WorldWideScience

Sample records for strong external field

  1. Thomson scattering in strong external fields

    Science.gov (United States)

    Varró, S.; Ehlotzky, F.

    1992-09-01

    In the present paper we shall investigate relativistic Thomson scattering in two external fields. A free classical electron will be embedded in a strong, constant and homogeneous magnetic field and in a powerful electromagnetic field. Both fields will be considered in the Redmond configuration, in which case the electromagnetic wave is circularly polarized and propagates in the direction of the homogeneous magnetic field. The electron will be allowed to have arbitrary initial conditions and the electromagnetic wave will be switched on either suddenly or adiabatically. We shall present the exact solution of the Lorentz equation of motion in the above external field configuration and we shall evaluate the spectrum and cross sections of the scattered radiation. In particular, we shall consider scattering close to resonance and we shall compare our results with the findings of earlier work.

  2. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  3. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  4. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact......In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....

  5. Particle production in field theories coupled to strong external sources, I: Formalism and main results

    International Nuclear Information System (INIS)

    Gelis, Francois; Venugopalan, Raju

    2006-01-01

    We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory

  6. Investigation of energy spectrum structure in a system atom + strong external electromagnetic field

    International Nuclear Information System (INIS)

    Volkova, E.A.; Popov, A.M.; Tikhonova, O.V.

    1996-01-01

    Method of direct numerical integration of nonstationary Schroedinger equation is used for investigation into dynamics of quantum system with short-range potential under the cooperative effect of high-frequency electromagnetic field with super atomic value of intensity and low-frequency field with low radiation intensity

  7. Quasilongitudinal soliton in a two-dimensional strongly coupled complex dusty plasma in the presence of an external magnetic field.

    Science.gov (United States)

    Ghosh, Samiran

    2014-09-01

    The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment.

  8. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  9. External split field generator

    Science.gov (United States)

    Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  10. Strong field laser physics

    CERN Document Server

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  11. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  12. Plasmon instability under four external fields

    International Nuclear Information System (INIS)

    Pereira, R.B.; Fonseca, A.L.A.; Nunes, O.A.C.

    1998-01-01

    The plasmon instability in a laboratory produced plasma in the presence of four external fields, namely two laser fields, one strong magnetic field and one static electric field, is discussed. The method of unitary transformations is used to transform the problem of electron motion under the four external fields to that of an electron in the presence only of crossed electric and magnetic fields. A kinetic equation for the plasmon population is derived from which the damping (amplification) rate is calculated. We found that the joint action of the four fields results in a relatively larger amplification rate for some values of the static electric field in contrast to the case where no electric field is present. It was also found that the plasmon growth rate favors plasmon wave vectors in an extremely narrow band i.e., the plasmon instability in four external fields is a very selective mechanism for plasmon excitation. (author)

  13. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    Science.gov (United States)

    Fujioka, Shinsuke; Arikawa, Yasunobu; Kojima, Sadaoki; Johzaki, Tomoyuki; Nagatomo, Hideo; Sawada, Hiroshi; Lee, Seung Ho; Shiroto, Takashi; Ohnishi, Naofumi; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Zhang, Zhe; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Kondo, Kotaro; Bailly-Grandvaux, Mathieu; Bellei, Claudio; Santos, João Jorge; Azechi, Hiroshi

    2016-05-01

    plasma. Following the above improvements, conversion of 13% of the LFEX laser energy to a low energy portion of the REB, whose slope temperature is 0.7 MeV, which is close to the ponderomotive scaling value, was achieved. To meet the second requirement, the compression of a solid spherical ball with a diameter of 200-μm to form a dense core with an areal density of ˜0.07 g/cm2 was induced by a laser-driven spherically converging shock wave. Converging shock compression is more hydrodynamically stable compared to shell implosion, while a hot spot cannot be generated with a solid ball target. Solid ball compression is preferable also for compressing an external magnetic field to collimate the REB to the fuel core, due to the relatively small magnetic Reynolds number of the shock compressed region. To meet the third requirement, we have generated a strong kilo-tesla magnetic field using a laser-driven capacitor-coil target. The strength and time history of the magnetic field were characterized with proton deflectometry and a B-dot probe. Guidance of the REB using a 0.6-kT field in a planar geometry has been demonstrated at the LULI 2000 laser facility. In a realistic FI scenario, a magnetic mirror is formed between the REB generation point and the fuel core. The effects of the strong magnetic field on not only REB transport but also plasma compression were studied using numerical simulations. According to the transport calculations, the heating efficiency can be improved from 0.4% to 4% by the GEKKO and LFEX laser system by meeting the three requirements described above. This efficiency is scalable to 10% of the heating efficiency by increasing the areal density of the fuel core.

  14. Quantized fields in external field. Pt. 2

    International Nuclear Information System (INIS)

    Bellissard, J.

    1976-01-01

    The case of a charged scalar field is considered first. The existence of the corresponding Green's functions is proved. For weak fields, as well as pure electric or scalar external fields, the Bogoliubov S-operator is shown to be unitary, covariant, causal up-to-a-phase. These results are generalised to a class of higher spin quantized fields, 'nicely' coupled to external fields, which includes the Dirac theory, and in the case of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer theory. (orig.) [de

  15. Sensitivity degradation of an anger camera operated in SPECT-like mode under the influence of a strong external magnetic field

    International Nuclear Information System (INIS)

    Galiano, Eduardo; Aldarwish, Huda

    2014-01-01

    The purpose of this work was to experimentally determine the degradation in sensitivity of an Anger camera rotated in SPECT-like orbits around the transverse and sagittal planes of the magnetic field produced by a conventional, dual coil, 1 T electromagnet. A 74 photomultiplier Siemens Basicam Anger camera with a 29 cm radius crystal and an Isotrak 35 cm diameter, 46 MBq (1.25 mCi), Co-57 disk source attached to a low energy general purpose collimator, were used for all measurements. A custom made, air-cooled, dual coil, 1 T electromagnet was used to produce the external magnetic field. A map of the magnetic field was obtained by taking intensity measurements around the sagittal and transverse planes of the magnet. Camera sensitivity – defined as the measured count rate for a given activity of a radionuclide in a defined geometry – was first measured around the transverse plane at angles of 0°, 90°, and 270°, with, and without, the magnetic field present. At each angle, three 30 min measurements were made and the average count rate was calculated. A similar protocol was used for measurements upon rotation in the sagittal plane: counts per 30 min interval were measured for 20 angles, with a 15° increment between measurements. Camera sensitivity as a function of field strength was also determined by collecting counts over 30 min intervals at a fixed angle (90°) with magnet currents of 0.00 A, 2.65 A, and 5.30 A. In the transverse plane, at 0° under a field intensity of 21 mT, the loss in sensitivity was 18.14%, at 90° (B=37 mT) the loss was 30.5%, and at 270° (B=38 mT) the loss was 34.9%. Thus for rotation in the transverse plane, the sensitivity is monotonically reduced with an increase in field intensity. On rotation in the sagittal plane, sensitivity degradation ranged between 50.3% at a 22° angle, and 59.1% at 315°. Broad sensitivity peaks were observed at 105° and 195°, with minima at 60°, 135°, and 260°, consistent with our theoretical

  16. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  17. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.

    2008-01-01

    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  18. On interaction with external fields. 1

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1978-01-01

    An introduction into theory of interaction of any quantized charged field with arbitrary external time-dependent classical fields is exposed. Usual field operator terms are used. S-matrix is explicitly represented in an N-ordered form. Its matrix elements are treated, using a particle number operator formalism. Pair number distribution produced by external fields from vacuum is characterized

  19. Enhanced thermal photon and dilepton production in strongly coupled = 4 SYM plasma in strong magnetic field

    Science.gov (United States)

    Mamo, Kiminad A.

    2013-08-01

    We calculate the DC conductivity tensor of strongly coupled = 4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B ≫ T 2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in the presence of the strong external magnetic field B ≫ T 2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

  20. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  1. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  2. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  3. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  4. The external magnetic field environment

    Science.gov (United States)

    1977-01-01

    Calculations were made to predict magnetic field intensities surrounding an aircraft following a lightning strike. Aircraft design and aircraft structural geometry were considered in the computations. A wire grid aircraft model was used to aid in magnetic flux estimation.

  5. Responses of boundary layers to strong external disturbances

    Science.gov (United States)

    Asai, Masahito

    1990-10-01

    The transition from laminar flow to turbulent flow of the boundary layer is an important phenomenon for various problems in astronautical engineering. When the turbulence in the flow is weak, the boundary layer transition starts from the spatial amplification of a viscous T-S (Tollmien Schlichting) wave. The initial wave starts as a two dimensional wave and grows rapidly to a three dimensional wave with amplification. Finally, it corrupts to small scale hairpin eddies. The transitions starting from these wave amplifications are studied, and instability mechanisms are analyzed. In order to analyze the mechanism, the strength of turbulence (eddies) in the air flow that develops a transitional structure in the boundary layer and leads to a turbulent flow transition is analyzed. The responses of the boundary layers to the strong external disturbances are studied experimentally by introducing sonic wave which simulates hairpin eddies in the lower part of the front edge of a flat plate.

  6. Thermodynamical instabilities under strong magnetic fields

    Science.gov (United States)

    Chen, Y. J.

    2017-03-01

    The thermodynamical instabilities of low densities in the n p matter and n p e matter are studied within several relativistic nuclear models under some values of magnetic fields. The results are compared between each other and the effects of the symmetry energy slope at saturation density on the instability are investigated. The instability regions can exhibit bands due to the presence of Landau levels for very strong magnetic fields of the order of 1017 G, while for weaker magnetic fields, the bands are replaced by many diffused or scattered pieces. It also shows that the proton fraction in the inner crust of neutron stars may be complex under strong magnetic fields.

  7. Super-strong Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, Takenori J.; Sakurai, Takashi

    2018-01-01

    Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.

