed quasars will appear more luminous than the most luminous unlensed quasar

  13. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  14. On the gravitational radiation formula

    International Nuclear Information System (INIS)

    Schaefer, G.; Dehnen, H.

    1980-01-01

    For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)

  15. To theory of gravitational interaction

    OpenAIRE

    Minkevich, A. V.

    2008-01-01

    Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.

  16. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  17. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  18. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  19. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  20. Conservation laws and gravitational radiation

    International Nuclear Information System (INIS)

    Rastall, P.

    1977-01-01

    A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)

  1. Vignettes in Gravitation and Cosmology

    CERN Document Server

    Sriramkumar, L

    2012-01-01

    This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.

  2. Discrete symmetries, strong CP problem and gravity

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1993-05-01

    Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs

  3. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, Istvan

    1997-01-01

    If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave

  4. The SWELLS survey - IV. Precision measurements of the stellar and dark matter distributions in a spiral lens galaxy

    NARCIS (Netherlands)

    Barnabè, Matteo; Dutton, Aaron A.; Marshall, Philip J.; Auger, Matthew W.; Brewer, Brendon J.; Treu, Tommaso; Bolton, Adam S.; Koo, David C.; Koopmans, Léon V. E.

    We construct a fully self-consistent mass model for the lens galaxy SDSS J2141 at redshift 0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very flexible axisymmetric mass model

  5. Gravitational wave experiments

    CERN Document Server

    Hamilton, W O

    1993-01-01

    There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The first two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the field since most presented the results of completed investigations rather than making promises of wonderf...

  6. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  7. Observations of gravitational lenses

    International Nuclear Information System (INIS)

    Fort, B.

    1990-01-01

    During the last tow years a burst of results has come from radio and optical surveys of ''galaxy lenses'' (where the main deflector is a galaxy). These are reviewed. On the other hand, in September 1985 we pointed out a very strange blue ring-like structure on a Charge-Coupled Device image of the cluster of galaxies Abell 370. This turned out to be Einstein arcs discovery. Following this discovery, new observational results have shown that many rich clusters of galaxies can produce numerous arclets: tangentially distorted images of an extremely faint galaxy population probably located at redshift larger than 1. This new class of gravitational lenses proves to be an important observational topic and this will be discussed in the second part of the paper. (author)

  8. Gravitational waves from the electroweak phase transition

    International Nuclear Information System (INIS)

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.

    2012-01-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10 −4 Hz, and give intensities as high as h 2 Ω GW ∼ 10 −8

  9. Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cheongho [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Shin, In-Gu; Jung, Youn Kil [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2017-02-01

    Chang–Refsdal (C–R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C–R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C–R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C–R lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C–R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C–R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C–R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.

  10. Probing the Universe with Gravitational Waves: the Laser Interferometer Space Antenna (LISA)

    NARCIS (Netherlands)

    Prince, T.A.; Binetruy, P.; Centrella, J.; Finn, L.; Hogan, C.; Nelemans, G.A.; Phinney, S.

    2007-01-01

    - For the LISA International Science Team: LISA is a joint NASA/ESA space mission designed to measure gravitational waves in the band from 0.1 mHz to 0.1 Hz, a band that is richly populated by strong sources of gravitational waves. Signals will come from a wider range of sources: massive black holes

  11. Characteristics of the thick, compound refractive lens

    International Nuclear Information System (INIS)

    Pantell, Richard H.; Feinstein, Joseph; Beguiristain, H. Raul; Piestrup, Melvin A.; Gary, Charles K.; Cremer, Jay T.

    2003-01-01

    A compound refractive lens (CRL), consisting of a series of N closely spaced lens elements each of which contributes a small fraction of the total focusing, can be used to focus x rays or neutrons. The thickness of a CRL can be comparable to its focal length, whereupon a thick-lens analysis must be performed. In contrast with the conventional optical lens, where the ray inside the lens follows a straight line, the ray inside the CRL is continually changing direction because of the multiple refracting surfaces. Thus the matrix representation for the thick CRL is quite different from that for the thick optical lens. Principal planes can be defined such that the thick-lens matrix can be converted to that of a thin lens. For a thick lens the focal length is greater than for a thin lens with the same lens curvature, but this lengthening effect is less for the CRL than for the conventional optical lens

  12. Spatially modulated instabilities of holographic gauge-gravitational anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Department of Space Science, and International Research Institute of Multidisciplinary Science,Beihang University,Beijing 100191 (China); Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Pena-Benitez, Francisco [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via A. Pascoli, I-06123 Perugia (Italy)

