Mechanics of magnetic fluid column in strong magnetic fields
International Nuclear Information System (INIS)
Polunin, V.M.; Ryapolov, P.A.; Platonov, V.B.
2017-01-01
Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
Indian Academy of Sciences (India)
BOOK I REVIEW. Fundamental Fluid. Mechanics. Good Text Book Material. V H Arakeri. Fluid Mechanics for Engineers. P N Chatterjee. MacMillan India Limited. Vol. 1, pp. 367. RS.143. Vo1.2, pp.306. RS.130. Fluid Mechanics for Engineers in two vol- umes by P N Chatterjee contains standard material for a first level ...
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Rotating compressible fluids under strong stratification
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Lu, Y.; Novotný, A.
2014-01-01
Roč. 19, October (2014), s. 11-18 ISSN 1468-1218 Keywords : rotating fluid * compressible Navier-Stokes * strong stratification Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121814000212#
Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
Amitabh Bhattacharya
decades, mainly due to the rapid improvement in computational efficiency, cameras, optics and instrumentation, both computational and experimental techniques have improved significantly, allowing researchers in Fluid Mechanics to build better mechanistic and analytical models for processes involving dynamics of fluids.
Basniev, Kaplan S; Chilingar, George V 0
2012-01-01
The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry. This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike. It is a must-have for any engineer working in the oil and gas industry.
Indian Academy of Sciences (India)
umes by P N Chatterjee contains standard material for a first level course in fluid me- chanics for Civil, Mechanical, Aeronautical and Chemical Engineering students. It is however not suitable for Applied Science students like those majoring in Physics or. Mathematics and is not a good reference book for practising ...
Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
Amitabh Bhattacharya
of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare (e.g., via point-of-care medical testing) and improvement of energy efficiency of fluid power systems, depends on improving our understanding of Fluid. Mechanics. Fluids are ubiquitous in both nature and technological applications, ...
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Fluid mechanics in fluids at rest.
Brenner, Howard
2012-07-01
Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.
FOREWORD Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...
Strong-motion fluid rotation seismograph
Czech Academy of Sciences Publication Activity Database
Jedlička, Petr; Buben, Jiří; Kozák, Jan
2009-01-01
Roč. 99, 2B (2009), s. 1443-1448 ISSN 0037-1106 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30130516 Keywords : rotation seismograph * seismic waves * fluid seismometer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.860, year: 2009
Fluid mechanics fundamentals and applications
Cengel, Yunus
2013-01-01
Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...
Inviscid incompressible limits of strongly stratified fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Jin, B.J.; Novotný, A.
2014-01-01
Roč. 89, 3-4 (2014), s. 307-329 ISSN 0921-7134 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * anelastic approximation * stratified fluid Subject RIV: BA - General Mathematics Impact factor: 0.528, year: 2014 http://iospress.metapress.com/content/d71255745tl50125/?p=969b60ae82634854ab8bd25505ce1f71&pi=3
Selected topics of fluid mechanics
Kindsvater, Carl E.
1958-01-01
the Euler, Froude, Reynolds, Weber, and Cauchy numbers are defined as essential tools for interpreting and using experimental data. The derivations of the energy and momentum equations are treated in detail. One-dimensional equations for steady nonuniform flow are developed, and the restrictions applicable to the equations are emphasized. Conditions of uniform and gradually varied flow are discussed, and the origin of the Chezy equation is examined in relation to both the energy and the momentum equations. The inadequacy of all uniform-flow equations as a means of describing gradually varied flow is explained. Thus, one of the definitive problems of river hydraulics is analyzed in the light of present knowledge. This report is the outgrowth of a series of short schools conducted during the spring and summer of 1953 for engineers of the Surface Water Branch, Water Resources Division, U. S. Geological Survey. The topics considered are essentially the same as the topics selected for inclusion in the schools. However, in order that they might serve better as a guide and outline for informal study, the arrangement of the writer's original lecture notes has been considerably altered. The purpose of the report, like the purpose of the schools which inspired it, is to build a simple but strong framework of the fundamentals of fluid mechanics. It is believed that this framework is capable of supporting a detailed analysis of most of the practical problems met by the engineers of the Geological Survey. It is hoped that the least accomplishment of this work will be to inspire the reader with the confidence and desire to read more of the recent and current technical literature of modern fluid mechanics.
Nanorheology of strongly confined molecular fluids : a compter simulation study
Manias, Evangelos D.
1995-01-01
The method of Molecular Dynamics (MD) computer simulations is employed to study ultra thin films of oligomer fluids, confined in spaces comparable to their molecular dimensions and subjected to (very) strong flows. ... Zie: Summary
Blanks, Robert F.
1979-01-01
A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)
Advances in Environmental Fluid Mechanics
Mihailovic, Dragutin T
2010-01-01
Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.
Simultaneous Rheoelectric Measurements of Strongly Conductive Complex Fluids
Helal, Ahmed; Divoux, Thibaut; McKinley, Gareth H.
2016-12-01
We introduce an modular fixture designed for stress-controlled rheometers to perform simultaneous rheological and electrical measurements on strongly conductive complex fluids under shear. By means of a nontoxic liquid metal at room temperature, the electrical connection to the rotating shaft is completed with minimal additional mechanical friction, allowing for simultaneous stress measurements at values as low as 1 Pa. Motivated by applications such as flow batteries, we use the capabilities of this design to perform an extensive set of rheoelectric experiments on gels formulated from attractive carbon-black particles, at concentrations ranging from 4 to 15 wt %. First, experiments on gels at rest prepared with different shear histories show a robust power-law scaling between the elastic modulus G0' and the conductivity σ0 of the gels—i.e., G0'˜σ0α, with α =1.65 ±0.04 , regardless of the gel concentration. Second, we report conductivity measurements performed simultaneously with creep experiments. Changes in conductivity in the early stage of the experiments, also known as the Andrade-creep regime, reveal for the first time that plastic events take place in the bulk, while the shear rate γ ˙ decreases as a weak power law of time. The subsequent evolution of the conductivity and the shear rate allows us to propose a local yielding scenario that is in agreement with previous velocimetry measurements. Finally, to establish a set of benchmark data, we determine the constitutive rheological and electrical behavior of carbon-black gels. Corrections first introduced for mechanical measurements regarding shear inhomogeneity and wall slip are carefully extended to electrical measurements to accurately distinguish between bulk and surface contributions to the conductivity. As an illustrative example, we examine the constitutive rheoelectric properties of five different grades of carbon-black gels and we demonstrate the relevance of this rheoelectric apparatus as a
Noel, Alexis; Bhatia, Nitesh; Carter, Taren; Hu, David
2015-11-01
Saliva plays a key role in digestion, speech and tactile sensation. Lack of saliva, also known as dry mouth syndrome, increases risk of tooth decay and alters sense of taste; nearly 10% of the general population suffer from this syndrome. In this experimental study, we investigate the spreading of water drops on wet and dry tongues of pigs and cows. We find that drops spread faster on a wet tongue than a dry tongue. We rationalize the spreading rate by consideration of the tongue microstructure, such as as papillae, in promoting wicking. By investigating how tongue microstructure affects spreading of fluids, we may begin to how understand taste receptors are activated by eating and drinking.
Hassan, H. A.
1993-01-01
Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.
Fluid mechanics problems and solutions
Spurk, Joseph H
1997-01-01
his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.
Grotberg, James
2005-11-01
This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.
Fluid Mechanics in Sommerfeld's School
Eckert, Michael
2015-01-01
Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.
Fluid Mechanics of Fish Swimming
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:
Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...
Indian Academy of Sciences (India)
This special issue of Sadhana contains selected papers from two conferences related to fluid mechanics held in India recently, Fluid Mechanics and Fluid Power conference at NIT, Hamirpur, and an International Union of Theoretical and Applied Mechanics (IUTAM) symposium held at. Jawaharlal Nehru Centre for ...
Computational modelling in fluid mechanics
International Nuclear Information System (INIS)
Hauguel, A.
1985-01-01
The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr
Fluid mechanics of environmental interfaces
Gualtieri, Carlo
2008-01-01
Fluid Mechanics of Environmental Interfaces describes the concept of the environmental interface, defined as a surface between two either abiotic or biotic systems. These are in relative motion and exchange mass, heat and momentum through biophysical and/or chemical processes. These processes are fluctuating temporally and spatially.The book will be of interest to graduate students, PhD students as well as researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics and applied mathematics.
Mechanics of solids and fluids
International Nuclear Information System (INIS)
Ziegler, F.
1991-01-01
This book is a comprehensive treatise on the mechanics of solids and fluids, with a significant application to structural mechanics. In reading through the text, I can not help being impressed with Dr. Ziegler's command of both historical and contemporary developments of theoretical and applied mechanics. The book is a unique volume which contains information not easily found throughout the related literature. The book opens with a fundamental consideration of the kinematics of particle motion, followed by those of rigid body and deformable medium .In the latter case, both small and finite deformation have been presented concisely, paving the way for the constitutive description given later in the book. In both chapters one and two, the author has provided sufficient applications of the theoretical principles introduced. Such a connection between theory and appication is a common theme throughout every chapter, and is quite an attractive feature of the book
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Fluid mechanics. 5. enlarged ed.
International Nuclear Information System (INIS)
Kalide, W.
1980-01-01
Originally written for students in the field of engineering, this book may also be of use in the engineering practice. The subject is presented with a view to practice. Fundamental theorems of fluid mechanics are presented without going too much into theory. The chapter on supersonic flow has been extended in the fifth edition as this is a field of great importance in engineering. The new chapter on gas dynamics takes account of these processes in turbine and compressure construction and aeronautical engineering. There is an appendix with material data, characteristic values, flow resistance coefficients, diagrams and two tables with rated pressure loss values for pipeline flow. (orig./GL)
Black holes from fluid mechanics
Lahiri, Subhaneil
2009-12-01
We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.
FOREWORD Fluid Mechanics and Fluid Power (FMFP)
Indian Academy of Sciences (India)
journal for their enthusiastic help. The articles contained in this section of the Special Issue represent diversity and content. We hope that the readers are stimulated by the choice of the articles and their presentation. May 2015. AMIT AGRAWAL. Department of Mechanical Engineering,. Indian Institute of Technology Bombay ...
Fluid Mechanics Optimising Organic Synthesis
Leivadarou, Evgenia; Dalziel, Stuart
2015-11-01
The Vortex Fluidic Device (VFD) is a new ``green'' approach in the synthesis of organic chemicals with many industrial applications in biodiesel generation, cosmetics, protein folding and pharmaceutical production. The VFD is a rapidly rotating tube that can operate with a jet feeding drops of liquid reactants to the base of the tube. The aim of this project is to explain the fluid mechanics of the VFD that influence the rate of reactions. The reaction rate is intimately related to the intense shearing that promotes collision between reactant molecules. In the VFD, the highest shears are found at the bottom of the tube in the Rayleigh and the Ekman layer and at the walls in the Stewardson layers. As a step towards optimising the performance of the VFD we present experiments conducted in order to establish the minimum drop volume and maximum rotation rate for maximum axisymmetric spreading without fingering instability. PhD candidate, Department of Applied Mathematics and Theoretical Physics.
Stirling engines using working fluids with strong real gas effects
International Nuclear Information System (INIS)
Invernizzi, Costante M.
2010-01-01
Real gas effects typical of the critical region of working fluids are a powerful tool to increase the energy performances of Stirling cycles, mainly at low top temperatures. To carry out the compression near the critical region the working fluids must have a critical temperature near environmental conditions and the use of organic working substances (pure or in suitable mixtures) as a matter of fact begins compulsory. The moderate thermal stability of the organic working fluids limits the maximum temperatures to 300-400 deg. C and as a consequence, the achievable cycles efficiencies result rather low. Carbon dioxide, with a critical temperature of 31 deg. C, is, among the traditionally inorganic gases, an exception and is considered here in comparison with organic substances. But the good thermodynamics of the cycles allows, in the considered cases, conversion efficiencies of about 20%, with good specific powers. The good energy performance of real gas Stirling cycles is obtained at the cost of high maximum cycle pressure, in the range of at least 100-300 bar. These high pressures nevertheless have large positive effects on the heat power transferred per unit of pumping mechanical power, and the low top temperatures have a positive influence on the material problems for the hottest engine parts.
Statistical mechanical theory of fluid mixtures
Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei
2014-01-01
A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.
Fluid mechanics of environmental interfaces
Gualtieri, Carlo
2012-01-01
Preface Preface of the first editionBiographies of the authors Part one - Preliminaries1. Environmental fluid mechanics: Current issues and future outlook B. Cushman-Roisin, C. Gualtieri & D.T. MihailovicPart two - Processes at atmospheric interfaces2. Point source atmospheric diffusionB. Rajkovic, I. Arsenic & Z. Grsic3. Air-sea interaction V. Djurdjevic & B. Rajkovic4. Modelling of flux exchanges between heterogeneous surfaces and atmosphere D.T. Mihailovic & D. Kapor5. Desert dust uptake-transport and deposition mechanisms - impacts of dust on radiation, clouds and precipitation G. Kallos, P. Katsafados & C. SpyrouPart three - Processes at water interfaces6. Gas-transfer at unsheared free-surfaces C. Gualtieri & G. Pulci Doria7. Advective diffusion of air bubbles in turbulent water flows H. Chanson8. Exchanges at the bed sediments-water column interface F.A. Bombardelli & P.A. Moreno9. Surface water and streambed sediment interaction: The hyporheic exchange D. Tonina10. Environm...
Self-Organization of Polymeric Fluids in Strong Stress Fields
Directory of Open Access Journals (Sweden)
A. V. Semakov
2015-01-01
Full Text Available Analysis of literature data and our own experimental observations have led to the conclusion that, at high deformation rates, viscoelastic liquids come to behave as rubbery materials, with strong domination by elastic deformations over flow. This can be regarded as a deformation-induced fluid-to-rubbery transition. This transition is accompanied by elastic instability, which can lead to the formation of regular structures. So, a general explanation for these effects requires the treatment of viscoelastic liquids beyond critical deformation rates as rubbery media. Behaviouristic modeling of their behaviour is based on a new concept, which considers the medium as consisting of discrete elastic elements. Such a type of modeling introduces a set of discrete rotators settled on a lattice with two modes of elastic interaction. The first of these is their transformation from spherical to ellipsoidal shapes and orientation in an external field. The second is elastic collisions between rotators. Computer calculations have demonstrated that this discrete model correctly describes the observed structural effects, eventually resulting in a “chaos-to-order” transformation. These predictions correspond to real-world experimental data obtained under different modes of deformation. We presume that the developed concept can play a central role in understanding strong nonlinear effects in the rheology of viscoelastic liquids.
Applied Fluid Mechanics. Lecture Notes.
Gregg, Newton D.
This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…
Recent developments of mathematical fluid mechanics
Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao
2016-01-01
The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered: 1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics. For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations. There are 24...
NASA Ames Fluid Mechanics Laboratory research briefs
Davis, Sanford (Editor)
1994-01-01
The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.
XXII Fluid Mechanics Conference (KKMP2016)
International Nuclear Information System (INIS)
2016-01-01
This Journal of Physics: Conference Series contains papers that have been presented at XXII Fluid Mechanics Conference (XXII FMC) held in Słok near Bełchatów in Poland during llth-14th September of 2016. The Conference is organized by Wrocław University of Science and Technology, Polish Academy of Sciences - Committee of Mechanics and Foun-dation for Development of Wroclaw University of Science and Technology. Let us recall some historical facts: Fluid Mechanics Conferences have been taking place every two years since 1974, which makes a total of forty-two years. The goal of this conference is to provide a forum for exposure and exchange of ideas, methods and results in fluid mechanics. We have already met in Bełchatów 10 years ago (XVII KKMP). It was a successful meeting. Since then the National Conference on Fluid Mechanics has changed title and has started to be named Fluid Mechanics Conference in the hopes that it will attract more participants from other countries. English became the Conference's first language and we started to invite world leading scientists - working in the field of fluid mechanics. At the 2006 conference we hosted for the first time prof. Keith Moffatt from the Cambridge University. In this year prof. Moffatt once again promised us to arrive to Bełchatów. The whole fluid mechanics community celebrates 9 2 anniversary of his birthday. So let us also wish happy anniversary to prof. Moffatt. In the mean time we had to pay last respects to our collages. Prof. Prosnak who is regarded as a founder of the Notational Conference on Fluid Mechanics and is well known through his books. Prof. Puzyrewski who was present at all conferences so far. He was providing via his discussions a special value to these conferences, and our colleague prof. Konrad Bajer who was intended to be the organizer and host of the present conference. Short memories to them will be given during the opening ceremony. Conference topics include, but are not limited
A Course in Fluid Mechanics of Suspensions.
Davis, Robert H.
1989-01-01
Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)
Fluid Mechanics An Introduction to the Theory of Fluid Flows
Durst, Franz
2008-01-01
Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.
Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...
Indian Academy of Sciences (India)
Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. Fluid mechanics touches almost all aspects of the natural and engineering ... lence which distorts electromagnetic waves; an earth scientist may simulate convection in the earth's mantle to understand plate tectonics or convection in the atmosphere to ...
Annual review of fluid mechanics. Volume 23
International Nuclear Information System (INIS)
Lumley, J.L.; Van Dyke, M.; Reed, H.L.
1991-01-01
Recent advances in theoretical, experimental, and computational fluid mechanics are discussed in a collection of annual review essays. Topics addressed include Lagrangian ocean studies, drag reduction in nature, the hydraulics of rotating strait and sill flow, analytical methods for the development of Reynolds-stress closures in turbulence, and exact solutions of the Navier-Stokes equations. Consideration is given to the theory of hurricanes, flow phenomena in CVD of thin films, particle-imaging techniques for experimental fluid mechanics, symmetry and symmetry-breaking bifurcations in fluid dynamics, turbulent mixing in stratified fluids, numerical simulation of transition in wall-bounded shear flows, fractals and multifractals in fluid turbulence, and coherent motions in the turbulent boundary layer
Semiclassical statistical mechanics of fluids
International Nuclear Information System (INIS)
Singh, Y.; Sinha, S.K.
1981-01-01
The problem of calculating the equilibrium properties of fluids in the semiclassical limit when the quantum effects are small is studied. Particle distribution functions and thermodynamic quantities are defined in terms of the Slater sum and methods for evaluating the Slater sum are discussed. It is shown that the expansion method employing the usual Wigner-Kirkwood or Hemmer-Jancovici series is not suitable to treat the properties of the condensed state. Using the grand canonical ensemble and functional differentiation technique we develop cluster expansion series of the Helmholtz free energy and pair correlation functions. Using topological reduction we transform these series to more compact form involving a renormalized potential or a renormalized Mayer function. Then the convergence of the two series is improved by an optimal choice of the renormalized potential or the Mayer function. Integral equation theories are derived and used to devise perturbation methods. An application of these methods to the calculation of the virial coefficients, thermodynamic properties and the pair correlation function for model fluids is discussed. (orig.)
On the fluid mechanics of fires
Energy Technology Data Exchange (ETDEWEB)
TIESZEN,SHELDON R.
2000-02-29
Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.
Topology optimization of fluid mechanics problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan
D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...
An introduction to the mechanics of fluids
Truesdell, C
2000-01-01
The authors have backgrounds which are ideally suited for writing this book. The late C. Truesdell is well known for his monumental treatises on continuum thermomechanics. K.R. Rajagopal has made many important contributions to the mechanics of continua in general, and to nonlinear fluids in particular. They have produced a compact, moderately general book which encompasses many fluid models of current interest…The book is written very clearly and contains a large number of exercises and their solutions. The level of mathematics is that commonly taught to undergraduates in mathematics departments. This is an excellent book which is highly recommended to students and researchers in fluid mechanics. —Mathematical Reviews The writing style is quintessential Truesdellania: purely mathematical, breathtaking, irrepressible, irreverent, uncompromising, taking no prisoners...The book is filled with historical nuggets…Its pure, exact mathematics will baptize, enlighten and exhilarate. —Applied Mechanics Review...
Topological fluid mechanics of Axisymmetric Flow
DEFF Research Database (Denmark)
Brøns, Morten
1998-01-01
Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...
Fluid Mechanics of Cricket and Tennis Balls
Mehta, Rabindra D.
2009-11-01
Aerodynamics plays a prominent role in defining the flight of a ball that is struck or thrown through the air in almost all ball sports. The main interest is in the fact that the ball can often deviate from its initial straight path, resulting in a curved, or sometimes an unpredictable, flight path. It is particularly fascinating that that not all the parameters that affect the flight of a ball are always under human influence. Lateral deflection in flight, commonly known as swing, swerve or curve, is well recognized in cricket and tennis. In tennis, the lateral deflection is produced by spinning the ball about an axis perpendicular to the line of flight, which gives rise to what is commonly known as the Magnus effect. It is now well recognized that the aerodynamics of sports balls are strongly dependent on the detailed development and behavior of the boundary layer on the ball's surface. A side force, which makes a ball curve through the air, can also be generated in the absence of the Magnus effect. In one of the cricket deliveries, the ball is released with the seam angled, which trips the laminar boundary layer into a turbulent state on that side. The turbulent boundary layer separates relatively late compared to the laminar layer on the other side, thereby creating a pressure difference and hence side force. The fluid mechanics of a cricket ball become very interesting at the higher Reynolds numbers and this will be discussed in detail. Of all the round sports balls, a tennis ball has the highest drag coefficient. This will be explained in terms of the contribution of the ``fuzz" drag and how that changes with Reynolds number and ball surface wear. It is particularly fascinating that, purely through historical accidents, small disturbances on the ball surface, such as the stitching on cricket balls and the felt cover on tennis balls are all about the right size to affect boundary layer transition and development in the Reynolds numbers of interest. The fluid
Perspective: Coulomb fluids--weak coupling, strong coupling, in between and beyond.
Naji, Ali; Kanduc, Matej; Forsman, Jan; Podgornik, Rudolf
2013-10-21
We present a personal view on the current state of statistical mechanics of Coulomb fluids with special emphasis on the interactions between macromolecular surfaces, concentrating on the weak and the strong coupling limits. Both are introduced for a (primitive) counterion-only system in the presence of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we show how this formalism can be generalized to the cases with additional characteristic length scales that introduce new coupling parameters into the problem. These cases most notably include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak and strong coupling limits can be constructed by analogy with the counterion-only case and lead to important new insights into their properties that cannot be derived by any other means.
Introductory fluid mechanics for physicists and mathematicians
Pert, Geoffrey J
2013-01-01
This textbook presents essential methodology for physicists of the theory and applications of fluid mechanics within a single volume. Building steadily through a syllabus, it will be relevant to almost all undergraduate physics degrees which include an option on hydrodynamics, or a course in which hydrodynamics figures prominently.
Neural Control Mechanisms and Body Fluid Homeostasis
Johnson, Alan Kim
1998-01-01
The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.
Handbook of mathematical analysis in mechanics of viscous fluids
Novotný, Antonín
2018-01-01
Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.
Interfacial Fluid Mechanics A Mathematical Modeling Approach
Ajaev, Vladimir S
2012-01-01
Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also: Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...
New Directions in Mathematical Fluid Mechanics
Fursikov, Andrei V
2010-01-01
The scientific interests of Professor A.V. Kazhikhov were fundamentally devoted to Mathematical Fluid Mechanics, where he achieved outstanding results that had, and still have, a significant influence on this field. This volume, dedicated to the memory of A.V. Kazhikhov, presents the latest contributions from renowned world specialists in a number of new important directions of Mathematical Physics, mostly of Mathematical Fluid Mechanics, and, more generally, in the field of nonlinear partial differential equations. These results are mostly related to boundary value problems and to control problems for the Navier-Stokes equations, and for equations of heat convection. Other important topics include non-equilibrium processes, Poisson-Boltzmann equations, dynamics of elastic body, and related problems of function theory and nonlinear analysis.
Attracting Students to Fluid Mechanics with Coffee
Ristenpart, William
2016-11-01
We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.
Annual review of fluid mechanics. Volume 15
International Nuclear Information System (INIS)
Van Dyke, M.; Wehausen, J.V.; Lumley, J.L.
1983-01-01
A survey of experimental results and analytical techniques for modelling various flows and the behavior of flows around flown-driven machinery is presented. Attention is given to analytical models for wind flows and power extraction by horizontal axis wind turbines. The phenomena occurring in the impact of compressible fluids with a solid body are described, as are the instabilities, pattern formation, and turbulence in flames. Homogeneous turbulence is explored, theories for autorotation by falling bodies are discussed, and attention is devoted to theoretical models for magneto-atmospheric waves and their presence in solar activity. The design characteristics of low Reynolds number airfoils are explored, and numerical and fluid mechanics formulations for integrable, chaotic, and turbulent vortex motion in two-dimensional flows are reviewed. Finally, measurements and models of turbulent wall jets for engineering purposes are examined
Mechanism and Simulation of Generating Pulsed Strong Magnetic Field
Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao
2014-10-01
A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.
Statistical mechanics and the physics of fluids
Tosi, Mario
This volume collects the lecture notes of a course on statistical mechanics, held at Scuola Normale Superiore di Pisa for third-to-fifth year students in physics and chemistry. Three main themes are covered in the book. The first part gives a compact presentation of the foundations of statistical mechanics and their connections with thermodynamics. Applications to ideal gases of material particles and of excitation quanta are followed by a brief introduction to a real classical gas and to a weakly coupled classical plasma, and by a broad overview on the three states of matter.The second part is devoted to fluctuations around equilibrium and their correlations. Coverage of liquid structure and critical phenomena is followed by a discussion of irreversible processes as exemplified by diffusive motions and by the dynamics of density and heat fluctuations. Finally, the third part is an introduction to some advanced themes: supercooling and the glassy state, non-Newtonian fluids including polymers and liquid cryst...
Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime
Brenner, Michael
2013-11-01
There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.
Fluid mechanics of mathematics testing in Texas
Marder, Michael
2010-03-01
The performance of Texas high school students on mathematics exams is tightly connected to the level of poverty in the school. I will employ the coarse-graining techniques that lead from molecular motions to fluid mechanics in order to find how student scores evolve over time. I will show that the points of divergence between well-off and low-income kids are particularly clear when viewed as streamlines of a flow in the space of grade-level and score. The results can also be cast in the form of a Fokker-Planck equation, which highlights the separate roles of convection and diffusion. I will use the results the assess the plausibility of using charter schools, highly qualified teachers, and accountability systems as primary agents of school reform.
CEE3500 - Fluid Mechanics, Spring 2006
Urroz, Gilberto E.
2006-01-01
Explores fluid properties, hydrostatics, fluid dynamics, similitude, energy and momentum principles, closed conduit flow, open channel flow, and flow measurement. Includes laboratory exercises in flow measurement, open channel flow, pipe friction, physical modeling, and data collection.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
The Status of Fluid Mechanics in Bioengineering Curricula.
Miller, Gerald E.; Hyman, William A.
1981-01-01
Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…
Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel
Mogilner, Alex; Manhart, Angelika
2018-01-01
The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.
Experimental study of pseudoplastic fluid flows in a square duct of strong curvature
Ma, Kun; Yuan, Shiwei; Chang, Huaijian; Lai, Huanxin
2014-08-01
In this paper, laminar and turbulent flows of pseudoplastic fluids (0.1% and 0.2% by weight aqueous solutions of carboxymethylcellulose) in a square duct of strong curvature were measured using an ultrasonic Doppler velocimetry and microphones. Streamwise velocity in cross-sections of the duct and the fluctuating pressure on walls were measured for different flow rates. The velocity contours and their development along the duct were presented and compared with benchmark experiments by Taylor, Whitelaw and Yianneskis (1982) which were for the laminar and turbulent flows of water. The spectra of fluctuating wall pressures were also presented and analyzed. The objective of this paper was to provide a basis for understanding the pseudoplastic fluid flows in curved ducts. The results were also intended for use in the further development of numerical methods and turbulence models for shear-thinning fluids.
Collective fluid mechanics of honeybee nest ventilation
Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob
2014-11-01
Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.
Nonlinear waves from a localized vortex source in strongly correlated fluids
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2017-11-01
Highly charged quasi two-dimensional grain medium (complex plasma) is a remarkable test-bed to study wave like phenomena. Understanding of such wave propagation has many important applications in geophysics, petroleum engineering, and mining, earthquakes, and seismology. In the present study, for the first time, the propagation of nonlinear wave which originates from localized coherent vortex source has been studied using molecular dynamics simulation taking Yukawa liquids as a prototype for strongly correlated fluid. In this work, the coupling of transverse and longitudinal mode, effect of azimuthal speed of vortex source on the linear and nonlinear properties of generated wave will be presented as a function of strong correlation.
Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes.
Goligher, Ewan C; Dres, Martin; Fan, Eddy; Rubenfeld, Gordon D; Scales, Damon C; Herridge, Margaret S; Vorona, Stefannie; Sklar, Michael C; Rittayamai, Nuttapol; Lanys, Ashley; Murray, Alistair; Brace, Deborah; Urrea, Cristian; Reid, W Darlene; Tomlinson, George; Slutsky, Arthur S; Kavanagh, Brian P; Brochard, Laurent J; Ferguson, Niall D
2018-01-15
Diaphragm dysfunction worsens outcomes in mechanically ventilated patients, but the clinical impact of potentially preventable changes in diaphragm structure and function caused by mechanical ventilation is unknown. To determine whether diaphragm atrophy developing during mechanical ventilation leads to prolonged ventilation. Diaphragm thickness was measured daily by ultrasound in adults requiring invasive mechanical ventilation; inspiratory effort was assessed by thickening fraction. The primary outcome was time to liberation from ventilation. Secondary outcomes included complications (reintubation, tracheostomy, prolonged ventilation, or death). Associations were adjusted for age, severity of illness, sepsis, sedation, neuromuscular blockade, and comorbidity. Of 211 patients enrolled, 191 had two or more diaphragm thickness measurements. Thickness decreased more than 10% in 78 patients (41%) by median Day 4 (interquartile range, 3-5). Development of decreased thickness was associated with a lower daily probability of liberation from ventilation (adjusted hazard ratio, 0.69; 95% confidence interval [CI], 0.54-0.87; per 10% decrease), prolonged ICU admission (adjusted duration ratio, 1.71; 95% CI, 1.29-2.27), and a higher risk of complications (adjusted odds ratio, 3.00; 95% CI, 1.34-6.72). Development of increased thickness (n = 47; 24%) also predicted prolonged ventilation (adjusted duration ratio, 1.38; 95% CI, 1.00-1.90). Decreasing thickness was related to abnormally low inspiratory effort; increasing thickness was related to excessive effort. Patients with thickening fraction between 15% and 30% (similar to breathing at rest) during the first 3 days had the shortest duration of ventilation. Diaphragm atrophy developing during mechanical ventilation strongly impacts clinical outcomes. Targeting an inspiratory effort level similar to that of healthy subjects at rest might accelerate liberation from ventilation.
Quantitative image processing in fluid mechanics
Hesselink, Lambertus; Helman, James; Ning, Paul
1992-01-01
The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.
Nambu brackets in fluid mechanics and magnetohydrodynamics
International Nuclear Information System (INIS)
Salazar, Roberto; Kurgansky, Michael V
2010-01-01
Concrete examples of the construction of Nambu brackets for equations of motion (both 3D and 2D) of Boussinesq stratified fluids and also for magnetohydrodynamical equations are given. It serves a generalization of Hamiltonian formulation for the considered equations of motion. Two alternative Nambu formulations are proposed, first by using fluid dynamical (kinetic) helicity and/or enstrophy as constitutive elements and second, by using the existing conservation laws of the governing equation.
Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media
El-Dib, Y O
2003-01-01
In the present work a weakly nonlinear stability for magnetic fluid is discussed. The research of an interface between two strong viscous homogeneous incompressible fluids through porous medium is investigated theoretically and graphically. The effect of the vertical magnetic field has been demonstrated in this study. The linear form of equation of motion is solved in the light of the nonlinear boundary conditions. The boundary value problem leads to construct nonlinear characteristic equation having complex coefficients in elevation function. The nonlinearity is kept to third-order expansion. The nonlinear characteristic equation leads to derive the well-known nonlinear Schroedinger equation. This equation having complex coefficients of the disturbance amplitude varies in both space and time. Stability criteria have been performed for nonlinear Chanderasekhar dispersion relation including the porous effects. Stability conditions are discussed through the assumption of equal kinematic viscosity. The calculati...
Application of the principle of similarity fluid mechanics
International Nuclear Information System (INIS)
Hendricks, R.C.; Sengers, J.V.
1979-01-01
Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle
Diffuse-Interface Methods in Fluid Mechanics
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state
International Nuclear Information System (INIS)
DeWitt, H.E.
1993-01-01
Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the Γ → ∞ limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example
Fluid catalytic cracking : Feedstocks and reaction mechanism
Dupain, X.