  8. Assembly of Superparamagnetic Filaments in External Field.

    Science.gov (United States)

    Wei, Jiachen; Song, Fan; Dobnikar, Jure

    2016-09-13

    We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli.

  9. Experimental investigation of strong field trident production

    NARCIS (Netherlands)

    Esberg, J.; Kirsebom, K.; Knudsen, H.; Thomsen, H.D.; Uggerhøj, E.; Uggerhøj, U.I.; Sona, P.; Mangiarotti, A.; Ketel, T.J.; Ditzdar, A.; Dalton, M.M.; Ballestrero, S.; Connell, S.H.

    2010-01-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single

  10. Experimental investigation of strong field trident production

    CERN Document Server

    Esberg, J; Knudsen, H; Thomsen, H D; Uggerhøj, E; Uggerhøj, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Dalton, M M; Ballestrero, S; Connell, S H

    2010-01-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single crystals. For the amorphous material our data are in good agreement with theory, whereas a discrepancy with theory on the magnitude of the trident enhancement is found in the precisely aligned case where the strong electric field acts.

  11. Charged particles in external electromagnetic fields

    International Nuclear Information System (INIS)

    Giovannini, N.P.D.

    1976-01-01

    The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential

  12. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  13. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  14. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  15. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    Santos, R.R. dos.

    1975-07-01

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt

  16. Controlling Josephson dynamics by strong microwave fields

    NARCIS (Netherlands)

    Chesca, B.; Savel'ev, E.; Rakhmanov, A.L.; Smilde, H.J.H.; Hilgenkamp, Johannes W.M.

    2008-01-01

    We observe several sharp changes in the slope of the current-voltage characteristics (CVCs) of thin-film ramp-edge Josephson junctions between YBa2Cu3O7−delta and Nb when applying strong microwave fields. Such behavior indicates an intriguing Josephson dynamics associated with the switching from a

  17. Bound states in a strong magnetic field

    International Nuclear Information System (INIS)

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-01-01

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB∼m 2 π ∼ 0.02 GeV 2 at the RHIC and eB∼ 15m 2 π ∼ 0.3 GeV 2 at the LHC. We investigate the effects of the magnetic field on B 0 and D 0 mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  18. Toroidal plasma response to external fields

    International Nuclear Information System (INIS)

    Storer, R.G.

    1998-01-01

    Toroidal plasmas respond to external driving fields in a way which is determined by the coupling of these fields to the spectrum of the plasma. We have extended the toroidal resistive magnetohydrodynamic spectral code, SPECTOR, to include the effects of external fields on tokamak-like plasmas. The code is capable of determining both the stable and unstable modes and also the response to helical applied fields with arbitrary mode structure. Resistivity changes the continuous regions of the ideal MHD spectrum into a set of discrete eigenvalues lying along lines in the complex frequency plane with a spacing which is related to the inverse of the square root of the magnetic Reynolds number. Results are presented which relate the spectral distribution to the plasma response as a function of frequency. (author)

  19. NATO Advanced Study Institute on Atoms in Strong Fields

    CERN Document Server

    Clark, Charles; Nayfeh, Munir

    1990-01-01

    This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscop...

  20. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  1. External magnetic field configurations for EXTRAP

    International Nuclear Information System (INIS)

    Bonnevier, B.

    1982-08-01

    The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)

  2. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  3. Stable states in a strong IR field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, Francis

    2015-05-01

    It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.

  4. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  5. Flow NMR of polymers in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Ute; Bagusat, Frank; Scheler, Ulrich [Leibniz Institute of Polymer Research Dresden (Germany)

    2008-07-01

    Pulsed-field gradient NMR is applied to study the motion of polymers in an external electric field and under mechanical shear. The application of an electric field drives motion of charged species. In conjunction with the diffusion coefficient from the electrophoretic mobility the effective charge per molecule is derived. The electric field applicable in the aqueous system is too weak to deform the polymer or even abstract counterions. In a shear flow established in a Couette cell partial orientation of polymer chains is measured via residual dipolar couplings. The entire flow field in a non-symmetric flow cell is monitored by a combination of PFG NMR and NMR imaging exhibiting regions of high shear and locally low shear, where polymers relax.

  6. Quantized fields in interaction with external fields. Pt. 1

    International Nuclear Information System (INIS)

    Bellissard, J.

    1975-01-01

    We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de

  7. Electromagnetic processes in strong crystalline fields

    CERN Document Server

    Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A

    2009-01-01

    As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...

  8. The dynamics of coupled atom and field assisted by continuous external pumping

    Energy Technology Data Exchange (ETDEWEB)

    Burlak, G.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma de Morelos, Cuernavaca, Morelos (Mexico); Starostenko, O. [Departamento de Fisica, Electronica, Sistemas y Mecatronica, Universidad de las Americas, 72820 Puebla (Mexico)

    2006-07-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  9. The dynamics of coupled atom and field assisted by continuous external pumping

    International Nuclear Information System (INIS)

    Burlak, G.; Hernandez, J.A.; Starostenko, O.

    2006-01-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  10. Electron-positron-photon cascades in the strong laser field

    Science.gov (United States)

    Legkov, Maxim; Fedotov, Alexander

    2012-06-01

    At nearest future several ambitious projects (such as ELI and HiPER) may provide laser filed intensity up to 10^23--10^24 W/cm^2. In such strong fields quantum effects are essential. The most important among them is production of QED cascades. In this paper external field intensity is considered as ultra-relativistic but subcritical. Using a model of two colliding counter-propagating laser beams it was shown that the number of particles during the process is growing exponentially in time. This leads to vast formation of electron-positron-photon plasma. According to numerical simulations, this plasma quickly absorbs an essential part of the energy of the laser field thus leading to its depletion. Numerical simulation has been also performed for a case of high-energetic particle and laser beam collision. Probability rates of direct and recombination processes have been theoretically studied. Under some conditions, recombination may come into play and suppress cascade development. Using approximation of radiation in forward direction, system of kinetic equations, which describes plasma evaluation, was constructed. According to qualitative estimations based on kinetic equations, it was shown that recombination processes can be neglected for optical frequencies range of external field.

  11. Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Martiny, Christian P. J.; Madsen, Lars Bojer

    2010-01-01

    We extend the molecular strong-field approximation for ionization, in the tunneling limit, to include systematically the linear and quadratic static Stark shifts of the ionizing molecular orbital. This approach, simple to implement, is capable of describing the essential physics of the process of...

  12. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  13. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  14. The Complex Way to Laser Diode Spectra: Example of an External Cavity Laser With Strong Optical Feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    2005-01-01

    An external cavity laser with strong grating-filtered feedback to an antireflection-coated facet is studied with a time-domain integral equation for the electric field, which reproduces the modes of the oscillation condition as steady-state solutions. For each mode, the stability and spectral...... to simulate the large signal time evolution after start from unstable modes....

  15. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  16. Control of dipolar relaxation in external fields

    Science.gov (United States)

    Pasquiou, B.; Bismut, G.; Beaufils, Q.; Crubellier, A.; Maréchal, E.; Pedri, P.; Vernac, L.; Gorceix, O.; Laburthe-Tolra, B.

    2010-04-01

    We study dipolar relaxation in both ultracold thermal and Bose-condensed Cr atom gases. We show three different ways to control dipolar relaxation, making use of either a static magnetic field, an oscillatory magnetic field, or an optical lattice to reduce the dimensionality of the gas from three-dimensional (3D) to two-dimensional (2D). Although dipolar relaxation generally increases as a function of a static magnetic-field intensity, we find a range of nonzero magnetic-field intensities where dipolar relaxation is strongly reduced. We use this resonant reduction to accurately determine the S=6 scattering length of Cr atoms: a6=103±4a0. We compare this new measurement to another new determination of a6, which we perform by analyzing the precise spectroscopy of a Feshbach resonance in d-wave collisions, yielding a6=102.5±0.4a0. These two measurements provide, by far, the most precise determination of a6 to date. We then show that, although dipolar interactions are long-range interactions, dipolar relaxation only involves the incoming partial wave l=0 for large enough magnetic-field intensities, which has interesting consequences on the stability of dipolar Fermi gases. We then study ultracold Cr gases in a one-dimensional (1D) optical lattice resulting in a collection of independent 2D gases. We show that dipolar relaxation is modified when the atoms collide in reduced dimensionality at low magnetic-field intensities, and that the corresponding dipolar relaxation rate parameter is reduced by a factor up to 7 compared to the 3D case. Finally, we study dipolar relaxation in the presence of rf oscillating magnetic fields, and we show that both the output channel energy and the transition amplitude can be controlled by means of the rf frequency and Rabi frequency.

  17. Dynamics of dissociation versus ionization in strong laser fields

    International Nuclear Information System (INIS)

    In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon

  18. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  19. Mechanics of magnetic fluid column in strong magnetic fields

    International Nuclear Information System (INIS)

    Polunin, V.M.; Ryapolov, P.A.; Platonov, V.B.

    2017-01-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  20. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  1. Dynamics of molecular superrotors in an external magnetic field

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  2. Dynamics of molecular superrotors in an external magnetic field

    International Nuclear Information System (INIS)

    Korobenko, Aleksey; Milner, Valery

    2015-01-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)

  3. Strongly Interacting Matter in Magnetic Field

    Science.gov (United States)

    Mao, Shijun; Wu, Youjia; Zhuang, Pengfei

    Inverse magnetic catalysis effect on the chiral phase transition is investigated in the frame of SU(2) NJL model with Pauli-Villars regularization scheme. We consider two scenarios, the chiral chemical potential μ5 caused by sphalerons and magnetic inhibition of mesons π0. With different chiral chemical potential, we always obtain magnetic catalysis in the mean field calculation, due to the enhancement of Fermi surface of the pairing fermions by μ5. On the other hand, when going beyond the mean field approximation by including the feed-down from mesons to quarks, the competition between the magnetic catalysis effect of quarks and magnetic inhibition effect of mesons leads to the transition from inverse magnetic catalysis to delayed magnetic catalysis with increasing magnetic field.