    2017-05-19

    We performed a study of the perturbative instabilities in Einstein-Maxwell-Chern-Simons theory with a gravitational Chern-Simons term, which is dual to a strongly coupled field theory with both chiral and mixed gauge-gravitational anomaly. With an analysis of the fluctuations in the near horizon regime at zero temperature, we found that there might be two possible sources of instabilities. The first one corresponds to a real mass-squared which is below the BF bound of AdS{sub 2}, and it leads to the bell-curve phase diagram at finite temperature. The effect of mixed gauge-gravitational anomaly is emphasised. Another source of instability is independent of gauge Chern-Simons coupling and exists for any finite gravitational Chern-Simons coupling. There is a singular momentum close to which unstable mode appears. The possible implications of this singular momentum are discussed. Our analysis suggests that the theory with a gravitational Chern-Simons term around Reissner-Nordström black hole is unreliable unless the gravitational Chern-Simons coupling is treated as a small perturbative parameter.

  13. Gravitational-wave research: Current status and future prospects

    International Nuclear Information System (INIS)

    Thorne, K.S.

    1980-01-01

    There is a reasonably good change that in the 1980s cosmic gravitational waves will be discovered and will become a powerful tool for astronomy. This prospect has stimulated a three-pronged research effort. First, relativity theorists are developing new mathematical tools for the analysis of gravitational radiation: including (i) methods of analyzing the generation of gravity waves by sources with strong self-gravity and large internal velocities (e.g., collisions of black holes), (ii) methods of computing radiation reaction in sources, and (iii) methods of analyzing how gravitational waves propagate through our lumpy curved-space Universe. Second, astrophysicists are attempting to identify the most promissing sources of gravitational waves, and are using the relativity theorists' mathematical tools to estimate the characteristics of the waves they emit. Third, with the estimated wave characteristics in mind, experimenters are designing and constructing a second generation of gravitational-wave detectors: detectors of three types: Doppler tracking of interplanetary spacecraft, Earth-based laser interferometers, and Earth-based Weber-type resonant bars. This article reviews, in brief, all three prongs of the research effort and gives references to more detailed articles about specialized aspects of gravitational-wave physics

  14. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  15. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  16. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  17. The gravitational polarization in general relativity: solution to Szekeres' model of quadrupole polarization

    International Nuclear Information System (INIS)

    Montani, Giovanni; Ruffini, Remo; Zalaletdinov, Roustam

    2003-01-01

    A model for the static weak-field macroscopic medium is analysed and the equation for the macroscopic gravitational potential is derived. This is a biharmonic equation which is a non-trivial generalization of the Poisson equation of Newtonian gravity. In the case of strong gravitational quadrupole polarization, it essentially holds inside a macroscopic matter source. Outside the source the gravitational potential fades away exponentially. The equation is equivalent to a system of the Poisson equation and the non-homogeneous modified Helmholtz equations. The general solution to this system is obtained by using the Green function method and it is not limited to Newtonian gravity. In the case of insignificant gravitational quadrupole polarization, the equation for macroscopic gravitational potential becomes the Poisson equation with the matter density renormalized by a factor including the value of the quadrupole gravitational polarization of the source. The general solution to this equation obtained by using the Green function method is limited to Newtonian gravity

  18. Gravitation. [Book on general relativity

    Science.gov (United States)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  19. Gravitational effects of global textures

    International Nuclear Information System (INIS)

    Noetzold, D.

    1990-03-01

    A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures

  20. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  1. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  2. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  3. The central image of a gravitationally lensed quasar.

    Science.gov (United States)

    Winn, Joshua N; Rusin, David; Kochanek, Christopher S

    2004-02-12

    A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens, but hitherto almost all lensed objects have two or four images. The missing 'central' images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates for central images, but in one case the third image is not necessarily the central one, and in the others the putative central images might be foreground sources. Here we report a secure identification of a central image, based on radio observations of one of the candidates. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of 20,000M(o) pc(-2), which is in agreement with expections based on observations of galaxies that are much closer to the Earth.

  4. Bipolar outflows as a repulsive gravitational phenomenon - Azimuthally Symmetric Theory of Gravitation (II)

    International Nuclear Information System (INIS)

    Nyambuya, Golden Gadzirayi

    2010-01-01

    This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation (ASTG). This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining, from a purely classical physics standpoint, the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun. This symmetry has and must have an influence on the emergent gravitational field. We show herein that the emergent equations from the ASTG, under some critical conditions determined by the spin, do possess repulsive gravitational fields in the polar regions of the gravitating body in question. This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon. Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled. Given the current thinking on their origin, the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least, it is a complete paradigm shift because gravitation is not at all associated with this process, but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point. Additionally, we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation. That is, at ∼ 8-10 M sun , radiation from the nascent star is expected to halt the accretion of matter. We show that in-falling material will fall onto the equatorial disk and from there, this material will be channeled onto the forming star via the equatorial plane, thus accretion of mass continues well past the value of ∼ 8-10 M sun , albeit via the disk. Along the equatorial plane, the net force (with the radiation force included) on any

  5. Trapped surfaces due to concentration of gravitational radiation

    International Nuclear Information System (INIS)

    Beig, R.; O Murchadha, N.