2006-01-01
The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in
International Nuclear Information System (INIS)
Jain, Anuj; Paul, Akshoy Ranjan
2016-01-01
Fluid Mechanics and Fluid Power (FMFP) Conference is an important meeting to promote all activities in the field of Fluid Mechanics and Fluid Power in India. FMFP-2016 offers great opportunity to scientists, researchers, engineers and business executives from all parts of the world to share the recent advancements and future trends in all aspects of fluid mechanics and fluid power- be it theoretical, experimental, applied and computational, and build network. It covers theoretical and experimental fluid dynamics, flow instability, transition, turbulence and control, fluid machinery, turbomachinery and fluid power, IC engines and gas turbines, multiphase flows, fluid-structure interaction and flow-induced noise, micro and nano fluid mechanics, bio-inspired fluid mechanics, energy and environment, specialized topics (transport phenomena in materials processing and manufacturing, MHD and EHD flows, granular flows, nuclear reactor, thermal hydraulics, defence and space engineering, sustainable habitat. Papers relevant to INIS are indexed separately
Mechanical stimulation of bone cells using fluid flow
Huesa, C.; Bakker, A.D.
2012-01-01
This chapter describes several methods suitable for mechanically stimulating monolayers of bone cells by fluid shear stress (FSS) in vitro. Fluid flow is generated by pumping culture medium through two parallel plates, one of which contains a monolayer of cells. Methods for measuring nitric oxide
Software for principles of fluid mechanics
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is intended as a software supplement and provides a means for solving problems rapidly to determine the relative importance of flow and environmental parameters. Topics covered include the following: momentum equation: rocket trajectory; Bernoulli's equation: pipe plug-flow or Bernoulli's equation: tank drawing; fluid statics: submerged gate, or fluid statics: manometry; laminar flow: pipe fittings plus straight pipe, or laminar external flow: between parallel planes; ideal flow: plot of pressure distribution on a cylinder with circulation; laminar external flow: drag force and friction coefficient; turbulent external flow: drag force and friction coefficient on flat plate; turbulent external flow: drag force and friction coefficient on sphere; turbulent pipe flow: fittings plus straight sections (moody diagram); turbulent channel flow; isentropic compressible flow; normal shocks: property changes errors; choked nozzle flow; pump curve and system curve simultaneous solution; and fan affinity laws
Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)
Leventis, Nicholas
2005-01-01
The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.
Vectors, tensors and the basic equations of fluid mechanics
Aris, Rutherford
1962-01-01
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
[Research activities in applied mathematics, fluid mechanics, and computer science
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
Research in Applied Mathematics, Fluid Mechanics and Computer Science
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
The fluid mechanics of root canal irrigation
International Nuclear Information System (INIS)
Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I
2010-01-01
Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid
The fluid mechanics of root canal irrigation.
Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I
2010-12-01
Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid
International Nuclear Information System (INIS)
Faucher, V.
2014-01-01
This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author
Problems in Microgravity Fluid Mechanics: G-Jitter Convection
Homsy, G. M.
2005-01-01
This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.
Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)
Leventis, Nicholas
2006-01-01
Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X
Analysis of the fluid mechanical sewing machine
Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil
2012-02-01
A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns, similar to the stitch patterns produced by a traditional sewing machine. By simulating the dynamics of the viscous thread numerically, we can reproduce these patterns and their bifurcations. The results lead us to propose a new classification of the stitch patterns within a unified framework, based on the Fourier spectra of the motion of the point of contact of the thread with the belt. The frequencies of the longitudinal and transverse components of the contact point motion are locked in most cases to simple ratios of the frequency φc of steady coiling on a surface at rest (i.e., the limit of zero belt speed). In particular, the ``alternating loops'' pattern involves the first five multiples of φc/3. The dynamics of the patterns can be described by matching the upper (linear) and the lower (non-linear) portions of the thread. Following this path we propose a toy model that successfully reproduces the observed transitions from the steady dragged configuration to sinusoidal meanders, alternating loops, and the translated coiling pattern as the belt speed is varied.
Fluid Mechanics of Inhalant Siphon Flows
True, A. C.; Crimaldi, J. P.
2016-02-01
Inhalant siphon and suction flows are ubiquitous in marine ecosystems. From biological flows in filter-feeding benthic bivalves and predation by planktivorous fishes, to engineered flows in water samplers and production of hydrodynamic stimuli for laboratory assays, inhalant siphon flows span much of the laminar range (Reynolds number 0.01 - 2,000) and fundamentally influence many transport and exchange processes. Direct numerical simulations (DNS) of inhalant siphon flows with varying Reynolds numbers and geometries have informed design and construction of an index of refraction-matched flow facility (mineral oil, borosilicate glass tubing) in which we are employing particle image velocimetry (PIV) to quantify transient and steady-state flow fields outside and inside the siphon tube. Varying siphon diameter, flow rate, and extraction height allows us to evaluate effects of Reynolds number and siphon geometry on local hydrodynamics. This complementary experimental and numerical modeling investigation of siphon flow hydrodynamics was motivated recently by a colleague whose biologically inspired numerical modeling of inhalant siphons using a boundary condition of constant volumetric outflow (as opposed to the classically assumed uniform inlet velocity profile) revealed nontrivial departures from idealized flows: inviscid potential flows (i.e. point sink) and pipe flows (the classical pipe entry problem), particularly in the low Reynolds number regime. Reduced entrance lengths, larger radial inflows, and modifications to fluid capture zones seen numerically at low Reynolds number are being tested experimentally and may have important implications for both biological and engineered siphons.
Physical Fluid Mechanics in MPD Thrusters.
1987-09-18
o). In this work we will use either 4. - ( b 2 0 (14) a simple perfect gas model, with constant ratio of qpecifLc heats , or an ionization equilibrium...ioiatio o~ly, r nd Arnin the case of an ideal gas with~ constant specificigfrs oiztonol, n erfe heat !Sti ~ .It i cler tht whn t hea models trgainxt...iniet 5fnd at exi; rnr’ienkt i strongly posiiv~e near tie exit, due It Is these dissipative layers that are 1, IlhA oiusic tieating in that region with
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Mechanism of chain formation in nanofluid based MR fluids
International Nuclear Information System (INIS)
Patel, Rajesh
2011-01-01
Mechanism of structure formation in bidispersed colloids is important for its physical and optical properties. It is microscopically observed that the mechanism of chain formation in magnetic nanofluid based magnetorheological (MR) fluid is quite different from that in the conventional MR fluid. Under the application of magnetic field the magnetic nanoparticles are filled inside the structural microcavities formed due to the association of large magnetic particles, and some of the magnetic nanoparticles are attached at the end of the chains formed by the large particles. The dipolar energy of the large particles in a magnetic nanofluid matrix becomes effective magnetic permeability (μ eff ) times smaller than that of the neutral medium. Inclusion of magnetic nanoparticles (∼10 nm) with large magnetic particles (∼3-5 μm) restricts the aggregation of large particles, which causes the field induced phase separation in MR fluids. Hence, nanofluid based MR fluids are more stable than conventional MR fluids, which subsequently increase their application potentiality. - Research highlights: → In bidispersed magnetic colloids nanoparticles are attached at the end of the chains formed by the large particles. → Inclusion of magnetic nanoparticles (∼10 nm) with large magnetic particles (∼3-5 m) restricts the aggregation of large particles. → Nanofluid based MR fluids are more stable than conventional MR fluids.
FLUID MECHANICS OF ARTIFICIAL HEART VALVES
Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P
2009-01-01
1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mecha...
Fluid transportation mechanisms by a coupled system of elastic membranes and magnetic fluids
International Nuclear Information System (INIS)
Ido, Y.; Tanaka, K.; Sugiura, Y.
2002-01-01
The basic properties of the fluid transportation mechanism that is produced by the coupled waves propagating along a thin elastic membrane covering a magnetic fluid layer in a shallow and long rectangular vessel are investigated. It is shown that the progressive magnetic field induced by the rectangular pulses generates sinusoidal vibration of the displacement of elastic membrane and makes the system work more efficiently than the magnetic field induced by the pulse-width-modulation method
Second GAMM-conference on numerical methods in fluid mechanics
International Nuclear Information System (INIS)
Hirschel, E.H.; Geller, W.
1977-01-01
Proceedings of the Second GAMM-Conference on Numerical Methods in Fluid Mechanics held at the DFVLR, Koeln, October 11 to 13, 1977. The conference was attended by approximately 100 participants from 13 European countries representing quite different fields ranging from Aerodynamics to Nuclear Energy. At the meeting 34 papers were presented, many of them concerned with basic problems in the field. It was well demonstrated that Numerical Methods in Fluid Mechanics do not only serve as means for the computation of flow fields but also as tools in the analysis of fluid mechanical phenomena, a role of large future importance if one considers the complexity especially of three-dimensional flows. (orig./RW) [de
Fluids and the evolution of rock mechanical properties
International Nuclear Information System (INIS)
Reuschle, Thierry
1989-01-01
This research thesis reports the study of the various phenomena of fluid-solid interaction (mechanical or chemical interaction with fracturing by fluid overpressure, slow crack propagation, and pore deformation by transfer in solution) which may occur in the interaction of fluids with rocks. The author first presents the formalism of slow crack propagation based on the generalisation of the Griffith criterion. The model results are compared with experimental results obtained on four materials (glass, quartz, sandstone, and micrite) by using the double-torsion test. In the second part, the author addresses the issue of pore deformation by transfer in solution: dissolution and crystallisation under stress. The Gibbs chemical potential equation is firstly generalised to the case of a circular pore, and a formalism combining mechanics and thermodynamics is then proposed. A set of simulations highlights important parameters. In the third part, the author addresses the problem of fluid-rock mechanical interaction by studying the mechanical role of fluid pressure in crack initiation and propagation [fr
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
An Introduction to Computational Fluid Mechanics by Example
Biringen, Sedat
2011-01-01
This new book builds on the original classic textbook entitled: An Introduction to Computational Fluid Mechanics by C. Y. Chow which was originally published in 1979. In the decades that have passed since this book was published the field of computational fluid dynamics has seen a number of changes in both the sophistication of the algorithms used but also advances in the computer hardware and software available. This new book incorporates the latest algorithms in the solution techniques and supports this by using numerous examples of applications to a broad range of industries from mechanical
Fluid Mechanical Properties of Silkworm Fibroin Solutions
Matsumoto, Akira
2005-11-01
The aqueous solution behavior of silk fibroin is of interest due to the assembly and processing of this protein related to the spinning of protein fibers that exhibit remarkable mechanical properties. To gain insight into the origins of this functional feature, it is desired to determine how the protein behaves under a range of solution conditions. Pure fibroin at different concentrations in water was studied for surface tension, as a measure of surfactancy. In addition, shear induced changes on these solutions in terms of structure and morphology was also determined. Fibroin solutions exhibited shear rate-sensitive viscosity changes and precipitated at a critical shear rate where a dramatic increase of 75-150% of the initial value was observed along with a decrease in viscosity. In surface tension measurements, critical micelle concentrations were in the range of 3-4% w/v. The influence of additional factors, such as sericin protein, divalent and monovalent cations, and pH on the solution behavior in relation to structural and morphological features will also be described.
Strongly coupled interaction between a ridge of fluid and an inviscid airflow
Paterson, C.
2015-07-01
© 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.
Fluid mechanics and heat transfer advances in nonlinear dynamics modeling
Asli, Kaveh Hariri
2015-01-01
This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately
Mechanics and mathematics of fluids of the differential type
Cioranescu, D; Rajagopal, K R
2016-01-01
This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. Each part of the book can be considered as being self-contained. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3. The second part of the book is dedicated to the development of rigorous mathematical results concerning the equations governing the motion of a family of fluids of the differential type. Finally, the proofs of a number of useful results are collected in an appendix.
Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics
Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro
2015-11-01
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
Space-time fluid mechanics computation of heart valve models
Takizawa, Kenji; Tezduyar, Tayfun E.; Buscher, Austin; Asada, Shohei
2014-10-01
Fluid mechanics computation of heart valves with an interface-tracking (moving-mesh) method was one of the classes of computations targeted in introducing the space-time (ST) interface tracking method with topology change (ST-TC). The ST-TC method is a new version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method. It can deal with an actual contact between solid surfaces in flow problems with moving interfaces, while still possessing the desirable features of interface-tracking methods, such as better resolution of the boundary layers. The DSD/SST method with effective mesh update can already handle moving-interface problems when the solid surfaces are in near contact or create near TC, if the "nearness" is sufficiently "near" for the purpose of solving the problem. That, however, is not the case in fluid mechanics of heart valves, as the solid surfaces need to be brought into an actual contact when the flow has to be completely blocked. Here we extend the ST-TC method to 3D fluid mechanics computation of heart valve models. We present computations for two models: an aortic valve with coronary arteries and a mechanical aortic valve. These computations demonstrate that the ST-TC method can bring interface-tracking accuracy to fluid mechanics of heart valves, and can do that with computational practicality.
Static and Dynamic Amplification Using Strong Mechanical Coupling
Ilyas, Saad
2016-07-28
Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100
Isogeometric Analysis and Shape Optimization in Fluid Mechanics
DEFF Research Database (Denmark)
Nielsen, Peter Nørtoft
This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... unites the power to solve complex engineering problems from finite element analysis (FEA) with the ability to effectively represent complex shapes from computer aided design (CAD). The methodology is appealing for flow modeling purposes also due to the inherent high regularity of velocity and pressure...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description...
A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems
International Nuclear Information System (INIS)
Bailey, C; Cross, M.; Pericleous, K.
1998-01-01
Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)
A Blended Learning Approach to Teach Fluid Mechanics in Engineering
Rahman, Ataur
2017-01-01
This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…
Fluid Mechanics of Wing Adaptation for Separation Control
Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)
1997-01-01
The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.
Instructor's Guide for Fluid Mechanics: A Modular Approach.
Cox, John S.
This guide is designed to assist engineering teachers in developing an understanding of fluid mechanics in their students. The course is designed around a set of nine self-paced learning modules, each of which contains a discussion of the subject matter; incremental objectives; problem index, set and answers; resource materials; and a quiz with…
The No-Slip Boundary Condition in Fluid Mechanics
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. The No-Slip Boundary Condition in Fluid Mechanics - Solution of the Sticky Problem. Sandeep Prabhakara M D Deshpande. General Article Volume 9 Issue 5 May 2004 pp 61-71 ...
Flippin' Fluid Mechanics--Comparison Using Two Groups
Webster, Donald R.; Majerich, David M.; Madden, Amanda G.
2016-01-01
A flipped classroom approach was implemented in an undergraduate fluid mechanics course. Students watched short, online video lectures before class, participated in active in-class problem solving sessions (in pairs), and completed individualized online quizzes weekly. In-class activities were designed to develop problem-solving skills and teach…
The fluid mechanics of channel fracturing flows: experiment
Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah
2017-11-01
We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
Kern, N.; Frenkel, D.
2003-01-01
We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere
CISM course on stochastic methods in fluid mechanics
Chibbaro, Sergio
2013-01-01
Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechan
Application of computational fluid mechanics to atmospheric pollution problems
Hung, R. J.; Liaw, G. S.; Smith, R. E.
1986-01-01
One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.
The genesis of fluid mechanics, 1640-1780
Calero, Julián Simón
2008-01-01
Fluid Mechanics, as a scientific discipline in a modern sense, was established between the last third of the 17th century and the first half of the 18th one. This book analyses its genesis, following its evolution along two basic lines of research, which have been named the "problem of resistance" and the "problem of discharge". This approach highlights the existence of a remarkable experimental aspect in the aforementioned research lines, together with their link with problems of a practical nature, such as ballistics, hydraulics, fluid-using machines or naval theory. On the other hand, although previous studies usually present fluid mechanics from the point of view of mathematics, this is complemented here by an engineering viewpoint; gathering attempts made in the beginnings of fluid mechanics to see if the theory was capable of productive application in practical terms. This is nothing unusual in a time where the quality of knowledge and skill is measured largely by its usefulness. (c) Universidad Naciona...
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-11-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately
Vieira, Sheila Lopes; de Arruda, Antonio Celso Fonseca
In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America
Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.
Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P
2016-12-01
Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.
Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics
Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.
2008-01-01
A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.
Friction mechanisms and interfacial slip at fluid-solid interfaces
Leger, L
2003-01-01
We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...
The Fluid Mechanics of Cancer and Its Therapy
Koumoutsakos Petros; Pivkin Igor; Milde Florian
2012-01-01
Fluid mechanics is involved in the growth progression metastasis and therapy of cancer. Blood vessels transport oxygen and nutrients to cancerous tissues provide a route for metastasizing cancer cells to distant organs and deliver drugs to tumors. The irregular and leaky tumor vasculature is responsible for increased interstitial pressure in the tumor microenvironment whereas multiscale flow structure interaction processes control tumor growth metastasis and nanoparticle mediated drug deliver...
Fluid mechanical responses to nutrient depletion in fungi and biofilmsa)
Brenner, Michael P.
2014-10-01
In both fungi and bacterial biofilms, when nutrients are depleted, the organisms cannot physically migrate to find a new source, but instead must develop adaptations that allow them to survive. This paper reviews our work attempting to discover design principles for these adaptations. We develop fluid mechanical models, and aim to understand whether these suggest organizing principles for the observed morphological diversity. Determining whether a proposed organizing principle explains extant biological designs is fraught with difficulty: simply because a design principle predicts characteristics similar to an organism's morphology could just as well be accidental as revealing. In each of the two sets of examples, we adopt different strategies to develop understanding in spite of this difficulty. Within the fungal phylum Ascomycota, we use the large observed diversity of different morphological solutions to the fundamental fluid mechanical problem to measure how far each solution is from a design optimum, thereby measuring how far the extant designs deviate from the hypothesized optimum. This allows comparing different design principles to each other. For biofilms, we use engineering principles to make qualitative predictions of what types of adaptations might exist given the physicochemical properties of the repertoire of proteins that bacteria can create, and then find evidence for these adaptations in experiments. While on the surface this paper addresses the particular adaptations used by the fungal phylum Ascomycota and bacterial biofilms, we also aim to motivate discussion of different approaches to using design principles, fluid mechanical or otherwise, to rationalize observed engineering solutions in biology.
Teaching fluid mechanics to high schoolers: methods, challenges, and outcome
Manikantan, Harishankar
2017-11-01
This talk will summarize the goals, methods, and both short- and long-term feedback from two high-school-level courses in fluid mechanics involving 43 students and cumulatively spanning over 100 hours of instruction. The goals of these courses were twofold: (a) to spark an interest in science and engineering and attract a more diverse demographic into college-level STEM programs; and (b) to train students in a `college-like' method of approaching the physics of common phenomena, with fluid mechanics as the context. The methods of instruction included classes revolving around the idea of dispelling misconceptions, group activities, `challenge' rounds and mock design projects to use fluid mechanics phenomena to achieve a specified goal, and simple hands-on experiments. The feedback during instruction was overwhelmingly positive, particularly in terms of a changing and favorable attitude towards math and engineering. Long after the program, a visible impact lies in a diverse group of students acknowledging that the course had a positive effect in their decision to choose an engineering or science major in a four-year college.
Fluid mechanics of eating, swallowing and digestion - overview and perspectives.
Engmann, Jan; Burbidge, Adam S
2013-02-26
From a very simplistic viewpoint, the human digestive system can be regarded as a long tube (with dramatic variations in diameter, cross-section, wall properties, pumping mechanisms, regulating valves and in-line sensors). We single out a few fluid mechanical phenomena along the trajectory of a food bolus from the mouth to the small intestine and discuss how they influence sensorial perception, safe transport, and nutrient absorption from a bolus. The focus is on lubrication flows between the tongue and palate, the oropharyngeal stage of swallowing and effects of flow on absorption in the small intestine. Specific challenges and opportunities in this research area are highlighted.
The fluid mechanics of the inner-ear disorder BPPV
Weidman, Michael; Squires, Todd; Stone, Howard
2001-11-01
The inner ear of mammals contains fluid-filled semi-circular canals with a flexible sensory membrane (called a cupula) which detects rotational acceleration. Benign Paroxysmal Positional Vertigo (BPPV) is one of the most common disorders of this system diagnosed today, and is characterized by symptoms of dizziness and nausea brought on by sudden changes in head orientation. BPPV is believed to have a mechanical (rather than nervous) origin, in which dense particles called otoconia settle into the canals and trigger false sensations of rotational acceleration. Several qualitative mechanisms have been proposed by the medical community, which we examine from a fluid mechanical standpoint. Traditionally, the semicircular canal and the cupula are modeled as an over-damped torsional pendulum with a driving force provided by rotational acceleration. We extend this model to include the time-dependent mechanical response owing to sedimentation of the otoconia. We make qualitative and quantitative predictions associated with the proposed mechanisms, with an eye towards differentiating between them and perhaps towards more effective diagnostic and therapeutic methods.
Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows
DEFF Research Database (Denmark)
Brøns, Morten
1996-01-01
Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....
Archer, A J
2009-01-07
In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.
Renal and Vascular Mechanisms of Thiazolidinedione-Induced Fluid Retention
Directory of Open Access Journals (Sweden)
Tianxin Yang
2008-01-01
Full Text Available Thiazolidinediones (TZDs are peroxisome proliferator-activated receptor subtype γ (PPARγ activators that are clinically used as an insulin sensitizer for glycemic control in patients with type 2 diabetes. Additionally, TZDs exhibit novel anti-inflammatory, antioxidant, and antiproliferative properties, indicating therapeutic potential for a wide variety of diseases associated with diabetes and other conditions. The clinical applications of TZDs are limited by the common major side effect of fluid retention. A better understanding of the molecular mechanism of TZD-induced fluid retention is essential for the development of novel therapies with improved safety profiles. An important breakthrough in the field is the finding that the renal collecting duct is a major site for increased fluid reabsorption in response to rosiglitazone or pioglitazone. New evidence also indicates that increased vascular permeability in adipose tissues may contribute to edema formation and body weight gain. Future research should therefore be directed at achieving a better understanding of the detailed mechanisms of TZD-induced increases in renal sodium transport and in vascular permeability.
Mechanical design problems associated with turbopump fluid film bearings
Evces, Charles R.
1990-01-01
Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.
Interpreting Students’ Perceptions in Fluid Mechanics Learning Outcomes
Directory of Open Access Journals (Sweden)
Filomena SOARES
2015-11-01
Full Text Available The objective of this study is to analyse the impact of introducing a practical work in the learning process of the Fluid Transport Systems course in Chemical Engineering degree. The students, in groups of two or three elements, were free to choose the application case in order to develop the practical work proposed by the responsible teachers. The students selected a centrifugal pump to supply water to houses or buildings and designed the piping system. The practical work was evaluated through the written report. The students’ perceptions were analysed through a questionnaire. The learning outcomes were also considered in order to understand how the fluid mechanics concepts were acquired. In the teachers’ point of view the teamwork should enable the development of students’ soft skills and competencies, promoting the ability to integrate and work in teams. The students changed their learning processing and perception becoming more reflective and less accommodative, forcing them to think critically and share opinions. Regarding the Fluid Mechanics assessment, the practical work increased, in average, the final grade at least one value.
Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
Bushnell, Dennis M.
2000-01-01
This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.
On the Use of Computers for Teaching Fluid Mechanics
Benson, Thomas J.
1994-01-01
Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.
Basic Coandă MAV Fluid Dynamics and Flight Mechanics
Djojodihardjo, H.; Ahmed, RI
2017-04-01
Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.
International Nuclear Information System (INIS)
Kopnichev, Yu.F.; Sokolova, I.N.
2005-01-01
Data on variations of a ratio of the helium isotope content (parameter R= 3 He/ 4 He) near the sources of strong earthquakes and some large fault zones (in the regions of Tien Shan, Mongolia, California, Central Japan and Central Apennines) are being analyzed. It was shown that in many cases R values regularly diminish with the distance from epicenters and large regional faults. This testifies to the ascent of mantle fluids into the earth's crust after strong earthquakes and in some deep fault zones, which are characterized by superhigh permeability and their further migration in horizontal direction. (author)
A steady Navier-Stokes model for compressible fluid with partially strong solutions
Czech Academy of Sciences Publication Activity Database
Muzereau, O.; Neustupa, Jiří; Penel, P.
2010-01-01
Roč. 348, 11-12 (2010), s. 619-624 ISSN 1631-073X R&D Projects: GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes equations * Compressible fluids * Weak solution Subject RIV: BA - General Mathematics Impact factor: 0.399, year: 2010 http://www.sciencedirect.com/science/article/pii/S1631073X10001160
Dynamics of polymeric liquids. Vol. 1, 2nd Ed.: Fluid mechanics
International Nuclear Information System (INIS)
Bird, R.B.; Armstrong, R.C.; Hassager, O.
1987-01-01
This book examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids. Major revisions include extensive updating of all material and a greater emphasis on fluid dynamics problem solving. It presents summaries of experiments describing the difference between polymeric and simple fluids. In addition, it traces, roughly in historical order, various methods for solving polymer fluid dynamics problems
Escape response of planktonic protists to fluid mechanical signals
DEFF Research Database (Denmark)
Jakobsen, Hans Henrik
2001-01-01
The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...... to elicit an escape ranged between 1.8 and 3 s(-1). Escape speeds varied between 100 to 150 body length s(-1). Jump directions were non- random in all jumping species and had a negative geotactic component. In a grazing experiment with copepods, the predation mortality of a jumping ciliate was about 15...
Review of coaxial flow gas core nuclear rocket fluid mechanics
International Nuclear Information System (INIS)
Weinstein, H.
1976-01-01
In a prematurely aborted attempt to demonstrate the feasibility of using a gas core nuclear reactor as a rocket engine, NASA initiated a number of studies on the relevant fluid mechanics problems. These studies were carried out at NASA laboratories, universities and industrial research laboratories. Because of the relatively sudden termination of most of this work, a unified overview was never presented which demonstrated the accomplishments of the program and pointed out the areas where additional work was required for a full understanding of the cavity flow. This review attempts to fulfill a part of this need in two important areas
Laser metrology in fluid mechanics granulometry, temperature and concentration measurements
Boutier, Alain
2013-01-01
In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp
Directory of Open Access Journals (Sweden)
Yan-Lei Zhang
2016-01-01
Full Text Available Nonlinear vibration of a fluid-conveying pipe subjected to a transverse external harmonic excitation is investigated in the case with two-to-one internal resonance. The excitation amplitude is in the same magnitude of the transverse displacement. The fluid in the pipes flows in the speed larger than the critical speed so that the straight configuration becomes an unstable equilibrium and two curved configurations bifurcate as stable equilibriums. The motion measured from each of curved equilibrium configurations is governed by a nonlinear integro-partial-differential equation with variable coefficients. The Galerkin method is employed to discretize the governing equation into a gyroscopic system consisting of a set of coupled nonlinear ordinary differential equations. The method of multiple scales is applied to analyze approximately the gyroscopic system. A set of first-order ordinary differential equations governing the modulations of the amplitude and the phase are derived via the method. In the supercritical regime, the subharmonic, superharmonic, and combination resonances are examined in the presence of the 2 : 1 internal resonance. The steady-state responses and their stabilities are determined. The various jump phenomena in the amplitude-frequency response curves are demonstrated. The effects of the viscosity, the excitation amplitude, the nonlinearity, and the flow speed are observed. The analytical results are supported by the numerical integration.
Universal characterization of wall turbulence for fluids with strong property variations
Patel, A.
2017-01-01
Wall-bounded turbulence involving mixing of scalars, such as temperature or concentration fields, play an important role in many engineering applications. In applications with large temperature or concentration differences, the variation of scalar dependent thermos physical properties can be strong.
Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).
Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J
2016-08-01
We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.
Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles
Saviz, Camilla M.; Shakerin, Said
2014-01-01
Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…
Links between fluid mechanics and quantum mechanics: a model for information in economics?
Haven, Emmanuel
2016-05-28
This paper tallies the links between fluid mechanics and quantum mechanics, and attempts to show whether those links can aid in beginning to build a formal template which is usable in economics models where time is (a)symmetric and memory is absent or present. An objective of this paper is to contemplate whether those formalisms can allow us to model information in economics in a novel way. © 2016 The Author(s).
Computational thermal, chemical, fluid, and solid mechanics for geosystems management.
Energy Technology Data Exchange (ETDEWEB)
Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu
2011-09-01
This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.
Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid
Antonov, V.; Kalinin, N.; Kovalenko, A.
2016-11-01
A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.
International Nuclear Information System (INIS)
Verkerk, P.; Pruisken, A.M.M.
1979-01-01
A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)
The Pi-Theorem Applications to Fluid Mechanics and Heat and Mass Transfer
Yarin, L P
2012-01-01
This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.
Fluid Mechanics of Biological Surfaces and their Technological Application
Bechert, D. W.; Bruse, M.; Hage, W.; Meyer, R.
A survey is given on fluid-dynamic effects caused by the structure and properties of biological surfaces. It is demonstrated that the results of investigations aiming at technological applications can also provide insights into biophysical phenomena. Techniques are described both for reducing wall shear stresses and for controlling boundary-layer separation. (a) Wall shear stress reduction was investigated experimentally for various riblet surfaces including a shark skin replica. The latter consists of 800 plastic model scales with compliant anchoring. Hairy surfaces are also considered, and surfaces in which the no-slip condition is modified. Self-cleaning surfaces such as that of lotus leaves represent an interesting option to avoid fluid-dynamic deterioration by the agglomeration of dirt. An example of technological implementation is discussed for riblets in long-range commercial aircraft. (b) Separation control is also an important issue in biology. After a few brief comments on vortex generators, the mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (=artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils by about 20%. This is achieved without perceivable deleterious effects under cruise conditions. Finally, flight experiments on an aircraft with laminar wing and movable flaps are presented.
Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields
Czech Academy of Sciences Publication Activity Database
Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, Vladimír; Trova, Audrey
2016-01-01
Roč. 93, June (2016), 124055/1-124055/20 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G; GA MŠk(CZ) LH14049 Grant - others:GA ČR(CZ) GP14-07753P Institutional support: RVO:67985815 Keywords : black holes * accretion discscretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.643, year: 2014
An intelligent data acquisition system for fluid mechanics research
Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.
1989-01-01
This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.
A cubic spline approximation for problems in fluid mechanics
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Fluid-Structure Interaction Mechanisms for Close-In Explosions
Directory of Open Access Journals (Sweden)
Andrew B. Wardlaw Jr.
2000-01-01
Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.
Introduction to the internal fluid mechanics research session
Miller, Brent A.; Povinelli, Louis A.
1990-01-01
Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.
Fluid mechanics experiments in oscillatory flow. Volume 1: Report
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).
Fluid mechanics experiments in oscillatory flow. Volume 1
International Nuclear Information System (INIS)
Seume, J.; Friedman, G.; Simon, T.W.
1992-03-01
Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re max , Re W , and A R , embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation)
Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus
2013-12-01
Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2018-01-01
In this paper, we perform comparative studies of compressible Kolmogorov flow in the two-dimensional strongly coupled dusty plasma by means of atomistic or molecular dynamics (MD) and continuum or computational fluid dynamics (CFD) methods. Recently, using MD simulation, generation of molecular shear heat at the atomistic level is shown to reduce the average coupling strength of the system and destruct the vortical structures. To suppress the molecular heat, a novel method of a thermostat, namely, the configurational thermostat is introduced by which the microscale heat generated by the shear flow has shown to be thermostatted out efficiently without compromising the large scale vortex dynamics. While using a configurational thermostat, it has been found that the growth rate obtained from both the studies is the same with the marginal difference. To make the comparison with the continuum fluid model, we perform the same study using the generalised hydrodynamic model, wherein molecular shear heating phenomena is completely absent, however, viscous dissipation is there at the macroscale level. For this purpose, an Advanced Generalised SPECTral Code has been developed to study the linear and nonlinear aspects of the Kolmogorov flow in the incompressible and compressible limit for viscoelastic fluids. All the phenomenological parameters used in CFD simulations have been calculated from MD simulations. Code is benchmarked against the eigen value solver in the linear regime. Linear growth-rates calculated from the phenomenological fluid model is found to be close to that obtained from MD simulation for the same set of input parameters. The transition from laminar to turbulent flow has been found at a critical value of Reynolds number Rc in both the macroscopic (CFD) and microscopic (MD) simulation. Rc in MD is smaller than the one obtained by CFD simulation. In the nonlinear regime of CFD, the mode becomes unstable and vortex formation happens earlier than in MD. The
Obstructive renal injury: from fluid mechanics to molecular cell biology
Directory of Open Access Journals (Sweden)
Alvaro C Ucero
2010-04-01
Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology
Relation between boundary slip mechanisms and waterlike fluid behavior
Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C.
2018-03-01
The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.
Combustion research in the Internal Fluid Mechanics Division
Mularz, Edward J.
1986-01-01
The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.
Towards a statistical mechanical theory of active fluids.