  4. Particle Production under External Fields and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The thesis presents studies of vacuum pair productions and its applications in early universe cosmology and high energy astrophysics. Vacuum often becomes unstable and spontaneously decays into pairs of particles in rapidly expanding universes or under strong external electromagnetic fields. Theoretically, spontaneous pair productions due to such non-trivial backgrounds of spacetimes or electromagnetic fields are well-understood. However, the effect of particle productions has not been observed so far because of experiemtal difficulties in obtaining large curvatures of space-times or strong electric fields. Although it may be impossible to observe the pair productions directly via laboratory experiments, there are still powerful sources of space-time curvatures or electric fields in cosmology and astrophysics, which result in observations. In Part I, we explore the inflationary models in early universe utilizing pair productions through gravity. We study observable signatures on the cosmic microwave background, such as isocurvature perturbations and non-Gaussianities, generated from the particle production of WIMPzillas and axions during or after inflation. In Part II, we investigate the electron-positron pair production in the magnetosphere of pulsars whose electromagnetic fields are expected to close to or even greater than the pair production threshold. In particular, we demonstrate that the pair production may be responsible for giant pulses from the Crab pulsar.

  5. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  6. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  7. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  8. Fuel magnetization without external field coils (AutoMag)

    Science.gov (United States)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Self-Organization of Polymeric Fluids in Strong Stress Fields

    Directory of Open Access Journals (Sweden)

    A. V. Semakov

    2015-01-01

    Full Text Available Analysis of literature data and our own experimental observations have led to the conclusion that, at high deformation rates, viscoelastic liquids come to behave as rubbery materials, with strong domination by elastic deformations over flow. This can be regarded as a deformation-induced fluid-to-rubbery transition. This transition is accompanied by elastic instability, which can lead to the formation of regular structures. So, a general explanation for these effects requires the treatment of viscoelastic liquids beyond critical deformation rates as rubbery media. Behaviouristic modeling of their behaviour is based on a new concept, which considers the medium as consisting of discrete elastic elements. Such a type of modeling introduces a set of discrete rotators settled on a lattice with two modes of elastic interaction. The first of these is their transformation from spherical to ellipsoidal shapes and orientation in an external field. The second is elastic collisions between rotators. Computer calculations have demonstrated that this discrete model correctly describes the observed structural effects, eventually resulting in a “chaos-to-order” transformation. These predictions correspond to real-world experimental data obtained under different modes of deformation. We presume that the developed concept can play a central role in understanding strong nonlinear effects in the rheology of viscoelastic liquids.

  10. Molecular dynamics simulation of the response of bi-disperse polyelectrolyte brushes to external electric fields

    International Nuclear Information System (INIS)

    Zhang Fen; Ding Huan-Da; Duan Chao; Tong Chao-Hui; Zhao Shuang-Liang

    2017-01-01

    Langevin dynamics simulations have been performed to investigate the response of bi-disperse and strong polyacid chains grafted on an electrode to electric fields generated by opposite surface charges on the polyelectrolyte (PE)-grafted electrode and a second parallel electrode. Simulation results clearly show that, under a negative external electric field, the longer grafted PE chains are more strongly stretched than the shorter ones in terms of the relative change in their respective brush heights. Whereas under a positive external electric field, the grafted shorter chains collapse more significantly than the longer ones. It was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The effects of smeared and discrete charge distributions of grafted PE chains on the response of PE brushes to external electric fields were also examined. (paper)

  11. External field characterization using CHAMP satellite data for ...

    Indian Academy of Sciences (India)

    ; magnetosphere; external field characterization; EM induction response. .... Such an averaging also minimizes the influence of residual lithospheric signals and localized perturbations of the magnetic field. Figure 4 shows the orbit aver-.

  12. The U(1) Higgs model in an external electromagnetic field

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1988-01-01

    An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)

  13. Electron Dynamics in Nanostructures in Strong Laser Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  14. Electrodynamics of a hydrogenlike atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Kovarskij, V.A.; Perel'man, N.F.

    1974-01-01

    The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)

  15. Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

    DEFF Research Database (Denmark)

    Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.

    2009-01-01

    We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...

  16. Effect of external magnetic effect of external magnetic field annealing on magnetic texture of Mo containing NANOPERM-type alloys

    International Nuclear Information System (INIS)

    Kanuch, T.; Miglierini, M.; Greneche, J.-M.; Skorvanek, I.; Schaaf, P.

    2006-01-01

    External magnetic fields are known to modify microstructure of materials during their solidification and/or crystallisation. In an external magnetic field strong particle to particle interactions lead to a highly anisotropic microstructure. If the alloy is in ferromagnetic state, stronger particle magnetization - external field interactions and also particle-to-particle couplings are expected. To reveal the magnetic texture, originally amorphous precursors of Fe 76 Mo 8 Cu 1 B 15 were annealed at 510 grad C and 550 grad C in an external longitudinal and transverse magnetic field of 0.025 T and 0.8 T, respectively. Magnetic measurements were applied to follow the changes of saturation magnetization and coercive force. Moessbauer experiments were performed at room and liquid nitrogen temperature to provide an information about orientation of with respect to an external magnetic field. The obtained results were compared with those achieved on zero field annealed samples. We can conclude that such a low external magnetic fields applied during crystallisation cause no significant changes in the magnetic microstructural anisotropy. Afterwards, magneto-optical Kerr effect (MOKE) was applied to investigate possible changes at the surface of the ribbon as a function of annealing temperature and applied magnetic field. We observed combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix. We expect more pronounced effects on cobalt substituted (Fe1 -x Co x ) 76 Mo 8 Cu 1 B 15 alloy. (authors)

  17. Structural stability of interaction networks against negative external fields

    Science.gov (United States)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  18. Strong-field-ionization suppression by light-field control

    DEFF Research Database (Denmark)

    Räsänen, Esa; Madsen, Lars Bojer

    2012-01-01

    in the intensity and thus preventing tunneling. In contrast, at high frequencies in the extreme ultraviolet regime the optimized pulses strongly couple with the (de)-excitations of the system, which leads to different pulse characteristics. Finally, we show that the applied target functional works, to some extent...

  19. Separation of the Magnetic Field into External and Internal Parts

    DEFF Research Database (Denmark)

    Olsen, Nils; Glassmeier, K.-H.; Jia, X.

    2010-01-01

    The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal...... source contributions, and their application to selected planets and one of Jupiter’s moons, Ganymede....

  20. Probing strong field ionization of solids with a Thomson parabola ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... large electric field drives the electrons to a very high energy. These hot electrons quickly move out of the solid surface, long before the ions move and the electron drift creates a strong quasistatic charge separation sheath electric field. Ions are then accelerated in this sheath field preferentially along the ...

  1. Electron dynamics in metals and semiconductors in strong THz fields

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2017-01-01

    Semiconductors and metals respond to strong electric fields in a highly nonlinear fashion. Using single-cycle THz field transients it is possible to investigate this response in regimes not accessible by transport-based measurements. Extremely high fields can be applied without material damage...

  2. Surface states in an external electric field

    International Nuclear Information System (INIS)

    Steslicka, M.

    1975-10-01

    Under conditions typical for field ion microscopy, true surface states can exist. Their shift towards higher energies can be quite significant and, moreover, additional surface levels at still higher energies can appear. The latter can play an important role in the process of tunneling of image gas electrons into surface states

  3. Interaction of a neutral composite particle with a strong Coulomb field

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1988-01-01

    The author discusses the interaction of the quasi-composite (e/sup /plus//e/sup /minus//) system with an external electromagnetic field. This problem addresses the question of the origin of strong positron lines in quasi-elastic heavy-ion reactions. 3 refs

  4. Solitons in a Dielectric Medium under an External Magnetic Field

    OpenAIRE

    Isamu, NAKATA; Hiroaki, ONO; Mitito, YOSIDA; College of Integrated Arts and Sciences, University of Osaka Prefecture; Department of Mathematics and Physics, Faculty of Engineering, Setunan University; Nippondenso Co., Ltd.

    1993-01-01

    Solitons in a dielectric medium propagating along an external magnetic field is investigated. By means of a nonlinear perturbation method, the derivative nonlinear Schrodinger equation is derived and the possibility of propagation of the spiky and algebraic solitons is shown.

  5. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  6. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field

    Science.gov (United States)

    Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao

    2014-10-01

    A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.

  7. Calculations in external fields in quantum chromodynamics

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vairshtejn, A.I.; Zakharov, V.I.

    1983-01-01

    The technique of calculation of operator expansion coefficients is reviewed. The main emphasis is put on gluon operators which appear in expansion of n-point functions induced by colourless quark currents. Two convenient schemes are discussed in detail: the abstract operator method and the method based on the Fock-Schwinger gauge for the vacuum gluon field. A large number of instructive examples important from the point of view of physical applications is considered

  8. Highly potent host external immunity acts as a strong selective force enhancing rapid parasite virulence evolution.

    Science.gov (United States)

    Rafaluk, Charlotte; Yang, Wentao; Mitschke, Andreas; Rosenstiel, Philip; Schulenburg, Hinrich; Joop, Gerrit

    2017-05-01

    Virulence is often under selection during host-parasite coevolution. In order to increase fitness, parasites are predicted to circumvent and overcome host immunity. A particular challenge for pathogens are external immune systems, chemical defence systems comprised of potent antimicrobial compounds released by prospective hosts into the environment. We carried out an evolution experiment, allowing for coevolution to occur, with the entomopathogenic fungus, Beauveria bassiana, and the red flour beetle, Tribolium castaneum, which has a well-documented external immune system with strong inhibitory effects against B. bassiana. After just seven transfers of experimental evolution we saw a significant increase in parasite induced host mortality, a proxy for virulence, in all B. bassiana lines. This apparent virulence increase was mainly the result of the B. bassiana lines evolving resistance to the beetles' external immune defences, not due to increased production of toxins or other harmful substances. Transcriptomic analyses of evolved B. bassiana implicated the up-regulation of oxidative stress resistance genes in the observed resistance to external immunity. It was concluded that external immunity acts as a powerful selective force for virulence evolution, with an increase in virulence being achieved apparently entirely by overcoming these defences, most likely due to elevated oxidative stress resistance. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  10. Spectral confinement and current for atoms in strong magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren

    2007-01-01

    e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B<3......e study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. Using the results on confinement we can calculate the quantum current in the entire semiclassical region B

  11. Self-field loss of BSCCOrAg tape in external AC magnetic field

    NARCIS (Netherlands)

    Rabbers, J.J.; ten Haken, Bernard; Gömöry, F.; ten Kate, Herman H.J.