    1991-01-01

    Sequences of global, asympotically flat solutions to the time-symmetric initial value constraints of general relativity in vacuo are constructed which develop outer trapped surfaces for large values of the argument. Thus all such configurations must gravitationally collapse. A new proof of the positivity of mass in the strong-field regime is also found. (Authors) 22 refs

  6. Propagation of waves in a gravitating and rotating anisotropic heat ...

    African Journals Online (AJOL)

    An inviscid, unbounded, collisionless, gravitating, rotating and heat conducting anisotropic plasma medium which is drifting is considered. The medium is assumed to be embedded in a strong magnetic field. A general dispersion relation is derived using normal mode analysis and its various limiting cases are discussed, ...

  7. On an illusion of superluminal velocities produced by gravitational lenses

    International Nuclear Information System (INIS)

    Ingel, L.Kh.

    1981-01-01

    It is noted that gravitational lenses, by focusing the radiation of an object, increase the angle which it subtends. This in turn produces the illusion of an increase in velocities at right angles to the line of sight. Preliminary estimates are made which indicate a rather high probability of strong distortion of the observed velocities

  8. Stochastic backgrounds of gravitational waves

    International Nuclear Information System (INIS)

    Maggiore, M.

    2001-01-01

    We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)

  9. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  10. Highlights in gravitation and cosmology

    International Nuclear Information System (INIS)

    Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.

    1988-01-01

    This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)

  11. A new theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs

  12. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, I.

    1998-01-01

    The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)

  13. Heuristic introduction to gravitational waves

    International Nuclear Information System (INIS)

    Sandberg, V.D.

    1982-01-01

    The purpose of this article is to provide a rough and somewhat heuristic theoretical background and introduction to gravitational radiation, its generation, and its detection based on Einstein's general theory of relativity

  14. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  15. Shearfree cylindrical gravitational collapse

    International Nuclear Information System (INIS)

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-01-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  16. Crystalline lens radioprotectors

    International Nuclear Information System (INIS)

    Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E.; Warnet, J.M.

    2003-01-01

    During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)

  17. Wedged multilayer Laue lens

    International Nuclear Information System (INIS)

    Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian

    2008-01-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures

  18. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  19. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  20. Nuclear Quantum Gravitation - The Correct Theory

    Science.gov (United States)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  1. Some topological properties of the Inverse Lens Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, T; Ariza, O [Departamento de Estadistica e Investigacion Operativa, Universidad de Cadiz, Avda de Ramon Puyol, s/n 11202 Algeciras (Spain); Mediavilla, E; Oscoz, A [Instituto de Astrofisica de Canarias, Avda Via Lactea s/n, La Laguna (Spain); Munoz, J A, E-mail: teresa.mediavilla@ca.uca.es, E-mail: octavio.ariza@uca.es, E-mail: emg@iac.es, E-mail: jmunoz@uv.es, E-mail: aoscoz@iac.es [Departamento de Astronomia y Astrofisica, Universidad de Valencia, c/ Dr. Moliner, 50, 46100 Burjassot (Spain)

    2011-09-22

    Away from critical curves, lens mapping can be seen as a linear invertible transformation of the plane even for regions (cells) of relatively large size. However, close to critical curves the departures from linearity can be very strong. We discuss the topological problems induced by the mapping of regions of the image plane that include critical curves (critical cells).

  2. Gravitation as a Plastic Distortion of the Lorentz Vacuum

    CERN Document Server

    Fernández, Virginia Velma

    2010-01-01

    Addressing graduate students and researchers in theoretical physics and mathematics, this book presents a new formulation of the theory of gravity. In the new approach the gravitational field has the same ontology as the electromagnetic, strong, and weak fields. In other words it is a physical field living in Minkowski spacetime. Some necessary new mathematical concepts are introduced and carefully explained. Then they are used to describe the deformation of geometries, the key to describing the gravitational field as a plastic deformation of the Lorentz vacuum. It emerges after further analysis that the theory provides trustworthy energy-momentum and angular momentum conservation laws, a feature that is normally lacking in General Relativity.