Marini Bettolo Marconi, Umberto; Maggi, Claudio
2015-12-07
We present a stochastic description of a model of N mutually interacting active particles in the presence of external fields and characterize its steady state behavior in the absence of currents. To reproduce the effects of the experimentally observed persistence of the trajectories of the active particles we consider a Gaussian force having a non-vanishing correlation time τ, whose finiteness is a measure of the activity of the system. With these ingredients we show that it is possible to develop a statistical mechanical approach similar to the one employed in the study of equilibrium liquids and to obtain the explicit form of the many-particle distribution function by means of the multidimensional unified colored noise approximation. Such a distribution plays a role analogous to the Gibbs distribution in equilibrium statistical mechanics and provides complete information about the microscopic state of the system. From here we develop a method to determine the one- and two-particle distribution functions in the spirit of the Born-Green-Yvon (BGY) equations of equilibrium statistical mechanics. The resulting equations which contain extra-correlations induced by the activity allow us to determine the stationary density profiles in the presence of external fields, the pair correlations and the pressure of active fluids. In the low density regime we obtained the effective pair potential ϕ(r) acting between two isolated particles separated by a distance, r, showing the existence of an effective attraction between them induced by activity. Based on these results, in the second half of the paper we propose a mean field theory as an approach simpler than the BGY hierarchy and use it to derive a van der Waals expression of the equation of state.
Gupta, Akanksha; Ganesh, Rajaraman
2018-01-01
We study compressibility effects on the two-dimensional strongly coupled dusty plasma by means of computational fluid dynamics (CFD) with the Kolmogorov flow as an initial shear flow profile. Nonlinear compressible vortex flow dynamics and other linear and nonlinear properties of such flow in the presence of variable density, pressure, and electrostatic potential are addressed using a generalised compressible hydrodynamic model. The stabilizing effect of compressibility on the unstable shear flows in the presence of strong correlation ( τm>0 ) is presented. Increasing the Mach number relatively reduces the growth-rate of perturbation. On the other hand, strong correlation makes the medium to be more unstable and increases the growth rate. Using an eigen value solver, various linear properties of compressible Kolmogorov flow have been investigated for a range of variable parameters, for example, Mach number, Reynolds number, and viscoelastic coefficient (τm). Compressible Kolmogorov flow becomes unstable above a critical value of the Reynolds number (Rc), and below Rc, the shear flow is found to be neutrally stable. In this study, it is found that the viscoelasticity reduces the value of Rc. For our choice of parameters, at τm=τmc , the compressible Kolmogorov flow becomes unconditionally unstable and no Rc exists for values of τm higher than τmc . To address the nonlinear properties, for example, mode-mode interaction due to the presence of nonlinearity in the fluid, vortex formation, etc., a massively parallelized Advanced Generalized SPECTral Code (AG-Spect) has been developed. AG-Spect, a newly developed code, is an efficient tool to solve any set of nonlinear fluid dynamic equations. A good agreement in linear growth rates obtained from the eigen value solver and time dependent simulation (AG-Spect) is found. In our CFD study, the suppression of instability, elongated vortex structures, pattern formation, nonlinear saturation, and visco
Bayesian inverse problems for functions and applications to fluid mechanics
International Nuclear Information System (INIS)
Cotter, S L; Dashti, M; Robinson, J C; Stuart, A M
2009-01-01
In this paper we establish a mathematical framework for a range of inverse problems for functions, given a finite set of noisy observations. The problems are hence underdetermined and are often ill-posed. We study these problems from the viewpoint of Bayesian statistics, with the resulting posterior probability measure being defined on a space of functions. We develop an abstract framework for such problems which facilitates application of an infinite-dimensional version of Bayes theorem, leads to a well-posedness result for the posterior measure (continuity in a suitable probability metric with respect to changes in data), and also leads to a theory for the existence of maximizing the posterior probability (MAP) estimators for such Bayesian inverse problems on function space. A central idea underlying these results is that continuity properties and bounds on the forward model guide the choice of the prior measure for the inverse problem, leading to the desired results on well-posedness and MAP estimators; the PDE analysis and probability theory required are thus clearly dileneated, allowing a straightforward derivation of results. We show that the abstract theory applies to some concrete applications of interest by studying problems arising from data assimilation in fluid mechanics. The objective is to make inference about the underlying velocity field, on the basis of either Eulerian or Lagrangian observations. We study problems without model error, in which case the inference is on the initial condition, and problems with model error in which case the inference is on the initial condition and on the driving noise process or, equivalently, on the entire time-dependent velocity field. In order to undertake a relatively uncluttered mathematical analysis we consider the two-dimensional Navier–Stokes equation on a torus. The case of Eulerian observations—direct observations of the velocity field itself—is then a model for weather forecasting. The case of
Binous, Housam
2007-01-01
We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…
Energy Technology Data Exchange (ETDEWEB)
Capecelatro, Jesse, E-mail: jcaps@illinois.edu [Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2307 (United States); Desjardins, Olivier [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853 (United States); Fox, Rodney O. [Department of Chemical and Biological Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011-2230 (United States); Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Grande Vois des Vignes, 92295 Chatenay Malabry (France)
2016-03-15
Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.
Mechanical Properties of Gels; Stress from Confined Fluids
Energy Technology Data Exchange (ETDEWEB)
George W. Scherer
2009-12-01
Abstract for Grant DE-FG02-97ER45642 Period: 1997-2002 Mechanical Properties of Gels 2002-2008 Stress from Confined Fluids Principal investigator: Prof. George W. Scherer Dept. Civil & Env. Eng./PRISM Eng. Quad. E-319 Princeton, NJ 08544 USA Recipient organization: Trustees of Princeton University 4 New South Princeton, NJ 08544 USA Abstract: The initial stage of this project, entitled Mechanical Properties of Gels, was dedicated to characterizing and explaining the properties of inorganic gels. Such materials, made by sol-gel processing, are of interest for fabrication of films, fibers, optical devices, advanced insulation and other uses. However, their poor mechanical properties are an impediment in some applications, so understanding the origin of these properties could lead to enhanced performance. Novel experimental methods were developed and applied to measure the stiffness and permeability of gels and aerogels. Numerical simulations were developed to reproduce the growth process of the gels, resulting in structures whose mechanical properties matched the measurements. The models showed that the gels are formed by the growth of relatively robust clusters of molecules that are joined by tenuous links whose compliance compromises the stiffness of the structure. Therefore, synthetic methods that enhance the links could significantly increase the rigidity of such gels. The next stage of the project focused on Stress from Confined Fluids. The first problem of interest was the enhanced thermal expansion coefficient of water that we measured in the nanometric pores of cement paste. This could have a deleterious effect on the resistance of concrete to rapid heating in fires, because the excessive thermal expansion of water in the pores of the concrete could lead to spalling and collapse. A series of experiments demonstrated that the expansion of water increases as the pore size decreases. To explain this behavior, we undertook a collaboration with Prof. Stephen
Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors
Directory of Open Access Journals (Sweden)
T. M. Muruganandam
2012-03-01
Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.
A fluid-mechanical model of elastocapillary coalescence
Singh, Kiran
2014-03-25
© 2014 Cambridge University Press. We present a fluid-mechanical model of the coalescence of a number of elastic objects due to surface tension. We consider an array of spring-block elements separated by thin liquid films, whose dynamics are modelled using lubrication theory. With this simplified model of elastocapillary coalescence, we present the results of numerical simulations for a large number of elements, N = O(10^{4}). A linear stability analysis shows that pairwise coalescence is always the most unstable mode of deformation. However, the numerical simulations show that the cluster sizes actually produced by coalescence from a small white-noise perturbation have a distribution that depends on the relative strength of surface tension and elasticity, as measured by an elastocapillary number K. Both the maximum cluster size and the mean cluster size scale like K^{-1/2} for small K. An analytical solution for the response of the system to a localized perturbation shows that such perturbations generate propagating disturbance fronts, which leave behind \\'frozen-in\\' clusters of a predictable size that also depends on K. A good quantitative comparison between the cluster-size statistics from noisy perturbations and this \\'frozen-in\\' cluster size suggests that propagating fronts may play a crucial role in the dynamics of coalescence.
Flippin' Fluid Mechanics - Comparison of Blended Classroom vs. Traditional Lecture
Webster, D. R.; Kadel, R. S.; Newstetter, W. C.
2017-11-01
We conducted a study of student performance in and perceptions of a blended classroom delivery of a junior-level fluid mechanics course. In the blended pedagogy, students watch short on-line videos before class, participate in interactive in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. Comparisons are made among four sections of the blended classroom delivery in the period of 2013-2017 to eleven sections delivered in a traditional lecture-style format by the same instructor in 2002-2012. The results reveal dramatic improvement in student engagement, perceptions, and achievement in the blended pedagogy. For instance, the withdrawal/fail/barely-passing (WFD) rate is significantly lower for the blended classroom (8.6% vs. 16.3%; p average course total (i.e., aggregate of exam and assignment scores) is significantly greater in the blended classes (p grade with an R-squared of 0.563, and the blended class variable is significant (p point scale). Regarding student perceptions, surveys reveal significantly greater enthusiasm, stimulation, self-perception of how-much-learned, perception of the value of the course activities, and the overall effectiveness of the course and instructor in the blended classroom.
Fluid Shearing for Accelerated Chemical Reactions - Fluid Mechanics in the VFD
Leivadarou, Evgenia; Dalziel, Stuart; G. K. Batchelor Laboratory, Department of Applied Mathematics; Theoretical Physics Team
2016-11-01
The Vortex Fluidic Device (VFD) is a rapidly rotating tube that can operate under continuous flow with a jet feeding liquid reactants to the tube's hemispherical base. It is a new 'green' approach to the organic synthesis with many industrial applications in cosmetics, protein folding and pharmaceutical production. The rate of reaction in the VFD is enhanced when the collision rate is increased. The aim of the project is to explain the fluid mechanics and optimize the performance of the device. One contribution to the increased yield is believed to be the high levels of shear stress. We attempt to enhance the shear stress by achieving high velocity gradients in the boundary layers. Another factor is the uncontrolled vibrations due to imperfections in the bearings and therefore it is important to assess their influence in the initial spreading. The surface area of the film should be maximized with respect to the rotation rate, geometry and orientation of the tube, flow rate, wettability and contact line dynamics. Experiments are presented for a flat disk and a curved bowl, establishing the optimum height of release, rotation rate and tube orientation. Vibrations were imposed to investigate the changes in the film formation. We discuss the implications of our results in the VFD.
Nontrivial effects of high-frequency excitation for strongly damped mechanical systems
DEFF Research Database (Denmark)
Fidlin, Alexander; Thomsen, Jon Juel
Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...
Nontrivial effects of high-frequency excitation for strongly damped mechanical systems
DEFF Research Database (Denmark)
Fidlin, Alexander; Thomsen, Jon Juel
2008-01-01
Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...
The No-Slip Boundary Condition in Fluid Mechanics
Indian Academy of Sciences (India)
POiseuille flow, flow resistance. Before considering the case of fluids, i.e. gases and liquids,. ______ . ..... the cylinders. But it is very likely that he would have then guessed correctly that the drag would increase with the length. This historical note is added to emphasize how difficult it was to understand the motion of a fluid in ...
Fluid mechanics a concise introduction to the theory
Yih, Chia-Shun
1969-01-01
Fundamentals ; the basic equations ; general theorems for the flow of an inviscid fluid ; irrotational flows of an inviscid fluid of constant density ; waves in an incompressible ; effects of viscosity ; heat transfer and boundary layers of a gas ; hydrodynamic stability ; turbulence ; basic thermodynamics ; curvilinear coordinates.
The No-Slip Boundary Condition in Fluid Mechanics
Indian Academy of Sciences (India)
some basic ideas connected to this problem so that the historical notes added afterwards will be appreciated .... Stress in a Fluid. When the fluid is at rest. only the normal stresses are exerted, the tangential stresses being zero. The normal stress at a point does not depend on the direction and it is the hy- drostatic pressure.
Glavatskiy, Kirill S; Dalton, Benjamin A; Daivis, Peter J; Todd, B D
2015-06-01
We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.
Glavatskiy, Kirill S.; Dalton, Benjamin A.; Daivis, Peter J.; Todd, B. D.
2015-06-01
We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.
Marri, Ivan; Govoni, Marco; Ossicini, Stefano
2014-09-24
We present density functional theory calculations of carrier multiplication properties in a system of strongly coupled silicon nanocrystals. Our results suggest that nanocrystal-nanocrystal interaction can lead to a reduction of the carrier multiplication energy threshold without altering the carrier multiplication efficiency at high energies, in agreement with experiments. The time evolution of the number of electron-hole pairs generated in a system of strongly interacting nanocrystals upon absorption of high-energy photons is analyzed by solving a system of coupled rate equations, where exciton recycling mechanisms are implemented. We reconsider the role played by Auger recombination which is here accounted also as an active, nondetrimental process.
Teaching Fluid Mechanics to the Beginning Graduate Student--An Objective-Oriented Approach.
Liu, Henry
A premature embarkation in specialized areas of fluid mechanics by the beginning graduate student, without having first thoroughly learned the basics, leads to learning difficulties and destroys zeal for learning. To avoid these problems, many schools in the U.S. offer beginning graduate courses in fluid mechanics (BGCFM). Because the success or…
The early years of the Journal of Fluid Mechanics. Style and international impact
Moffatt, H. Keith
2017-07-01
The origins of the Journal of Fluid Mechanics, of which the first volume was published in 1956, are discussed, with reference to editorial correspondence during the early years of the Journal. This paper is based on a lecture given at the colloquium: A Century of Fluid Mechanics, 1870-1970, IMFT, Toulouse, France, 19-21 October 2016.
Take-Home Experiments in Undergraduate Fluid Mechanics Education
Cimbala, John
2007-11-01
Hands-on take-home experiments, assigned as homework, are useful as supplements to traditional in-class demonstrations and laboratories. Students borrow the equipment from the department's equipment room, and perform the experiment either at home or in the student lounge or student shop work area. Advantages include: (1) easy implementation, especially for large classes, (2) low cost and easy duplication of multiple units, (3) no loss of lecture time since the take-home experiment is self-contained with all necessary instructions, and (4) negligible increase in student or teaching assistant work load since the experiment is assigned as a homework problem in place of a traditional pen and paper problem. As an example, a pump flow take-home experiment was developed, implemented, and assessed in our introductory junior-level fluid mechanics course at Penn State. The experimental apparatus consists of a bucket, tape measure, submersible aquarium pump, tubing, measuring cup, and extension cord. We put together twenty sets at a total cost of less than 20 dollars per set. Students connect the tube to the pump outlet, submerge the pump in water, and measure the volume flow rate produced at various outflow elevations. They record and plot volume flow rate as a function of outlet elevation, and compare with predictions based on the manufacturer's pump performance curve (head versus volume flow rate) and flow losses. The homework assignment includes an online pre-test and post-test to assess the change in students' understanding of the principles of pump performance. The results of the assessment support a significant learning gain following the completion of the take-home experiment.
Mechanics of undulatory swimming in a frictional fluid.
Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I
2012-01-01
The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.
Mechanics of undulatory swimming in a frictional fluid.
Directory of Open Access Journals (Sweden)
Yang Ding
Full Text Available The sandfish lizard (Scincus scincus swims within granular media (sand using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.
Introduction to the concept of added mass in fluid mechanics
International Nuclear Information System (INIS)
Pham Dan Tam.
1977-07-01
The physical phenomenum which leads to the concept of added mass for an inviscid fluid is recalled. The added-mass tensor for a solid body moving through an unbounded fluid is defined and some of its properties are presented. The Taylor theorem is exposed, which enables some of the tensor components to be analytically derived in particular cases. Added-mass values are provided for bodies of particular shape. Applications of the added-mass concept to different problems are given [fr
Evidence of nonuniqueness and oscillatory solutions in computational fluid mechanics
International Nuclear Information System (INIS)
Nunziato, J.W.; Gartling, D.K.; Kipp, M.E.
1985-01-01
We will review some of our recent experiences in computing solutions for nonlinear fluids in relatively simple, two-dimensional geometries. The purpose of this discussion will be to display by example some of the interesting but difficult questions that arise when ill-behaved solutions are obtained numerically. We will consider two examples. As the first example, we will consider a nonlinear elastic (compressible) fluid with chemical reactions and discuss solutions for detonation and detonation failure in a two-dimensional cylinder. In this case, the numerical algorithm utilizes a finite-difference method with artificial viscosity (von Neumann-Richtmyer method) and leads to two, distinctly different, stable solutions depending on the time step criterion used. The second example to be considered involves the convection of a viscous fluid in a rectangular container as a result of an exothermic polymerization reaction. A solidification front develops near the top of the container and propagates down through the fluid, changing the aspect ratio of the region ahead of the front. Using a Galerkin-based finite element method, a numerical solution of the partial differential equations is obtained which tracks the front and correctly predicts the fluid temperatures near the walls. However, the solution also exhibits oscillatory behavior with regard to the number of cells in the fluid ahead of the front and in the strength of the cells. More definitive experiments and analysis are required to determine whether this oscillatory phenomena is a numerical artifact or a physical reality. 20 refs., 14 figs
Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands
Directory of Open Access Journals (Sweden)
Mehdi Roein-Peikar
2016-01-01
Full Text Available Integrins, a class of membrane proteins involved in cell adhesion, participate in the cell’s sensing of the mechanical environments. We previously showed that, for the initial cell adhesion to occur, single integrins need to experience a threshold force of 40 pico-Newton (pN through their bond with surface-bound ligands. This force requirement was determined using a series of double-stranded DNA tethers called tension gauge tethers (TGTs, each with a different rupture force, linked to the ligand. Here, we performed cell-adhesion experiments using surfaces coated with two different TGTs, one of a strong rupture force (around 54 pN and the other of a weak rupture force (around 12 pN. When presented with one type of TGT only, cells adhered to the strong TGT-coated surface but not to the weak TGT-coated surface. However, when presented with both, the presence of the strong TGTs transforms the way cells respond to the weak TGTs such that cells treat both TGTs the same, as if the weak TGTs were strong. Furthermore, a subpopulation of cells can adhere to and spread on a surface displaying just a few molecules of the strong TGTs per cell if, and only if, they are presented along with many weak TGTs. This ultrasensitivity to just a few tethers that can withstand strong forces raises a question of how the cells can achieve such remarkable sensitivity to their mechanical environment without amplifying noise.
Chen, Yang; Song, Guocheng; Yu, Junrong; Wang, Yan; Zhu, Jing; Hu, Zuming
2018-03-08
Mechanically strong dual/multi-stimuli-responsive smart hydrogels have attracted extensive attention in recent years. A novel tough, mechanical strong and biocompatible dual pH- and temperature- responsive poly (N-isopropylacrylamide) /clay (laponite XLG)/carboxymethyl chitosan (CMCTs) /genipin nanocomposite double network hydrogel was synthesized through a facile, one-pot free radical polymerization initiated by the ultraviolet light, using clay and the natural molecular-genipin as the cross-linkers instead of toxic organic molecules. Crucial factors, the content of CMCTs, clay and genipin, for synthesizing the mechanical strong hydrogels were investigated. When the content of CMCTs, clay and genipin were 5 wt%, 33.3 wt% and 0.175 wt%, respectively (to the weight of N-isopropylacrylamide), these prepared hydrogels exhibited a high tensile strength of 137.9 kPa at the failure strain of 446.1%. Furthermore, the relationship between swelling and deswelling rate of the synthesized hydrogels and the above crucial factors were also studied. Besides, the synthesized hydrogels displayed a considerable controlled release property of asprin by tuning their inner crosslink density. Owing to this property, they may have great potential in the drug delivery systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sampaio, Tatiana Z A L; O'Hearn, Katie; Reddy, Deepti; Menon, Kusum
2015-12-01
Fluid overload and prolonged mechanical ventilation lead to worse outcomes in critically ill children. However, the association between these variables in children following congenital heart surgery is unknown. The objectives of this study were to describe the association between fluid overload and duration of mechanical ventilation, oxygen requirement and radiologic findings of pulmonary and chest wall edema. This study is a retrospective chart review of patients who underwent congenital heart surgery between June 2010 and December 2013. Univariate and multivariate associations between maximum cumulative fluid balance and length of mechanical ventilation and OI were tested using the Spearman correlation test and multiple linear regression models, respectively. There were 85 eligible patients. Maximum cumulative fluid balance was associated with duration of mechanical ventilation (adjusted analysis beta coefficient = 0.53, CI 0.38-0.66, P mechanical ventilation (P = 0.012 and 0.014, respectively). Fluid overload is associated with prolonged duration of mechanical ventilation and PICU length of stay after congenital heart surgery. Fluid overload was also associated with physiological markers of respiratory restriction. A randomized controlled trial of a restrictive versus liberal fluid replacement strategy is necessary in this patient population, but in the meantime, accumulating observational evidence suggests that cautious use of fluid in the postoperative care may be warranted.
Computational fluid mechanics qualification calculations for the code TEACH
International Nuclear Information System (INIS)
DeGrazia, M.C.; Fitzsimmons, L.B.; Reynolds, J.T.
1979-11-01
KAPL is developing a predictive method for three-dimensional (3-D) turbulent fluid flow configurations typically encountered in the thermal-hydraulic design of a nuclear reactor. A series of experiments has been selected for analysis to investigate the adequacy of the two-equation turbulence model developed at Imperial College, London, England for predicting the flow patterns in simple geometries. The analysis of these experiments is described with the two-dimensional (2-D) turbulent fluid flow code TEACH. This work qualifies TEACH for a variety of geometries and flow conditions
High-performance coupled poro-hydro-mechanical models to resolve fluid escape pipes
Räss, Ludovic; Makhnenko, Roman; Podladchikov, Yury
2017-04-01
Field observations and laboratory experiments exhibit inelastic deformation features arising in many coupled settings relevant to geo-applications. These irreversible deformations and their specific patterns suggest a rather ductile or brittle mechanism, such as viscous creep or micro cracks, taking place on both geological (long) and human (short) timescales. In order to understand the underlying mechanisms responsible for these deformation features, there is a current need to accurately resolve the non-linearities inherent to strongly coupled physical processes. Among the large variety of modelling tools and softwares available nowadays in the community, very few are capable to efficiently solve coupled systems with high accuracy in both space and time and run efficiently on modern hardware. Here, we propose a robust framework to solve coupled multi-physics hydro-mechanical processes on very high spatial and temporal resolution in both two and three dimensions. Our software relies on the Finite-Difference Method and a pseudo-transient scheme is used to converge to the implicit solution of the system of poro-visco-elasto-plastic equations at each physical time step. The rheology including viscosity estimates for major reservoir rock types is inferred from novel lab experiments and confirms the ease of flow of sedimentary rocks. Our results propose a physical mechanism responsible for the generation of high permeability pathways in fluid saturated porous media and predict their propagation in rates observable on operational timescales. Finally, our software scales linearly on more than 5000 GPUs.
The No-Slip Boundary Condition in Fluid Mechanics
Indian Academy of Sciences (India)
Ideas leading to the resolution of the problem of no-slip condition for fluid velocity at a solid surface are traced in this concluding part of the article. In the continuum limit velocity slip being zero is established beyond any doubt now. Even turbulent flows which have a large velocity gradient near a wall have to satisfy the ...
Fluid Mechanics Of Molten Metal Droplets In Additive Manufacturing
Czech Academy of Sciences Publication Activity Database
Tesař, Václav; Šonský, Jiří
2016-01-01
Roč. 4, č. 4 (2016), s. 403-412 ISSN 2046-0546 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : additive manufacturing * droplets * molten metal Subject RIV: BK - Fluid Dynamics http://www.witpress.com/elibrary/cmem-volumes/4/4/1545
The No-Slip Boundary Condition in Fluid Mechanics
Indian Academy of Sciences (India)
Historical Development. A brief and excellent review of this problem of velocity slip in fluid flow is given in the book by Goldstein [1]. We freely borrow from this book adding some explanations and supple- ments based on the earlier discussion in Part 1. We saw that Newton tacitly assumed the no-slip condition in the.
Ingelse, Sarah A; Wiegers, Hanke M G; Calis, Job C; van Woensel, Job B; Bem, Reinout A
2017-03-01
Viral-lower respiratory tract disease is common in young children worldwide and is associated with high morbidity. Acute respiratory failure due to viral-lower respiratory tract disease necessitates PICU admission for mechanical ventilation. In critically ill patients in PICU settings, early fluid overload is common and associated with adverse outcomes such as prolonged mechanical ventilation and increased mortality. It is unclear, however, if this also applies to young children with viral-lower respiratory tract disease induced acute respiratory failure. In this study, we aimed to investigate the relation of early fluid overload with adverse outcomes in mechanically ventilated children with viral-lower respiratory tract disease in a retrospective dataset. Retrospective cohort study. Single, tertiary referral PICU. One hundred thirty-five children (mechanical ventilation admitted to the PICU of the Academic Medical Center, Amsterdam between 2008 and 2014. None. The cumulative fluid balance on day 3 of mechanical ventilation was compared against duration of mechanical ventilation (primary outcome) and daily mean oxygen saturation index (secondary outcome), using uni- and multivariable linear regression. In 132 children, the mean cumulative fluid balance on day 3 was + 97.9 (49.2) mL/kg. Higher cumulative fluid balance on day 3 was associated with a longer duration of mechanical ventilation in multivariable linear regression (β = 0.166; p = 0.048). No association was found between the fluid status and oxygen saturation index during the period of mechanical ventilation. Early fluid overload is an independent predictor of prolonged mechanical ventilation in young children with viral-lower respiratory tract disease. This study suggests that avoiding early fluid overload is a potential target to reduce duration of mechanical ventilation in these children. Prospective testing in a clinical trial is warranted to support this hypothesis.
Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992
Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)
1992-01-01
This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.
Formulation of the Chip Cleanability Mechanics from Fluid Transport
Garg, Saurabh; Dornfeld, David; Klaus Berger
2009-01-01
The presence of solid particle contaminant chips in high performance and complex automotive components like cylinder heads of internal combustion engines is a source of major concern for the automotive industry. Current industrial cleaning technologies, simply relying on the fluid transport energy of high pressure or intermittent high impulse jets discharged at the water jacket inlets of the cylinder head, fail to capture the dynamics of interaction between the chip morphology and the complex...
Fluid Mechanical Aspects of the Gas-Lift Technique
Guet, S.; Ooms, G.
2006-01-01
The gas-lift technique comprises the injection of gas bubbles in vertical oil wells to increase production. It is based on a reduction of the tubing gravitational pressure gradient. Several fluid-flow phenomena influencing such vertical gas-liquid flows are discussed. These effects include the radial distribution of void fraction and of gas and liquid velocity, flow regime changes, and system stability problems. Associated consequences for gas-lift performance and related optimization approaches are also discussed.
Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert
2015-01-01
"Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…
Crystal Growth and Fluid Mechanics Problems in Directional Solidification
Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.
2001-01-01
Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.
Balancing Venturi and Laissez-Faire Management Styles: Insights from Fluid Mechanical Analogs
Directory of Open Access Journals (Sweden)
Ruud Weijermars
2007-12-01
Full Text Available Mobilizing distributed Organizational Intelligence involves managerial efforts whereby the generation of new tacit knowledge requires dissemination of newly codified externalized knowledge. The managerial role in the early stage of knowledge creation is to support and stimulate the process of knowledge generation and to aid the diffusion of knowledge across organizational boundaries. In contrast, the subsequent 'harvesting' and goal-oriented application of knowledge requires convergence of human actors (H as carriers of distributed intelligence (DI. Optimization of the organizational performance and improved workflow efficiency is best effectuated by applying insights from fluid mechanical analogs. Several such analogs are introduced here and these provide insight that helps to funnel tacit and explicit knowledge into tangible asset value. Three sets of managerial lessons are inferred from the analogs: (1 Social bonding between professionals needs to be stimulated because professionals with strong social bonds (S can sustain effective workflows under relatively high pressures, while weak social bonds lead to turbulence and disruption; (2 Effective vision sharing is essential for goal-oriented and accelerated knowledge development in DI systems, and; (3 Managerial pressure may not overheat the critical limit that can be handled by resilient and strongly bonded DI networks, as this would result in disruptive turbulence even in experienced neural networks.
A numerical investigation of the fluid mechanical sewing machine
Brun, P.-T.; Ribe, N. M.; Audoly, B.
2012-04-01
A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties. Here, we simulate this experiment numerically using the discrete viscous threads method that can predict the non-steady dynamics of thin viscous filaments, capturing the combined effects of inertia and of deformation by stretching, bending, and twisting. Our simulations successfully reproduce nine out of ten different patterns previously seen in the laboratory and agree closely with the experimental phase diagram of Morris et al. [Phys. Rev. E 77, 066218 (2008)], 10.1103/PhysRevE.77.066218. We propose a new classification of the patterns based on the Fourier spectra of the longitudinal and transverse motion of the point of contact of the thread with the belt. These frequencies appear to be locked in most cases to simple ratios of the frequency Ωc of steady coiling obtained in the limit of zero belt speed. In particular, the intriguing "alternating loops" pattern is produced by combining the first five multiples of Ωc/3.
Experiments and Modeling of G-Jitter Fluid Mechanics
Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)
2002-01-01
While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.
Global Pc5 pulsations during strong magnetic storms: excitation mechanisms and equatorward expansion
Marin, J. A.; Pilipenko, V.; Vega, P.; Zesta, E.; Stepanova, M. V.; Uozumi, T.
2012-12-01
The spatial structure of Pc5 waves during the recovery phases of strong magnetic storms is important not only for the identification of possible physical mechanisms of its excitation, but as an important parameter of the ULF driver of relativistic electrons. The dynamics of global Pc5 waves during the magnetic storms on October 29-31, 2003 and May 15, 2005 is studied, using the data from the trans-American network of magnetometers comprising SAMBA, MAGDAS, CARISMA, and MACCS arrays. We study the behavior of Pc5 wave properties and spectral characteristics with respect to latitude. One of the accepted sources of Pc5 wave activity is Kelvin-Helmholtz instability in the flanks of the magnetosphere. In our study we examine whether the KH instability is sufficient as an excitation mechanism for the observed waves? More specifically, we attempt to determine, what is the Pc5 wave generation type: self-excitation, resonant response, trigger? While the KH instability generation takes place at the outer flanks of the magnetosphere, Pc5 waves are observed at all latitudes. We determine how deep into the magnetosphere these Pc5 waves activity can extend and what is the wave energy transmission mechanism: surface mode, cavity mode, Alfven field-line resonance, magnetospheric MHD waveguide?
Strong mechanically induced effects in DC current-biased suspended Josephson junctions
McDermott, Thomas; Deng, Hai-Yao; Isacsson, Andreas; Mariani, Eros
2018-01-01
Superconductivity is a result of quantum coherence at macroscopic scales. Two superconductors separated by a metallic or insulating weak link exhibit the AC Josephson effect: the conversion of a DC voltage bias into an AC supercurrent. This current may be used to activate mechanical oscillations in a suspended weak link. As the DC-voltage bias condition is remarkably difficult to achieve in experiments, here we analyze theoretically how the Josephson effect can be exploited to activate and detect mechanical oscillations in the experimentally relevant condition with purely DC current bias. We unveil how changing the strength of the electromechanical coupling results in two qualitatively different regimes showing dramatic effects of the oscillations on the DC-voltage characteristic of the device. These include the appearance of Shapiro-type plateaus for weak coupling and a sudden mechanically induced retrapping for strong coupling. Our predictions, measurable in state-of-the-art experimental setups, allow the determination of the frequency and quality factor of the resonator using DC only techniques.
Mechanism for thermal relic dark matter of strongly interacting massive particles.
Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G
2014-10-24
We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.
Numerical Simulation of the ``Fluid Mechanical Sewing Machine''
Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil
2011-11-01
A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.
The NASA Lewis Research Center Internal Fluid Mechanics Facility
Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.
1991-01-01
An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.
Personal Computer (PC) based image processing applied to fluid mechanics
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Schaum’s outline of fluid mechanics and hydraulics
Giles, Ranald V; Liu, Cheng
2014-01-01
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: 622 fully solved problems; extra practice on topics such as buoyancy and flotation, complex pipeline systems, fluid machinery, flow in open channels, and more; and support for all the major textbooks for fluidmechanics and hydraulics courses. Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time - and get your best test scores! Schaum's Outlines - Problem Solved.
Hong, ZHAO; Chengwu, YI; Rongjie, YI; Huijuan, WANG; Lanlan, YIN; I, N. MUHAMMAD; Zhongfei, MA
2018-03-01
The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet-visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions ({{{{CO}}}3}2-) and bicarbonate ions ({{{{HCO}}}3}-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.
Directory of Open Access Journals (Sweden)
Francesco Tornabene
2017-07-01
Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.
International Nuclear Information System (INIS)
Faucher, Vincent
2014-01-01
Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
Use of Facebook in Teaching: A Case Study of a Fluid Mechanics Course
Mandavgane, Sachin A.
2016-01-01
Fluid mechanics (FM) is a core course of the chemical, mechanical, civil, and aerospace engineering programs. Students have both theory and practical classes in FM. The general expectation is that students should be able to demonstrate the fundamentals learnt in theory and get hands-on experience during the lab course. In this regard, students…
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
2010-06-01
The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated
The fluid mechanics of scleral buckling surgery for the repair of retinal detachment.