    1998-01-01

    The self-field loss of BSCCOrAg tapes has been measured in combination with an external AC magnetic field. This situation occurs when conductors are used in applications such as coils or cables. An increase of the self-field loss due to external AC magnetic field is observed. An increase of the

  12. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  13. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  14. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Directory of Open Access Journals (Sweden)

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  15. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.

    2015-01-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M   which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field

  16. Polarization of the vacuum by a stochastic external field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.; Rozhavskii, A.S.

    1988-01-01

    The effect of disorder, realized in the form of a fluctuating extra mass term, on the bosonic vacuum and fermionic vacuum of models of quantum field theory is studied. A method is developed for calculating the mean effective potential in the stochastic external field. For a model of interacting scalar and fermion fields in (3+1)-dimensional space-time it is shown that random fluctuations of the mass lead to an increase of the equilibrium mean scalar field in the system

  17. Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2010-01-01

    Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)

  18. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    Abstract. The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and ...

  19. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter

    2007-01-01

    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...

  20. Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots

    International Nuclear Information System (INIS)

    Vaseghi, B.; Mohebi, N.

    2013-01-01

    Effects of external electric and magnetic fields, dimension and pressure on the electromagnetically induced transparency of a pumped-probe GaAs quantum dot are investigated. To study the electromagnetically induced transparency, the probe absorption and group velocity along with refractive index of the medium are discussed. It is found that electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields, pressure and the dot size. Significant effects of external factors on the quantum dot structures have the potential applications for implementation of electromagnetically induce transparency, slow lights, optical switches and quantum information storages. - Highlights: ► Sub-band energy states of a spherical QD are used to study the EIT. ► EIT strongly depends on the external fields, dimension and pressure. ► GI of a pulse strongly depends on the external fields, dimension and pressure. ► The production and controlling EIT and GI in QDs can be used for real applications.

  1. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  2. Vortex-lattice states at strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Akera, H.; MacDonald, A.H.; Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana (USA)); Norman, M.R. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois (USA))

    1991-10-21

    At strong magnetic fields, Landau quantization invalidates the semiclassical approximations which underly the Ginzburg-Landau (GL) theory of the mixed states of type-II superconductors. We have solved the {ital microscopic} mean-field equations for the case of a two-dimensional electron system in the strong magnetic-field limit. For delta-function attractive interactions there exist {ital n}+1 pairing channels in the {ital n}th Landau level. For {ital n}{gt}0, two channels share the maximum {ital T}{sub {ital c}}, and the order parameter differs markedly from expectations based on GL theory.

  3. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  4. Quantum processes in a strong electromagnetic field producing pairs. 3

    International Nuclear Information System (INIS)

    Gitman, D.M.; Gavrilov, S.P.

    1977-01-01

    The Furry picture in quantum electrodynamics with an external field producing real pairs has been generalized. For the required generalization to be achieved all operators of a spinor field are expressed through functions of production and annihilation operators and formulated are the rules for reduction to a generalized normal form, i.e., to such a form in which all the production operators in each term are on the left from all the annihilation operators. The diagram technique for matrix elements of random processes has been considered

  5. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small......-signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain...

  6. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  7. Experimental study of transport of relativistic electron beams in strong magnetic mirror field

    Science.gov (United States)

    Sakata, Shohei; Kondo, Kotaro; Bailly-Grandvaux, Mathiu; Bellei, Claudio; Santos, Joao; Firex Project Team

    2015-11-01

    Relativistic electron beams REB produced by ultra high intense laser pulses have generally a large divergence angle that results in degradation of energy coupling between the REB and a fuel core in the fast ignition scheme. Guiding and focusing of the REB by a strong external magnetic field was proposed to achieve high efficiency. We investigated REB transport through 50 μm or 250 μm thick plastic foils CuI doped under external magnetic fields, in magnetic mirror configurations of 1.2 or 4 mirror ratio. The experiment was carried out at the GEKKO XII and LFEX laser facility. Spatial pattern of the REB was measured by coherent transition radiation and/or Cu Ka x ray emission from the rear surface of the foil targets. Strong collimation of the REB by the external magnetic field was observed with 50 μm thick plastic targets, while the REB scattered in 250 μm thick targets. The experimental results are compared with computer simulations to understand the physical mechanisms of the REB transport in the external magnetic field. This work is supported by NIFS (Japan), MEXT/JSPS KAKENHI (Japan), JSPS Fellowship (Japan), ANR (France) and COST (Europe).

  8. Fluxon propagation in long Josephson junctions with external magnetic field

    DEFF Research Database (Denmark)

    Olsen, O.H.; Samuelsen, Mogens Rugholm

    1981-01-01

    The reflection of a single fluxon propagating in a Josephson line cavity influenced by an external magnetic field is examined numerically. We find a single reflected fluxon, an antifluxon, collapse of the incident fluxon, fission into a higher number of antifluxons or fluxons, and formation...... of breather-like waves depending on the velocity of the incident fluxon and the magnitude of the external magnetic field. Approximations based on energy analysis describing the border lines between regions of different processes are presented. Journal of Applied Physics is copyrighted by The American...

  9. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...... that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg-Landau equation....

  10. Quantum theory of strong-field frustrated tunneling

    Science.gov (United States)

    Popruzhenko, S. V.

    2018-01-01

    We show how the strong-field approximation, widely used for description of multiphoton and tunneling ionization, can be extended to analyse the excitation of bound states in intense low-frequency laser pulses. The proposed theory is based on the formalism of quantum trajectories and fills the gap between the numerical solution of the time-dependent Schrödinger equation and classical simulations. In particular, it allows identifying non-adiabatic and interference effects in strong-field excitation of Rydberg states.

  11. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  12. Dirac bound states of anharmonic oscillator in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)

    2014-02-15

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.

  13. Dirac bound states of anharmonic oscillator in external fields

    International Nuclear Information System (INIS)

    Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.

    2014-01-01

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method

  14. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  15. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  16. Dynamics of Deformable Active Particles under External Flow Field

    Science.gov (United States)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  17. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  18. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  19. Correlation effects in the Ising model in an external field

    International Nuclear Information System (INIS)

    Borges, H.E.; Silva, P.R.

    1983-01-01

    The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt

  20. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  1. Effect of external electric field on Cyclodextrin-Alcohol adducts

    Indian Academy of Sciences (India)

    Effect of external electric fields on the interaction energy between cyclodextrin and alcohol was analyzed in the light of density functional theory (DFT) and density functional reactivity theory (DFRT). Stability of the cyclodextrin-alcohol adducts was measured in terms of DFT based reactivity descriptor, global hardness, ...

  2. Mesoscale Modelling of Block Copolymers under External Fields.

    NARCIS (Netherlands)

    Lyakhova, Kateryna S.

    2005-01-01

    A remarkable feature of block copolymer systems is their ability to self-assemble into a variety of ordered structures with domain sizes in the mesoscale range. One of the open questions is the dynamics of structure formation, which can be highly dependent on external fields often present in

  3. Fluorescence excitation studies of molecular photoionization in external electric fields

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Dehmer, J.L.; Parr, A.C.; Leroi, G.E.

    1985-01-01

    Using molecular nitrogen as an example, we show that fluorescence excitation spectroscopy can be used to measure partial photoionization cross sections of free molecules in external electric fields. The production of the N 2 + (B 2 Σ/sub u/ + ) state was studied and the threshold for this process was found to shift linearly with the square root of the applied field. This behavior is compared with the hydrogenic case and with previously studied systems

  4. Synchrotron radiation in strongly coupled conformal field theories

    Science.gov (United States)

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-06-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle α˜1/γ. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  5. Statistical relationship of strong earthquakes with planetary geomagnetic field activity

    Science.gov (United States)

    Pogrebnikov, M. M.; Komarovski, N. I.; Kopytenko, Y. A.; Pushel, A. P.

    1984-12-01

    Earlier studies reported a significant decrease in the geomagnetic field before strong earthquakes. Possible relationships between earthquakes with magnitude greater than 7 (Soviet scale) and planetary terrestrial magnetic field activity as characterized by the K sub p index were investigated. A total of 100 cases of strong earthquakes on magnetically quiet days in 1965 to 1975 were studied. The K sub p indexes were studied for two days before and two days after the earthquakes. The dispersion curve shows a significant decrease one day before each event. The relationship of the planetary K sub p index with seismic activity indicates that the period of preparation for an earthquake and at the moment of the shock are reflected in the terrestrial magnetic field.

  6. N{sub f}=1 QCD in external magnetic fields: staggered fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari, Via Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari (Italy)

    2015-12-10

    We investigate N{sub f}=1 QCD in external magnetic fields on the lattice. The background field is introduced by means of the so-called Schrödinger functional. We adopt standard staggered fermions with constant bare mass am=0.025 and magnetic fields with constant magnetic flux up to a{sup 2}eH≃2.3562. We find that the the deconfinement and chiral symmetry restoration temperatures do not depend on the strength of the applied magnetic field. Our method allow us to easily study the effects of the external magnetic fields on the QCD thermodynamics. We determine the influences of applied magnetic fields to the free energy, pressure, and equation of state of strongly interacting matter.

  7. Cigar-shaped quarkonia under strong magnetic field

    Science.gov (United States)

    Suzuki, Kei; Yoshida, Tetsuya

    2016-03-01

    Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.