  3. The gravitational waveforms of white dwarf collisions in globular clusters

    International Nuclear Information System (INIS)

    Loren-Aguilar, P; Garcia-Berro, E; Lobo, J A; Isern, J

    2009-01-01

    In the dense central regions of globular clusters close encounters of two white dwarfs are relatively frequent. The estimated frequency is one or more strong encounters per star in the lifetime of the cluster. Such encounters should be then potential sources of gravitational wave radiation. Thus, it is foreseeable that these collisions could be either individually detected by LISA or they could contribute significantly to the background noise of the detector. We compute the pattern of gravitational wave emission from these encounters for a sufficiently broad range of system parameters, namely the masses, the relative velocities and the distances of the two white dwarfs involved in the encounter.

  4. Compliance among soft contact lens wearers.

    Science.gov (United States)

    Kuzman, Tomislav; Kutija, Marija Barisić; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurisić, Darija; Skegro, Ivan; Kalauz, Miro; Kordić, Rajko

    2014-12-01

    Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in different aspects of lens care handling and wearing habits. In our research 50 asymptomatic lens wearers filled out a questionnaire containing demographic data, lens type, hygiene and wearing habits, lenses and lens care system replacement schedule and self-evaluation of contact lens handling hygiene. We established criteria of compliance according to available manufacturer's recommendations, prior literature and our clinical experience. Only 2 (4%) of patients were fully compliant SCL wearers. The most common non-compliant behaviours were insufficient lens solution soaking time (62%), followed by failure to daily exchange lens case solution and showering while wearing lenses. 44% of patients reported storing lenses in saline solution. Mean lens storage case replacement was 3.6 months, with up to 78% patients replacing lens case at least once in 3 months. Average grade in self evaluating level of compliance was very good (4 +/- 0.78) (from 1-poor level of hygiene to 5-great level of hygiene). Lens wearers who reported excessive daily lens wear and more than 10 years of lens wearing experience were also found to be less compliant with other lens system care procedures. (t = -2.99, df=47, p rate, self grading was relatively high. Therefore, these results indicate the need for patient education and encouragement of better lens wearing habits and all of the lens maintenance steps at each patient visit.

  5. Contact Lens-Related Eye Infections

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Contact Lens-Related Eye Infections Sections Contact Lens-Related Eye ... Six Steps to Avoid Contact Lens Infections Contact Lens-Related Eye Infections Leer en Español: Infecciones relacionadas ...

  6. 21 CFR 886.1375 - Bagolini lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bagolini lens. 886.1375 Section 886.1375 Food and... OPHTHALMIC DEVICES Diagnostic Devices § 886.1375 Bagolini lens. (a) Identification. A Bagolini lens is a device that consists of a plane lens containing almost imperceptible striations that do not obscure...

  7. Straylight Measurements in Contact Lens Wear

    NARCIS (Netherlands)

    van der Meulen, Ivanka J. E.; Engelbrecht, Leonore A.; van Vliet, Johannes M. J.; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P.; Mourits, Maarten P.; Schlingemann, Reinier O.; van den Berg, Thomas J. T. P.

    2010-01-01

    Purpose: (1) To quantify the effect of contact lens wear on straylight in rigid and soft contact lens wearers and (2) to relate findings to morphological changes and subjective complaints. Methods: Straylight was measured using the Oculus C-Quant during contact lens wear and after contact lens

  8. Immunohistochemical studies of lens crystallins in the dysgenetic lens (dyl) mutant mice

    NARCIS (Netherlands)

    Brahma, S.K.; Sanyal, S.

    1984-01-01

    The lens in the dyl mutant mice shows a persistent lens-ectodermal connection as well as degeneration and extrusion of lens materials after the initial differentiation of the fibres. Immunohistochemical investigation of the ontogeny of the lens crystallins in this developing mutant lens has been

  9. Testing fundamental physics with gravitational waves

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The landmark detection of gravitational waves (GWs) has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime, where spacetime curvature is extreme and the relevant speed is close to the speed of light. In parallel to its countless astrophysical applications, this discovery can have also important implications for fundamental physics. In this context, I will discuss some outstanding, cross-cutting problems that can be finally investigated in the GW era: the nature of black holes and of spacetime singularities, the limits of classical gravity, the existence of extra light fields, and the effects of dark matter near compact objects. Future GW measurements will provide unparalleled tests of quantum-gravity effects at the horizon scale, exotic compact objects, ultralight dark matter, and of general relativity in the strong-field regime.

  10. Imprints of relic gravitational waves in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.

    2006-01-01

    A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary 'tensor modes'. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C l XX ' for X, X ' =T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower l's must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at l≅30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations

  11. Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.

  12. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A. [Dept. of Physics, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr. 13, 119234 Moscow (Russian Federation)

    2017-09-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  13. Black Hole Mergers and Gravitational Waves: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes produces a powerful burst of gravitational waves, emitting more energy than all the stars in the observable universe combined. Since these mergers take place in the regime of strong dynamical gravity, computing the gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For more than 30 years, scientists tried to simulate these mergers using the methods of numerical relativity. The resulting computer codes were plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past several years, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will highlight these breakthroughs and the resulting 'gold rush' of new results that is revealing the dynamics of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  14. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    International Nuclear Information System (INIS)

    Dolgov, A.; Postnov, K.