Foster, William Joseph; Dowla, Nadia; Joshi, Saurabh Y; Nikolaou, Michael
2010-01-01
Scleral buckling is a common surgical technique used to treat retinal detachments that involves suturing a radial or circumferential silicone element on the sclera. Although this procedure has been performed since the 1960s, and there is a reasonable experimental model of retinal detachment, there is still debate as to how this surgery facilitates the re-attachment of the retina. Finite element calculations using the COMSOL Multiphysics system are utilized to explain the influence of the scleral buckle on the flow of sub-retinal fluid in a physical model of retinal detachment. We found that, by coupling fluid mechanics with structural mechanics, laminar fluid flow and the Bernoulli effect are necessary for a physically consistent explanation of retinal reattachment. Improved fluid outflow and retinal reattachment are found with low fluid viscosity and rapid eye movements. A simulation of saccadic eye movements was more effective in removing sub-retinal fluid than slower, reading speed, eye movements in removing subretinal fluid. The results of our simulations allow us to explain the physical principles behind scleral buckling surgery and provide insight that can be utilized clinically. In particular, we find that rapid eye movements facilitate more rapid retinal reattachment. This is contradictory to the conventional wisdom of attempting to minimize eye movements.
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Jiang, Dongping; Morefield, Garry L; HogenEsch, Harm; Hem, Stanley L
2006-03-06
The objective of this research was to determine how the mechanism by which antigens adsorb to aluminum-containing adjuvants affects the elution upon exposure to interstitial fluid. Antigens (alpha lactalbumin, bovine serum albumin, lysozyme and myoglobin) that adsorb to aluminum-containing adjuvants principally by electrostatic attraction were found to elute readily in vitro when exposed to interstitial fluid. Phosphorylated antigens (alpha casein, hepatitis B surface antigen and phosphorylated bovine serum albumin) that adsorb to aluminum-containing adjuvants principally by ligand exchange exhibit little if any elution during 12-24 h in vitro exposure to interstitial fluid. Dephosphorylated alpha casein, which contains less than two phosphate groups, was less strongly adsorbed by ligand exchange in comparison to alpha casein, which contains eight phosphate groups. Dephosphorylated alpha casein was completely eluted when exposed to interstitial fluid. The results of this study lead to the generalization that antigens that adsorb to aluminum-containing adjuvants by electrostatic attraction are more likely to elute upon intramuscular or subcutaneous administration than antigens that adsorb by ligand exchange.
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2016-01-01
Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589
3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites
Tabiai, Ilyass; Therriault, Daniel
Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.
Dalton, Benjamin A; Glavatskiy, Kirill S; Daivis, Peter J; Todd, B D
2015-07-01
We use molecular-dynamics computer simulations to investigate the density, strain-rate, and shear-pressure responses of a simple model atomic fluid to transverse and longitudinal external forces. We have previously introduced a response function formalism for describing the density, strain-rate, and shear-pressure profiles in an atomic fluid when it is perturbed by a combination of longitudinal and transverse external forces that are independent of time and have a simple sinusoidal spatial variation. In this paper, we extend the application of the previously introduced formalism to consider the case of a longitudinal force composed of multiple sinusoidal components in combination with a single-component sinusoidal transverse force. We find that additional harmonics are excited in the density, strain-rate, and shear-pressure profiles due to couplings between the force components. By analyzing the density, strain-rate, and shear-pressure profiles in Fourier space, we are able to evaluate the Fourier coefficients of the response functions, which now have additional components describing the coupling relationships. Having evaluated the Fourier coefficients of the response functions, we are then able to accurately predict the density, velocity, and shear-pressure profiles for fluids that are under the influence of a longitudinal force composed of two or three sinusoidal components combined with a single-component sinusoidal transverse force. We also find that in the case of a multisinusoidal longitudinal force, it is sufficient to include only pairwise couplings between different longitudinal force components. This means that it is unnecessary to include couplings between three or more force components in the case of a longitudinal force composed of many Fourier components, and this paves the way for a highly accurate but tractable treatment of nonlocal transport phenomena in fluids with density and strain-rate inhomogeneities on the molecular length scale.
Fluid mechanics of directional solidification at reduced gravity
Chen, C. F.
1992-01-01
The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.
Fluid Mechanics of Heart Valves and Their Replacements
Sotiropoulos, Fotis; Le, Trung Bao; Gilmanov, Anvar
2016-01-01
As the pulsatile cardiac blood flow drives the heart valve leaflets to open and close, the flow in the vicinity of the valve resembles a pulsed jet through a nonaxisymmetric orifice with a dynamically changing area. As a result, three-dimensional vortex rings with intricate topology emerge that interact with the complex cardiac anatomy and give rise to shear layers, regions of recirculation, and flow instabilities that could ultimately lead to transition to turbulence. Such complex flow patterns, which are inherently valve- and patient-specific, lead to mechanical forces at scales that can cause blood cell damage and thrombosis, increasing the likelihood of stroke, and can trigger the pathogenesis of various life-threatening valvular heart diseases. We summarize the current understanding of flow phenomena induced by heart valves, discuss their linkage with disease pathways, and emphasize the research advances required to translate in-depth understanding of valvular hemodynamics into effective patient therapies.
Fluid Mechanics of Capillary-Elastic Instabilities in Microgravity Environment
Grotberg, James B.
2002-01-01
The aim of this project is to investigate the closure and reopening of lung airways due to surface tension forces, coupled with airway elasticity. Airways are liquid-lined, flexible tubes and closure of airways can occur by a Rayleigh instability of the liquid lining, or an instability of the elastic support for the airway as the surface tension of the air-liquid interface pulls the tube shut, or both. Regardless of the mechanism, the airway is closed because the liquid lining has created a plug that prevents axial gas exchange. In the microgravity environment, surface tension forces dominate lung mechanics and would lead to more prevalent, and more uniformly distributed air-way closure, thereby creating a potential for respiratory problems for astronauts. Once closed the primary option for reopening an airway is by deep inspiration. This maneuver will pull the flexible airways open and force the liquid plug to flow distally by the incoming air stream. Airway reopening depends to a large extent on this plug flow and how it may lead to plug rupture to regain the continuity of gas between the environment and the alveoli. In addition to mathematical modeling of plug flows in liquid-lined, flexible tubes, this work has involved benchtop studies of propagating liquid plugs down tube networks that mimic the human airway tree. We have extended the work to involve animal models of liquid plug propagation in rat lungs. The liquid is radio-opaque and x-ray video imaging is used to ascertain the movement and distribution of the liquid plugs so that comparisons to theory may be made. This research has other uses, such as the delivery of liquids or drugs into the lung that may be used for surfactant replacement therapy or for liquid ventilation.
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.
Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T
2015-12-01
Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.
Mechanics of Undulatory Swimming in a Frictional Fluid
Ding, Yang; Sharpe, Sarah S.; Masse, Andrew; Goldman, Daniel I.
2012-01-01
The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a “granular frictional fluid” and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment. PMID:23300407
Directory of Open Access Journals (Sweden)
Sharma Bishwaram
2012-01-01
Full Text Available Effects of a transverse magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids confined between two stationary parallel plates are examined. Both the plates are maintained at constant temperatures. It is assumed that one of the components, which is rarer and lighter, is present in the mixture in a very small quantity. The equations governing the motion, temperature and concentration in Cartesian coordinate are solved analytically. The solution obtained for concentration distribution is plotted against the width of the channel for various values of non-dimensional parameters. It is found that the effect of transverse magnetic field is to separate the species of rarer and lighter component by contributing its effect directly to the temperature gradient and the pressure gradient. The effects of increase in the values of Hartmann number, magnetic Reynolds number, barodiffusion number, thermal diffusion number, electric field parameter and the product of Prandtl number and Eckert number are to collect the rarer and lighter component near the upper plate and throw away the heavier component towards the lower plate. The problem discussed here derives its application in the basic fluid dynamics separation processes to separate the rare component of the different isotopes of heavier molecules where electromagnetic method of separation does not work.
10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
Adrian, R J; Heitor, M V; Maeda, M; Tropea, C; Whitelaw, J H
2002-01-01
This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held at the Calouste Gulbenkian Foundation in Lisbon, during the period of July 10 to 13, 2000. The papers describe instrumentation developments for Velocity, Scalar and Multi-Phase Flows and results of measurements of Turbulent Flows, and Combustion and Engines. The papers demonstrate the continuing and healthy interest in the development of understanding of new methodologies and implementation in terms of new instrumentation. The prime objective of the Tenth Symposium was to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilita...
Vandre, Eric
2014-11-01
water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.
Introducing Innovative Approaches to Learning in Fluid Mechanics: A Case Study
Gynnild, Vidar; Myrhaug, Dag; Pettersen, Bjornar
2007-01-01
The purpose of the current article is to examine the impact of laboratory demonstrations and computer visualizations on learning in a third-year fluid mechanics course at Norwegian University of Science and Technology (NTNU). As a first step, on entering the course, students were exposed to a laboratory demonstration focusing on the nature of…
Mechanisms underlying the volume regulation of interstitial fluid by capillaries: a simulation study
Directory of Open Access Journals (Sweden)
Yukiko Himeno
2016-03-01
Conclusion: Mathematical analyses revealed that the system of the capillary is stable near the equilibrium point at steady state and normal physiological capillary pressure. The time course of the tissue-volume change was determined by two kinetic mechanisms: rapid fluid exchange and slow protein fluxes.
Ingelse, Sarah A.; Wiegers, Hanke M. G.; Calis, Job C.; van Woensel, Job B.; Bem, Reinout A.
2017-01-01
Viral-lower respiratory tract disease is common in young children worldwide and is associated with high morbidity. Acute respiratory failure due to viral-lower respiratory tract disease necessitates PICU admission for mechanical ventilation. In critically ill patients in PICU settings, early fluid
Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century
Newton, Paul K.
2017-01-01
The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…
International Nuclear Information System (INIS)
Allen, R.R. Jr.
1987-01-01
The Lin constraint has been utilized by a number of authors who have sought to develop Eulerian variational principles in both fluid mechanics and electromagnetics (or plasmadynamics). This dissertation first reviews the work of earlier authors concerning the development of variational principles in both the Eulerian and Lagrangian nomenclatures. In the process, it is shown whether or not the Euler-Lagrange equations that result from the variational principles are equivalent to the generally accepted equations of motion. In particular, it is shown in the case of several Eulerian variational principles that imposition of the Lin constraint results in Euler-Lagrange equations equivalent to the generally accepted equations of motion, whereas neglect of the Lin constraint results in restrictive Euler-Lagrange equations. In an effort to improve the physical motivation behind introduction of the Lin constraint, a new variational constraint is developed based on teh concept of surface forces within a fluid. Additionally, it is shown that a quantity often referred to as the canonical momentum of a charged fluid is not always a constant of the motion of the fluid; and it is demonstrated that there does not exist an unconstrained Eulerian variational principle giving rise to the generally accepted equations of motion for both a perfect fluid and a cold, electromagnetic fluid
Mechanical membrane for the separation of a paramagnetic constituent from a fluid
Maurice, David
2017-05-02
The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.
The Fast and Non-capillary Fluid Filling Mechanism in the Hummingbird's Tongue
Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret
2014-03-01
Hummingbirds gather nectar by inserting their beaks inside flowers and cycling their tongues at a frequency of up to 20 Hz. It is unclear how they achieve efficiency at this high licking rate. Ever since proposed in 1833, it has been believed that hummingbird tongues are a pair of tiny straws filled with nectar by capillary rise. Our discoveries are very different from this general consensus. The tongue does not draw up floral nectar via capillary action under experimental conditions that resemble natural ones. Theoretical models based on capillary rise were mistaken and unsuitable for estimating the fluid intake rate and to support foraging theories. We filmed (up to 1265 frames/s) the fluid uptake in 20 species of hummingbirds that belong to 7 out of the 9 main hummingbird clades. We found that the fluid filling within the portions of the tongue that remain outside the nectar is about five times faster than capillary filling. We present strong evidence to rule out the capillarity model. We introduce a new fluid-structure interaction and hydrodynamic model and compare the results with field experimental data to explain how hummingbirds actually extract fluid from flowers at the lick level.
Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems
International Nuclear Information System (INIS)
Hart, R.D.
1981-01-01
A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited
Bilateral Patching in Retinal Detachment: Fluid Mechanics and Retinal “Settling”
2011-01-01
Purpose. When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or “settle.” Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Methods. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. Results. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. Conclusions. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care. PMID:21666245
A fully coupled thermal-mechanical-fluid flow model for nonlinear geologic systems
Hart, R. D.
1981-02-01
A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior.
Directory of Open Access Journals (Sweden)
Farnaz Fekri
Full Text Available Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR, and distinct mechanism(s that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may
Fluid and electrolyte homeostasis during spaceflight: Elucidation of mechanisms in a primate
Churchill, Susanne
1990-01-01
Although it is now well accepted that exposure to the hypogravic environment of space induces a shift of fluid from the lower extremities toward the upper body, the actual physiological responses to this central volume expansion have not been well characterized. Because it is likely that the fluid and electrolyte response to hypogravity plays a critical role in the development of Cardiovascular Deconditioning, elucidation of these mechanisms is of critical importance. The goal of flight experiment 223, scheduled to fly on SLS-2, is the definition of the basic renal, fluid and electrolyte response to spaceflight in four instrumented squirrel monkeys. The studies were those required to support the development of flight hardware and optimal inflight procedures, and to evaluate a ground-based model for weightlessness, lower body positive pressure (LBPP).
International Nuclear Information System (INIS)
Zhou Jianfeng; Gu Boqin
2007-01-01
The heat transfer model of the rotating ring and the stationary ring of mechanical seal was built. The method to calculate the frictional heat that transferred by the rings was given. the coupling analysis of the frictional heat of fluid film and thermal deformation of end faces was carried out by using FEA and BP ANN, and the relationship among the rotational speed ω, the fluid film thickness h i on the inner diameter of sealing face and the radial separation angle β of deformed end faces was obtained. Corresponding to a given ω, h i and β can be obtained by the equilibrium condition between the closing force and the bearing force of fluid film. The relationship between the leakage rate and the closing force was analyzed, and the fundamental of controlling the leakage rate by regulating the closing force was also discussed. (authors)
Directory of Open Access Journals (Sweden)
Bogdanov Alexander
2016-01-01
Full Text Available The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.
Wei, Tie; Ford, Julie
2015-01-01
This article provides information about the integration of innovative hands-on activities within a sophomore-level Fluid Mechanics course at New Mexico Tech. The course introduces students to the fundamentals of fluid mechanics with emphasis on teaching key equations and methods of analysis for solving real-world problems. Strategies and examples…
Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects
International Nuclear Information System (INIS)
Clemente, Christofer J; Federle, Walter
2012-01-01
Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push–pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides. (paper)
Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects.
Clemente, Christofer J; Federle, Walter
2012-12-01
Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push-pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides.
Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai
2016-12-01
There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts. Copyright © 2016 the American Physiological Society.
Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming
2014-09-01
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.
Energy Technology Data Exchange (ETDEWEB)
Kaneda, Y.; Ejiri, J. [Obayashi Corp., Tokyo (Japan)
1996-10-01
This paper describes simulation results of strong acceleration motion with varying uncertain fault parameters mainly for a fault model of Hyogo-ken Nanbu earthquake. For the analysis, based on the fault parameters, the strong acceleration motion was simulated using the radiation patterns and the breaking time difference of composite faults as parameters. A statistic waveform composition method was used for the simulation. For the theoretical radiation patterns, directivity was emphasized which depended on the strike of faults, and the maximum acceleration was more than 220 gal. While, for the homogeneous radiation patterns, the maximum accelerations were isotopically distributed around the fault as a center. For variations in the maximum acceleration and the predominant frequency due to the breaking time difference of three faults, the response spectral value of maximum/minimum was about 1.7 times. From the viewpoint of seismic disaster prevention, underground structures including potential faults and non-arranging properties can be grasped using this simulation. Significance of the prediction of strong acceleration motion was also provided through this simulation using uncertain factors, such as breaking time of composite faults, as parameters. 4 refs., 4 figs., 1 tab.
International Nuclear Information System (INIS)
Dorning, J.
1981-01-01
The research and development over the past eight years on local Green's function methods for the high-accuracy, high-efficiency numerical solution of nuclear engineering problems is reviewed. The basic concepts and key ideas are presented by starting with an expository review of the original fully two-dimensional local Green's function methods developed for neutron diffusion and heat conduction, and continuing through the progressively more complicated and more efficient nodal Green's function methods for neutron diffusion, heat conduction and neutron transport to establish the background for the recent development of Green's function methods in computational fluid mechanics. Some of the impressive numerical results obtained via these classes of methods for nuclear engineering problems are briefly summarized. Finally, speculations are proffered on future directions in which the development of these types of methods in fluid mechanics and other areas might lead. (orig.) [de
A Numerical Hydro-Chemo-Mechanical Model for Fault Activation under Reactive Fluid Flow
Pouya, A.; Tounsi, H.; Rohmer, J.
2015-12-01
The migration of CO2-rich fluid in fractured rock masses can cause processes such as mineral dissolution and precipitation, chemically induced weakening, which can affect the long-term mechanical and transport properties of the rock mass as well as the stability of fault systems. Some numerical approaches are already available in the literature for modelling the dissolution/precipitation phenomena in fractures (e.g. Yasuhara & Elsworth 2007) as well as subcritical crack propagation (e.g. Park et al. 2007). Generally, the dissolution is supposed to increase the rock porosity and, in this way, decrease the rock strength. Some experimental data are available for the variation of rock strength and stiffness parameters with the porosity and so as a consequence of dissolution process (Bemer et al. 2004). Also the effect of chemical processes on the mechanical stability has been studied and modelled numerically in the framework of continuum materials and the context, in particular, of weathering in underground galleries (Ghabezloo & Pouya 2006). In the context of fault systems, a complete numerical modelling of the stability evolution with the flow of a reactive fluid has not yet been done. In this paper we present a simplified, but complete, set of equations for a whole system of coupled hydro-chemo-mechanical process of reactive fluid flow inside a fault. These equations have been implemented in Porofis, a FEM numerical code specially conceived for HCM processes in porous fractured media. We show how this numerical method allows to model the coupled HCM processes in the fault and the evolution of the mechanical stability in presence of in situ stresses and reactive fluid flow.
Travelling wave solutions for a surface wave equation in fluid mechanics
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.
Nucleon exchange as a mechanism for strongly damped heavy ion collisions
International Nuclear Information System (INIS)
Jain, A.K.; Sarma, N.
1978-01-01
The strongly damped collisions of two heavy ions are examined in a semi-classical model where nucleons migrating across a boundary between the nuclei are captured by the other nucleus. The density variation of nucleons is taken to be the two-parameter Fermi distribution and the Thomas-Fermi model is invoked to obtain their momentum distribution. The mass exchanged during collisions, the net mass transfer and the energy lost to internal excitation are calculated as a function of the impact parameter. The angle of deep inelastic scattering is computed by correcting the elastic scattering deflection function. (Auth.)
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
DEFF Research Database (Denmark)
Kuznetsov, A.M.; Ulstrup, Jens
2002-01-01
We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems both...... in vacuum or air, and in aqueous solution under electrochemical potential control. Multifarious patterns of rectified electron flow from the negatively to the positively biased electrode arise. The electronic interaction between the donor and acceptor fragments, mutually and with the electrodes, can be weak...
Mourgues, R.; Bureau, D.; Bodet, L.; Gay, A.; Gressier, J. B.
2012-01-01
Large sand intrusions often exhibit conical morphologies analogous to magmatic intrusions such as saucer-shaped or cup-shaped sills. Whereas some physical processes may be similar, we show with scaled experiments that the formation of conical sand intrusions may be favoured by the pore-pressure gradients prevailing in the host rock before sand injection. Our experiments involve injecting air into a permeable and cohesive analogue material to produce hydraulic fractures while controlling the pore pressure field. We control the state of overpressure in the overburden by applying homogeneous basal pore pressure, and then adding a second local pore pressure field by injecting air via a central injector to initiate hydraulic fractures near the injection point. In experiments involving small vertical effective stresses (small overburden, or high pore fluid overpressure), the fracturing pressure ( λfract) is supralithostatic and two dipping fractures are initiated at the injection point forming a conical structure. From theoretical considerations, we predict that high values of λfract are due to strong cohesion or high pore fluid overpressure distributed in the overburden. Such conditions are favoured by the pore pressure/stress coupling induced by both pore pressure fields. The dips of cones can be accounted for elastic-stress rotation occurring around the source. Contrary to magmatic chamber models, the aqueous fluid overpressure developed in a parent sandbody (and prevailing before the formation of injectites) may diffuse into the surrounding overburden, thus favouring stress rotation and the formation of inclined sheets far from the parent source. For experiments involving higher vertical effective stresses (thick overburden or low pore fluid overpressure), the fracturing pressure is lower than the lithostatic stress, and a single fracture is opened in mode I which then grows vertically. At a critical depth, the fracture separates into two dilatant branches forming
Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks
Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.
2015-12-01
Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.
Ekanayake, N.; Nairat, M.; Kaderiya, B.; Feizollah, P.; Jochim, B.; Severt, T.; Berry, B.; Kanaka Raju, P.; Carnes, K. D.; Pathak, S.; Rolles, D.; Rudenko, A.; Ben-Itzhak, I.; Jackson, J. E.; Levine, B. G.; Dantus, M.
2017-04-01
Strong-field laser-matter interactions often lead to exotic chemical reactions. H3+formation from organic molecules is one such case which requires multiple bonds to break and form. Here, we present the first experimental evidence for the existence of two different reaction mechanisms for H3+formation from organic molecules irradiated by a strong-field laser. The assignment of the two different mechanisms was accomplished through the strong-field ionization of methanol isotopomers, ethylene glycol, and acetone. Our findings are supported by femtosecond time-resolved measurements, coincidence measurements, and ab initio calculations with the most plausible transition states involved in the two mechanisms. This exotic chemical reaction is important as it shows that a strong laser field can not only selectively break multiple bonds but also can lead to the formation of multiple new bonds within an extremely short timescale, on the order of 100 femtoseconds. This work is supported by the U.S. Department of Energy under Grants DOE SISGR (DE-SC0002325) and DE-FG02-86ER13491.
Statistical mechanics of fluids adsorbed in planar wedges: finite contact angle.
Henderson, J R
2004-06-01
I consider the statistical mechanics of inhomogeneous fluids applied to fluids adsorbed in planar wedges. Exact results are described that belong to an infinite subset of models defined as the intersection of any two identical semi-infinite planar wall-fluid potentials. This geometry is interesting as a generic example of adsorption onto structured interfaces and of interfacial phase transitions controlled by the substrate geometry. Previously described virial theorems are extended to the case of a general wall-fluid model. This enables the consideration of wedge filling when Young's contact angle far from the wedge apex is finite. The virial theorems generate two important relations: the wedge sum rules. The first sum rule links the interfacial free energy far from the wedge apex to the structure induced at the apex. The second sum rule links the free energy of the apex region to the structure induced by the apex. When Young's contact angle at the wedge walls is finite these relations further yield an exact result for the macroscopic contact angle in terms of the nanoscopic structure at the three-phase contact line (the intersection of the liquid-vapor surface with a wedge wall): the contact angle sum rule. These exact results are of direct relevance to computer simulation studies of adsorbed films. In addition, they take on special significance in the vicinity of continuous interfacial phase transitions: an approach to complete filling and the filling transition at bulk liquid-vapor coexistence.
Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians
Directory of Open Access Journals (Sweden)
Wei Yao
2012-01-01
Full Text Available Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells caused by interstitial fluid flow. The numerical simulation results show the following: (i the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments.
The mechanism of fluid secretion in the rabbit pancreas studied by means of various inhibitors.
Kuijpers, G A; Van Nooy, I G; De Pont, J J; Bonting, S L
1984-12-05
In order to increase our understanding of the mechanism of pancreatic fluid secretion we have studied the effects of various transport inhibitors on this process in the isolated rabbit pancreas. In this preparation, a high rate of unstimulated fluid secretion occurs, which probably originates from the ductular cells. Inhibitory are ouabain, furosemide, bumetanide, piretanide, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and acetazolamide, with their half-inhibitory concentrations: 2 X 10(-6) M (ouabain), 1.3 X 10(-3) M (furosemide), 2.2 X 10(-3) M (bumetanide and piretanide) and 1.4 X 10(-4) M (SITS). With acetazolamide a maximal inhibition of only 20% is found at 10(-3) M. Amiloride (10(-3) M) has no effect on pancreatic fluid secretion. The inhibitory effects on HCO-3 output are always larger and those on Cl- output lower than those on fluid secretion. The results suggest that the ouabain-sensitive (Na+ + K+)-ATPase system provides the energy for a Na+-gradient-driven Cl--HCO-3-exchange transport system, sensitive to the loop diuretics furosemide, bumetanide and piretanide and to SITS. This system would drive the transcellular transport of HCO-3 and secondarily that of cations, Cl- and water.
Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U J; Seemann, Gunnar; Dossel, Olaf; Pitman, Michael C; Rice, John J
2009-01-01
High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two ventricles and compare them to our previously published results using an electrophysiological model only. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Fiber orientation was included. Data decomposition for the distribution onto the distributed memory system was carried out by orthogonal recursive bisection. Load weight ratios for non-tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100. The ten Tusscher et al. (2004) electrophysiological cell model was used and the Rice et al. (1999) model for the computation of the calcium transient dependent force. Scaling results for 512, 1024, 2048, 4096, 8192 and 16,384 processors were obtained for 1 ms simulation time. The simulations were carried out on an IBM Blue Gene/L supercomputer. The results show linear scaling from 512 to 16,384 processors with speedup factors between 1.82 and 2.14 between partitions. The most optimal load ratio was 1:25 for on all partitions. However, a shift towards load ratios with higher weight for the tissue elements can be recognized as can be expected when adding computational complexity to the model while keeping the same communication setup. This work demonstrates that it is potentially possible to run simulations of 0.5 s using the presented electro-mechanical cardiac model within 1.5 hours.
Energy Technology Data Exchange (ETDEWEB)
Wei, Wei [School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, Hubei, 430063 (China); School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 (China); Gu, Zhaolin, E-mail: guzhaoln@mail.xjtu.edu.cn [School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 (China)
2015-10-28
Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas–solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The
Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria
2012-01-01
Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.
Weng, Lihui; Gouldstone, Andrew; Wu, Yuhong; Chen, Weiliam
2008-01-01
Hyaluronan (HA) is a natural polysaccharide abundant in biological tissues and it can be modified to prepare biomaterials. In this work, HA modified with glycidyl methacrylate was photocrosslinked to form the first network (PHA), and then a series of highly porous PHA/N, N-dimethylacrylamide (DAAm) hydrogels (PHA/DAAm) with high mechanical strength were obtained by incorporating a second network of photocrosslinked DAAm into PHA network. Due to synergistic effect produced by double network (DN) structure, despite containing 90% of water, the resulting PHA/DAAm hydrogel showed a compressive modulus and a fracture stress over 0.5 MPa and 5.2 MPa, respectively. Compared to the photocrosslinked hyaluronan single network hydrogel, which is generally very brittle and fractures easily, the PHA/DAAm hydrogels are ductile. Mouse dermal fibroblast was used as a model cell line to validate in vitro non-cytotoxicity of the PHA/DAAm hydrogels. Cells deposited extracellular matrix on the surface of these hydrogels and this was confirmed by positive staining of Type I collagen by Sirius Red. The PHA/DAAm hydrogels were also resistant to biodegradation and largely retained their excellent mechanical properties even after two months of co-culturing with fibroblasts. PMID:18272215
Wu, Jun; Zhou, Jinxu; Lang, Yaoguo; Yao, Lei; Xu, Hai; Shi, Hubo; Xu, Shidong
2012-11-01
Armillaria mellea is a famous traditional Chinese medicinal and edible fungus. In this study, we purified a water-soluble polysaccharide (AMP) from the fruiting bodies of this fungus. AMP contained 94.8% carbohydrate, 2.3% uronic acid and 0.5% protein. Its molecular weight was determined as 4.6 × 10⁵ Da, as determined by high-performance gel-permeation chromatography (HPGPC). Gas chromatography (GC) analysis indicated that AMP was mainly composed of d-glucose. In vitro assay, AMP exhibited a potent tumor growth inhibitory effect on A549 cells, and induced cell cycle disruption in the G0/G1 phase, accompanied by an increment of apoptotic cells. Furthermore, AMP induced the disruption of mitochondrial membrane potential, thus leading to cytochrome c release from mitochondria and activation of caspase-3 and -9. Taken together, our results demonstrate that AMP possesses strong antitumor activities through the mitochondria dependent pathway and activation of caspase cascade through cytochrome c release. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian
2016-01-01
Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.
Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian
2018-01-01
Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.
Zamir, Mair; Moore, James E; Fujioka, Hideki; Gaver, Donald P
2010-03-01
In the field of fluid flow within the human body, focus has been placed on the transportation of blood in the systemic circulation since the discovery of that system; but, other fluids and fluid flow phenomena pervade the body. Some of the most fascinating fluid flow phenomena within the human body involve fluids other than blood and a service other than transport--the lymphatic and pulmonary systems are two striking examples. While transport is still involved in both cases, this is not the only service which they provide and blood is not the only fluid involved. In both systems, filtration, extraction, enrichment, and in general some "treatment" of the fluid itself is the primary function. The study of the systemic circulation has also been conventionally limited to treating the system as if it were an open-loop system governed by the laws of fluid mechanics alone, independent of physiological controls and regulations. This implies that system failures can be explained fully in terms of the laws of fluid mechanics, which of course is not the case. In this paper we examine the clinical implications of these issues and of the special biofluid mechanics issues involved in the lymphatic and pulmonary systems.
Directory of Open Access Journals (Sweden)
Irina A Buhimschi
2008-04-01
Full Text Available Though recent advancement in proteomics has provided a novel perspective on several distinct pathogenetic mechanisms leading to preterm birth (inflammation, bleeding, the etiology of most preterm births still remains elusive. We conducted a multidimensional proteomic analysis of the amniotic fluid to identify pathways related to preterm birth in the absence of inflammation or bleeding.A proteomic fingerprint was generated from fresh amniotic fluid using surface-enhanced laser desorbtion ionization time of flight (SELDI-TOF mass spectrometry in a total of 286 consecutive samples retrieved from women who presented with signs or symptoms of preterm labor or preterm premature rupture of the membranes. Inflammation and/or bleeding proteomic patterns were detected in 32% (92/286 of the SELDI tracings. In the remaining tracings, a hierarchical algorithm was applied based on descriptors quantifying similarity/dissimilarity among proteomic fingerprints. This allowed identification of a novel profile (Q-profile based on the presence of 5 SELDI peaks in the 10-12.5 kDa mass area. Women displaying the Q-profile (mean+/-SD, gestational age: 25+/-4 weeks, n = 40 were more likely to deliver preterm despite expectant management in the context of intact membranes and normal amniotic fluid clinical results. Utilizing identification-centered proteomics techniques (fluorescence two-dimensional differential gel electrophoresis, robotic tryptic digestion and mass spectrometry coupled with Protein ANalysis THrough Evolutionary Relationships (PANTHER ontological classifications, we determined that in amniotic fluids with Q-profile the differentially expressed proteins are primarily involved in non-inflammatory biological processes such as protein metabolism, signal transduction and transport.Proteomic profiling of amniotic fluid coupled with non-hierarchical bioinformatics algorithms identified a subgroup of patients at risk for preterm birth in the absence of intra
Extrema principles of entrophy production and energy dissipation in fluid mechanics
Horne, W. Clifton; Karamcheti, Krishnamurty
1988-01-01
A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.
Effect of fluid balance on alveolar-arterial oxygen gradient in mechanically ventilated patients.
Aliyali, Masoud; Sharifpour, Ali; Tavakoli, Abdolrasol
2011-01-01
Fluid balance affects outcome in critically ill patients. We studied the effect of fluid balance on oxygen exchange by assessing alveolar-arterial oxygen gradient (PA-a O2) in mechanically ventilated patients. Our primary objective was to evaluate the difference in PA-aO2 and the secondary goal was to evaluate the differences in age and mortality rate. This retrospective observational study was performed on patients who were admitted to medical and surgical ICUs of Sari Imam Hospital, Mazandaran University of Medical Sciences, from 2003 to 2009. Daily fluid balance was calculated by input minus output. Thirty patients with continuous positive fluid balance (PFB) and 30 subjects with continuous negative fluid balance (NFB) during 4 consecutive days were enrolled in this study. PA-a O2 was calculated in these two groups. The mean (±SD) age was 48.9±21.2 yrs. in PFB group (19 males and 11 females) and 37.1±15.7 yrs. in NFB group (25 males and 5 females) which showed a statistically significant difference in age between the two groups (p = 0.017). The 24h, 48h, and 96h fluid balances were 1226(cc)±881, 1311(cc)±751, and 957(cc)±661 in PFB group and -1122(cc)±692, -920(cc)±394, and -1164(cc)±695 in NFB group, respectively. The mean differences (±SD) of PA-a O2 in 24h, 48h, and 96h versus the same value in the admission day were 11.3±39.2, 1.69±51.1, and -1.50±64 in PFB subjects and -21.8±60.8, -27.8±84.9, and -19.3±68.7 in NFB patients. The difference was statistically significant only in the first day of admission (p = 0.015). However, no difference was detected in overall mean oxygen gradient during 96h among the two groups. Mortality rate was significantly higher in PFB patients (P < 0.0001). Positive fluid balance had no significant effect on PA-a O2 but can be used as a predictor of mortality.