  8. Nonlinear dynamics of magnetic island interacting with external helical magnetic field

    International Nuclear Information System (INIS)

    Nishimura, S.; Yagi, M.; Itoh, S.-I.; Itoh, K.

    2009-01-01

    Full text: The control of magnetic islands is one of important issues for magnetically confined fusion plasmas. Magnetic islands strongly affect the achievable β''-value by modifying transports, equilibrium fields (i.e. radial profiles of electric current, pressure and electric field) and the stability of plasmas. The induction of resonant helical magnetic fields, which interact with magnetic islands, is an effective method to control the dynamics of magnetic islands. In the Large Helical Device (LHD), magnetic islands are excited by the external magnetic, and the generation of equilibrium poloidal E x B flows by magnetic islands is observed. On the other hand, the external helical magnetic fields have been used to control the poloidal rotation and the stability of magnetic islands in tokamak plasmas. The error field, which is caused by the misalignment of toroidal magnetic coil, plays a similar role to the external helical magnetic field. The locking of the rotation of magnetic islands by error field triggers the disruption in tokamak plasmas. Thus, it is important to understand the basic mechanism of the interaction between magnetic islands and external helical magnetic fields. In this study, nonlinear simulation of drift tearing mode is performed using a set of reduced two-fluid equations, and the detailed study of the interaction between magnetic islands with external helical magnetic fields is reported. The external helical field associated with magnetic islands is imposed by means of finite amplitude of perturbed magnetic flux (vector potential) at edge boundary. In our simulation, the locking (stop) of the rotation of magnetic islands is observed. The rotation of magnetic island is basically driven by the diamagnetic drift flow and E x B flow. It is found that contributions of these flows approximately cancel each other inside the separatrix of magnetic island in the locking phase. The detailed mechanism of the locking of magnetic island rotation is

  9. Matter in strong fields: from molecules to living cells

    International Nuclear Information System (INIS)

    Mathur, D

    2007-01-01

    Strong optical fields induce multiple ionization in irradiated molecules. The ionization dynamics are governed by optical-field-induced distortions of molecular potential energy surfaces and molecular dissociation is the expected by-product. Recent experiments have even shown, quite counter-intuitively, that strong optical fields may even induce bond formation processes in molecules. All such processes are all manifestations of how intense light affects matter. In turn, matter also affects intense light. A visually dramatic manifestation of matter affecting light is obtained when ultrashort pulses of intense light propagate though condensed matter. The temporal and spatial properties of the incident light pulse are modified, and such modifications manifest themselves in an enlarged optical frequency sweep, resulting in the generation of broadband radiation (white light) known as supercontinuum production. Although the physics that governs supercontinuum generation is not properly understood, some recent progress is summarized. Novel applications of strong field phenomena are reported that are of relevance in the biomedical and life sciences

  10. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    weak THz and near infrared pulses as probes. Firstly, an intense THz pulse is used to study THz-induced impact ionization (IMI) dynamics in silicon. Local field enhancement by metallic dipole antenna arrays has been used to generate strong electric fields of several MV/cm in the hot spots near...... uniquely. Finally it is demonstrated for the first time that SiC can be tailored to have extremely fast THz-induced nonlinear behavior in moderate THz electric fields by addition of appropriate dopants. A 4H-SiC sample with high concentrations of nitrogen and boron dopants shows a nonlinear THz......In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...

  11. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field.

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M S

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  12. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  13. Approximation for a Coulomb-Volkov solution in strong fields

    Science.gov (United States)

    Reiss, H. R.; Krainov, V. P.

    1994-08-01

    A simple analytical approximation is found for the wave function of an electron simultaneously exposed to a strong, circularly polarized plane-wave field and an atomic Coulomb potential. The approximation is valid when α0>>1, where α0 is the classical radius of motion of a free electron in the plane-wave field. This constraint is sufficiently mild at low frequencies that it makes possible a major extension of the lower bound of laser intensities for which Volkov-solution-based approximations are useful.

  14. Two-level atom in a strong polychromatic field

    International Nuclear Information System (INIS)

    Kazakov, A.Ya.

    1991-01-01

    The quasienergy spectrium of a two-level atom in a polychromatic electromagnetic field can be expressed in terms of the Floquet indexes of a linear set of ordinary differential equations with periodic coefficients. An analytic expression for the quasienergy spectrum is obtained by the asymptotic technique for the case of a strong polychromatic field. It is shown that on deep modulation of the radiation incident on the atom forbidden bands for the quasilevels may arise. The Stark effect for the physical system under consideration is described

  15. Strong-field short-pulse nondipole dynamics

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Førre, Morten; Madsen, Lars Bojer

    2009-01-01

    We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer and cont......We present a quantitative investigation of strong-field short-pulse nondipole dynamics in laser-matter interactions. We find excellent agreement between ab initio numerical and analytic results obtained using the Magnus expansion. We show that in the short-pulse limit, ultrafast transfer...... and control of population can be achieved using nondipole effects. The relative importance of nondipole to dipole effects depends on the displacement imparted to a free classical electron....

  16. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  17. Strong field transient manipulation of electronic states and bands

    Directory of Open Access Journals (Sweden)

    I. Crassee

    2017-11-01

    Full Text Available In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.

  18. Radiative electron-atom collision in a strong laser field

    International Nuclear Information System (INIS)

    Faisal, F.H.M.

    1984-01-01

    The comment is concerned with certain current problems and prospects in the theory of electron-atom collision in a strong radiation field. High energy off-shell electron-photon excitation of atoms; low-energy e-atom radiative scattering; steady state input distribution; typical distribution; low energy phenomena; and extensions of the close coupling and the algebraic methods, are all discussed. (U.K.)

  19. Experiments on plasma turbulence induced by strong, steady electric fields

    International Nuclear Information System (INIS)

    Hamberger, S.M.

    1975-01-01

    The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)

  20. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xufen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, 230026 (China); Wang, Yougang [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Feix, Martin [CNRS, UMR 7095 and UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Zhao, HongSheng, E-mail: xufenwu@ustc.edu.cn [School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom)

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  1. Monte Carlo solutions of Schroedinger's equation for H2+ ion in strong magnetic fields

    International Nuclear Information System (INIS)

    Ozaki, Jiro; Tomishima, Yasuo

    1980-01-01

    The analytical expressions suitable for the Monte Carlo calculation to obtain the solution of Schroedinger's equation of hydrogen molecular ion in a strong magnetic field are derived. The wave functions, the energy values and the equilibrium internuclear distances of 1σsub(g) state of H 2 + are obtained numerically through the Monte Carlo simulation and compared with other results based on the variational method. The agreement between them is fairly good over a wide range of magnetic field. The calculation of the energy values of 1πsub(g) state of H 2 + for various internuclear distances taking a constant magnetic field as a parameter, shows that the antibonding 1πsub(g) state in the absence of the external magnetic field changes to a bonding state with an increasing magnetic field. The lowest energy values and the equilibrium internuclear distances of 1πsub(g) state are also calculated for various magnetic field. (author)

  2. Floating and flying ferrofluid bridges induced by external magnetic fields

    Science.gov (United States)

    Ma, Rongchao; Zhou, Yixin; Liu, Jing

    2015-04-01

    A ferrofluid is a mixture that exhibits both magnetism and fluidity. This merit enables the ferrofluid to be used in a wide variety of areas. Here we show that a floating ferrofluid bridge can be induced between two separated boards under a balanced external magnetic field generated by two magnets, while a flying ferrofluid bridge can be induced under an unbalanced external magnetic field generated by only one magnet. The mechanisms of the ferrofluid bridges were discussed and the corresponding mathematical equations were also established to describe the interacting magnetic force between the ferro particles inside the ferrofluid. This work answered a basic question that, except for the well-known floating water bridges that are related to electricity, one can also build up a liquid bridge that is related to magnetism.

  3. Theoretical Femtosecond Physics Atoms and Molecules in Strong Laser Fields

    CERN Document Server

    Grossmann, Frank

    2008-01-01

    Theoretical femtosecond physics is a new field of research. Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers of up to atomic field strengths are leading to an understanding of many challenging experimental discoveries. Laser-matter interaction is treated on a nonperturbative level in the book using approximate and numerical solutions of the time-dependent Schrödinger equation. The light field is treated classically. Physical phenomena, ranging from ionization of atoms to the ionization and dissociation of molecules and the control of chemical reactions are presented and discussed. Theoretical background for experiments with strong and short laser pulses is given. Several exercises are included in the main text. Some detailed calculations are performed in the appendices.

  4. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  5. Entanglement via atomic coherence induced by two strong classical fields

    Science.gov (United States)

    Lü, Xin-You; Huang, Pei; Yang, Wen-Xing; Yang, Xiaoxue

    2009-09-01

    Based on the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we propose a scheme to achieve the fully tripartite continuous-variable (CV) entanglement in a Y -type atomic system driven by two strong classical fields. By numerically simulating the dynamics of system, we show that the generation of entanglement does not depend intensively on the initial condition of cavity field and the time for which the cavity modes remain entangled can be prolonged via enhancing the intensities of classical fields in our scheme. Moreover, our numerical results also show that a tripartite entanglement amplifier can be realized in the present scheme. The present research provides an efficient approach to achieve fully tripartite CV entangled state even when the three entangled modes have different frequencies and initial states, which may be useful for the progress of quantum information networks with many nodes.

  6. Dynamics of a quantum emitter resonantly coupled to both external field and localized surface plasmon

    Science.gov (United States)

    Nerkararyan, Khachatur V.; Yezekyan, Torgom S.; Bozhevolnyi, Sergey I.