    2017-01-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  15. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    Science.gov (United States)

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  16. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  17. LIGO: the Laser Interferometer Gravitational-Wave Observatory

    International Nuclear Information System (INIS)

    Abbott, B P; Abbott, R; Adhikari, R; Anderson, S B; Araya, M; Armandula, H; Aso, Y; Ballmer, S; Ajith, P; Allen, B; Aulbert, C; Allen, G; Amin, R S; Anderson, W G; Armor, P; Arain, M A; Aston, S; Aufmuth, P; Babak, S; Baker, P

    2009-01-01

    The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves (GWs) of astrophysical origin. Direct detection of GWs holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black holes and neutron stars and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than one part in 10 21 . With this unprecedented sensitivity, the data are being analyzed to detect or place limits on GWs from a variety of potential astrophysical sources.

  18. The equivalence principle and the gravitational constant in experimental relativity

    International Nuclear Information System (INIS)

    Spallicci, A.D.A.M.

    1988-01-01

    Fischbach's analysis of the Eotvos experiment, showing an embedded fifth force, has stressed the importance of further tests of the Equivalence Principle (EP). From Galilei and Newton, the EP played the role of a postulate for all gravitational physics and mechanics (weak EP), until Einstein, who extended the validity of the EP to all physics (strong EP). After Fischbach's publication on the fifth force, several experiments have been performed or simply proposed to test the WEP. They are concerned with possible gravitational potential anomalies, depending upon distances or matter composition. While the low level of accuracy with which the gravitational constant G is known has been recognized, experiments have been proposed to test G in the range from few cm until 200 m. This paper highlights the different features of the proposed space experiments. Possible implications on the metric formalism for objects in low potential and slow motion are briefly indicated

  19. Contact Lens Related Corneal Ulcer

    OpenAIRE

    Loh, KY; Agarwal, P

    2010-01-01

    A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are: overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. Th...

  20. Crystalline lens and refractive development.

    Science.gov (United States)

    Iribarren, Rafael

    2015-07-01

    Individual refractive errors usually change along lifespan. Most children are hyperopic in early life. This hyperopia is usually lost during growth years, leading to emmetropia in adults, but myopia also develops in children during school years or during early adult life. Those subjects who remain emmetropic are prone to have hyperopic shifts in middle life. And even later, at older ages, myopic shifts are developed with nuclear cataract. The eye grows from 15 mm in premature newborns to approximately 24 mm in early adult years, but, in most cases, refractions are maintained stable in a clustered distribution. This growth in axial length would represent a refractive change of more than 40 diopters, which is compensated by changes in corneal and lens powers. The process which maintains the balance between the ocular components of refraction during growth is still under study. As the lens power cannot be measured in vivo, but can only be calculated based on the other ocular components, there have not been many studies of lens power in humans. Yet, recent studies have confirmed that the lens loses power during growth in children, and that hyperopic and myopic shifts in adulthood may be also produced by changes in the lens. These studies in children and adults give a picture of the changing power of the lens along lifespan. Other recent studies about the growth of the lens and the complexity of its internal structure give clues about how these changes in lens power are produced along life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Single lens laser beam shaper

    Science.gov (United States)

    Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  2. Blandford's argument: The strongest continuous gravitational wave signal

    International Nuclear Information System (INIS)

    Knispel, Benjamin; Allen, Bruce

    2008-01-01

    For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.

  3. New astrophysical school of thermodynamics. Space dynamics and gravitism

    Energy Technology Data Exchange (ETDEWEB)

    Gal-Or, B [Technion-Israel Inst. of Tech., Haifa. Dept. of Aeronautical Engineering

    1978-07-01

    Much verified information has been accumulated in recent years which shows that many fundamental concepts involving classical physics, thermodynamics, astrophysics and the general theory of relativity are strongly coupled together. This evidence is employed in this paper to explain principles of the astrophysical school of thermodynamics; a growing revolutionary school which deduces thermodynamics, energy dissipation, and time anisotropies from the Newtonian and Einsteinian theories of gravitation and from the dynamics of radiation in 'unsaturable' (intercluster) space. Accordingly, the density of radiation and the dynamics of ('unsaturable') outer space affect all processes in the galactic media, in the solar system, in the magnetosphere and on Earth. The origin of all observed irreversibilities in nature - of time, of all time anisotropics, of energy dissipation, of T-violations in 'elementary particles', of retarded potentials in electrodynamics, of the biological clocks, and of biological arrows of time - is one; it is the radiation unsaturability of space. But, since this unsaturability and gravitation are interconnected, the origin of asymmetries, structure, and thermodynamics is explained within the framework of the Newtonian and Einsteinian theories of gravitation. The theory presented here forms a part of a general approach called gravitism, which unifies some other disciplinary studies in the natural sciences with a unified approach to gravitation and the theory of time.