Leventis, Nicholas; Fabrizio, Eve F.; Johnston, Chris; Meador, Maryann
2004-01-01
In the search for materials with better mechanical, thermal, and electrical properties, it is becoming evident that oftentimes dispersing ceramic nanoparticles in plastics improves performance. Along these lines, chemical bonding (both covalent and noncovalent) between a filler and a polymer improves their compatibility, and thus enhances certain properties of the polymeric matrix above and beyond what is accomplished by simple doping with the filler. When a similarly sized dopant and matrix are used, elementary building blocks may also have certain distinct advantages (e.g., in catalysis). In this context, researchers at the NASA Glenn Research Center reasoned that in the extreme case, where the dopant and the matrix (e.g., a filler and a polymer) are not only sized similarly, but their relative amounts are comparable, the relative roles of the dopant and matrix can be reversed. Then, if the "filler," or a certain form thereof, possesses desirable properties of its own, such properties could be magnified by cross-linking with a polymer. We at Glenn have identified silica as such a filler in its lowest-density form, namely the silica aerogel.
Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants
Energy Technology Data Exchange (ETDEWEB)
Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.; Brockman, Fred J.
2012-02-24
The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy's River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize progress and results on new experiments focused on understanding the conditions that result in low gas retention. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments began with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments. The most significant results from the current experiments are that progressively lower gas retention occurs in tests with progressively deeper sediment layers and that the method of gas generation also affects the maximum retention. Based on the results of this study, it is plausible that relatively low gas retention could occur in sufficiently deep tank waste in DSTs. The current studies and previous work, however, have not explored how gas retention and release will behave when two or more layers with different properties are present.
Vikas, Hash(0x125f4490)
2011-02-01
Evolution of the helium atom in a strong time-dependent (TD) magnetic field ( B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schrödinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs "dynamically" from the CDFT based approach under similar computational constraints.
International Nuclear Information System (INIS)
Vikas
2011-01-01
Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)
The Fluid Mechanics of the Bible: Miracles Explainable by Christian Science?
Lang, Amy
2015-11-01
The Bible is full of accounts clearly in violation of our scientific understanding of fluid mechanics. Examples include the floating axe head, Jesus walking on the water and immediately calming a storm. ``Jesus of Nazareth was the most scientific man that ever trod the globe. He plunged beneath the material surface of things, and found the spiritual cause,'' wrote Mary Baker Eddy (1821-1910), the founder of a now well-established religion known as Christian Science, in her seminal work Science & Health with Key to the Scriptures. She asserted that Jesus' miracles were in accord with the, ``Science of God's unchangeable law.'' She also proclaimed that matter is a derivative of consciousness. Independently with the discovery of quantum mechanics, physicists such as Max Planck and Sir James Jeans began to make similar statements (``The Mental Universe'', Nature, 2005). More recently, Max Tegmark (MIT) theorized that consciousness is a state of matter (New Scientist, April 2014). Using a paradigm shift from matter to consciousness as the primary substance, one can scientifically explain how a mental activity (i.e. prayer) could influence the physical. Since this conference is next door to the original church of Christian Science (Const. 1894), this talk will discuss various fluid-mechanic miracles in the Bible and provide an explanation based on divine metaphysics while providing an overview of scientific Christianity and its unifying influence to the fields of science, theology and medicine.
Dong, Guanyu
2018-03-01
In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.
Study of a few problems concerning plasma physics and fluid mechanics
International Nuclear Information System (INIS)
Colin, M.
2011-01-01
The works presented in this thesis deal with solving partial differential equations concerning the laser-plasma interaction and some issues in fluid mechanics. All these works involve significant research in the modelization field: the approximation of oscillating hyperbolic systems, the simulation of Zakharov-type systems involving the Raman effect, Hele-Shaw models and gigantic micelles models. They also tackles theoretical issues like the existence and the uniqueness of solutions, the stability or instability of solitary waves, the optimal control, error estimation and model convergency
Fluid mechanics of additive manufacturing of metal objects by accretion of droplets – a survey
Directory of Open Access Journals (Sweden)
Tesař Václav
2016-01-01
Full Text Available Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.
Mass sensors with mechanical traps for weighing single cells in different fluids.
Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R
2011-12-21
We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.
Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.
Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P
2012-01-01
The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.
A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.
Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W
2009-03-01
We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.
Mechanisms and models of the dehydration self-organization in biological fluids
International Nuclear Information System (INIS)
Tarasevich, Yurii Yu
2004-01-01
The dehydration self-organization phenomenon in biological fluids attracted the attention of researchers slightly more than a decade ago. While seemingly simple (the structure formation is possible to observe even in domestic conditions), the effect turned out to be extremely complicated and to involve a number of interrelated processes of a different physical nature. The dehydration self-organization effect in biological fluids underlies a medical diagnostic technique patented in 40 countries of the world, while the mechanisms that underlie the technique still remain largely obscure. This review is an attempt to draw an integrated picture of the current state of the problem: to emphasize reliably established facts and the problems that remain to be solved, to put an end to speculation, and to characterize the available theories and models. An analysis of the literature sources allows us to draw the conclusion that the effects observed in the dehydration of biological fluids are typical for colloidal solutions in general and can be described in the framework of conventional physical approaches. (from the current literature)
Ups and downs of using ``kitchen sink'' experiments in an introductory fluid mechanics class
Kaye, Nigel
2015-11-01
Both positive and negative experiences from two semesters of using take home ``kitchen sink'' experiments in an introductory civil engineering fluid mechanics class are reported. Four different experimental assignments were given each semester to groups of four students. The students were tasked with using common household equipment to measure various properties of fluids or fluid flows. These included the density of cooking oil, the exit velocity from a garden hose, and the mass flux of air from a compressed air can. Students were given minimal guidance on how to do the measurements and each measurement had to be done in at least two different ways. The labs were used to relate their course work to everyday situations and was also used as a platform for discussing experimental uncertainty and error propagation in calculations. In general the students successfully completed each task using at least one method. Finding a second method sometimes proved problematic. The presentation will discuss the logistics of running the program and the positive and negative aspects from the instructor viewpoint. A summary of student feedback on the labs will also be presented. Links to resources for those interested in implementing such a program will be provided.
Fluid mechanic phenomena relating to flow control in conduits and pumps
Bayazit, Yilmaz
The attainment of controlled homogenized fluid flow is a major issue in the efficient utilization of internal flows for applications as diverse as heat exchange, electrostatic filtration, water purification, particle conveyance, swirl control, and waste disposal. Among the candidate methodologies for accomplishing the homogenization task, perforated plates provide exceptional versatility and adaptability. The principle that underlies perforated plate flow control is the tendency of a flowing fluid to seek the path of least resistance. This tendency is coupled with the capability of the fluid to "see" what lies ahead, enabling it to adjust its trajectory. That capability is due to streamwise diffusion, which transfers information both upstream and downstream. In contrast, advection is a one-way information transfer mechanism, the direction of transfer coinciding with the direction of fluid motion. The degree of homogenization afforded by perforated plates depends on several geometrical and operating parameters. The geometrical parameters include: (a) plate porosity, (b) plate thickness, (c) aperture diameter, (d) pattern of aperture deployment, and (e) distance between apertures. With respect to operating parameters, those investigated here encompass (f) fluid velocity, (g) flow regime, and (h) angle of attack. Nondimensionalization diminished the total number of parameters to five. Numerical simulation was employed to solve the three-dimensional flow covering a Reynolds number range from 0.01 to 25,000. Results extracted from the solutions included dimensionless pressure drop, downstream distance for disturbance decay, vector diagrams and streamlines, and flow regime boundaries. A paradox where the pressure drop for a thin plate exceeded that for a thick plate was rationalized. The pressure drop characteristics of a perforated plate are akin to those for a porous medium. The Darcy-Forchheimer pressure drop model was extended into the turbulent flow regime for the
Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M
2016-05-10
The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions
Directory of Open Access Journals (Sweden)
Paolo Morandi
2018-02-01
Full Text Available This article contains information related to a recent study “Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills” (Morandi et al., 2017 [1]. Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Directory of Open Access Journals (Sweden)
Jian Zhou
2016-09-01
Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.
Umur, Asli; van Gemert, Martin J. C.; Ross, Michael G.
2002-06-01
Clinical evidence suggests that increased amniotic fluid volume due to polyhydramnios increases placental vascular resistance. We have sought to model the possible effects of an increased amniotic fluid volume on the net fetofetal transfusion in monochorionic twin pregnancies. We wanted to compare these effects with the results of previous simulations, which aimed to explain why the twin-twin transfusion syndrome (TTTS) placentas more often include bidirectional arteriovenous (AV) rather than AV plus arterioarterial (AA) anastomoses. We extended our mathematical model of TTTS by simulating two different mechanisms that increase the placental vascular resistance as a consequence of polyhydramnios. First, there is an increase in the placental capillary resistance and hence in deep AV and opposite AV (denoted as VA) resistances due to polyhydramnios. Second, there is an increase in the resistance of chorionic veins due to polyhydramnios, assuming that these veins act as Starling resistors. We then simulated the effects of polyhydramnios on different placental anastomotic patterns. The results were as follows. In the first mechanism (polyhydramnios affects AV-VA resistances), an increased amniotic fluid volume hardly affected bidirectional AV, but slightly decreased fetofetal transfusion in AV plus AA anastomoses. However, for these effects to change the natural development of the pregnancy, polyhydramnios needed to persist for approximately 4 weeks, and by comparing the effects of polyhydramnios with the effects of amnioreduction, amnioreduction was more beneficial for normalizing the donor amniotic fluid volume. Therefore, these beneficial effects due to polyhydramnios have no practical clinical significance. In the second mechanism (Starling resistor for chorionic veins), polyhydramnios slightly increased fetofetal transfusion and hence slightly increased TTTS severity in bidirectional AV and AV plus VV, but did not affect AV plus AA anastomoses. In conclusion, we
International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics
Tseng, Kadin
1990-01-01
The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas sive parallelism. This Symposium was sponsored by United ...
Directory of Open Access Journals (Sweden)
Song Haiyan
2017-01-01
Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.
Farassat, Fereidoun; Myers, Michael K.
2011-01-01
This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.
Vafek, Oskar; Chubukov, Andrey V.
2017-02-01
We present a novel mechanism of s -wave pairing in Fe-based superconductors. The mechanism involves holes near dx z/dy z pockets only and is applicable primarily to strongly hole doped materials. We argue that as long as the renormalized Hund's coupling J exceeds the renormalized interorbital Hubbard repulsion U', any finite spin-orbit coupling gives rise to s -wave superconductivity. This holds even at weak coupling and regardless of the strength of the intraorbital Hubbard repulsion U . The transition temperature grows as the hole density decreases. The pairing gaps are fourfold symmetric, but anisotropic, with the possibility of eight accidental nodes along the larger pocket. The resulting state is consistent with the experiments on KFe2 As2 .
Energy Technology Data Exchange (ETDEWEB)
Vikas [Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, 160014 Chandigrah (India)
2011-02-15
Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10{sup 11} G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10{sup 9} G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10{sup 9} G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)
Directory of Open Access Journals (Sweden)
Yonghui Xie
2014-01-01
Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.
Chen, Chin-Yi; Nguyen, Ly-Huong T; Cottrell, Bryan J; Irwin, Peter L; Uhlich, Gaylen A
2016-03-01
High variability in the expression of csgD-dependent, biofilm-forming and adhesive properties is common among Shiga toxin-producing Escherichia coli. Although many strains of serotype O157:H7 form little biofilm, conversion to stronger biofilm phenotypes has been observed. In this study, we screened different strains of serotype O157:H7 for the emergence of strong Congo-red (CR) affinity/biofilm-forming properties and investigated the underlying genetic mechanisms. Two major mechanisms which conferred stronger biofilm phenotypes were identified: mutations (insertion, deletion, single nucleotide change) in rcsB region and stx-prophage excision from the mlrA site. Restoration of the native mlrA gene (due to prophage excision) resulted in strong biofilm properties to all variants. Whereas RcsB mutants showed weaker CR affinity and biofilm properties, it provided more possibilities for phenotypic presentations through heterogenic sequence mutations. Published by Oxford University Press on behalf of FEMS 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Manning, Keefe B; Herbertson, Luke H; Fontaine, Arnold A; Deutsch, Steven
2008-08-01
Hemolysis and thrombosis are among the most detrimental effects associated with mechanical heart valves. The strength and structure of the flows generated by the closure of mechanical heart valves can be correlated with the extent of blood damage. In this in vitro study, a tilting disk mechanical heart valve has been modified to measure the flow created within the valve housing during the closing phase. This is the first study to focus on the region just upstream of the mitral valve occluder during this part of the cardiac cycle, where cavitation is known to occur and blood damage is most severe. Closure of the tilting disk valve was studied in a "single shot" chamber driven by a pneumatic pump. Laser Doppler velocimetry was used to measure all three velocity components over a 30 ms period encompassing the initial valve impact and rebound. An acrylic window placed in the housing enabled us to make flow measurements as close as 200 microm away from the closed occluder. Velocity profiles reveal the development of an atrial vortex on the major orifice side of the valve shed off the tip of the leaflet. The vortex strength makes this region susceptible to cavitation. Mean and maximum axial velocities as high as 7 ms and 20 ms were recorded, respectively. At closure, peak wall shear rates of 80,000 s(-1) were calculated close to the valve tip. The region of the flow examined here has been identified as a likely location of hemolysis and thrombosis in tilting disk valves. The results of this first comprehensive study measuring the flow within the housing of a tilting disk valve may be helpful in minimizing the extent of blood damage through the combined efforts of experimental and computational fluid dynamics to improve mechanical heart valve designs.
Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults
McKenna, S. A.; Pike, D. Q.
2011-12-01
Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from contract DE-AC04-94AL85000
Wu, Binxin
2011-02-01
This study evaluates six turbulence models for mechanical agitation of non-Newtonian fluids in a lab-scale anaerobic digestion tank with a pitched blade turbine (PBT) impeller. The models studied are: (1) the standard k-ɛ model, (2) the RNG k-ɛ model, (3) the realizable k-ɛ model, (4) the standard k-ω model, (5) the SST k-ω model, and (6) the Reynolds stress model. Through comparing power and flow numbers for the PBT impeller obtained from computational fluid dynamics (CFD) with those from the lab specifications, the realizable k-ɛ and the standard k-ω models are found to be more appropriate than the other turbulence models. An alternative method to calculate the Reynolds number for the moving zone that characterizes the impeller rotation is proposed to judge the flow regime. To check the effect of the model setup on the predictive accuracy, both discretization scheme and numerical approach are investigated. The model validation is conducted by comparing the simulated velocities with experimental data in a lab-scale digester from literature. Moreover, CFD simulation of mixing in a full-scale digester with two side-entry impellers is performed to optimize the installation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bleckmann, Horst
2012-01-01
This book is the closing report of the national priority program Nature-Inspired Fluid Mechanics (Schwerpunktprogramm SPP 1207: Strömungsbeeinflussung in der Natur und Technik). Nature-inspired fluid mechanics is one subset of biomimetics, a discipline which has received increased attention over the last decade, with numerous faculties and degree courses devoted solely to exploring ‘nature as a model’ for engineering applications. To save locomotion energy, evolution has optimized the design of animals such that friction loss is minimized. In addition to many morphological adaptations, animals that are often exposed to water or air currents have developed special behaviors that allow them to use the energy contained in air or water fluctuations for energy savings. Such flow manipulation and control is not only important for many animals, but also for many engineering applications. Since living beings have been optimized by several million years of evolution it is very likely that many engineering discipl...
Gámez Montero, Pedro Javier; Raush Alviach, Gustavo Adolfo; Domènech Rubio, Luis Miguel; Castilla López, Roberto; García Vilchez, Mercedes; Moreno Llagostera, Hipòlit; Carbo Bech, Alberto Antonio
2015-01-01
“Mechanics” and “Fluids” are familiar concepts for any newly-registered engineering student. However, when combined into the term “Fluid Mechanics”, students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate engineering program, along with the teaching methodology, teaching materials and results obtained, evaluating the final objective in terms of student satsfaction and level of learning....
Oliveira, Marcos Aurélio Barboza de; Alves, Fernanda Tomé; Silva, Marcos Vinícius Pinto e; Croti, Ulisses Alexandre; Godoy, Moacir Fernandes de; Braile, Domingo Marcolino
2010-01-01
The professional activity that the cardiovascular surgeon performs is much more than a simple gesture to mechanically operate the patient's heart. There is in every act of intraoperative most notions of physiology and physics than we generally realize. This paper discusses, in the light of mathematics, on the dynamics of fluids, ie blood, focused on invasive measurements of blood pressure, the effect of vessel size on its internal resistance and the flow passing through it in conversion of various units of measurements of pressure and resistance, blood viscosity and its relationship to the vessel, hemodilution, differences in laminar and turbulent flow, velocity and blood pressure and wall tension after a stenosis and the origin of poststenotic aneurysm. This study is not to enable the reader to the knowledge of all physics, but to show it as a useful tool in explaining phenomena known in the routine of cardiovascular surgery.
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-10-01
The Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The 26 papers in this proceedings are arranged in the following topical sections: superconductors (4 papers); materials (7); controls (4); fluid mechanics (7); and thin films (4). Papers have been processed separately for inclusion on the data base.
Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod
Klotsche, K.; Thomas, C.; Hesse, U.
2017-08-01
The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.
Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia
Energy Technology Data Exchange (ETDEWEB)
Lima, Enio, E-mail: lima@cab.cnea.gov.ar; De Biasi, Emilio; Zysler, Roberto D.; Vasquez Mansilla, Marcelo; Mojica-Pisciotti, Mary L. [Centro Atómico Bariloche/CONICET (Argentina); Torres, Teobaldo E.; Calatayud, M. Pilar; Marquina, C.; Ricardo Ibarra, M.; Goya, Gerardo F. [Universidad de Zaragoza, Instituto de Nanociencia de Aragón INA (Spain)
2014-12-15
We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.
Analytical solutions for transport processes fluid mechanics, heat and mass transfer
Brenn, Günter
2017-01-01
This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .
Directory of Open Access Journals (Sweden)
Randa Aly Soliman
2015-04-01
Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.
Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan
2015-05-13
We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.
Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models
DEFF Research Database (Denmark)
Kock, Samuel A; Nygaard, Jens Vinge; Eldrup, Nikolaj
2008-01-01
fluid-structure interaction (FSI) simulations of carotid atherosclerotic plaques were performed facilitating in-vivo estimation of longitudinal internal fibrous cap stresses. The FSI simulation combined finite element analysis (FEA) with computational fluid dynamics (CFD) simulations of blood...
Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale
DEFF Research Database (Denmark)
Dubar, L.; Hubert, C.; Christiansen, Peter
2012-01-01
computation steps. The first one is a fully coupled fluid-structure Finite Element computation, where pockets in the surface are plastically deformed leading to the pressurization of the entrapped fluid. The second step computes the fluid exchange between cavities through the plateaus of asperity contacts...
Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid
International Nuclear Information System (INIS)
Walsh, R.J.; Slaby, F.J.; Posner, B.I.
1987-01-01
Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of [ 125 -I]iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of [ 125 I]iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on [ 125 I]iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of [ 125 I]iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of [ 125 I]iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions
Directory of Open Access Journals (Sweden)
Chivukula VK
2015-01-01
Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study
Mechanical behavior of a fluid-sensitive material during liquid diffusion
Widiastuti, Indah; Sbarski, Igor; Masood, S. H.
2014-05-01
This paper described the analytical study that we performed in an attempt to understand the combined effect of liquid diffusion and temperature on the mechanical response of viscoelastic liquid-sensitive material. A constitutive equation for linear viscoelasticity, which includes the effect of liquid diffusion, is used to model the mechanical response of a fluid-sensitive polymer such as PLA-based bioplastic. The viscoelastic characteristics which represent material degradation due to liquid diffusion were expressed using a creep-based formulation represented by Burger's model. Creep experiment data were fitted to the Burgers model to provide a liquid content-dependent set of input data for subsequent time-dependent analysis. Further, analytical solutions for stresses and deformations were obtained from the corresponding elastic solution by applying the Correspondence Principle, using previously defined material characteristics. Spatial and time variations of stress and deformation were evaluated to give a precise description of the material behavior under hygroscopic conditions. We propose a stress concentration factor to take into account the liquid diffusion-induced stress that may result in a failure of an application. The results emphasize the importance of considering liquid diffusion and viscoelastic properties in the design of components using liquid-absorbable material.
Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber.
Fitt, A D; Gonzalez, G
2006-01-01
We consider and compare the various different kinds of flow that may take place in the anterior chamber of a human eye. The physical mechanisms responsible for causing such flows may be classified as follows: (i) buoyancy-driven flow arising from the temperature difference between the anterior surface of the cornea and the iris, (ii) flow generated by the aqueous production of the ciliary body, (iii) flow generated by the interaction between buoyancy and gravity while sleeping while sleeping in a face-up position, (iv) flow generated by phakodenesis (lens tremor), (v) flow generated by Rapid Eye Movement (REM) during sleep. Each flow is studied using a traditional fluid mechanics/asymptotic analysis approach. We also assess the veracity of a hypothesis that was recently advanced [see Maurice, D.M., 1998. The Von Sallman Lecture 1996: An ophthalmological explanation of REM sleep. Exp. Eye. Res. 66, 139-145, for details] to suggest that, contrary to previous opinion, the purpose of REM during sleep is to ensure corneal respiration in the absence of the buoyant mixing that routinely takes place due to (i) above during waking conditions.
Sedov, L
1968-01-01
At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...
Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics
Kenny, R Jeremy; Hulka, James R.
2008-01-01
Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.
Pääkkö, M; Ankerfors, M; Kosonen, H; Nykänen, A; Ahola, S; Osterberg, M; Ruokolainen, J; Laine, J; Larsson, P T; Ikkala, O; Lindström, T
2007-06-01
Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales
Energy Technology Data Exchange (ETDEWEB)
Ricoeur, A.
2000-07-01
The subject under consideration is the development and propagation of sound in two-phase flows. The investigations are focused on fluids, which are composed of liquid and gas. The gaseous phase may consist of both noncondensable gas and of vapour, originating from phase transitions of the liquid. Fields of application are, among others, flow noise, sonochemistry, the acoustical surveillance of industrial flow processes or ocean acoustics. A stochastic model, which describes spectral properties of noise sources, conditioned by imploding vapour bubbles, is connected to transfer functions. The latter are based on constitutive equations, accounting for the wave mechanics of the two-phase fluids. In combination with a numerical algorithm they permit for the calculation of noise spectra at any distance from the noise sources. The field problem is solved by implementing the constitutive equations into a hybrid boundary element method, which combines low discretization effort with fast evaluation of domain variables. The constitutive equations are based on models for the dynamics of gas- and vapour bubbles. Therefore, the nonlinear and linear bubble dynamics are extensively investigated. Furthermore, fundamental knowledge concerning wave dispersion in two-phase fluids is presented. The constitutive equation for pseudocavitation is experimentally verified by means of an acoustical wave guide. Additionally the experimental set-up serves for investigating fluid-structure-interaction. (orig.) [German] Die Arbeit befasst sich mit der Entstehung und Ausbreitung von Schall in Zweiphasenstroemungen. Betrachtet werden Fluide aus Fluessigkeit und Gas, deren Gasphase sowohl als nichtkondensierendes Gas, als auch in Gestalt des Dampfes der Fluessigkeit vorliegt. Anwendungen liegen beispielsweise in der Stroemungsakustik, der Sonochemie, der akustischen Ueberwachung verfahrenstechnischer Prozesse oder der Meeresakustik. Ein stochastisches Modell zur spektralen Beschreibung von
Angiographic methods for the study of fluid mechanical factors in atherogenesis.
Smedby, O
1992-01-01
The purpose of this thesis is to investigate the feasibility of using angiographic methods to study, in vivo, fluid mechanical phenomena believed to influence the development and localization of atherosclerotic lesions, in particular, separated flow. This involved developing a method to recognize separated flow by digital analysis of cineangiography films, testing this method both with model measurements and in a clinical material, and a detailed analysis of certain methodological problems. In addition, methods have been developed to measure the tortuosity of arteries, a phenomenon which may, according to fluid mechanical theory, promote the occurrence of separated flow. In a glass model of an arterial bifurcation, a pump generated a pulsatile flow resembling that in large arteries. Using LDV (laser Doppler velocimetry) as a reference method, three velocity profiles in the symmetry plane of the model were recorded. During diastole, extensive separated flow was demonstrated in the larger branch of the bifurcation. The flow was then cineradiographed during injection of contrast medium, and the image sequence was transferred to an image analysis workstation. Treating the image sequence as a set of time-intensity curves, time parameters representing the arrival time of the contrast agent were computed. In the resulting parametric images, zones of delayed filling were identified and found to correspond to the separated flow. Viscosity was measured for seven radiographic contrast media and, as expected, the highest values were found for the largest molecules. For iohexol and ioxaglate, which were studied in detail, a linear relation to temperature and a quadratic relation to concentration were found. Whole-blood viscosity was measured for 5 healthy volunteers at high and low shear rates, before and after mixing with contrast agents in varying proportions. At low shear, viscosity decreased, while at high shear, it increased with increasing contrast concentration. The
Han, Duanduan; Ugaz, Victor
2017-01-01
Three self-contained mini-labs were integrated into a core undergraduate fluid mechanics course, with the goal of delivering hands-on content in a manner scalable to large class sizes. These mini-labs supported learning objectives involving friction loss in pipes, flow measurement, and centrifugal pump analysis. The hands-on experiments were…
Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.
2015-01-01
This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…
2012-01-06
reported here. The fluids used in these investigations included toluene, o- xylene , p- xylene , mesitylene, HISOL- 15, n-hexane, ethanol, tert-butyl...were monitored as a function of time. Structural characterization of the elastomer was done using x-ray diffraction and FTIR spectroscopy. Time...fluids are reported here. The fluids used in these investigations included toluene, o- xylene , p- xylene , mesitylene, HISOL-15, n-hexane, ethanol, tert
Mechanics of granular-frictional-visco-plastic fluids in civil and mining engineering
Alehossein, H.; Qin, Z.
2013-10-01
The shear stress generated in mine backfill slurries and fresh concrete contains both velocity gradient dependent and frictional terms, categorised as frictional viscous plastic fluids. This paper discusses application of the developed analytical solution for flow rate as a function of pressure and pressure gradient in discs, pipes and cones for such frictional Bingham-Herschel-Bulkley fluids. This paper discusses application of this continuum fluid model to industrial materials like mine and mineral slurries, backfills and fresh concrete tests.
Elliott, Morgan; Martin, David
2015-01-01
For my summer internship project, I organized a pilot study to analyze the effects of a cephalic fluid shift on venous return and right ventricular mechanics to increase right ventricular and venous knowledge. To accomplish this pilot study, I wrote a testing protocol, obtained Institutional Review Board (IRB) approval, completed subject payment forms, lead testing sessions, and analyzed the data. This experiment used -20deg head down tilt (20 HDT) as the ground based simulation for the fluid shift that occurs during spaceflight and compared it to data obtained from the seated and supine positions. Using echocardiography, data was collected for the right ventricle, hepatic vein, internal jugular vein, external jugular vein, and inferior vena cava. Additionally, non-invasive venous pressure measurements, similar to those soon to be done in-orbit, were collected. It was determined that the venous return from below the heard is increased during 20 HDT, which was supported by increased hepatic vein velocities, increased right ventricular inflow, and increased right ventricular strain at 20 HDT relative to seated values. Jugular veins in the neck undergo an increase in pressure and area, but no significant increase in flow, relative to seated values when a subject is tilted 20 HDT. Contrary to the initial expectations based on this jugular flow, there was no significant increase in central venous pressure, as evidenced by no change in Doppler indices for right arterial pressure or inferior vena cava diameter. It is suspected that these differences in pressure are due to the hydrostatic pressure indifference point shifting during tilt; there is a potential for a similar phenomenon with microgravity. This data will hopefully lead to a more in-depth understanding of the response of the body to microgravity and how those relate to the previously mentioned cardiovascular risk of fluid shift that is associated with spaceflight. These results were presented in greater detail
Numerical Study of Mechanical Stirring in Case of Yield Stress Fluid with Circular Anchor Impeller
Directory of Open Access Journals (Sweden)
Brahim MEBARKI
2011-09-01
Full Text Available In this work the characterization of hydrodynamic fields of incompressible yield stress fluid with regularization model of Bercovier and Engelman in a cylindrical vessel not chicaned equipped with circular anchor stirrer was undertaken by means of numerical simulation using computational fluid dynamics. Simulations flow of a Bingham fluid agitated by straights blades anchor was used to validate the rheological model implemented of the fluid treated. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed. We have analyzed also the influence of rheological parameters on the hydrodynamic flow behaviours, such as the velocity components and the global characteristic like power consumption.
Directory of Open Access Journals (Sweden)
Urubek Tomáš
2015-01-01
Full Text Available Hydrothermal mineralization hosted by the Lower Cretaceous igneous rock of the teschenite association at Jasenice (Silesian Unit, Flysch Belt, Outer Western Carpathians occurs in two morphological types - irregular vein filled by granular calcite and regular composite vein formed by both fibrous and granular calcite and minor chlorite, quartz, and pyrite. Crosscutting evidence indicates that the granular veins are younger than the composite vein. The composite vein was formed by two mechanisms at different times. The arrangement of solid inclusions in the marginal fibrous zone suggests an episodic growth by the crack-seal mechanism during syntectonic deformation which was at least partially driven by tectonic suction pump during some stages of the Alpine Orogeny. Both the central part of the composite vein and monomineral veins developed in a brittle regime. In these cases, the textures of vein suggest the flow of fluids along an open fracture. The parent fluids of both types of vein are characterized by low temperatures (Th=66-163 °C, low salinities (0.4 to 3.4 wt. % NaCl eq., low content of strong REE-complexing ligands, and δ18O and δ13C ranges of + 0.2/+12.5 %. SMOW and -11.8/-14.1 %. PDB, respectively. The parent fluids are interpreted as the results of mixing of residual seawater and diagenetic waters produced by dewatering of clay minerals in the associ-ated flysch sediments. The flow of fluids was controlled by tectonic deformation of the host rock.
Modelling the fluid mechanics of cilia and flagella in reproduction and development.
Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R
2012-10-01
Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.
Mechanisms of sampling interstitial fluid from skin using a microneedle patch.
Samant, Pradnya P; Prausnitz, Mark R
2018-04-16
Although interstitial fluid (ISF) contains biomarkers of physiological significance and medical interest, sampling of ISF for clinical applications has made limited impact due to a lack of simple, clinically useful techniques that collect more than nanoliter volumes of ISF. This study describes experimental and theoretical analysis of ISF transport from skin using microneedle (MN) patches and demonstrates collection of >1 µL of ISF within 20 min in pig cadaver skin and living human subjects using an optimized system. MN patches containing arrays of submillimeter solid, porous, or hollow needles were used to penetrate superficial skin layers and access ISF through micropores (µpores) formed upon insertion. Experimental studies in pig skin found that ISF collection depended on transport mechanism according to the rank order diffusion < capillary action < osmosis < pressure-driven convection, under the conditions studied. These findings were in agreement with independent theoretical modeling that considered transport within skin, across the interface between skin and µpores, and within µpores to the skin surface. This analysis indicated that the rate-limiting step for ISF sampling is transport through the dermis. Based on these studies and other considerations like safety and convenience for future clinical use, we designed an MN patch prototype to sample ISF using suction as the driving force. Using this approach, we collected ISF from human volunteers and identified the presence of biomarkers in the collected ISF. In this way, sampling ISF from skin using an MN patch could enable collection of ISF for use in research and medicine.
Arcos, Jesús; Diangelo, Lauren E; Scordo, Julia M; Sasindran, Smitha J; Moliva, Juan I; Turner, Joanne; Torrelles, Jordi B
2015-09-15
We have shown that human alveolar lining fluid (ALF) contains homeostatic hydrolases capable of altering the Mycobacterium tuberculosis cell wall and subsequently its interaction with human macrophages. Neutrophils are also an integral part of the host immune response to M. tuberculosis infection. Here we show that the human lung mucosa influences M. tuberculosis interaction with neutrophils, enhancing the intracellular killing of ALF-exposed M. tuberculosis and up-regulating the expression of tumor necrosis factor and interleukin 8. In contrast, ALF-exposed M. tuberculosis does not induce neutrophil apoptosis or necrosis, degranulation, or release of extracellular traps, and it decreases the oxidative response. These results suggest an important role for the human alveolar mucosa: increasing the innate capacity of the neutrophil to recognize and kill M. tuberculosis by favoring the use of intracellular mechanisms, while at the same time limiting neutrophil extracellular inflammatory responses to minimize their associated tissue damage. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Wang Han; Yang Yongming; Hu Yüe; Zhang Huisheng; Zhang Zhenyu
2008-01-01
A numerical method for simulating the motion and deformation of an axisymmetric bubble or drop rising or falling in another infinite and initially stationary fluid is developed based on the volume of fluid (VOF) method in the frame of two incompressible and immiscible viscous fluids under the action of gravity, taking into consideration of surface tension effects. A comparison of the numerical results by this method with those by other works indicates the validity of the method. In the frame of inviscid and incompressible fluids without taking into consideration of surface tension effects, the mechanisms of the generation of the liquid jet and the transition from spherical shape to toroidal shape during the bubble or drop deformation, the increase of the ring diameter of the toroidal bubble or drop and the decrease of its cross-section area during its motion, and the effects of the density ratio of the two fluids on the deformation of the bubble or drop are analysed both theoretically and numerically. (condensed matter: structure, thermal and mechanical properties)
Fluid Mechanical Interactions In The Active Creeping Chihshang Fault Zone In Eastern Taiwan
Dong, J.; Mu, C.; Lee, J.; Guglielmi, Y.; Angelier, J.; Lin, C.