    2018-01-01

    We investigate excitation dynamics in the system of a quantum dipole emitter (QDE) coupled to a located nearby metal nanoparticle (MNP), which exhibits a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition, in the presence of a strong external resonant electromagnetic field. Considering the QDE-field interactions in the regime of strong QDE-field coupling, we show that the feedback provided by the MNP on the QDE (due to the LSP excitation with the field generated by the dipole moment of the QDE transition) influences significantly the coherent process of Rabi oscillations, resulting in the occurrence of additional satellite frequencies in the radiation spectrum scattered by the QDE-MNP configuration. The relative ratio of high harmonics depends strongly on the QDE-MNP separation, an important characteristic feature that can be used for observing this effect and can be exploited, for example, for controlling distances at the nanoscale.

  7. Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges

    Science.gov (United States)

    Jirsák, Jan; Moučka, Filip; Škvor, Jiří; Nezbeda, Ivo

    2015-04-01

    Exposing aqueous surfaces to a strong electric field gives rise to interesting phenomena, such as formation of a floating water bridge or an eruption of a jet in electrospinning. In an effort to account for the phenomena at the molecular level, we performed molecular dynamics simulations using several protocols on both pure water and aqueous solutions of sodium chloride subjected to an electrostatic field. All simulations consistently point to the same mechanisms which govern the rearrangement of the originally planar surface. The results show that the phenomena are primarily governed by an orientational reordering of the water molecules driven by the applied field. It is demonstrated that, for pure water, a sufficiently strong field yields a columnar structure parallel to the field with an anisotropic arrangement of the water molecules with their dipole moments aligned along the applied field not only in the surface layer but over the entire cross section of the column. Nonetheless, the number of hydrogen bonds per molecule does not seem to be affected by the field regardless of its strength and molecule's orientation. In the electrolyte solutions, the ionic charge is able to overcome the effect of the external field tending to arrange the water molecules radially in the first coordination shell of an ion. The ion-water interaction interferes thus with the water-electric field interaction, and the competition between these two forces (i.e., strength of the field versus concentration) provides the key mechanism determining the stability of the observed structures.

  8. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  9. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  10. Solvent effects on ion-receptor interactions in the presence of an external electric field.

    Science.gov (United States)

    Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek

    2016-11-09

    In this work we investigated the influence of an external electric field on the arrangement of the solvent shells around ions interacting with a carbon-based receptor. Our survey reveals that the mechanism of interaction between a monoatomic ion and a π-type ion receptor varies by the variation in the solvent polarity, the nature of the ion, and the strength of the external field. The characteristics of the ion-surface interaction in nonpolar solvents are similar to those observed in a vacuum. However, in water, we identified two mechanisms. Soft and polarizable ions preferentially interact with the π-receptor. In contrast, two bonded states were found for hard ions. A fully solvated ion, weakly interacting with the receptor at weak field, and a strong π-complex at the strong-field regime were identified. An abrupt variation in the potential energy surface (PES) associated with the rearrangement of the solvation shell on the surface of the receptor induced by an external field was observed both in implicit and explicit solvent environments. The electric field at which the solvation shell breaks is proportional to the hardness of the ion as has been suggested recently based on experimental observations.

  11. A theoretical study of the dynamics of paramagnetic superrotors in external magnetic fields

    International Nuclear Information System (INIS)

    Floß, Johannes

    2015-01-01

    We present a detailed theoretical study of oxygen molecules in high rotational states (molecular superrotors) interacting with an external magnetic field. The system shows rich dynamics, ranging from a spin-selective splitting of the angular distribution over molecular alignment to an inversion of the rotational direction. We find that the observed magneto-rotational effects are due to a spin-mediated precession of the orbital angular momentum around the magnetic field. Analytical expressions for the precession frequency in the limits of weak and strong magnetic fields are derived and used to support the proposed mechanism. In addition, we provide the procedure for a numerical treatment of oxygen superrotors in an external magnetic field. (paper)

  12. Cooper Pair Breakup in YBCO under Strong Terahertz Fields

    OpenAIRE

    Glossner, Andreas; Zhang, Caihong; Kikuta, Shinya; Kawayama, Iwao; Murakami, Hironaru; Müller, Paul; Tonouchi, Masayoshi

    2012-01-01

    We show that strong electric fields of ~ 30 kV cm^(-1) at terahertz frequencies can significantly weaken the superconducting characteristics of cuprate superconductors. High-power terahertz time-domain spectroscopy (THz-TDS) was used to investigate the in-plane conductivity of YBa2Cu3O7-delta (YBCO) with highly intense single-cycle terahertz pulses. Even though the terahertz photon energy (~ 1.5 meV) was significantly smaller than the energy gap in YBCO (~ 20-30 meV), the optical conductivity...

  13. Confinement and αs in a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Yu.A. Simonov

    2015-07-01

    Full Text Available Hadron decay widths are shown to increase in strong magnetic fields as Γ(eB∼eBκΓ(0. The same mechanism is shown to be present in the production of the sea quark pair inside the confining string, which decreases the string tension with the growing eB parallel to the string. On the other hand, the average energy of the qq¯ holes in the string world sheet increases, when the direction of B is perpendicular to the sheet. These two effects stipulate the spectacular picture of the B dependent confinement and αs, discovered on the lattice.

  14. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  15. Pair Creation of Particles and Black Holes in External Fields

    Science.gov (United States)

    Dias, Óscar J. C.

    2001-11-01

    It is well known that massive black holes may form through the gravitational collapse of a massive astrophysical body. Less known is the fact that a black hole can be produced by the quantum process of pair creation in external fields. These black holes may have a mass much lower than their astrophysical counterparts. This mass can be of the order of Planck mass so that quantum effects may be important. This pair creation process can be investigated semiclassically using non-perturbative instanton methods, thus it may be used as a theoretical laboratory to obtain clues for a quantum gravity theory. In this work, we review briefly the history of pair creation of particles and black holes in external fields. In order to present some features of the euclidean instanton method which is used to calculate pair creation rates, we study a simple model of a scalar field and propose an effective one-loop action for a two-dimensional soliton pair creation problem. This action is built from the soliton field itself and the soliton charge is no longer treated as a topological charge but as a Noether charge. The results are also valid straightforwardly to the problem of pair creation rate of domain walls in dimensions D ≥ 3.

  16. Strong-field control landscapes of coherent electronic excitation

    Science.gov (United States)

    Bayer, Tim; Wollenhaupt, Matthias; Baumert, Thomas

    2008-04-01

    We report on physical mechanisms behind resonant strong-field coherent control. To this end, we study multi-photon ionization of potassium atoms using intense shaped femtosecond laser pulses. The measured photoelectron spectra are discussed in terms of selective population of dressed states (SPODS). A physically motivated pulse parameterization is introduced which opens up two-dimensional parameter spaces comprising pulse sequences as well as chirped pulses. The control topologies of these subspaces are mapped out experimentally and are presented in the form of strong-field control landscapes (SFCLs). In the SFCLs, complementary realizations of SPODS via photon locking and rapid adiabatic passage are observed. Moreover, the combined effect, termed Multi-RAP, arises when both mechanisms are at play simultaneously. In order to better understand the performance of adaptive optimization procedures, we experimentally study their capability to find optimal solutions on a given parameter space. The evolution of different optimization procedures is visualized by means of control trajectories on the surface of the measured SFCL.

  17. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2015-01-01

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification

  18. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  19. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  20. Controlled creation of nanometric skyrmions using external magnetic fields

    Science.gov (United States)

    Mochizuki, Masahito

    2017-08-01

    To exploit nanometric magnetic skyrmions as information carriers in high-density storage devices, a method is needed that creates an intended number of skyrmions at specified places in the device preferably at a low energy cost. We theoretically propose that using a system with a fabricated hole or notch, the controlled creation of individual skyrmions can be achieved even when using an external magnetic field applied to the entire specimen. The fabricated defect turns out to work like a catalyst to reduce the energy barrier for the skyrmion creation.

  1. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  2. Phase separation in fluids exposed to spatially periodic external fields.

    Science.gov (United States)

    Vink, R L C; Archer, A J

    2012-03-01

    When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.

  3. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Science.gov (United States)

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. An integral-field spectroscopic strong lens survey

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Adam S [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS-20, Cambridge, MA 02138 (United States); Burles, Scott [Department of Physics and Kavli Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2007-12-15

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction.

  5. Virtual detector theory for strong-field atomic ionization

    Science.gov (United States)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  6. Coherence and quasistable states in a strong infrared field

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, F.

    2016-03-01

    We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components. When the two components have frequencies separated by two IR photons, the population of surviving electrons is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.

  7. The ESRg matrix for strong field d5 systems

    Directory of Open Access Journals (Sweden)

    McGarvey Bruce R.

    1998-01-01

    Full Text Available This review has tried to collect and correlate all the various equations for the g matrix of strong field d5 systems obtained from different basis sets using full electron and hole formalism calculations. It has corrected mistakes found in the literature and shown how the failure to properly take in symmetry boundary conditions has produced a variety of apparently inconsistent equations in the literature. The review has reexamined the problem of spin-orbit interaction with excited t4e states and finds that the earlier reports that it is zero in octahedral symmetry is not correct. It has shown how redefining what x, y, and z are in the principal coordinate system simplifies, compared to previous methods, the analysis of experimental g values with the equations.

  8. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  9. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  10. Influence of an externally applied magnetic field on vectorial interaction in LiNbO3:Fe crystals

    DEFF Research Database (Denmark)

    Dam-Hansen, C.; Johansen, P.M.; Petersen, P.M.

    1995-01-01

    An experimental investigation of the influence of an externally applied magnetic field on the dynamic grating formation in iron-doped lithium niobate is carried out. The diffraction efficiency and the two-beam gain depends strongly on the applied magnetic field. We observe changes in the two...

  11. Surface field in an ensemble of superconducting spheres under external magnetic field

    CERN Document Server

    Peñaranda, A; Ramírez-Piscina, L

    1999-01-01

    We perform calculations of the magnetic field on the surface of an ensemble of superconducting spheres when placed into an external magnetic field, which is the configuration employed in superheated superconducting granule detectors. The Laplace equation is numerically solved with appropriate boundary conditions by means of an iterative procedure and a multipole expansion.