  4. A course in lens design

    CERN Document Server

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  5. Modified entropic gravitation in superconductors

    International Nuclear Information System (INIS)

    Matos, Clovis Jacinto de

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  6. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  7. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  8. The X-Shooter Lens Survey - I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy

    Science.gov (United States)

    Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.; Czoske, O.; Treu, T.

    2011-11-01

    We present the first results from the X-Shooter Lens Survey: an analysis of the massive early-type galaxy SDSS J1148+1930 at redshift z= 0.444. We combine its extended kinematic profile - derived from spectra obtained with X-Shooter on the European Southern Observatory Very Large Telescope - with strong gravitational lensing and multicolour information derived from Sloan Digital Sky Survey (SDSS) images. Our main results are as follows. (i) The luminosity-weighted stellar velocity dispersion is (≲Reff) = 352 ± 10 ± 16 km s-1, extracted from a rectangular aperture of 1.8 × 1.6 arcsec2 centred on the galaxy, more accurate and considerably lower than a previously published value of ˜450 km s-1. (ii) A single-component (stellar plus dark) mass model of the lens galaxy yields a logarithmic total-density slope of γ'= 1.72+0.05- 0.06 (68 per cent confidence level, CL; ?) within a projected radius of ˜2.16 arcsec. (iii) The projected stellar mass fraction, derived solely from the lensing and dynamical data, is f*(Salp(90 per cent CL and in some cases violate the total lensing-derived mass limit. We conclude that this very massive early-type galaxy is dark-matter-dominated inside one effective radius, consistent with the trend recently found from massive Sloan Lens ACS (SLACS) galaxies, with a total density slope shallower than isothermal and an IMF normalization consistent with Salpeter.

  9. THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Ruff, Andrea J.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphael; Brault, Florence

    2011-01-01

    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift z d = 0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass-density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be (γ') = 2.16 +0.09 -0.09 (ρ tot ∝r -γ ' ), with an intrinsic scatter of 0.25 +0.10 -0.07 . We also determine the dark matter fraction for each lens within half the effective radius, R eff /2, and find the average-projected dark matter mass fraction to be 0.42 +0.08 -0.08 with a scatter of 0.20 +0.09 -0.07 for a Salpeter initial mass function. By combining the SL2S results with those from the Sloan Lens ACS Survey (median z d = 0.2) and the Lenses Structure and Dynamics Survey (median z d = 0.8), we investigate cosmic evolution of γ' and find a mild trend ∂(γ')/∂z d = -0.25 +0.10 -0.12 . This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z ∼ 1.

  10. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  11. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1978-01-01

    We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr

  12. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  13. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  14. Gravitational-wave mediated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-04-09

    We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  15. Testing the gravitational instability hypothesis?

    Science.gov (United States)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  16. Linear interaction of gravitational waves

    International Nuclear Information System (INIS)

    Ciubotariu, C.D.

    1992-01-01

    Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)

  17. Astrophysical sources of gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G. E-mail: losurdo@galileo.pi.infn.it

    2000-05-01

    The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.

  18. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  19. General relativity and gravitational waves

    CERN Document Server

    Weber, Johanna

    1961-01-01

    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta

  20. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    Science.gov (United States)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  1. Direct observation limits on antimatter gravitation

    International Nuclear Information System (INIS)

    Fischler, Mark; Lykken, Joe; Roberts, Tom; Fermilab

    2008-01-01

    The proposed Antihydrogen Gravity experiment at Fermilab (P981) will directly measure the gravitational attraction g between antihydrogen and the Earth, with an accuracy of 1% or better. The following key question has been asked by the PAC: Is a possible 1% difference between g and g already ruled out by other evidence? This memo presents the key points of existing evidence, to answer whether such a difference is ruled out (a) on the basis of direct observational evidence; and/or (b) on the basis of indirect evidence, combined with reasoning based on strongly held theoretical assumptions. The bottom line is that there are no direct observations or measurements of gravitational asymmetry which address the antimatter sector. There is evidence which by indirect reasoning can be taken to rule out such a difference, but the analysis needed to draw that conclusion rests on models and assumptions which are in question for other reasons and are thus worth testing. There is no compelling evidence or theoretical reason to rule out such a difference at the 1% level

  2. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    International Nuclear Information System (INIS)

    Cordes, J. M.; Jenet, F. A.

    2012-01-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  3. Detecting Gravitational Wave Memory with Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Jenet, F. A.