2007-12-01
The Chihshang thrust fault is one of the most active segments of the Longitudinal Valley fault (LVF) situated along the plate suture between the Philippine Sea plate and the Eurasian plate in eastern Taiwan. During the past two decades, different surface monitoring efforts have been undertaken across the Chihshang fault at different spatial and temporal scales. Some interesting phenomena were observed, revealing a close interactions between fluids, creep in the shallow fault segment and seismogenic zone at depth : (1) seasonal variation clearly influence Chihshang fault creep rate; (2) coseismic slip propagation was attenuated at shallow depth during the 2003 Mw=6.5 Chengkung earthquake and followed by a dramatic postseismic creep; (3) a decreasing creep rate was observed before the 2003 earthquake and the total crust shortening after Chengkung earthquake compensated the deficit of surface creep about 3-4 years before the earthquake. To better understand the role of fluids in the creeping of Chihchang fault, subsurface geophysical investigation, in-situ hydro-mechanical tests and long-term pressure, deformation and seismic monitoring were initiated within the frame of an integrated project called Chihshang Fault Monitoring Observatory.. Eight boreholes were drilled at a depth of 30-100 m through the Chihshang fault fault zone at the Chinyuan site. Pore pressure variations in hydraulic observation wells induced by artificial pumping and injections and natural seasonal variation were monitored, together with surface electrical 4D tomography. Creeping was monitored with both creepmeters and tiltmeters set in surface and TDRs set in boreholes. First results show a complex fault zone affecting several hydrogeological sedimentary units with a high variability of hydraulic properties, 6 10-4 to 2 10-8 of storativity values and 10-4 to 4 10-6 m2/s transmissivity values respectively. Groundwater flow is parallel to the deformation zone direction that is characterized by
Umur, Asli; van Gemert, Martin J. C.; Ross, Michael G.
2002-01-01
Clinical evidence suggests that increased amniotic fluid volume due to polyhydrarnnios increases placental vascular resistance. We have sought to model the possible effects of an increased amniotic fluid volume oil the net fetofetal transfusion in monochorionic twin pregnancies. We wanted to compare
International Nuclear Information System (INIS)
Kobata, T.
1987-01-01
It is well known that high temperature thermo-nuclear plasma of several keV is very difficult to exist in the dense and small radius plasma column. So, at any time the high neutron yield from the dense plasma focus has had the tendency to be explained by the beam target mechanism based on the observation of the high energy beam emissions. However the manner of neutron emission is very complex and different among the devices and from shot to shot. Especially it is difficult to explain the first neutron emission by the beam target mechanism which is coincide with the formation of very dense plasma column. There is the ionizing shock wave in front of the plasma sheet and the gas is fully ionized after the shock wave because the Mach-number against the filling gas is very large, M--100. The thickness of the shock wave is very thin, 1≤0.5 mm for the discharge condition that the speed of the plasma sheet V/sub sh/ is 1--2 x 10/sup 7/ cm/sec and the discharge gas pressure is several Torr. The intensity of the magnetic field penetrated into the shock wave from the back side of the plasma sheet at the last converging phase will be the order of 1 kG. The plasma density in the shock wave will be n=4--9.10/sup 17//cm/sup 3/ because the density jump in the very strong shock limit is 6 times of the base gas density. Then the Alfven speed b=B/sub θ//(4πrho)/sup 1/2/ calculated from these density and magnetic field is 2.4--1.6 x 10/sup 6/ cm/sec. Similarly the sonic speed a= (γkT/m)/sup 1/2/ in the plasma is also the same order, i.e. a=2--4x10/sup 6/ cm/sec, for the temperature of 10--50 eV expected from the shock wave heating
Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S
2014-11-17
This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.
Directory of Open Access Journals (Sweden)
Norman Eric Miller
2016-07-01
Full Text Available Cholesterol esterification in high density lipoproteins (HDLs by lecithin:cholesterol acyltransferase (LCAT promotes unesterified cholesterol (UC transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER in lymph is only five per cent of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate, and LCAT specific activity averaged respectively 11.8, 10.3, and 84.9 per cent of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI, fatty acid-free albumin, Intralipid, or the d<1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC to lymph increased ECER ten-fold, while addition of apo AI/PC/UC discs did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins.
An experimental study of the fluid mechanics associated with porous walls
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction
Directory of Open Access Journals (Sweden)
Groenenboom P. H. L.
2009-06-01
Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.
Directory of Open Access Journals (Sweden)
Heidi R. Flori
2011-01-01
Full Text Available Introduction. We analyzed a database of 320 pediatric patients with acute lung injury (ALI, to test the hypothesis that positive fluid balance is associated with worse clinical outcomes in children with ALI. Methods. This is a post-hoc analysis of previously collected data. Cumulative fluid balance was analyzed in ml per kilogram per day for the first 72 hours after ALI while in the PICU. The primary outcome was mortality; the secondary outcome was ventilator-free days. Results. Positive fluid balance (in increments of 10 mL/kg/24 h was associated with a significant increase in both mortality and prolonged duration of mechanical ventilation, independent of the presence of multiple organ system failure and the extent of oxygenation defect. These relationships remained unchanged when the subgroup of patients with septic shock (n=39 were excluded. Conclusions. Persistently positive fluid balance may be deleterious to pediatric patients with ALI. A confirmatory, prospective randomized controlled trial of fluid management in pediatric patients with ALI is warranted.
International Nuclear Information System (INIS)
Silaev, A.A.; Ryabikin, M.Yu.; Vvedenskii, N.V.
2010-01-01
Complete text of publication follows. The development of theoretical approaches to the description of strong-field phenomena caused by ultrashort laser pulses is optical for studying the interaction of atoms and molecules with intense laser fields. In this work, we address two phenomena which attract much attention and can be observed under similar experimental conditions, namely, when a gas is ionized by ultrashort laser pulse. The first phenomenon is the excitation of high-order harmonics of the driving field frequency in the electron current, which leads to the generation of vacuum ultraviolet and soft X-ray radiation, as well as the attosecond pulse production. The second phenomenon is the excitation of a quasi-dc residual current in the laser-produced plasma, which results in the generation of radiation having a frequency below the laser one, e.g., terahertz waves. We present new one-dimensional (1D) and two-dimensional (2D) quantum-mechanical models for the description of such phenomena for the case a hydrogen (H) atom, and the generalization of these models to the case of various noble-gas atoms. The shape of the electrostatic potential produced by an atomic ion is shown to influence significantly the rates of the processes in the dynamics of atomic electron, and even more, the rates of the tunneling and above-barrier ionization, which is of utmost importance for the considered phenomena. The results of solving the time-dependent Schroedinger equation with the 1D and 2D potentials, which we propose, are compared with the results of the ab initio three-dimensional calculations for the H atom. We find the regions of laser pulse parameters, where the results obtained with proposed models have much better accuracy than the results provided by the models used earlier. Acknowledgements. This work was supported by the Russian Foundation for Basic Research, the Presidential Council on Grants of the Russian Federation, the Ministry of Education and Science of the
Defining the best parallelization strategy for a diphasic compressible fluid mechanics code
International Nuclear Information System (INIS)
Berthou, Jean-Yves; Fayolle, Eric; Faucher, Eric; Scliffet, Laurent
2000-01-01
Nuclear plants use steam generator safety valves in order to regulate possible large pressure variations of fluids. In case of an incident these valves may be fed with pressurized liquid water (for instance a pressure of 9 MPa at a temperature of 300degC). When a pressurized liquid is submitted to a strong pressure drop, it will start evaporating. This phenomena is called flashing. Z. Bilicki and co-authors proposed the homogeneous relaxation model (HRM) to compute critical flashing water flows. Its computation in the case of non stationary one-dimensional flashing flows has been carried out with the development of a dedicated time dependent Finite Volume scheme based on a simplified version of the Godunov approach. Electricite De France Research and Development division have developed a monodimensional implementation of the HRM model: ECOSS, a 11000 lines FORTRAN 90. Applied to a shock tube test case with a 20000 elements monodimensional mesh, the simulation of the physical phenomenon during 2.5 seconds requires at least 100 days of computation on a SUN Sparc-Ultra60. This execution time justifies the ECOSS parallelization. Furthermore, we plan a modeling on 2D meshes for the next few years. Knowing that multiplying the mesh dimension by a factor 10 multiplies the execution time by a factor 100, ECOSS would take years of computation with small 2D meshes (1000 x 1000) on a conventional workstation. This paper describes the parallelization analysis we have conducted and we presents the experimental results we have obtained applying different programming model (MPI, OpenMP, HPF) on various platforms (a Compaq Proliant 6000 4 processors, a Cray T3E-750 300 processors, a HP class V 16 processors, a SGI Origin2000 32 processors, a cluster of PCs and a COMPAQ SC 232 processors). These experimental results will be discussed according to the following criteria: efficiency, salability, maintainability, developing costs and portability. As a conclusion, we will present the
Semiclassical statistical mechanics of two-dimensional hard-body fluids.
Karki, Shanker S; Karki, Bimal P; Dey, Tarun K; Sinha, Suresh K
2005-01-01
The problem of calculating the thermodynamic properties of two-dimensional semiclassical hard-body fluids is studied. Explicit expressions are given for the first-order quantum corrections to the free energy, equation of state, and virial coefficients. The numerical results are calculated for the planar hard dumbbell fluid. Significant features are the increase in quantum corrections with increasing eta and increasing L*=L/sigma(0). (c) 2005 American Institute of Physics.
Directory of Open Access Journals (Sweden)
Limei Tian
2015-11-01
Full Text Available Studies have shown that the structure of dolphin skin controls fluid media dynamically. Gaining inspiration from this phenomenon, a kind of bionic structural heterogeneous composite material was designed. The bionic structural heterogeneous composite material is composed of two materials: a rigid metal base layer with bionic structures and an elastic polymer surface layer with the corresponding mirror structures. The fluid control mechanism of the bionic structural heterogeneous composite material was investigated using a fluid–solid interaction method in ANSYS Workbench. The results indicated that the bionic structural heterogeneous composite material’s fluid control mechanism is its elastic deformation, which is caused by the coupling action between the elastic surface material and the bionic structure. This deformation can decrease the velocity gradient of the fluid boundary layer through changing the fluid–solid actual contact surface and reduce the frictional force. The bionic structural heterogeneous composite material can also absorb some energy through elastic deformation and avoid energy loss. The bionic structural heterogeneous composite material was applied to the impeller of a centrifugal pump in a contrast experiment, increasing the pump efficiency by 5% without changing the hydraulic model of the impeller. The development of this bionic structural heterogeneous composite material will be straightforward from an engineering point of view, and it will have valuable practical applications.
On the mechanical interaction between a fluid-filled fracture and the earth's surface
Pollard, D.D.; Holzhausen, G.
1979-01-01
The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2
Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups
Webster, D. R.; Majerich, D. M.; Luo, J.
2014-11-01
A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.
Sheldon, Claire A; Kwon, Young Joon; Liu, Grant T; McCormack, Shana E
2015-02-01
Pseudotumor cerebri syndrome (PTCS) is defined by the presence of elevated intracranial pressure (ICP) in the setting of normal brain parenchyma and cerebrospinal fluid (CSF). Headache, vision changes, and papilledema are common presenting features. Up to 10% of appropriately treated patients may experience permanent visual loss. The mechanism(s) underlying PTCS is unknown. PTCS occurs in association with a variety of conditions, including kidney disease, obesity, and adrenal insufficiency, suggesting endocrine and/or metabolic derangements may occur. Recent studies suggest that fluid and electrolyte balance in renal epithelia is regulated by a complex interaction of metabolic and hormonal factors; these cells share many of the same features as the choroid plexus cells in the central nervous system (CNS) responsible for regulation of CSF dynamics. Thus, we posit that similar factors may influence CSF dynamics in both types of fluid-sensitive tissues. Specifically, we hypothesize that, in patients with PTCS, mitochondrial metabolites (glutamate, succinate) and steroid hormones (cortisol, aldosterone) regulate CSF production and/or absorption. In this integrated mechanism review, we consider the clinical and molecular evidence for each metabolite and hormone in turn. We illustrate how related intracellular signaling cascades may converge in the choroid plexus, drawing on evidence from functionally similar tissues.
Karrech, Ali; Schrank, Christoph; Regenauer-Lieb, Klaus
2015-10-01
Massive fluid injections into the earth's upper crust are commonly used to stimulate permeability in geothermal reservoirs, enhance recovery in oil reservoirs, store carbon dioxide and so forth. Currently used models for reservoir simulation are limited to small perturbations and/or hydraulic aspects that are insufficient to describe the complex thermal-hydraulic-mechanical behaviour of natural geomaterials. Comprehensive approaches, which take into account the non-linear mechanical deformations of rock masses, fluid flow in percolating pore spaces, and changes of temperature due to heat transfer, are necessary to predict the behaviour of deep geo-materials subjected to high pressure and temperature changes. In this paper, we introduce a thermodynamically consistent poromechanics formulation which includes coupled thermal, hydraulic and mechanical processes. Moreover, we propose a numerical integration strategy based on massively parallel computing. The proposed formulations and numerical integration are validated using analytical solutions of simple multi-physics problems. As a representative application, we investigate the massive injection of fluids within deep formation to mimic the conditions of reservoir stimulation. The model showed, for instance, the effects of initial pre-existing stress fields on the orientations of stimulation-induced failures.
Sievers, Hans-Hinrich; Schubert, Kathrin; Jamali, Ashkan; Scharfschwerdt, Michael
2018-03-30
A novel mechanical heart valve was developed with a special focus on avoiding anticoagulation. Computational fluid dynamics were used for the research design. Here, the effect of different anatomical inflow geometries on flow characteristics is evaluated. Flow and pressure simulations were performed on a novel 3-leaflet mechanical heart valve in a fully open position at 2 flow rates related to the peak and end-systolic flow. The computational fluid dynamics model was designed according to 4 different (1 cylindrical, 3 conical with increasing diameter) anatomical configurations of the left ventricular outflow tract derived from an inverse heart model. With increasing inflow diameter, the flow velocity decreased for both flow rates, from 1543 mm/s in cylindrical configuration to 1475 mm/s in conical configuration for a flow rate of 18 l/min. However, there was no further decrease for the inflow diameters 38 and 48 mm. The velocity profile became broader with increasing inflow diameter and the maximal pressure decreased. At the leading edge, velocity almost stagnated, while the pressure increased and the reflection point moved downstream. No occurrence of dead space was observed with the different configurations and flow rates. An analysis of different anatomical inflow configurations by computational fluid dynamic simulations showed a more homogenous velocity profile and lower flow velocity values with increasing inflow diameter up to 38 mm in this novel 3-leaflet mechanical heart valve.
Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube
Leslie, Ian H.
1989-01-01
Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from
International Nuclear Information System (INIS)
Gai Xiaoling; Gao Yitian; Meng Dexin; Wang Lei; Sun Zhiyuan; Feng Qian; Wang Mingzhen; Yu Xin; Zhu Shunhui; Lue Xing
2010-01-01
This paper is to investigate a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model, which describes some situations from fluid mechanics, ocean dynamics, and plasma mechanics. By the Ablowitz-Kaup-Newell-Segur procedure and symbolic computation, the Lax pair of the vc-MKdV model is derived. Then, based on the aforementioned Lax pair, the Darboux transformation is constructed and a new one-soliton-like solution is obtained as well. Features of the one-soliton-like solution are analyzed and graphically discussed to illustrate the influence of the variable coefficients in the solitonlike propagation. (general)
A computational analysis on homogeneous-heterogeneous mechanism in Carreau fluid flow
Khan, Imad; Rehman, Khalil Ur; Malik, M. Y.; Shafquatullah
2018-03-01
In this article magnetohydrodynamic Carreau fluid flow towards stretching cylinder is considered in the presence of homogeneous-heterogeneous reactions effect. The flow model is structured by utilizing theoretical grounds. For the numerical solution a shooting method along with Runge-Kutta algorithm is executed. The outcomes are provided through graphs. It is observed that the Carreau fluid concentration shows decline values via positive iterations of homogeneous-heterogeneous reaction parameters towards both shear thinning and thickening case. The present work is certified through comparison with already existing literature in a limiting sense.
Directory of Open Access Journals (Sweden)
D. Schertzer
1996-01-01
Full Text Available 1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics of Centre National de la Recherche Scientifique (CNRS, (French National Center for Scientific Research. This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica, September, 1993, as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994. In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics
Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P
2015-12-01
Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl · min(-1) and 2.7 × 10(-3) mmHg/µl · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost
Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M
2007-02-01
Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data
Thermostating highly confined fluids.
Bernardi, Stefano; Todd, B D; Searles, Debra J
2010-06-28
In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.
Fluid mechanics of needle valves with rounded components Part III: Pressure distributions on walls
Czech Academy of Sciences Publication Activity Database
Tesař, Václav
2016-01-01
Roč. 248, September (2016), s. 138-147 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * pressure measurements * valves Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303417
Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming
Chen, J.; Friesen, W. O.; Iwasaki, T.
2011-01-01
Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304
Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.
Chen, J; Friesen, W O; Iwasaki, T
2011-02-15
Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body-fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail.
Directory of Open Access Journals (Sweden)
Sheng Wang
2016-12-01
Full Text Available The rheological properties of drilling fluid have important effects during drilling in natural gas hydrate at low temperatures. The present study was performed using theoretical analysis. Experiments and micro-analyses were carried out to determine the rheological properties with temperature response characteristics and the mechanism involved in solid-free polymer drilling fluid (SFPDF at low temperatures when drilling in permafrost with natural gas hydrates (NGH. The curves of shear stress with the shear rates of three kinds of polymer drilling fluids, Semen Lepidii natural vegetable gum, polyacrylamide, and xanthan gum, were drawn. Then, statistical and related analyses of test data were performed using Matlab ver. 8.0. Through regression analysis, the Herschel–Bulkley model was used to characterize the rheological characteristics of SFPDF. On this basis, the laws regarding the rheological properties of the three kinds of SFPDF under changing temperatures were analyzed and rheological properties with temperature response state equations were established. Next, the findings of previous studies on rheological properties with temperature response characteristics of the SFPDF were reviewed. Finally, the rheological properties with temperature response mechanisms were assessed using scanning electron microscopy and infrared spectrum analysis.
Directory of Open Access Journals (Sweden)
Hameed Shihab
2012-06-01
Full Text Available Abstract Background/Aims Infants with diabetes insipidus (DI, especially those with impaired thirst mechanism or hypothalamic hyperphagia, are prone to severe sodium fluctuations, often requiring hospitalization. We aimed to avoid dangerous fluctuations in serum sodium and improve parental independence. Methods A 16-month old girl with central DI, absent thirst mechanism and hyperphagia following surgery for hypothalamic astrocytoma had erratic absorption of oral DDAVP during chemotherapy cycles. She required prolonged hospitalizations for hypernatremia and hyponatremic seizure. Intensive monitoring of fluid balance, weight and clinical assessment of hydration were not helpful in predicting serum sodium. Discharge home was deemed unsafe. Oral DDAVP was switched to subcutaneous (twice-daily injections, starting with 0.01mcg/dose, increasing to 0.024mcg/dose. The parents adjusted daily fluid allocation by sliding-scale, according to the blood sodium level (measured by handheld i-STAT analyser, Abbott. We adjusted the DDAVP dose if fluid allocation differed from maintenance requirements for 3 consecutive days. Results After 2.5 months, sodium was better controlled, with 84% of levels within reference range (135-145 mmol/L vs. only 51% on the old regimen (p = 0.0001. The sodium ranged from 132-154 mmol/L, compared to 120–156 on the old regimen. She was discharged home. Conclusion This practical regimen improved sodium control, parental independence, and allowed discharge home.
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico.
Birkle, Peter; Bundschuh, Jochen; Sracek, Ondra
2010-11-01
The lack of chemical similarity between thermal fluids in geothermal and petroleum reservoirs in Mexico indicates a distinct origin for arsenic in both types of reservoirs. Deep fluids from geothermal reservoirs along the Transmexican Volcanic Belt (TMVB) are characterized by elevated arsenic concentrations, within a range between 1 and 100 mg L(-1) at a depth from 600 to 3000 m b.s.l. Based on hierarchical cluster analysis (HCA), arsenic is linked to typical geothermal species like lithium, silica, and boron. The lack of correlation between arsenic and salinity reflects the importance of secondary water-rock interaction processes. The predominance of arsenic compared to Fe- and Cu-concentrations, and the occurrence of secondary minerals (sulfides and clay minerals) in temperature-dependent hydrothermal zones, supports this hypothesis. Neither magmatic fluids input, nor As mineralization is a prerequisite for As enrichment in Mexican geothermal fluids. In contrast, petroleum reservoir waters from sedimentary basins in SE-Mexico show maximum As concentrations of 2 mg L(-1), at depths from 2900 to 6100 m b.s.l. The linear chloride-arsenic correlation indicates that evaporated seawater represents the major source for aqueous arsenic in oil reservoirs, and only minor arsenic proportions are derived from interaction with carbonate host rock. Speciation modeling suggests the lack of arsenic solubility control in both geothermal and petroleum reservoirs, but precipitation/co-precipitation of As with secondary sulfides could occur in petroleum reservoirs with high iron concentrations. Geothermal fluids from magmatic-type reservoirs (Los Azufres and Los Humeros at the TMVB and Las Tres Vírgenes with a granodioritic basement) show relative constant arsenic concentrations through varying temperature conditions, which indicates that temperatures above 230-250 °C provide optimal and stable conditions for arsenic mobility. In contrast, temperature conditions for sedimentary
Directory of Open Access Journals (Sweden)
Waqar Azeem Khan
Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer
Fluid mechanics of needle valves with rounded components Part I: Configurations and models
Czech Academy of Sciences Publication Activity Database
Tesař, Václav
2017-01-01
Roč. 254, February (2017), s. 101-108 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * valve with rounded inlet * valve Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716310226/1-s2.0-S0924424716310226-main.pdf?_tid=f1570ee0-2f46-11e7-b057-00000aab0f26&acdnat=1493736920_595bfaae6a6922d4213225a968d5d74c
Hu, Hui; Zou, Peng; Liu, Xia-Ji
2018-02-01
We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.
Gor'kov, Lev P.
2012-04-01
We consider a single band of conduction electrons interacting with displacements of the transitional ions. In the classical regime strong enough coupling transforms the harmonic elastic energy for an ion to the one of the well with two deep minima, so that the system is described in terms of Ising spins. Intersite interactions order spins at lower temperatures. Extension to the quantum regime is discussed. Below the charge density wave (CDW) transition the energy spectrum of electrons remains metallic because the structural vector Q and the Fermi surface sizes are not related. Large values of the CDW gap seen in the tunneling experiments correspond to the energy of the minima in the electron-ion two-well complex. The gap is defined through the density of states inside the electronic bands below the CDW transition. We focus mainly on electronic properties of transition-metal dichalcogenides.
Energy Technology Data Exchange (ETDEWEB)
Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India); Department of Physics, College of Engineering, Pune 411005, Maharashtra (India); Tanty, Narendra; Patra, Ananya; Prasad, V. [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India)
2016-08-22
We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.
Directory of Open Access Journals (Sweden)
Panayotounakos D. E.
1996-01-01
Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.
Directory of Open Access Journals (Sweden)
Pezhman Barati
2017-12-01
Full Text Available In this work, shale hydration Inhibition performance of tallow amine ethoxylate as a shale stabilizer in water based drilling fluid, was investigated through these tests: bentonite hydration inhibition test, bentonite sedimentation test, drill cutting recovery test, dynamic linear swelling test, wettability test, isothermal water adsorption test, and zeta potential test. The results showed that bentonite particles are not capable of being hydrated or dispersed in the mediums containing tallow amine ethoxylate; tallow amine ethoxylate had shown a comparable and competitive inhibition performance with potassium chloride as a common shale stabilizer in drilling industry. Some amine functional groups exist in tallow amine ethoxylate structure which are capable of forming hydrogen bonding with surfaces of bentonite particles. This phenomenon decreased the water adsorption on bentonite particles' surfaces which results in reduction of swelling. Tallow amine ethoxylate is also compatible with other common drilling fluid additives. Keywords: Drilling fluids, Dynamic linear swelling, Hydrogen bond, Mechanism, Shale stabilizer, Tallow amine ethoxylate, Wettability, Zeta potential, Amine-based additive
Raudino, Martina; Selvolini, Giulia; Montis, Costanza; Baglioni, Michele; Bonini, Massimo; Berti, Debora; Baglioni, Piero
2015-03-25
Complex fluids based on amphiphilic formulations are emerging, particularly in the field of conservation of works of art, as effective and safe liquid media for the removal of hydrophobic polymeric coatings. The comprehension of the cleaning mechanism is key to designing tailored fluids for this purpose. However, the interaction between nanostructured fluids and hydrophobic polymer films is still poorly understood. In this study, we show how the combination of confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) provides interesting and complementary insight into this process. We focused on the interaction between an ethyl methacrylate/methyl acrylate 70:30 copolymer film deposited onto a glass surface and a water/nonionic surfactant/2-butanone (MEK) ternary system, with MEK being a good solvent and water being a nonsolvent for the polymer. Our results indicate a synergy between the organic solvent and the surfactant assemblies: MEK rapidly swells the outer layers of the polymer film allowing for the subsequent diffusion of solvent molecules, while the amphiphile decreases the interfacial energy between the polymeric coating and the liquid phase, favoring dewetting and dispersion of swollen polymer droplets in the aqueous phase. The chemical nature of the surfactant and the microstructure of the assemblies determine both the kinetics and the overall efficiency of polymer removal, as assessed by comparing the behavior of similar formulations containing an anionic surfactant (sodium dodecyl sulfate, SDS).
Fluid mechanics of needle valves with rounded components. Part II: Preliminary measurements
Czech Academy of Sciences Publication Activity Database
Tesař, Václav
2016-01-01
Roč. 251, November (2016), s. 52-58 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * pressure measurements * valves Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S092442471630440X/1-s2.0-S092442471630440X-main.pdf?_tid=45acccf4-951f-11e6-a831-00000aab0f02&acdnat=1476787402_bf349ff3cfc7a824c1a01397a9a5b8b3
Probing helium interfaces with light scattering: from fluid mechanics to statistical physics.
Wolf, P E; Bonnet, F; Guyon, L; Lambert, T; Perraud, S; Puech, L; Rousset, B; Thibault, P
2009-02-01
We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous glasses during the process of helium condensation. The context, aims, and results of these experiments are reviewed, with focus on the specificity of light scattering by helium. In particular, we discuss how, for different reasons, the closeness to unity of the index of refraction of helium allows in both cases to minimise the problem of multiple scattering and obtain results which it would not be possible to get using other fluids.
Danso, E K; Mäkelä, J T A; Tanska, P; Mononen, M E; Honkanen, J T J; Jurvelin, J S; Töyräs, J; Julkunen, P; Korhonen, R K
2015-06-01
Meniscus adapts to joint loads by depth- and site-specific variations in its composition and structure. However, site-specific mechanical characteristics of intact meniscus under compression are poorly known. In particular, mechanical nonlinearities caused by different meniscal constituents (collagen and fluid) are not known. In the current study, in situ indentation testing was conducted to determine site-specific elastic, viscoelastic and poroelastic properties of intact human menisci. Lateral and medial menisci (n=26) were harvested from the left knee joint of 13 human cadavers. Indentation tests, using stress-relaxation and dynamic (sinusoidal) loading protocols, were conducted for menisci at different sites (anterior, middle, posterior, n=78). Sample- and site-specific axisymmetric finite element models with fibril-reinforced poroelastic properties were fitted to the corresponding stress-relaxation curves to determine the mechanical parameters. Elastic moduli, especially the instantaneous and dynamic moduli, showed site-specific variation only in the medial meniscus (pmeniscus. The phase angle showed no statistically significant variation between the sites (p>0.05). The values for the strain-dependent fibril network modulus (nonlinear behaviour of collagen) were significantly different (pmeniscus only between the middle and posterior sites. For the strain-dependent permeability coefficient, only anterior and middle sites showed a significant difference (pmeniscus. This parameter demonstrated a significant difference (pmeniscus shows more site-dependent variation in the mechanical properties as compared to lateral meniscus. In particular, anterior horn of medial meniscus was the stiffest and showed the most nonlinear mechanical behaviour. The nonlinearity was related to both collagen fibrils and fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics.
Klymko, Katherine; Mandal, Dibyendu; Mandadapu, Kranthi K
2017-11-21
The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles. The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider the balance of internal angular momentum in addition to the usual moment of momentum. In the absence of spin, the moment of momentum is the same as the total angular momentum. In deriving the form of the balance of total angular momentum, we find the microscopic expressions for the couple stress tensor that drives the spin field. We show that the couple stress contains contributions from both intermolecular interactions and the active forces. The presence of spin leads to the idea of balance of moment of inertia due to the constant exchange of particles in a small neighborhood around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the system.
Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics
Klymko, Katherine; Mandal, Dibyendu; Mandadapu, Kranthi K.
2017-11-01
The equations of hydrodynamics including mass, linear momentum, angular momentum, and energy are derived by coarse-graining the microscopic equations of motion for systems consisting of rotary dumbbells driven by internal torques. In deriving the balance of linear momentum, we find that the symmetry of the stress tensor is broken due to the presence of non-zero torques on individual particles. The broken symmetry of the stress tensor induces internal spin in the fluid and leads us to consider the balance of internal angular momentum in addition to the usual moment of momentum. In the absence of spin, the moment of momentum is the same as the total angular momentum. In deriving the form of the balance of total angular momentum, we find the microscopic expressions for the couple stress tensor that drives the spin field. We show that the couple stress contains contributions from both intermolecular interactions and the active forces. The presence of spin leads to the idea of balance of moment of inertia due to the constant exchange of particles in a small neighborhood around a macroscopic point. We derive the associated balance of moment of inertia at the macroscale and identify the moment of inertia flux that induces its transport. Finally, we obtain the balances of total and internal energy of the active fluid and identify the sources of heat and heat fluxes in the system.
Energy Technology Data Exchange (ETDEWEB)
Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)
2017-09-01
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of
Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara
2017-08-01
The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.
DEFF Research Database (Denmark)
Kiørboe, Thomas
2013-01-01
Many animals are predator and prey at the same time. This dual position represents a fundamental dilemma because gathering food often leads to increased exposure to predators. The optimization of the tradeoff between eating and not being eaten depends strongly on the sensing, feeding...
International Nuclear Information System (INIS)
Yang, J.
2014-01-01
Unconformity-related uranium deposits in sedimentary basins represent the most important and profitable deposits among other types of uranium deposits, however their origin is still not fully understood. To better understand their formation, and in particular to address possible reducing mechanisms in the precipitation of uraninite, we develop a highly conceptualized 2-D model that fully couples fluid flow and heat transfer with reactive mass transport. We consider a series of numerical scenarios and examine the effect of graphite zone and Fe-rich silicates as the carbon-based and the inorganic-based reducing agents on the ore genesis. Our numerical results reveal that both the reducing mechanisms can lead to the precipitation of uraninite below the unconformity interface away from the faulted zone. Physiochemical parameters such as oxygen fugacity and temperature play a significant role in localization of the uraninite. Localization of these deposits is in relation to the decrease of oxygen fugacity, generally resulting from the interaction of oxidized uranium-bearing fluids with the reductants. Uraninites precipitate simultaneously with hematite in the areas experiencing reduction of oxygen fugacity and having a temperature of 180-200°C and a pH of 2.5- 4.5. Wide-spread alteration halos in the basement and around the uranium deposit include hematite, Mg-chlorite, and muscovite associated with minor amounts of pyrite and K-feldspar alteration. These results have important geological and exploration implications. (author)
Vidal, Solange; Pérez, Augusto; Eulmesekian, Pablo
2016-08-01
Associations between cumulative fluid balance and a prolonged duration of assisted mechanical ventilation have been described in adults. The aim of this study was to evaluate whether fluid balance in the first 48 hours of assisted mechanical ventilation initiation was associated with a prolonged duration of this process among children in the Pediatric Intensive Care Unit (PICU). Retrospective cohort of patients in the PICU o, Hospital Italiano de Buenos Aires, between 1/1/2010 and 6/30/2012. Balance was calculated in percentage of body weight; prolonged mechanical ventilation was defined as >7 days, and confounders were registered. Univariate and multivariate analyses were performed. Two hundred and forty-nine patients were mechanically ventilated for over 48 hours; 163 were included in the study. Balance during the first 48 hours of mechanical ventilation was 5.7% ± 5.86; 82 patients (50.3%) were on mechanical ventilation for more than 7 days. Age 〈 4 years old (OR 3.21, 95% CI 1.38-7.48, p 0.007), respiratory disease (OR 4.94, 95% CI 1.51-16.10, p 0.008), septic shock (OR 4.66, 95% CI 1.10-19.65, p 0.036), Pediatric Logistic Organ Dysfunction (PELOD) 〉 10 (OR 2.44, 95% CI 1.234.85, p 0.011), and positive balance 〉 13% (OR 4.02, 95% CI 1.08-15.02, p 0.038) were associated with prolonged mechanical ventilation. The multivariate model resulted in an OR 2.58, 95% CI: 1.17-5.58, p= 0.018 for PELOD 〉 10, and an OR 3.7, 95% CI: 0.91-14.94, p= 0.066 for positive balance 〉 13%. Regarding prolonged mechanical ventilation, the multivariate model showed an independent association with organ dysfunction (PELOD 〉 10) and a trend towards an association with positive balance 〉 13%. Sociedad Argentina de Pediatría.