  12. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  13. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  14. Dynamic chaos in the tunnelling ionization produced by a strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V P

    2014-01-01

    Ionization of atoms by a strong low-frequency linearly polarized electromagnetic field (the photon energy is small compared to the atomic ionization potential) is considered under new conditions compared to the well known Keldysh approach. The field strength is supposed to be small in comparison to the atomic field strength. But the Coulomb interaction of an electron with atomic core is assumed to be of the same order of magnitude as the interaction between an electron and the external electromagnetic field. It was shown that then classical electron motion in the continuum becomes chaotic (this is so-called dynamic chaos). Using the averaging procedure of Chirikov about the chaotic variation of the phase of motion, the considered Newton problem is transformed into the problem of nonlinear electron diffusion over energy scale. In this work we derive the classical electron energy averaged over fast chaotic oscillations of an electron in the final continuum state which takes into account both the Coulomb field and electromagnetic field. This energy is used for analytic calculation of the ionization rate of the ground atomic state into the low lying continuum state based on the Landau–Dykhne approximation (with exponential accuracy). We found that the ionization rate depends significantly on the field frequency. When field frequency decreases, the well known tunnelling limit has been obtained, and then the ionization rate does not depend on the field frequency. (paper)

  15. Process γγ → νν-bar in a strong magnetic field

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.

    2003-01-01

    The three-vertex loop amplitude in a strong magnetic field are analyzed in a general form by using the asymptotic behavior of the electron propagator in an external field. The process γγ → νν-bar is studied in terms of the scalar-vector-vector (SVV), pseudoscalar-vector-vector (PVV), vector-vector-vector (VVV), and axial-vector-vector-vector (AVV) combinations of couplings. It is shown that only in the case of the SVV combination does the amplitude grow linearly with increasing magnetic-field strength, the amplitudes evaluated with the other combinations of couplings (PVV, VVV, and AVV) featuring no linearly increasing terms. The process γγ → νν-bar is also studied within the left-right model, which is an extension of the Standard Model of electroweak interactions and which may involve an effective scalar ννee coupling. Possible astrophysical manifestations of this process are discussed

  16. Cubic interaction vertex of higher-spin fields with external electromagnetic field

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Yu.M.

    2012-01-01

    We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.

  17. Eccentric binaries of compact objects in strong-field gravity

    International Nuclear Information System (INIS)

    Gold, Roman

    2011-01-01

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on to the

  18. Eccentric binaries of compact objects in strong-field gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman

    2011-09-27

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on

  19. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    Science.gov (United States)

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  20. Interfacing external sensors with Android smartphones through near field communication

    International Nuclear Information System (INIS)

    Leikanger, Tore; Häkkinen, Juha; Schuss, Christian

    2017-01-01

    In this paper, we present and evaluate a new approach to communicate with inter-integrated circuit (I2C) enabled circuits such as sensors over near field communication (NFC). The NFC-to-I2C interface was designed using a non-standard NFC command to control the I2C bus directly from a smartphone, which was controlling both, the read and write operations on the I2C bus. The NFC-to-I2C interface was reporting back the data bytes on the bus to the smartphone when the transaction was completed successfully. The proposed system was tested experimentally, both, with write and read requests to a commercial microcontroller featuring a hardware I2C port, as well as reading a commercial I2C enabled humidity and temperature sensor. We present experimental results of the system which show that our approach enables an easy interface between smartphones and external sensors. Interfacing external sensors is useful and beneficial for smartphone users, especially, if certain types of sensors are not available on smartphones. (paper)

  1. Interfacing external sensors with Android smartphones through near field communication

    Science.gov (United States)

    Leikanger, Tore; Häkkinen, Juha; Schuss, Christian

    2017-04-01

    In this paper, we present and evaluate a new approach to communicate with inter-integrated circuit (I2C) enabled circuits such as sensors over near field communication (NFC). The NFC-to-I2C interface was designed using a non-standard NFC command to control the I2C bus directly from a smartphone, which was controlling both, the read and write operations on the I2C bus. The NFC-to-I2C interface was reporting back the data bytes on the bus to the smartphone when the transaction was completed successfully. The proposed system was tested experimentally, both, with write and read requests to a commercial microcontroller featuring a hardware I2C port, as well as reading a commercial I2C enabled humidity and temperature sensor. We present experimental results of the system which show that our approach enables an easy interface between smartphones and external sensors. Interfacing external sensors is useful and beneficial for smartphone users, especially, if certain types of sensors are not available on smartphones.

  2. First-order discrete Faddeev gravity at strongly varying fields

    Science.gov (United States)

    Khatsymovsky, V. M.

    2017-11-01

    We consider the Faddeev formulation of general relativity (GR), which can be characterized by a kind of d-dimensional tetrad (typically d = 10) and a non-Riemannian connection. This theory is invariant w.r.t. the global, but not local, rotations in the d-dimensional space. There can be configurations with a smooth or flat metric, but with the tetrad that changes abruptly at small distances, a kind of “antiferromagnetic” structure. Previously, we discussed a first-order representation for the Faddeev gravity, which uses the orthogonal connection in the d-dimensional space as an independent variable. Using the discrete form of this formulation, we considered the spectrum of (elementary) area. This spectrum turns out to be physically reasonable just on a classical background with large connection like rotations by π, that is, with such an “antiferromagnetic” structure. In the discrete first-order Faddeev gravity, we consider such a structure with periodic cells and large connection and strongly changing tetrad field inside the cell. We show that this system in the continuum limit reduces to a generalization of the Faddeev system. The action is a sum of related actions of the Faddeev type and is still reduced to the GR action.

  3. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  4. Acceleration of neutral atoms in strong short-pulse laser fields.

    Science.gov (United States)

    Eichmann, U; Nubbemeyer, T; Rottke, H; Sandner, W

    2009-10-29

    A charged particle exposed to an oscillating electric field experiences a force proportional to the cycle-averaged intensity gradient. This so-called ponderomotive force plays a major part in a variety of physical situations such as Paul traps for charged particles, electron diffraction in strong (standing) laser fields (the Kapitza-Dirac effect) and laser-based particle acceleration. Comparably weak forces on neutral atoms in inhomogeneous light fields may arise from the dynamical polarization of an atom; these are physically similar to the cycle-averaged forces. Here we observe previously unconsidered extremely strong kinematic forces on neutral atoms in short-pulse laser fields. We identify the ponderomotive force on electrons as the driving mechanism, leading to ultrastrong acceleration of neutral atoms with a magnitude as high as approximately 10(14) times the Earth's gravitational acceleration, g. To our knowledge, this is by far the highest observed acceleration on neutral atoms in external fields and may lead to new applications in both fundamental and applied physics.

  5. Gauge invariance of a particle in an external magnetic field

    International Nuclear Information System (INIS)

    Ekstein, H.

    1978-12-01

    In the accepted theory of a nonrelativistic particle in an external field, as well as in the Dirac equation, the canonical momentum p plays a strangely elusive role: contrary to the position q, it has no physical interpretation, yet it is a member of the algebra of observables; nor does it have a well-defined meaning as a translation generator. This paper proposes an observation procedure for p which entails a definite choice for the vector potential A: the radiation gauge divergence of A=0. The canonical momentum, so defined operationally, is shown to be the image of the generator of space translations, in the sense of presymmetry, as the position q is the image of the generator of Galilei boosts in nonrelativistic theories

  6. Relativistic Killingbeck energy states under external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Eshghi, M. [Islamic Azad University, Researchers and Elite Club, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Mehraban, H. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of); Ikhdair, S.M. [An-Najah National University, Department of Physics, Faculty of Science, Nablus, West Bank, Palestine (Country Unknown); Near East University, Department of Electrical Engineering, Nicosia, Northern Cyprus (Turkey)

    2016-07-15

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  7. Relativistic Killingbeck energy states under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S.M.

    2016-01-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  8. Probing Strong-field General Relativity with Gravitational Waves

    Science.gov (United States)

    Pretorius, Frans

    We are on the verge of a new era in astrophysics as a world-wide effort to observe the universe with gravitational waves takes hold---ground based laser interferometers (Hz to kHz), pulsar timing (micro to nano Hz), measurements of polarization of the cosmic microwave background (sub-nano Hz), and the planned NASA/ESA mission LISA (.1 mHz to .1 Hz). This project will study the theoretical nature of gravitational waves (GWs) emitted by two sources in the LISA band, namely supermassive-black-hole (SMBH) binary mergers, and extreme-mass-ratio-inspirals (EMRI's)---the merger of a stellar mass black hole, neutron star, or white dwarf with a SMBH. The primary goal will be to ascertain how well LISA, by observing these sources, could answer the following related questions about the fundamental nature of strong-field gravity: Does Einstein's theory of general relativity (GR) describe the geometry of black holes in the universe? What constraints can GW observations of SMBH mergers and EMRIs place on alternative theories of gravity? If there are deviations from GR, are there statistics that could give indications of a deviation if sources are detected using a search strategy based solely on GR waveforms? The primary reasons for focusing on LISA sources to answer these questions are (a) binary SMBH mergers could be detected by LISA with exquisitely high signal-to- noise, allowing enough parameters of the system to be accurately extracted to perform consistency checks of the underlying theory, (b) EMRIs will spend numerous orbits close to the central black hole, and thus will be quite sensitive to even small near-horizon deviations from GR. One approach to develop the requisite knowledge and tools to answer these questions is to study a concrete, theoretically viable alternative to GR. We will focus on the dynamical variant of Chern-Simons modified gravity (CSMG), which is interesting for several reasons, chief among which are (1) that CSMG generically arises in both string

  9. External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jianguo; Yan, Gongqin; Wang, Wei; Liu, Jun

    2012-03-07

    This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a 'green' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth.

  10. Correlated electron-ion collisions in a strong laser field

    International Nuclear Information System (INIS)

    Ristow, T.

    2007-01-01

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  11. Towards strong field tests of beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo

    2017-03-01

    Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.