    2012-06-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  4. Stationary two-variable gravitational vortex fields

    International Nuclear Information System (INIS)

    Koppel, A.

    1974-01-01

    Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru

  5. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    Science.gov (United States)

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  6. The 'gravitating' tensor in the dualistic theory

    International Nuclear Information System (INIS)

    Mahanta, M.N.

    1989-01-01

    The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented

  7. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  8. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  9. Parametric mechanisms for detecting gravitational waves

    International Nuclear Information System (INIS)

    Pustovoit, V.I.; Chernozatonskii, L.A.

    1981-01-01

    An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation

  10. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  11. Data mining for gravitationally lensed quasars

    Science.gov (United States)

    Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.

    2015-04-01

    Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.

  12. Influence of Gravity on Ocular Lens Position.

    Science.gov (United States)

    Lister, Lucas J; Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Atchison, David A

    2016-04-01

    We determined whether human ocular lens position is influenced by gravity. Anterior chamber depth (ACD) and lens thickness (LT) were determined with a Haag-Streit Lenstar LS900 for right eyes of participants in two age groups, with a young group of 13 participants aged 18 to 21 years (mean, 21 years; SD, 1 year) and an older group of 10 participants aged 50 to 63 years (mean, 58 years; SD, 4 years). There were two sessions for each participant separated by at least 48 hours, with one session for the usual upright head position and one session for a downwards head position. In a session, testing was done for minimum accommodation followed by testing at maximum accommodation. A drop of 2% pilocarpine nitrate was instilled, and testing was repeated after 30 minutes under minimum and maximum accommodation conditions. Gravity, manipulated through head posture, affected ACD for young adult and older adult groups but mean effects were only small, ranging from 0.04 to 0.12 mm, and for the older group required the instillation of an accommodation-stimulating drug. Gravity had a weakly significant effect on LT for the young group without accommodation or a drug, but the effect was small at 0.04 ± 0.06 mm (mean ± SD, P = 0.04). There is a small but real effect of gravity on crystalline lens position, manifested as reduction in ACD at high levels of accommodative effort with the head in a downwards position. This provides evidence of the ability of zonules to slacken during strong accommodation.

  13. Gravitational states of antihydrogen near material surface

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, Alexei Yu., E-mail: dr.a.voronin@gmail.com [P.N. Lebedev Physical Institute (Russian Federation); Froelich, Piotr [Uppsala University, Department of Quantum Chemistry (Sweden); Nesvizhevsky, Valery V. [Institut Laue-Langevin (ILL) (France)

    2012-12-15

    We present a theoretical study of the motion of antihydrogen atoms in the Earth's gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.

  14. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  15. Vector-tensor interaction of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan-zhong; Guo han-ying

    1982-11-01

    In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.

  16. The Japanese space gravitational wave antenna; DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  17. The Japanese space gravitational wave antenna - DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  18. Engineering constraints and computer-aided optimization of electrostatic lens systems

    International Nuclear Information System (INIS)

    Steen, H.W.G. van der; Barth, J.E.; Adriaanse, J.P.

    1990-01-01

    An optimization tool for the design of electrostatic lens systems with axial symmetry is presented. This tool is based on the second-order electrode method combined with a multivariable numerical optimization procedure. The second-order electrode method makes a cubic spline approximation to the axial potential for a given electrode shape. With the help of this approximation, a numerical optimization can be done. To demonstrate this optimization tool, a lens system for Auger analyses is optimized. It is shown that variations in the practical constraints imposed on the design, like maximum electrode potential or maximum lens diameter, have strong effects on the obtainable lens quality. It is concluded that a numerical optimization does not take over the lens designer's job, but allows him to thoroughly examine the optical consequences of engineering choices by finding the optimum design for each set of constraints. (orig.)

  19. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  20. Plausibility Arguments and Universal Gravitation

    Science.gov (United States)

    Cunha, Ricardo F. F.; Tort, A. C.

    2017-01-01

    Newton's law of universal gravitation underpins our understanding of the dynamics of the Solar System and of a good portion of the observable universe. Generally, in the classroom or in textbooks, the law is presented initially in a qualitative way and at some point during the exposition its mathematical formulation is written on the blackboard…

  1. Scientific visualization of gravitational lenses

    International Nuclear Information System (INIS)

    Magallon, M.

    1999-01-01

    Concepts related to gravitational lenses are discussed and applied to develop an interactive visualization tool that allow us to investigate them. Optimization strategies were performed to elaborate the tool. Some results obtained from the application of the tool are shown [es

  2. Wilson loops in Kerr gravitation

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1981-01-01

    The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt

  3. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  4. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  5. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  6. Spinor approach to gravitational motion and precession

    International Nuclear Information System (INIS)

    Hestenes, D.