Personal computer (PC) based image processing applied to fluid mechanics research
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.
International Nuclear Information System (INIS)
McEligot, Donald M.; Becker, Stefan; McIlroy, Hugh M. Jr.
2010-01-01
In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.
Khan, Waqar Azeem; Khan, Masood; Irfan, Muhammad; Alshomrani, A. S.
The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM). The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables.
Rančić, Milica
2016-01-01
This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. In particular, it features mathematical methods and models of applied analysis, probability theory, differential equations, tensor analysis and computational modelling used in applications to important problems concerning electromagnetics, antenna technologies, fluid dynamics, material and continuum physics and financial engineering. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The ...
Experimental studies in fluid mechanics and materials science using acoustic levitation
Trinh, E. H.; Robey, J.; Arce, A.; Gaspar, M.
1987-01-01
Ground-based and short-duration low gravity experiments have been carried out with the use of ultrasonic levitators to study the dynamics of freely suspended liquid drops under the influence of predominantly capillary and acoustic radiation forces. Some of the effects of the levitating field on the shape as well as the fluid flow fields within the drop have been determined. The development and refinement of measurement techniques using levitated drops with size on the order of 2 mm in diameter have yielded methods having direct application to experiments in microgravity. In addition, containerless melting, undercooling, and freezing of organic materials as well as low melting metals have provided experimental data and observations on the application of acoustic positioning techniques to materials studies.
Physics of continuous media problems and solutions in electromagnetism, fluid mechanics and MHD
Vekstein, Grigory
2013-01-01
This book presents an excellent and exemplary collection of up-to-date exercises and their solutions on continuous media, covering a wide range of topics from electro-, magnetohydro- and fluid dynamics, and from the theory of elasticity. The author is an international expert with many years of research and teaching experience in the field. Each chapter begins with a comprehensive summary of definitions and the mathematical description of the physical laws necessary to understand and solve the series of problems that follow. The problems and exercises are a gradual built up in each of the topics and they introduce the reader step by step into the principles of the subject. The solutions are well explained and detailed with additional readings when necessary. This exercise book is written in a true scholarly manner that allows the reader to understand the basic principles and physical laws of continuous media. This problem-solving book is highly recommended to graduate and postgraduate students, postdoctoral re...
Quantification of ventilated facade efficiency by using computational fluid mechanics techniques
International Nuclear Information System (INIS)
Mora Perez, M.; Lopez Patino, G.; Bengochea Escribano, M. A.; Lopez Jimenez, P. A.
2011-01-01
In some countries, summer over-heating is a big problem in a buildings energy balance. Ventilated facades are a useful tool when applied to building design, especially in bio climatic building design. A ventilated facade is a complex, multi-layer structural solution that enables dry installation of the covering elements. The objective of this paper is to quantify the efficiency improvement in the building thermal when this sort of facade is installed. These improvements are due to convection produced in the air gap of the facade. This convection depends on the air movement inside the gap and the heat transmission in this motion. These quantities are mathematically modelled by Computational Fluid Dynamics (CFD) techniques using a commercial code: STAR CCM+. The proposed method allows an assessment of the energy potential of the ventilated facade and its capacity for cooling. (Author) 23 refs.
Chang, Chih-Ching; Chen, Shu-Hui; Ho, Shih-Hsin; Yang, Chun-Yuh; Wang, Hong-Da; Tsai, Mei-Ling
2007-12-01
Previous studies have shown that ultrafine carbon black (ufCB) could cause oxidative stress and lung injury, but the mechanisms have not been clearly demonstrated. In this study, 1-D gel electrophoresis coupled with LC/MS/MS (1-D geLC/MS/MS) was carried out with bronchoalveolar lavage fluid (BALF) to identify proteins associated with ufCB-induced lung injury. If required, Western blot was conducted additionally to validate proteins. Thirty-three proteins were identified, including leukemia inhibitory factor receptor (LIFR) and epidermal growth factor receptor (EGFR). Western blot analysis showed that ufCB exposure caused the increases of LIFR and EGFR in BALF and decreases of both receptors in lung tissues, suggesting the acceleration of epithelial shedding from the lung and increase of cell debris with membrane proteins EGFR and LIFR in BALF. There were strong correlations between vascular endothelial growth factor (VEGF) and albumin (p<0.01) or alpha2-macroglobulin (alpha2M) in BALF (p<0.05). Importantly, antioxidant ceruloplasmin (Cp) was shown to be produced from lung epithelial cells in response to ufCB exposure. This is the first study to apply 1-D ge LC/MS/MS and experimental studies to reveal the mechanisms involved in the pathogenesis of ufCB-induced lung injury.
Fluid structure interaction (FSI) simulation of a bileaflet mechanical heart valve (MHV)
Ge, Liang; Bor, Iman; Dasi, Lakshmi; Sotiropoulos, Fotis; Yoganathan, Ajit
2006-11-01
MHVs are widely used as prosthetics for dysfunctional heart valves. All current MHV designs, however, are prone to thrombus formation, which is believed to be strongly associated with the non-physiological hemodynamics patterns and elevated shear stress level induced by the valve; it is, therefore, of enormous practical importance to study the hemodynamics through MHVs. Here we present an FSI solver modeling the physiological MHV hemodynamics. The solver uses a strong coupling scheme for the FSI problem and a recently developed curvilinear grid/immersed boundary method for flow simulation. The FSI solver is applied to model an in-vitro MHV hemodynamics measurement. The experimental pulsatile flow waveform with peak Reynolds number of 4000 is specified at the inlet and the flow is modeled by DNS. The results, including the dynamics of wake vortical structure, shear distribution and leaflet kinematics, are validated against the experimental data.
Computational mechanics research at ONR
International Nuclear Information System (INIS)
Kushner, A.S.
1986-01-01
Computational mechanics is not an identified program at the Office of Naval Research (ONR), but rather plays a key role in the Solid Mechanics, Fluid Mechanics, Energy Conversion, and Materials Science programs. The basic philosophy of the Mechanics Division at ONR is to support fundamental research which expands the basis for understanding, predicting, and controlling the behavior of solid and fluid materials and systems at the physical and geometric scales appropriate to the phenomena of interest. It is shown in this paper that a strong commonalty of computational mechanics drivers exists for the forefront research areas in both solid and fluid mechanics
Simulations of Magnetic Reconnection - Kinetic Mechanisms Underlying the Fluid Description of Ions
Aunai, icolas; Belmont, Gerard; Smets, Roch
2012-01-01
Because of its ability to transfer the energy stored in magnetic field together with the breaking of the flux freezing constraint, magnetic reconnection is considered as one of the most important phenomena in plasma physics. When it happens in a collision less environment such as the terrestrial magnetosphere, it should a priori be modelled with in the framework of kinetic physics. The evidence of kinetic features has incidentally for a long time, been shown by researchers with the help of both numerical simulations and satellite observations. However, most of our understanding of the process comes from the more intuitive fluid interpretation with simple closure hypothesis which do not include kinetic effects. To what extent are these two separate descriptions of the same phenomenon related? What is the role of kinetic effects in the averaged/fluid dynamics of reconnection? This thesis addresses these questions for the proton population in the particular case of anti parallel merging with the help of 2D Hybrid simulations. We show that one can not assume, as is usually done, that the acceleration of the proton flow is only due to the Laplace force. Our results show, for symmetric and asymmetric connection, the importance of the pressure force, opposed to the electric one on the separatrices, in the decoupling region. In the symmetric case, we emphasize the kinetic origin of this force by analyzing the proton distribution functions and explain their structure by studying the underlying particle dynamics. Protons, as individual particles, are shown to bounce in the electric potential well created by the Hall effect. The spatial divergence of this well results in a mixing in phase space responsible for the observed structure of the pressure tensor. A detailed energy budget analysis confirms the role of the pressure force for the acceleration; but, contrary to what is sometimes assumed, it also reveals that the major part of the incoming Poynting flux is transferred to
Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course
Borrero-Echeverry, Daniel
2017-11-01
We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.
Topological fluid mechanics of the formation of the Kármán-vortex street
DEFF Research Database (Denmark)
Heil, Matthias; Rosso, Jordan; Hazel, Andrew L.
2017-01-01
consider to be feature points for vortices. The basic vortex creation mechanism is shown to be a topological cusp bifurcation in the vorticity field, where a saddle and an extremum of the vorticity are created simultaneously. We demonstrate that vortices are first created approximately 100 diameters...
Delvigne, Frank; Takors, Ralf; Mudde, Rob; van Gulik, Walter; Noorman, Henk
2017-09-01
Efficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions. The need for robust microbial systems is thus highly needed in this context, as well as a better understanding of the interactions between fluid mechanics and cell physiology. For that purpose, a full scale-up/down computational framework is already available. This framework links computational fluid dynamics (CFD), metabolic flux analysis and agent-based modelling (ABM) for a better understanding of the cell lifelines in a heterogeneous environment. Ultimately, this framework can be used for the design of scale-down simulators and/or metabolically engineered cells able to cope with environmental fluctuations typically found in large-scale bioreactors. However, this framework still needs some refinements, such as a better integration of gas-liquid flows in CFD, and taking into account intrinsic biological noise in ABM. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Bessler, Y.; Henkes, C.; Hanusch, F.; Schumacher, P.; Natour, G.; Butzek, M.; Klaus, M.; Lyngh, D.; Kickulies, M.
2017-02-01
The European Spallation Source (ESS) is currently in the construction phase and should have first beam on Target in 2019. ESS, located in Sweden, will be the most powerful spallation neutron source worldwide, with the goal to produce neutrons for research. As an in-kind partner the Forschungszentrum Juelich will among others, design and manufacture the four liquid hydrogen Moderators, which are located above and below the Target. Those vessels are confining the cold hydrogen used to reduce the energy level of the fast neutrons, produced by spallation in the Target, in order to make the neutrons usable for neutron scattering instruments. Due to the requirements [1], a fluid dynamic analysis with pressure and temperature depended hydrogen data, taking into account the pseudo critical phenomena and the pulsed neutronic heating (pressure waves) is necessary. With the fluid dynamic results, a structure mechanical analysis including radiation damage investigation (RCC-MRx code [5]), low temperature properties as well as strength reduction by welding can be realized. Finally, the manufacturing and welding completes the design process.
Apiwan, Suttinee; Puttharugsa, Chokchai; Khemmani, Supitch
2018-01-01
The purposes of this research were to help students to perform Physics laboratory by themselves and to provide guidelines for high school teacher to develop active learning on fluid mechanics by using Torricelli's tank experiment. The research was conducted as follows: 1) constructed an appropriate Torricelli's tank experiment for high school teaching and investigated the condition for maximum water falling distance. As a consequence, it was found that the distance of the falling water measured from the experiment was shorter than that obtained from the theory of ideal fluid because of the energy loss during a flow, 2) developed instructional manual for high school teaching that encourages active learning by using problem based learning (PBL) approach, which is consistent with the trend of teaching and learning in 21st century. The content validity of our instructional manual using Index of Item-objective Congruence (IOC) as evaluated by three experts was over 0.67. The manual developed was therefore qualified for classroom practice.
Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng
2017-07-01
Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.
Tamrin, K. F.; Rahmatullah, B.; Samuri, S. M.
Holographic particle image velocimetry is a promising technique to probe and characterize complex flow dynamics since it is a truly three-dimensional (3D) three-component measurement technique. The technique simply records the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow and uses it to reconstruct the event afterward. Reconstruction of the event is usually performed using a digital video microscope mounted on a 3D translation stage. The microscope records the intensity only which consequently results in loss of phase information. The objective of this paper is to develop and apply digital holographic microscopy with the aim to recover the phase information. Digital holographic microscopy has immense potentials in microscale solid and fluid measurements as it offers the possibility of digital wavefront processing by manipulating amplitude and phase of the recorded holograms. In this paper, we have developed an off-axis digital holographic microscope to capture both amplitude and phase of the reconstructed object simultaneously. This inherently solves twin image problem in the recorded digital holograms. The microscope was integrated into the reconstruction system and was successfully used to digitize holographic images of 10 μm polystyrene spheres and 1 μm olive oil droplets. The spatial resolution of the system is 0.63 μm, and the field of view is 1250 × 625 μm2. A 3D holographic reconstruction using a k-space analysis (wave-vector) of the optical field is applied to numerically refocus the images. Another potential application includes digital wavefront processing to compensate for aberration in the images.
Ge, Liang; Borazjani, Iman; Dasi, Lakshmi; Sotiropoulos, Fotis; Yoganathan, Ajit
2007-11-01
FSI simulation of a medical quality BMHV implanted in the aortic position is studied. The valve is implanted in an anatomic non-compliant aorta geometry, which is reconstructed from MRI data acquired from a healthy volunteer. A physiological incoming flow waveform is specified at the inlet with the peak systolic Reynolds number equal to 6000. The flow solver is based on the CURVIB (curvilinear immersed boundary method) of Ge and Sotiropoulos, 2007 (JCP) and the FSI problem is solved with strong coupling partitioned approach. Direct numerical simulation is carried out on a grid system consisting of 10M grid nodes. The impact on hemodynamics by valve implantation is studied by considering different valve implantation angles. The calculated numerical results are analyzed in terms of leaflet kinematics and flow physics, and compared with data from our previous work, where the same valve is implanted in a simplified straight aorta geometry.
DEFF Research Database (Denmark)
Liddelow, S A; Dziegielewska, K M; Møllgård, K
2011-01-01
Specialized populations of choroid plexus epithelial cells have previously been shown to be responsible for the transfer of individual plasma proteins from blood to the cerebrospinal fluid (CSF), contributing to their characteristically high concentrations in CSF of the developing brain....... The mechanism of this protein transfer remains elusive. Using a marsupial, Monodelphis domestica, we demonstrate that the albumin-binding protein SPARC (osteonectin/BM-40/culture-shock protein) is present in a subset of choroid plexus epithelial cells from its first appearance, throughout development...... that SPARC may be one of the molecules that govern the uptake and delivery of proteins from blood to the CSF. The results also confirm that protein transfer across the blood-CSF barrier is developmentally and physiologically regulated....
Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming
2014-01-01
Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.
The physics of hearing: fluid mechanics and the active process of the inner ear.
Reichenbach, Tobias; Hudspeth, A J
2014-07-01
Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the
The physics of hearing: fluid mechanics and the active process of the inner ear
International Nuclear Information System (INIS)
Reichenbach, Tobias; Hudspeth, A J
2014-01-01
Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise
Li, Juan; Suo, Jinping; Zou, Peng; Jia, Lintao; Wang, Shifang
2010-01-01
The data for long-term drug-delivery systems are scarce compared to the short-term systems because the required research efforts are more time-consuming. In this study, we report a novel cross-linked composite based on poly(vinyl alcohol) (PVA) containing cupric ions for long-term delivery, which is helpful for contraception and trace element balance in the human body. The composition, corrosion products, crystal structure, chemical structure and mechanical stability of the composite, after being immersed in simulated body fluid (SBF) for one year, were studied by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and mechanical testing. The results show that no other new elements, such as P, Cl and Ca, appear on the surface of the composite and no Cu(2)O was formed after immersion in SBF for one year. The effectiveness of copper can be greatly improved and the side-effects caused by these compounds might also be eliminated. Furthermore, this novel composite exhibits long-term mechanical stability in SBF. The present in vitro long-term data suggest that this novel copper-containing composite may serve as a substitute for conventional materials of copper-containing intrauterine devices (Cu-IUDs) and as a carrier for controlled-release material in a variety of other applications.
Zhang, Yuan; Li, Jianxing; Li, Jingyuan
2018-04-01
Magnesium and its alloys have unique advantages to act as resorbable bone fixation materials, due to their moderate mechanical properties and biocompatibility, which are similar to those of human tissue. However, early resorption and insufficient mechanical strength are the main problems that hinder their application. Herein, the effects of microstructure transformation on the mechanical properties and corrosion performance of Mg-Zn-Mn-Ca were investigated with electrochemical and immersion measurements at 37 °C in a simulated body fluid (SBF). The results showed that the number density of Ca 2 Mg 6 Zn 3 /Mg 2 Ca precipitates was remarkably reduced and grain sizes were gradually increased as the temperature increased. The alloy that received the 420 °C/24 h treatment demonstrated the best mechanical properties and lowest corrosion rate (5.94 mm/a) as well as presented a compact and denser film than the others. The improvement in mechanical properties could be explained by the eutectic compounds and phases (Mg 2 Ca/Ca 2 Mg 6 Zn 3 ) gradually dissolving into a matrix, which caused severely lattice distortion and facilitated structural re-arrangement of the increased Ca solute. Moreover, the difference in potential between the precipitates and the matrix is the main essence for micro-galvanic corrosion formation as well as accelerated the dissolution activity and current exchange density at the Mg/electrolyte interface. As a result, the best Mg alloys corrosion resistance must be matched with a moderate grain size and phase volume fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms
Taylor, Brian Kyle
The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of
Geo-mechanical consequences of large scale fluid storage in the Utsira formation in the North Sea
Wangen, Magnus; Gasda, Sarah; Bjørnarå, Tore
2016-04-01
The Utsira formation in the North Sea is a more than 400 km long formation of Pliocene sand with a thickness in the range from 50m to 350m. The porosity of the Utsira formation is estimated to 35% and the permeability is of the order Darcy (1e-12 m2). This formation is being considered as a possible site for large scale CO2 storage, because of its large storage capacity and good permeability. In this work we look at the geo-mechanical implications of injecting "large'' volumes of fluid in the Utsira formation. Our modelling is based on Biot's poro-elasticity in combination with one-phase and two phase flow. We compare the pressure build-up from injection of brine with the pressure build-up from from injection of supercritical CO2. Well placement and near well modelling is not a part of the modelling. We study four different injection scenarios over 25 years, which have injection rates: 1 Mt/year, 10 Mt/year, 100 Mt/year and 1000 Mt/year. We observe that the pressure plume scales with the injection rate, which is the same behaviour as with Theis solution for pressure build-up. A particular concern is the mechanical properties of the Utsira sand and the cap rock. The cap rock is a Quaternary shale with a Young's modulus measured to 0.25 GPa and a Poisson ratio 0.25. A Young's modulus for the Utsira sand, which can be used to model expansion of the formation, is not measured. It is reasonable to assume that the loose sand has a low Young's modulus. We have tested low values of the Young's modulus for the sand and we get considerable mechanical expansion of the Utsira formation, even in the case of low pressure build-up from the fluid injection. Almost all the surface (seabed) uplift is linked to mechanical expansion of the sand. The strain of the Utsira formation and related surface uplift can be estimated with simple 1D models. Vertical 1D models apply because of the large lateral extent of the pressure plume compared to the thickness of the formation. The limits of
A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants
Gaume, Laurence; Forterre, Yoel
2008-07-01
We study the rheology of the digestive fluid secreted by the carnivorous pitcher plants Nepenthes rafflesiana and its role in the mechanism of insects trapping. Using a combination of physical measurements (surface tension, wetting properties, extensional and shear rheometry), insects bioessays and high-speed video, we show that the digestive fluid of Nepenthes rafflesiana is a highly viscoelastic fluid and that this property is crucial for the retention of insect in its trap. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements (large Deborah numbers).
Rheology and fluid mechanics of a hyper-concentrated biomass suspension
Botto, Lorenzo; Xu, Xiao
2013-11-01
The production of bioethanol from biomass material originating from energy crops requires mixing of highly concentrated suspensions, which are composed of millimetre-sized lignocellulosic fibers. In these applications, the solid concentration is typically extremely high. Owing to the large particle porosity, for a solid mass concentration slightly larger than 10%, the dispersed solid phase can fill the available space almost completely. To extract input parameters for simulations, we have carried out rheological measurements of a lignocellulosic suspension of Miscanthus, a fast-growing plant, for particle concentrations close to maximum random packing. We find that in this regime the rheometric curves exhibit features similar to those observed in model ``gravitational suspensions,'' including viscoplastic behaviour, strong shear-banding, non-continuum effects, and a marked influence of the particle weight. In the talk, these aspects will be examined in some detail, and differences between Miscanthus and corn stover, currently the most industrially relevant biomass substrate, briefly discussed. We will also comment on values of the Reynolds and Oldroyd numbers found in biofuel applications, and the flow patterns expected for these parameter values.
Energy Technology Data Exchange (ETDEWEB)
Ruprecht, A.; Bauer, C.; Chihab, W.; Gentner, C.; Ginter, F.; Maihoefer, M.; Welzel, B.
1994-12-31
Numerical fluid mechanics as a method for the dimensioning and optimization of components of hydraulic turbo-engines is coming into prominence. In hydraulic systems, flows are almost exclusively turbulent with very high Reynolds` numbers. This is why Reynolds`-averaged Navier-Stokes equations are solved. Direct numerical solutions or coarse structure simulations are not possible as yet. In order to describe the turbulence, a turbulence model needs to be used. An optimum compromise between accuracy, general validity and computation effort for complex three-dimensional flows exists in the form of the k-{epsilon} model. To be sure, this model has some weak points (for instance, in the case of a strong streamline curvature), but on the whole it does provide satisfactory results. (orig./AKF) [Deutsch] Der Einsatz der numerischen Stroemungsmechanik zur Auslegung und Optimierung von Bauteilen hydraulischer Stroemungsmaschinen gewinnt stark an Bedeutung. In hydraulischen Anlagen liegen fast ausschliesslich turbulente Stroemungen bei sehr hohen Reynoldszahlen vor. Deshalb werden die Reynolds-gemittelte Navier-Stokesbleichungen geloest. Direkte numerische Loesungen oder Grobstruktursimulationen sind heute noch nicht moeglich. Zur Beschreibung der Turbulenz muss ein Turbulenzmodell verwendet werden. Einen optimalen Kompromiss zwischen Genauigkeit, Allgemeingueltigkeit und Rechenaufwand bei komplexen dreidimensionalen Stroemungen stellt das k-{epsilon} Modell dar. Zwar besitzt dieses Modell einige Schwachpunkte (z.B. bei starker Stromlinienkruemmung) es liefert aber i.a. doch befriedigende Ergebnisse. (orig./AKF)
Saldi, Giuseppe D.; Voltolini, Marco; Knauss, Kevin G.
2017-06-01
Recent studies of carbonate surface reactivity have underscored the fundamental variability of dissolution rates and the heterogeneous distribution of the reaction over the mineral surface due to the inhomogeneous distribution of surface energy. Dolomite dissolution rates relative to different cleavage planes (r-planes) and surfaces cut approximately perpendicular to the c-axis (c-planes) were studied at 50 °C as a function of pH (3.4 ≤ pH ≤ 9.0) and solution composition by vertical scanning interferometry (VSI) and atomic force microscopy (AFM), with the aim of providing an estimate of the intrinsic rate variation of dolomite single crystals and describing the surface reaction distribution and the rate controlling mechanisms. Surface normal retreat rates measured under acidic conditions increased linearly with time and were not visibly affected by the parallel increase of surface roughness. Mean total dissolution rates of r-planes decreased by over 200 times from pH 3.4 to pH 9.0 and CO32--rich solutions, whereas corresponding rate variations spanned over 3 orders of magnitude when also c-plane rate distributions were included in the analysis. At acid to near neutral pH, c-planes dissolved ∼ three times faster than the adjoining r-planes but slower at basic pH and high total carbon concentration, displaying a distinctive morphologic evolution in these two regimes. The comparison of polished and unpolished crystals showed that polished cleavage planes dissolved about three times faster than the unpolished counterpart at near neutral to basic conditions, whereas no significant difference in reactivity was observed at pH < 5. Although experimental data and observations indicate a tendency of dolomite faces to reach a low-energy topography over the course of the reaction, the evolution of the entire crystal morphology depends also on the reactivity of edge and corner regions, whose contribution to measured rates is not generally taken into account by laboratory
Hubert, Antoine; Dadonau, Maksim; Dembele, Siaka; Denissenko, Petr; Wen, Jennifer
2017-11-01
Growing demand for the LNG fosters growth of the number of production sites with varying composition and density. Combining different sources of LNG may result in a stably stratified system, in which heat and mass transfer between the layers is limited. Heating of the LNG due to wall thermal conductivity leads to formation of convection cells confined within the layers. While the upper layer can release the extra energy via preferential methane boil-off, the bottom layer cannot and hence becomes superheated. Gradual density equilibration reduces stratification and may eventually lead to a sudden mixing event called ``rollover'', accompanied by violent evaporation of the superheated LNG. Three phenomena are potentially responsible for density equilibration. The first is the growing difference in thermal expansion of the layers due to the reduced ability of the bottom layer to reject heat. The second is the penetration of the heated near-wall boundary layer into the upper layer. The third is the ``entrainment mixing'' occurring at the contact surface between the two layers. The present study uses CFD to compare these mechanisms. Boussinesq approximation and an extended version of the k- ɛ model is used. The code is validated by comparison with a large-scale LNG rollover experiment.
Physical mechanisms of gas and perfluoron retinopexy and sub-retinal fluid displacement
International Nuclear Information System (INIS)
Foster, William J; Chou, Tom
2004-01-01
Injection of gas into the eye, followed by face-down positioning, is a common protocol for the reseating of the retina in posterior and superior retinal tears and breaks. The physical mechanism by which injected gas helps reattach retinal flaps is often ascribed to the 'buoyancy' force of the injected gas bubble. The various forces at play in this system (surface tension and buoyancy) were calculated and compared. The results are extended to the case in which the retina is intact (pneumatic displacement of blood) and to the use of intraocular perfluoron (n-perfluorooctane). We show that buoyancy forces are applicable only for gas or n-perfluorooctane bubbles that are smaller than the detached retina and that do not invade underneath the retina. For larger bubbles, as is normally used in reattachment protocols, we show that it is the interfacial tension that reattaches the retina. The range of angles within which patients can position, and still maintain a gas-vitreous interface along a tear is calculated as a function of the volume of injected gas and size of the tear. The maximum retinal flap size that can be reattached using surface tension forces is also estimated
Dunn, D L; Barke, R A; Ahrenholz, D H; Humphrey, E W; Simmons, R L
1984-01-01
At laparotomy, many surgeons routinely instill crystalloid solutions into the peritoneal cavity, presumably to dilute out necrotic debris, bacteria, and adjuvant substances which foster bacterial growth. We examined the effect on mortality, bacterial growth, clearance, and phagocytosis of various volumes of saline instilled into the peritoneal cavity of rats during Escherichia coli peritonitis. Minimal intraperitoneal bacterial growth was seen after the introduction of a nonlethal inoculum of viable E. coli in 1 ml of saline, while administration of an identical inoculum in 30 ml of saline intraperitoneally (i.p.) led to increased 48-hour mortality (p less than 0.01), and associated rapid bacterial proliferation (p less than 0.01). Clearance of nonviable radiolabelled E. coli from the peritoneal cavity was delayed, bacterial association with host peritoneal leukocytes was decreased, and blood uptake of radiolabelled bacteria was diminished in animals receiving 30 ml of saline i.p., compared to controls which received the identical inoculum in 1 ml of saline i.p. The clinical relevance of these studies is manifold: (1) they provide a possible explanation why patients with ascites due to cirrhosis or the nephrotic syndrome, or those patients undergoing peritoneal dialysis are more susceptible to primary and secondary bacterial peritonitis, possibly on the basis of impaired peritoneal clearance or diminished phagocytosis and, (2) although irrigation of the peritoneal cavity with crystalloid solution would seem prudent during laparotomy, these solutions must be removed prior to closure to prevent interference with normal peritoneal host defense mechanisms.
Directory of Open Access Journals (Sweden)
Ying Li
2014-10-01
Full Text Available The rapid degradation of magnesium (Mg based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention, and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation (MAO with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid (SBF were studied systematically. Scanning electron microscope (SEM and X-ray diffractometer (XRD were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH2 and the calcium phosphate (Ca–P minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.
International Nuclear Information System (INIS)
Le Guen, Y.
2006-10-01
CO 2 injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO 2 . Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10 -12 s -1 on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO 2 -rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO 2 which increases rock solubility and reaction kinetics. On the opposite, small effect of CO 2 on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)
Directory of Open Access Journals (Sweden)
Kempka Thomas
2015-04-01
Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.
Renú, Arturo; Laredo, Carlos; Lopez-Rueda, Antonio; Llull, Laura; Tudela, Raúl; San-Roman, Luis; Urra, Xabier; Blasco, Jordi; Macho, Juan; Oleaga, Laura; Chamorro, Angel; Amaro, Sergio
2017-03-01
Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood-cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy. A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90. A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume. These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted. © 2017 American Heart Association, Inc.
International Nuclear Information System (INIS)
Ishii, Takemasa; Marui, Atsunao; Takahashi, Manabu; Tsukamoto, Hitoshi
1999-01-01
Aim of this study are to elucidate transfer and diffusion mechanism of fluid under an environment of deep geological environment by each two geological media such as fractured and porous media, to establish a precise evaluation method on hydrogeological features, to develop a new researching method on transfer and diffusion mechanism of fluid at field, and to conduct model construction and effect evaluation of fluid at deep underground based on measuring values. As a result, on cracking medium, it was found that a value relating to storage rate could be evaluated simultaneously, that both water permeability coefficient and storage rate decreased as sealing pressure of specimen increased, and that change of hydrologic features in specimen could be evaluated more accurately. And, on porous medium, it was conducted to compare mutually two water permeability coefficients obtained by using three kinds of sedimentation rock with different interstitial ratio and two testing methods of transient pulse method and changing water level method. (G.K.)
Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng
2016-08-26
The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.
Kim, K.; Rutqvist, J.; Birkholzer, J. T.
2016-12-01
Fluid-driven fractures are critically important in a number of geoengineering application, such as to increase the permeability of an oil/gas reservoir and stimulate the productivity. On the contrary, near the underground storage sites for radioactive wastes or carbon dioxide, the propagation of fractures induced by pressurized gas should be avoided to detain the pollutants. Numerous numerical models have been developed to reproduce the physical phenomena of the fluid-driven fractures and have better understanding of the fracturing mechanism. However, it is still challenging to explicitly model the fluid-driven fracture propagation because it involves tightly coupled hydro-mechanical behavior with a singularity at the crack tip and complex interactions with pre-existing discontinuities in heterogeneous rock masses. This study investigates hydraulic fracture propagation and formation of discrete fracture networks using a coupled hydro-mechanical simulation code, TOUGH-RBSN. The modeling tool combines a multiphase fluid flow and heat transport simulator, TOUGH2, with a geomechanical and fracture-damage model, called the rigid-body-spring network (RBSN). Fractures are modeled as discrete features, and hydrological properties (e.g., permeability, porosity) of fracture elements are evaluated by fracture opening and aperture changes calculated at time steps of the simulations. Modeling capabilities for hydraulic fracturing processes are presented through simulations of a virtual fractured reservoir consisting of multiple pre-existing natural fractures. Case studies are conducted by changing the reservoir configurations, such as confining stress condition (e.g., degree of stress anisotropy), the matrix permeability, and the viscosity of injected fluid. In the preliminary results, the stress field and the fluid pressure distribution are provided to demonstrate modeling of complex hydro-mechanical interactions between propagating fractures and pre-existing fractures. The
Chen, Yuting; Yang, Taiqun; Pan, Haifeng; Yuan, Yufeng; Chen, Li; Liu, Mengwei; Zhang, Kun; Zhang, Sanjun; Wu, Peng; Xu, Jianhua
2014-02-05
Using carboxylate-protected silver nanoclusters (Ag-carboxylate NCs) as a model, we separately investigated the contribution of the ligand shell and the metal core to understand the nature of photoluminescence of Ag NCs. A new Ag(0)NCs@Ag(I)-carboxylate complex core-shell structural model has been proposed. The emission from the Ag-carboxylate NCs could be attributed to ligand-to-metal-metal charge transfer from Ag(I)-carboxylate complexes (the oxygen atom in the carboxylate ligands to the Ag(I) ions) to the Ag atoms and subsequent radiative relaxation. Additionally, we found that the emission wavelength of the Ag NCs depends on the excitation wavelength implying a strong coupling between surface plasmon and emitter in Ag NCs. The strong coupling between the surface plasmon and the emitter determines the quantum yield and lifetime. The emission mechanism of Ag NCs and its relation to the organic templates and metal cores were clearly clarified. The results should stimulate additional experimental and theoretical research on the molecular-level design of luminescent metal probes for optoelectronics and other applications.
Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L
2015-06-25
Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Harrison, David J.; Saito, Laurel; Markee, Nancy; Herzog, Serge
2017-01-01
To examine the impact of a hybrid-flipped model utilising active learning techniques, the researchers inverted one section of an undergraduate fluid mechanics course, reduced seat time, and engaged in active learning sessions in the classroom. We compared this model to the traditional section on four performance measures. We employed a propensity…
Kasagi, Nobuhide
2000-01-01
The Nusselt Reynolds Prize has been established by the Assembly of World Conferences to commemorate outstanding contributions by Wilhelm Nusselt and Osborne Reynolds as experimentalists, researchers, educators, and authors. As many as three prizes may be bestowed at every World Conference, one in each of the areas of heat transfer, fluid mechanics, thermodynamics, or any combination of these.
Eijkel, Jan C.T.
2014-01-01
The authors of the paper “Nanoscale Fluid Mechanics and Energy Conversion” have presented an overview of recent applications of nanofluidic phenomena for energy conversion and storage. The discussion given here aims to place this paper in a broader context of literature and theory.
Energy Technology Data Exchange (ETDEWEB)
Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)
1996-12-31
Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.
Dohno, Chikara; Makishi, Shingo; Nakatani, Kazuhiko; Contera, Sonia
2017-03-02
Future lipid membrane-associated DNA nanostructures are expected to find applications ranging from synthetic biology to nanomedicine. Here we have designed and synthesized DNA tiles and modified them with amphiphilic covalent moieties. dod-DEG groups, which consist of a hydrophilic diethylene glycol (DEG) and a hydrophobic dodecyl group, are introduced at the phosphate backbone to create amphiphilic DNA strands which are subsequently introduced into one face of the DNA tiles. In this way the tile becomes able to stably bind to lipid membranes by insertion of the hydrophobic groups inside the bilayer core. The functionalized tiles do not aggregate in solution. Our results show that these amphiphilic DNA tiles can bind and assemble into 2D lattices on both gel and fluid lipid bilayers. The binding of the DNA structures to membranes is dependent on the lipid phase of the membrane, the concentration of Mg 2+ cations, the length of the amphiphilic modifications to the DNA as well as on the density of the modifications within the tile. Atomic force microscopy-based force spectroscopy is used to investigate the effect of the inserted DNA tiles on the mechanical properties of the lipid membranes. The results indicate that the insertion of DNA tiles produces an approx. 20% increase of the bilayer breakthrough force.
Annerel, Sebastiaan; Degroote, Joris; Claessens, Tom; Vierendeels, Jan
2010-06-01
We present a newly developed Fluid-Structure Interaction coupling algorithm to simulate Bileaflet Mechanical Heart Valves dynamics in a partitioned way. The coupling iterations between the flow solver and the leaflet motion solver are accelerated by using the Jacobian with the derivatives of the pressure and viscous moments acting on the leaflets with respect to the leaflet acceleration. This Jacobian is used in the leaflet motion solver when new positions of the leaflets are computed during the coupling iterations. The Jacobian is numerically derived from the flow solver by applying leaflet perturbations. Instead of calculating this Jacobian every time step, the Jacobian is extrapolated from previous time steps and a recalculation of the Jacobian is only done when needed. The efficiency of our new algorithm is subsequently compared to existing algorithms which use fixed relaxation and dynamic Aitken Δ2 relaxation in the coupling iterations when the new positions of the leaflets are computed. Results show that dynamic Aitken Δ2 relaxation outperforms fixed relaxation. Moreover, during the opening phase of the valve, our new algorithm needs fewer subiterations per time step to achieve convergence than the method with Aitken Δ2 relaxation. Thus, our newly developed FSI coupling scheme outperforms the existing coupling schemes.
Directory of Open Access Journals (Sweden)
Zhigang Xu
2016-12-01
Full Text Available Fe–Mn-based degradable biomaterials (DBMs are promising candidates for temporary implants such as cardiovascular stents and bone fixation devices. Identifying their mechanical properties and biocompatibility is essential to determine the feasibility of Fe–Mn-based alloys as DBMs. This study presents the tensile properties of two powder metallurgical processed Fe–Mn-based alloys (Fe–28Mn and Fe–28Mn-3Si, in mass percent as a function of immersion time in simulated body fluid (SBF. In addition, short-term cytotoxicity testing was performed to evaluate the in vitro biocompatibility of the sintered Fe–Mn-based alloys. The results reveal that an increase in immersion duration deteriorated the tensile properties of both the binary and ternary alloys. The tensile properties of the immersed alloys were severely degraded after being soaked in SBF for ≥45 days. The ion concentration in SBF released from the Fe–28Mn-3Si samples was higher than their Fe–28Mn counterparts after 7 days immersion. The preliminary cytotoxicity testing based on the immersed SBF medium after 7 days immersion suggested that both the Fe–28Mn-3Si and Fe–28Mn alloys presented a good biocompatibility in Murine fibroblast cells.
International Nuclear Information System (INIS)
Roy, Amlan K.; Chu, Shih-I
2002-01-01
We explore the feasibility of extending the quantum-fluid dynamics (QFD) approach for quantitative investigation of nonlinear optical processes of many-electron quantum systems in intense laser fields. Through the amalgamation of the QFD and density-functional theory (DFT), a single time-dependent hydrodynamical equation of motion can be derived. This equation has the form of a generalized nonlinear Schroedinger equation (GNLSE) but includes the many-body effects through a local time-dependent exchange-correlation potential. The time-dependent generalized pseudospectral method is extended to the solution of the GNLSE in spherical coordinates, allowing nonuniform spatial discretization and efficient, accurate solution of the hydrodynamical density and wave function in space and time. The procedure is applied to the study of multiphoton ionization (MPI) and high-order harmonic generation (HHG) of He and Ne atoms in intense laser fields. Excellent agreement with other recent self-interaction-free time-dependent DFT calculations is obtained for He, while for Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used in the study with an aim to explore the roles of exchange and correlation on MPI/HHG processes in details. The method offers a conceptually appealing and computationally practical approach for nonperturbative treatment of strong-field processes of many-electron systems beyond the time-dependent Hartree-Fock level
Roy, Amlan K.; Chu, Shih-I.
2002-04-01
We explore the feasibility of extending the quantum-fluid dynamics (QFD) approach for quantitative investigation of nonlinear optical processes of many-electron quantum systems in intense laser fields. Through the amalgamation of the QFD and density-functional theory (DFT), a single time-dependent hydrodynamical equation of motion can be derived. This equation has the form of a generalized nonlinear Schrödinger equation (GNLSE) but includes the many-body effects through a local time-dependent exchange-correlation potential. The time-dependent generalized pseudospectral method is extended to the solution of the GNLSE in spherical coordinates, allowing nonuniform spatial discretization and efficient, accurate solution of the hydrodynamical density and wave function in space and time. The procedure is applied to the study of multiphoton ionization (MPI) and high-order harmonic generation (HHG) of He and Ne atoms in intense laser fields. Excellent agreement with other recent self-interaction-free time-dependent DFT calculations is obtained for He, while for Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used in the study with an aim to explore the roles of exchange and correlation on MPI/HHG processes in details. The method offers a conceptually appealing and computationally practical approach for nonperturbative treatment of strong-field processes of many-electron systems beyond the time-dependent Hartree-Fock level.
Directory of Open Access Journals (Sweden)
Irwan Iskandar
2018-03-01
Full Text Available The Tampomas Volcano is a Quaternary volcano located on Java Island and controlled by a west-northwest–east-southeast (WNW-ESE regional fault trend. This regional structure acts as conduits for the hydrothermal fluids to ascend from a deeper system toward the surface and, in the end, mix with groundwater. In this research, water geochemistry, gas chemistry and isotopes 2H, 18O and 13C were used to explore the subsurface fluid characteristics and mixing mechanisms of the hydrothermal fluids with groundwater. In addition to those geochemical methods, soil-gas and dissolved 222Rn observations were performed to understand the geological control of fluid chemistry. Based on the analytical results, the hydrothermal system of Tampomas is only developed at the northeastern flank of the volcano, which is mainly controlled by NE-SW structures as deep fluid conduits, while the Cimalaka Caldera Rim around Sekarwangi act as the boundary flow of the system. This system is also categorized as an “intermediate temperature system” wherein fluid is derived from the interaction between the volcanic host-rock at 170 ± 10 °C mixed with trace organic gas input from sedimentary formation; afterwards, the fluid flows laterally and is diluted with groundwater near the surface. Soil-gas and dissolved 222Rn confirm that these permeable zones are effective conduits for the ascending thermal fluids. It is found that NE faults carry higher trace elements from the deeper system, while the circular feature of the Caldera Rim acts as the boundary of the hydrothermal system.
Monin, A S
2007-01-01
""If ever a field needed a definitive book, it is the study of turbulence; if ever a book on turbulence could be called definitive, it is this book."" - ScienceWritten by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics, this two-volume survey is renowned for its clarity as well as its comprehensive treatment. The first volume begins with an outline of laminar and turbulent flow. The remainder of the book treats a variety of aspects of turbulence: its statistical and Lagrangian descriptions, shear flows near surfaces and free turbulenc
Bioengineering fluid mechanics
Hung, Tin-kan
2013-01-01
This book highlights the basic concepts and equations for bioengineering flow processes. Physical concepts and meanings are emphasized while rigorous derivations are simplified, making it easier for self learning on some biological and medical flow processes. The well known Bernoulli equation in hydraulics is extended for pulsating flows, peristaltic flows and cardiac pumping. The dimensional analysis, model law and dimensionless equations can be related to computational models and experimental observations. The velocity vector imaging stored in echocardiograms can be used to analyze the pumping characteristics of the ventricular contraction. New topics included oxygen transport in membrane oxygenator and micro mixing of blood flow in capillary channels.
Superconfinement tailors fluid flow at microscales.
Setu, Siti Aminah
2015-06-15
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems.
Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.
Weiss, Yaakov; McNeill, John; Pearson, D Graham; Nowell, Geoff M; Ottley, Chris J
2015-08-20
The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle.
Three-dimensional fluid mechanics of particulate two-phase flows in U-bend and helical conduits
Tiwari, Prashant; Antal, Steven P.; Podowski, Michael Z.
2006-04-01
The results of numerous studies performed to date have shown that the performance of various hydraulic systems can be significantly improved by using curved conduit geometries instead of straight tubes. In particular, the formation of Dean vortices, which enhance the development of centrifugal instabilities, has been identified as a factor behind reducing the near-wall concentration buildup in particulate flow devices (e.g., in membrane filtration modules). Still, several issues regarding the effect of conduit curvature on local multidimensional phenomena governing fluid flow still remain open. A related issue is concerned with the impact that conduit geometry makes on the concentration distribution of a dispersed phase in two-phase flows in general, and in particulate flows (solid/liquid or solid/gas suspensions) in particular. It turns out that only very limited efforts have been made in the past to understand the fluid mechanics of such flows via advanced computer simulations. The purpose of this paper is to present the results of full three-dimensional (3D) theoretical and numerical analyses of single- and two-phase dilute particle/liquid flows in U-bend and helical curved conduits. The numerical analysis is based on computational fluid dynamics (CFD) simulations performed using a state-of-the-art multiphase flow computer code, NPHASE. The major issues discussed in the first part of the paper are concerned with the effect of curved/coiled geometry on the evolution of flow field and the associated wall shear. It has been demonstrated that the primary curvature (a common factor for both the U-bend and helix geometries) may cause a substantial asymmetry in the radial distribution of the main flow velocity. This, in turn, leads to a significant, albeit highly nonuniform, increase in the wall shear stress. Specifically, the wall shear around the outer half of tube circumference may become twice the corresponding value for a straight tube, and gradually decrease to
White, Samuel G.; Gilinsky, Mikhail M.
1997-01-01
In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.
Vala, A. K.; Desai, R.; Upadhyay, R. V.; Mehta, R. V.
2008-12-01
Interaction of facultative marine fungus Aspergillus niger with a Mn-Zn ferrite magnetic fluid (MF) has been studied. The fungus exhibited a luxuriant growth in the presence of magnetic fluid at test concentrations. Though the biomass accumulation was found to be almost similar, mycelial spread was found to be rapid in the presence of MF if compared to the control one. The MF also exhibited a positive effect on the biomass accumulation during prolonged incubation. These preliminary observations provide a baseline information for possible exploitation of the magnetic fluid-facultative marine fungal interaction for bioremediation purposes. Figs 5, Refs 13.
International Nuclear Information System (INIS)
Dutrow, Barbara
2008-01-01
Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and
Directory of Open Access Journals (Sweden)
Olaf Andersen
2016-05-01
Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
Berthelon, Josselin; Sassi, William; Burov, Evgueni
2016-04-01
Many source-rocks are shale and constitute potential detachment levels in Fold-and-Thrust Belts (FTB): the toarcian Schistes-Cartons in the French Chartreuse FTB for example. Their mechanical properties can change during their burial and thermal maturation, as for example when large amount of hydrocarbon fluids are generated. A structural reconstruction of the Chartreuse FTB geo-history places the Toarcian Formation as the major decollement horizon. In this work, a mechanical analysis integrating the fluids overpressuring development is proposed to discuss on the validity of the structural interpretation. At first, an analogue of the Chartreuse Toarcian Fm, the albanian Posidonia Schist, is documented as it can provide insights on its initial properties and composition of its kerogen content. Laboratory characterisation documents the vertical evolution of the mineralogical, geochemical and mechanical parameters of this potential decollement layer. These physical parameters (i.e. Total Organic Carbon (TOC), porosity/permeability relationship, friction coefficient) are used to address overpressure buildup in the frontal part of the Chartreuse FTB with TEMISFlow Arctem Basin modelling approach (Faille et al, 2014) and the structural emplacement of the Chartreuse thrust units using the FLAMAR thermo-mechanical model (Burov et al, 2014). The hydro-mechanical modeling results highlight the calendar, distribution and magnitude of the overpressure that developed within the source-rock in the footwall of a simple fault-bend fold structure localized in the frontal part of the Chartreuse FTB. Several key geological conditions are required to create an overpressure able to fracture the shale-rocks and induce a significant change in the rheological behaviour: high TOC, low permeability, favourable structural evolution. These models highlight the importance of modeling the impact of a diffuse natural hydraulic fracturing to explain fluids propagation toward the foreland within
Digital Repository Service at National Institute of Oceanography (India)
Jacob, N.; Ansari, M.A.; Revichandran, C.
Occurrence of fluid mud (mud banks) in the southwest coast of India is an enigma for the scientific community. Over the years, several multi-disciplinary studies were conducted and various hypotheses were postulated on the occurrence and sustenance...
International Nuclear Information System (INIS)
1998-01-01
The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy's Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.
International Nuclear Information System (INIS)
Lue Xing; Zhu Hongwu; Yao Zhenzhi; Meng Xianghua; Zhang Cheng; Zhang Chunyi; Tian Bo
2008-01-01
In this paper, the multisoliton solutions in terms of double Wronskian determinant are presented for a generalized variable-coefficient nonlinear Schroedinger equation, which appears in space and laboratory plasmas, arterial mechanics, fluid dynamics, optical communications and so on. By means of the particularly nice properties of Wronskian determinant, the solutions are testified through direct substitution into the bilinear equations. Furthermore, it can be proved that the bilinear Baecklund transformation transforms between (N - 1)- and N-soliton solutions
International Nuclear Information System (INIS)
Coulon, Fanny
2010-09-01
A validation of Code-Saturne, a computational fluids dynamics model developed by EDF, is proposed for stable conditions. The goal is to guarantee the performance of the model in order to use it for impacts study. A comparison with the Prairie Grass data field experiment and with two Gaussian plume models will be done [fr
International Nuclear Information System (INIS)
Sargentini, Lucia
2014-01-01
The purpose of this study is to improve the knowledge about the core behavior of a sodium fast breeder reactor (Na-FBR) during vibrations through the fluid-structure interaction analysis. Namely, we investigate the flowering of the Phenix core during the SCRAM for negative reactivity (AURN) and the seismic behavior of the core of Astrid project. Three approaches are followed: experimental campaign, performing of analytical solution and development of numerical model. We create a flow regime map to identify the flow regimes in the fluid gap for very short times scales (as AURN) as well as longer time scales (as seismic oscillations). The most suitable equation system (Navier-Stokes, Euler or linearized Euler) is chosen to model the fluid flow in the numerical code. To our knowledge, for the first time, an analytical solution for free vibration and very narrow gaps is proposed. We designed two experimental apparatus (PISE-1a and PISE-2c) composed respectively by 1 and 19 hexagonal assemblies (two crowns) of Poly-methyl methacrylate (PMMA). Every PMMA assembly is fixed to a stainless steel twin-blades support allowing only orthogonal oscillations with respect to generating line of assembly. The twin-blades supports are designed to give the same range frequency of Phenix assembly in liquid sodium. The experimental equipment PISE-1a is used to determine the dynamic characteristics of PISE-2c assembly, to calibrate instrumentation and for validating our numerical model. Free vibration tests in air are performed to evaluate the dynamic characteristics of the body. Free vibration experiments in water allow to assess the added mass and added damping effect on the frequency. Even though the fluid flow during vibration should be completely bidimensional, the fluid flow is affected by a 3D effect - named 'jambage' - at the top and the basis of the assembly. This effect produces a lower frequency than the theoretical value. Tests are modeled with a bidimensional
Oukebdane, K; Portet-Koltalo, F; Machour, N; Dionnet, F; Desbène, P L
2010-06-30
Several methods of extraction were optimized to extract polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives and heavy n-alkanes from a highly adsorptive particulate matter resulting from the combustion of diesel fuel in a diesel engine. This particular carbonaceous particulate matter, collected at high temperatures in cordierite diesel particulate filters (DPF), which are optimized for removing diesel particles from diesel engine exhaust emissions, appeared extremely refractory to extractions using the classical extracting conditions for these pollutants. In particular, the method of accelerated solvent extraction (ASE) is described in detail here. Optimization was performed through experimental design to understand the impact of each factor studied and the factors' possible interactions on the recovery yields. The conventional extraction technique, i.e., Soxhlet extraction, was also carried out, but the lack of quantitative extractions led us to use a more effective approach: hot Soxhlet. It appeared that the extraction of the heaviest PAHs and nitroPAHs by either the optimized ASE or hot Soxhlet processes was far from complete. To enhance recovery yields, we tested original solvent mixtures of aromatic and heteroaromatic solvents. Thereafter, these two extraction techniques were compared to microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE). In every case, the only solvent mixture that permitted quantitative extraction of the heaviest PAHs from the diesel soot was composed of pyridine and diethylamine, which has a strong electron-donor character. Conversely, the extraction of the nitrated PAHs was significantly improved by the use of an electron-acceptor solvent or by introducing a small amount of acetic acid into the pyridine. It was demonstrated that, for many desirable features, no single extraction technique stound out as the best: ASE, MAE or SFE could all challenge hot Soxhlet for favourable extractions
Whale, MacMurray D.; Cravalho, Ernest G.
This paper describes two parallel efforts that attempt to implement a new approach to the teaching of thermal fluids engineering. In one setting, at the Massachusetts Institute of Technology (MIT), the subject matter is integrated into a single year-long subject at the introductory level. In the second setting, at Victoria (British Columbia,…
Li, Xuesong; Van Wie, Bernard J.
2016-01-01
The difficulty in covering chemical engineering concepts using traditional lectures and whiteboard teaching approaches means today's students' learning demands are unfulfilled, so alternate methods are needed. Desktop learning modules (DLMs) are designed to show industrial fluid flow and heat transfer concepts in a standard classroom so students…
The mechanism of propulsion of a model microswimmer in a viscoelastic fluid next to a solid boundary
Ives, Thomas R.; Morozov, Alexander
2017-12-01
In this paper, we study the swimming of a model organism, the so-called Taylor's swimming sheet, in a viscoelastic fluid close to a solid boundary. This situation comprises natural habitats of many swimming microorganisms, and while previous investigations have considered the effects of both swimming next to a boundary and swimming in a viscoelastic fluid, seldom have both effects been considered simultaneously. We re-visit the small wave amplitude result obtained by Elfring and Lauga ["Theory of locomotion through complex fluids," in Complex Fluids in Biological Systems, Biological and Medical Physics, Biomedical Engineering, edited by S. E. Spagnolie (Springer New York, New York, NY, 2015), pp. 283-317] and give a mechanistic explanation to the decoupling of the effects of viscoelasticity, which tend to slow the sheet, and the presence of the boundary, which tends to speed up the sheet. We also develop a numerical spectral method capable of finding the swimming speed of a waving sheet with an arbitrary amplitude and waveform. We use it to show that the decoupling mentioned earlier does not hold at finite wave amplitudes and that for some parameters the presence of a boundary can cause the viscoelastic effects to increase the swimming speed of microorganisms.
Energy Technology Data Exchange (ETDEWEB)
Hecker, Simon
2011-06-22
This work presents design guidelines for two categorically different concepts of a power plant turbine inlet duct; a ring-type inlet chamber and an inlet scroll. Subjects of the analysis are aerodynamic considerations of the flow field in the ducts as well as the impact of the chamber topology on the radial clearances influencing casing deformations in stationary and transient load cases. To show the reliability of the CFD-program used, calculated results are compared with measured data. The numerical method catches the main physical effects observed in the reference cases with high accuracy. The flow field in the ring-type inlet chamber strongly depends on the Reynolds number Re; according to Re a symmetrical or swirling flow field can be observed. The calculations indicate that measured values in test stands of inlet ducts with a Reynolds number that is not comparable to the full-size model should be examined carefully. The optimization of the ring-type inlet chamber leads to a geometry with minimum losses from an aerodynamic and mechanical point of view. The greatest benefit can be realized by an optimized flow into the downstream following stator blades. The analysis of the inlet scroll unveils a negative influence of eccentrically arranged pipe ends on the leakage losses. For the casings investigated a very compact design leads to minimum total losses. When choosing the scroll topology, the leakage losses should be minded, as the link between scroll size and casing deformation is not negligible. A comparison of both optimized inlet chambers shows that they have the same loss level. The selection of one concept should take into account stress distributions and the offsets of casing flanges including their consequences.
2014-09-24
which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO support from the start of the project
Müser, Martin H
2014-01-01
In this work, single-asperity contact mechanics is investigated for positive and negative work of adhesion Δγ. In the latter case, finite-range repulsion acts in addition to hard-wall constraints. This constitutes a continuum model for a contact immersed in a strongly wetting fluid, which can only be squeezed out in the center of the contact through a sufficiently large normal load F N. As for positive work of adhesion, two stable solutions can coexist in a finite range of normal loads. The competing solutions can be readily interpreted as contacts with either a load-bearing or a squeezed-out fluid. The possibility for coexistence and the subsequent discontinuous wetting and squeeze-out instabilities depend not only on the Tabor coefficient μT but also on the functional form of the finite-range repulsion. For example, coexistence and discontinuous wetting or squeeze-out do not occur when the repulsion decreases exponentially with distance. For positive work of adhesion, the normal displacement mainly depends on F N, Δγ, and μT but - unlike the contact area - barely on the functional form of the finite-range attraction. The results can benefit the interpretation of atomic force microscopy in liquid environments and the modeling of multi-asperity contacts.
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.
, the method imposes intense computational requirements on the computational time step. The majority of steps in the granular dynamics algorithm are massively parallel, which makes the DEM an obvious candidate for exploiting the capabilities of modern GPUs. The granular computations are coupled to a fluid-dynamics...... rheology, which limit our ability to predict ice sheet dynamics in a changing climate. In this talk I will present the soft-body Discrete Element Method which is a Lagrangian method I use in order to simulate the unique and diverse nature of granular dynamics in the subglacial environment. However...... solver in order to include grain-fluid feedbacks, which prove to be important for stick-slip behavior of glaciers. All code is open source and freely licensed....
International Nuclear Information System (INIS)
Vigander, S.
1978-01-01
The potential use of screening media with very small openings to exclude larval fish at power plant cooling-water intakes opens several areas of possible fluid mechanic problems. In this paper, ongoing research is described which focuses on four specific areas: the prediction of the pressure drop across a screen, given flow rate and screen properties; the estimation of the pressure drop across partially plugged screens; the rate of debris buildup on a site-specific stationary screen sample; and methods for stationary screen cleaning and their effectiveness. Other areas are identified in which research is needed to aid in the design of intakes that will effectively exclude larvae
Energy Technology Data Exchange (ETDEWEB)
Barnhart, D.H.; Halliwell, N.A.; Coupland, J.M. [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Chan, V.S.S. [Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin 2 (Ireland)
2002-12-01
This paper reports on a new form of holographic metrology that enables displacement measurement in both fluid and solid mechanics simultaneously. In such instances, existing holographic methods for displacement measurement would require the application of multiple techniques in a hybrid fashion. Known as object-conjugate reconstruction (OCR), our new approach unifies the disciplines of holographic velocimetry and holographic interferometry. Using complex correlation processing, it provides a sub-wavelength resolution for all three components of displacement and enables automated data extraction at selected points throughout a volume in space. (orig.)
Troitskaya, Yu. I.; Ermakova, O. S.; Kandaurov, A. A.; Kozlov, D. S.; Sergeev, D. A.; Zilitinkevich, S. S.
2017-11-01
Experiments on generation mechanisms of sea water spray under hurricane wind were performed using shadow illumination high-speed video recording from several camera positions. Classification of fragmentation mechanism leading to generation of spray was conducted. Statistics of the events causing generation of spray was studied. A phenomenological model was developed based on the methods of statistical physics to describe the "bag-breakup" generation mechanism. The function of spray generation was conducted on this basis, which describes well the experimental data obtained under hurricane winds in the natural and laboratory conditions.
International Nuclear Information System (INIS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-01-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Fainstein, A; Lanzillotti-Kimura, N D; Jusserand, B; Perrin, B
2013-01-18
We show that distributed Bragg reflector GaAs/AlAs vertical cavities designed to confine photons are automatically optimal to confine phonons of the same wavelength, strongly enhancing their interaction. We study the impulsive generation of intense coherent and monochromatic acoustic phonons by following the time evolution of the elastic strain in picosecond-laser experiments. Efficient optical detection is assured by the strong phonon backaction on the high-Q optical cavity mode. Large optomechanical factors are reported (~THz/nm range). Pillar cavities based in these structures are predicted to display picogram effective masses, almost perfect sound extraction, and threshold powers for the stimulated emission of phonons in the range μW-mW, opening the way for the demonstration of phonon "lasing" by parametric instability in these devices.
Directory of Open Access Journals (Sweden)
Abdelhalim Ebaid
2014-01-01
Full Text Available The exact solution for any physical model is of great importance in the applied science. Such exact solution leads to the correct physical interpretation and it is also useful in validating the approximate analytical or numerical methods. The exact solution for the peristaltic transport of a Jeffrey fluid with variable viscosity through a porous medium in an asymmetric channel has been achieved. The main advantage of such exact solution is the avoidance of any kind of restrictions on the viscosity parameter α, unlike the previous study in which the restriction α ≪ 1 has been put to achieve the requirements of the regular perturbation method. Hence, various plots have been introduced for the exact effects of the viscosity parameter, Daray’s number, porosity, amplitude ratio, Jeffrey fluid parameter, and the amplitudes of the waves on the pressure rise and the axial velocity. These exact effects have been discussed and further compared with those approximately obtained in the literature by using the regular perturbation method. The comparisons reveal that remarkable differences have been detected between the current exact results and those approximately obtained in the literature for the axial velocity profile and the pressure rise.
Kudinov, V. A.; Eremin, A. V.; Kudinov, I. V.
2017-11-01
The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.
Development of strongly coupled FSI technology involving thin walled structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2011-01-01
Full Text Available the most desirable results and is coupled with an in-house fluid-flow solver. The developed technology is evaluated on representative strongly coupled fluid-structure interaction test problems....
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Drilling fluid base oil biodegradation potential of a soil ...
African Journals Online (AJOL)
Staphylococcus sp. isolated from oil-contaminated soil was grown in 1% drilling fluid base oil, HDF- 2000, as a sole source of carbon and energy. The organism has strong affinity for the substrate, growing at the rate of 0.16 h-1. It uses adherence and emulsification as mechanisms for oil uptake. In a nutrient-rich marine ...
Vlahinic, Ivan
becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description. The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-06-01
This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff
Indian Academy of Sciences (India)
stationary fluid only normal stress (pressure) is present and tangential stresses are absent. In this article we ... delayed the discovery of the principle by a few centuries! Archimedes formulated his laws on buoyancy ... stress in the study of mechanics of solids and fluids (see Boxl). Just as temperature and density, stress can ...
DEFF Research Database (Denmark)
Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.
2013-01-01
Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secr...
Collyer, A. A.
1973-01-01
Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)
Osman, Nadir I; Roman, Sabiniano; Bullock, Anthony J; Chapple, Christopher R; MacNeil, Sheila
2014-09-01
Synthetic non-degradable meshes used in pelvic floor surgery can cause serious complications such as tissue erosion. A repair material composed of an autologous oral fibroblast seeded degradable polylactic acid scaffold may be a viable alternative. The aims of this study were to investigate the effects of media supplementation with additives (ascorbic acid-2-phosphate, glycolic acid and 17-β-oestradiol) on the mechanical properties of these scaffolds. Oral fibroblasts were isolated from buccal mucosa. The effects of the three additives were initially compared in two-dimensional culture to select the most promising collagen stimulating additive. Sterile electrospun scaffolds were seeded with 500,000 oral fibroblasts and fixed in 6-well plates and subjected to ascorbic acid-2-phosphate (the best performing additive) and/or mechanical stimulation. Mechanical stimulation by fluid shear stress was induced by rocking scaffolds on a platform shaker for 1 h/day for 10 of 14 days of culture. In two-dimensional culture, ascorbic acid-2-phosphate (concentrations from 0.02 mM to 0.04 M) and glycolic acid (10 µM) led to significantly greater total collagen production, but ascorbic acid-2-phosphate at 0.03 mM produced the greatest stimulation (of the order of >100%). In three-dimensional culture, mechanical stimulation alone gave non-significant increases in stiffness and strength. Ascorbic acid-2-phosphate (0.03 mM) significantly increased collagen production in the order 280% in both static and mechanically stimulated scaffolds (p material with improved mechanical properties can be developed by supplementing culture media with ascorbic acid-2-phosphate to increase collagen I production. Future studies will assess the change in mechanical properties after implantation in an animal model. © IMechE 2014.
International Nuclear Information System (INIS)
Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin
2016-01-01
Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.
Energy Technology Data Exchange (ETDEWEB)
Gao, Qingxue [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Rong [Department of Fundamental Theories, Shandong Institute of Physical Education and Sports, Jinan 250063 (China); Xiao, Hongdi, E-mail: hdxiao@sdu.edu.cn [School of Physics, Shandong University, Jinan, 250100 (China); Cao, Dezhong; Liu, Jianqiang; Ma, Jin [School of Physics, Shandong University, Jinan, 250100 (China)
2016-11-30
Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.
Dynamic wetting with viscous Newtonian and non-Newtonian fluids
International Nuclear Information System (INIS)
Wei, Y; Garoff, S; Rame, E; Walker, L M
2009-01-01
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.
Nedyalkov, Ivaylo
2016-11-01
After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M
2017-05-17
We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.
2017-01-01
We report a computational fluid dynamics–discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas–solid contact efficiencies. Cluster gas–solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors. PMID:28553011
International Nuclear Information System (INIS)
Mendenhall, F.T.; Butcher, B.M.; Davies, P.B.
1991-01-01
This paper presents the results of numerical simulations of a Waste Isolation Pilot Plant (WIPP) disposal room. In particular the results show: (1) that an initially empty disposal room will consolidate in 195 years to less than 10% of is initial volume, (2) that if waste, backfill, and gas generation are allowed to generate backstress, room consolidation ceases at about 9--10 MPa backstress and room expansion can occur with backstress slightly higher than 9--10 MPa, (3) that reducing the gas generation potentials and rates by a factor of five, drops the maximum room pressure from about 22 MPa to about 18 MPa and decreases the minimum room porosity from about 0.30 to 0.09, (4) that for two-phase fluid flow, brine and gas are driven out of the disposal room into the nonhalite interbeds and that pressures build in these interbeds near the disposal room, and (5) that the interbed pressurization shown in the two-phase flow can exceed lithostatic pressure of 14.8 MPa, which has the potential of opening preexisting fractures between disposal rooms in about 270 years. This work demonstrates the complex interdependent interactions of creep closure affecting void volume, gas pressurization, brine flow, gas generation, and interbed fracture dilation. Finally, work aiming at achieving greater coupling in the simulations of WIPP disposal rooms is discussed