    1986-01-01

    The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)

  7. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  8. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  9. Eye lens monitoring for interventional radiology personnel: dosemeters, calibration and practical aspects of Hp(3) monitoring. A 2015 review

    International Nuclear Information System (INIS)

    Carinou, Eleftheria; Ferrari, Paolo; Bjelac, Olivera Ciraj; Gingaume, Merce; Merce, Marta Sans; O’Connor, Una

    2015-01-01

    A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended. (review)

  10. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  11. Tinting of intraocular lens implants

    Energy Technology Data Exchange (ETDEWEB)

    Zigman, S.

    1982-06-01

    Intraocular lens (IOL) implants of polymethyl methacrylate (PMMA) lack an important yellow pigment useful as a filter in the visual process and in the protection of the retina from short-wavelength radiant energy. The ability to produce a yellow pigment in the PMMA used in IOL implants by exposure to near-ultraviolet (UV) light was tested. It was found that the highly cross-linked material in Copeland lens blanks was tinted slightly because of this exposure. The absorptive properties of lens blanks treated with near-UV light in this way approached that of the absorptive properties of human lenses. This finding shows that it is possible to alter IOL implants simply so as to induce a pale-yellow pigment in them to improve the visual process and to protect the retinas of IOL users.

  12. Tinting of intraocular lens implants

    International Nuclear Information System (INIS)

    Zigman, S.

    1982-01-01

    Intraocular lens (IOL) implants of polymethyl methacrylate (PMMA) lack an important yellow pigment useful as a filter in the visual process and in the protection of the retina from short-wavelength radiant energy. The ability to produce a yellow pigment in the PMMA used in IOL implants by exposure to near-ultraviolet (UV) light was tested. It was found that the highly cross-linked material in Copeland lens blanks was tinted slightly because of this exposure. The absorptive properties of lens blanks treated with near-UV light in this way approached that of the absorptive properties of human lenses. This finding shows that it is possible to alter IOL implants simply so as to induce a pale-yellow pigment in them to improve the visual process and to protect the retinas of IOL users

  13. Automated Fresnel lens tester system

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  14. Large Field Inflation and Gravitational Entropy

    DEFF Research Database (Denmark)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion

    2016-01-01

    species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....

  15. Line-of-sight effects in strong lensing: putting theory into practice

    Energy Technology Data Exchange (ETDEWEB)

    Birrer, Simon; Welschen, Cyril; Amara, Adam; Refregier, Alexandre, E-mail: simon.birrer@phys.ethz.ch, E-mail: cyril.welschen@student.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich (Switzerland)

    2017-04-01

    We present a simple method to accurately infer line of sight (LOS) integrated lensing effects for galaxy scale strong lens systems through image reconstruction. Our approach enables us to separate weak lensing LOS effects from the main strong lens deflector. We test our method using mock data and show that strong lens systems can be accurate probes of cosmic shear with a precision on the shear terms of ± 0.003 (statistical error) for an HST-like dataset. We apply our formalism to reconstruct the lens COSMOS 0038+4133 and its LOS. In addition, we estimate the LOS properties with a halo-rendering estimate based on the COSMOS field galaxies and a galaxy-halo connection. The two approaches are independent and complementary in their information content. We find that when estimating the convergence at the strong lens system, performing a joint analysis improves the measure by a factor of two compared to a halo model only analysis. Furthermore the constraints of the strong lens reconstruction lead to tighter constraints on the halo masses of the LOS galaxies. Joint constraints of multiple strong lens systems may add valuable information to the galaxy-halo connection and may allow independent weak lensing shear measurement calibrations.

  16. Light deflection, lensing, and time delays from gravitational potentials and Fermat's principle in the presence of a cosmological constant

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2008-01-01

    The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new Λ term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that Λ contributes to the gravitational time delay, it is shown here that a new Λ term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the Λ contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.

  17. Lens system for SIMS analysis

    International Nuclear Information System (INIS)

    Martinez, G.; Sancho, M.; Garcia-Galan, J.C.

    1987-01-01

    A powerful version of the charge-density method is applied to the study of a combined objective and emission lens, suitable for highly localized analysis of a flat sample surface. This lens can extract secondary ions of equal or opposite polarity to that of the primary particles. A computer simulation of the ion trajectories for both modes is made. The behaviour for different values of the geometric parameters and polarizations is analyzed and useful data for design such as primary beam demagnification and secondary image position are given. (author) 4 refs

  18. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    Science.gov (United States)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  19. Strong cosmic censorship in de Sitter space

    Science.gov (United States)

    Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.

    2018-05-01

    Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.

  20. Gravitational wave signals and cosmological consequences of gravitational reheating

    Science.gov (United States)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.