  12. On the invariance properties of the Klein-Gordon equation with external electromagnetic field

    International Nuclear Information System (INIS)

    Sen Gupta, N.D.

    2003-01-01

    Here we attempt to find the nature of the external electromagnetic field such that the KG equation with external electromagnetic field is invariant. Lie's extended group method is applied to obtain the class of external electromagnetic field which admits the invariance of the KG equation. Though, the field potential only explicitly appears in the equation, the constraints for the invariance are only on the electromagnetic field. (author)

  13. Behaviour of the order parameter of the simple magnet in an external field

    Directory of Open Access Journals (Sweden)

    M.P.Kozlovskii

    2005-01-01

    Full Text Available The effect of a homogeneous external field on the three-dimensional uniaxial magnet behaviour near the critical point is investigated within the framework of the nonperturbative collective variables method using the ρ4 model. The research is carried out for the low-temperature region. The analytic explicit expressions for the free energy, average spin moment and susceptibility are obtained for weak and strong fields in comparison with the field value belonging to the pseudocritical line. The calculations are performed on the microscopic level without any adjusting parameters. It is established that the long-wave fluctuations of the order parameter play a crucial role in forming a crossover between the temperature-dependence and field-dependence critical behaviour of the system.

  14. Topological phases of silicene and germanene in an external magnetic field: Quantitative results

    KAUST Repository

    Singh, Nirpendra

    2014-03-17

    We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Equilibrium Statistical Thermodynamics of a Many-Particle System Coupled to an External Scalar Field

    Science.gov (United States)

    Salvino, R. E.

    1990-01-01

    The equilibrium thermodynamics of a many-particle assembly in the presence of an external scalar field is examined. Two types of scalar coupling are considered: an external field coupled to the particle density and an external scalar field coupled to the energy density. It is shown that the broken translational and rotational invariance of the system due to the external field is reflected in the macroscopic physics by loss of the usual extensivity property of the system and by means of anisotropy in the response of the system to changes in the system lengths or to the system shape. In addition, the assumptions used in local equilibrium analyses are shown to be incorrect in principle. Nonlocal effects due to the external field must be included in the determination of the equation of state. Simple model calculations for a system in an external gravitational field and an externally imposed temperature field are presented as illustrations.

  16. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  17. Synchrotron radiation in strongly coupled conformal field theories

    OpenAIRE

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-01-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, and find the same angular distribution of radiated power, up to an overall prefactor. In both regimes, the angular distribution is in fact similar to that of synchrotron radiation produced by an electron in circula...

  18. Ion H2+ can dissociate in a strong magnetic field

    International Nuclear Information System (INIS)

    Turbiner, A.V.; Lopez, J.C.; Flores-Riveros, A.

    2001-01-01

    In framework of a variational method the molecular ion H 2 + in a magnetic field is studied. An optimal form of the vector potential corresponding to a given magnetic field is chosen. It is shown that for any magnetic field strength as well as for any orientation of the molecular axis the system (ppe) possesses a minimum in the potential energy. The stable configuration always corresponds to elongation along the magnetic line. However, for magnetic fields B ≥ 5 x 10 11 G and some orientations the ion H 2 + becomes instable decaying to H-atom + p [ru

  19. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  20. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  1. Ionization of atoms in strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V. P.

    2010-01-01

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  2. An esophageal probe for measuring three-dimensional electric fields during external cardiac defibrillation.

    Science.gov (United States)

    Fitch, David A; de Jongh Curry, Amy L

    2012-03-01

    External defibrillation is a common treatment for the cardiac arrhythmia atrial fibrillation. Electrode placement has been shown to affect defibrillation efficacy and required energy levels. We suggest investigating the relationship between esophageal electric fields (EEFs) and atrial defibrillation thresholds to determine the feasibility of creating patient-specific electrode placements using EEFs. This study presents the design and implementation of an esophageal probe (EP) that accurately measures three-dimensional electric fields. The root-mean-square error of the EP was 1.69% as determined by measurements performed in an electrolytic tank. The EP also performed well during in vivo testing in a pig. There was a strong positive relationship between EEF(2)s and applied energy during defibrillation strength shocks. The EEF measurements were also repeatable, with less than 4.24% difference between repeated shocks. This is the first description of a probe designed specifically for measuring electric fields in the esophagus.

  3. Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-Ines, Eduardo [Institute de Mécanique Céleste et des Calcul des Éphémérides—Observatoire de Paris, 77 Avenue Denfert Rochereau, F-75014 Paris (France); Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena, CA (United States)

    2017-04-01

    We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-order models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.

  4. Operating a magnetic nozzle helicon thruster with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazunori, E-mail: kazunori@ecei.tohoku.ac.jp; Komuro, Atsushi; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  5. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to ...

  6. Certain relativistic effects due to strong electromagnetic fields in plasmas

    International Nuclear Information System (INIS)

    Tsintsadze, N.L.

    1974-01-01

    It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)

  7. Inherent resistivity of graphene to strong THz fields

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Mics, Zoltán; Jensen, Søren

    2014-01-01

    The nonlinear THz conductivity of graphene is characterized using nonlinear ultrafast THz spectroscopy. Efficient carrier heating by the THz field reduces carrier scattering, yet, counter-intuitively, simultaneously suppresses the high-frequency conductivity of graphene. © 2014 OSA....

  8. Extension of Gibbs-Duhem equation including influences of external fields

    Science.gov (United States)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  9. The Interaction of Magnetizations with an External Electromagnetic Field and a Time-Dependent Magnetic Aharonov-Bohm Effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    We investigate how the choice of the magnetization distribution inside the sample affects its interaction with the external electromagnetic field. The strong selectivity to the time dependence of the external electromagnetic field arises for the particular magnetizations. This can be used for the storage and ciphering of information. We propose a time-dependent Aharonov-Bohm-like experiment in which the phase of the wave function is changed by the time-dependent vector magnetic potential. The arising time-dependent interference picture may be viewed as a new channel for the information transfer. 15 refs., 4 figs

  10. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    Science.gov (United States)

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  11. Radiative Processes in Graphene and Similar Nanostructures in Strong Electric Fields

    Science.gov (United States)

    Gavrilov, S. P.; Gitman, D. M.

    2017-03-01

    Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is taken into account perturbatively, following the general theory (the generalized Furry representation). We consider the effective theory of photon emission in the first-order approximation and construct the corresponding total probabilities, taking into account the unitarity relation.

  12. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  13. Supercritical Nonlinear Vibration of a Fluid-Conveying Pipe Subjected to a Strong External Excitation

    Directory of Open Access Journals (Sweden)

    Yan-Lei Zhang

    2016-01-01

    Full Text Available Nonlinear vibration of a fluid-conveying pipe subjected to a transverse external harmonic excitation is investigated in the case with two-to-one internal resonance. The excitation amplitude is in the same magnitude of the transverse displacement. The fluid in the pipes flows in the speed larger than the critical speed so that the straight configuration becomes an unstable equilibrium and two curved configurations bifurcate as stable equilibriums. The motion measured from each of curved equilibrium configurations is governed by a nonlinear integro-partial-differential equation with variable coefficients. The Galerkin method is employed to discretize the governing equation into a gyroscopic system consisting of a set of coupled nonlinear ordinary differential equations. The method of multiple scales is applied to analyze approximately the gyroscopic system. A set of first-order ordinary differential equations governing the modulations of the amplitude and the phase are derived via the method. In the supercritical regime, the subharmonic, superharmonic, and combination resonances are examined in the presence of the 2 : 1 internal resonance. The steady-state responses and their stabilities are determined. The various jump phenomena in the amplitude-frequency response curves are demonstrated. The effects of the viscosity, the excitation amplitude, the nonlinearity, and the flow speed are observed. The analytical results are supported by the numerical integration.

  14. Supply Networks and Value Creation in High Innovation and Strong Network Externalities Industry

    Directory of Open Access Journals (Sweden)

    Fernando Claro Tomaselli

    2013-12-01

    Full Text Available The rapid developing product and service markets and developments in information technologies have accelerated growth in outsourcing of peripheral activities and critical business as well, enhancing the importance of network supply chain management. This paper analyzes the dynamics of supply chain management and the creation of value in an industry with strong network effects and constantly introduction of disruptive technologies, the videogame industry. This industry evolves at a high velocity, with a lifecycle of five to six years for consoles, which features a new generation of consoles, where new companies and technologies appear and disappear at each generation.

  15. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  16. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  17. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    Stars: neutron stars; magnetic fields; equation of state. PACS Nos 26.60.Kp; 52.35.Tc; 97.10.Cv. 1. Introduction. The central density of neutron stars (NS) exceeds the nuclear saturation density (n0 ∼. 0.15 fm. −3. ), thereby giving the idea that compact stars might contain deconfined and chirally restored quark matter in them.

  18. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  19. Multistage ionization of atoms in a very strong electromagnetic field

    International Nuclear Information System (INIS)

    Krajnov, V.P.; Manykin, Eh.A.

    1980-01-01

    Considered is a problem of multiple ionization of middle and heavy atoms as a function of the intensity of an electromagnetic field. The atom is considered in the Thomas -Fermi approximation. Presented are estimates of ionization degree for lead, tungsten and tantalum

  20. Limitations of the strong field approximation in ionization of the hydrogen atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires

    2008-01-01

    Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution

  1. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    Science.gov (United States)

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  2. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    International Nuclear Information System (INIS)

    Chui, C. P.; Zhou, Yan

    2014-01-01

    Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD) simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence

  3. The realization of strong, stray static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2012-01-01

    Roč. 9, č. 1 (2012), s. 71-77 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic fields * magnetic circuits * permanent NdFeB magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/7_Zezulka.pdf

  4. Strong magnetic field induces superconductivity in a Weyl semimetal

    Science.gov (United States)

    Rosenstein, Baruch; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.

    2017-12-01

    Microscopic theory of the normal-to-superconductor coexistence line of a multiband Weyl superconductor subjected to magnetic field is constructed. It is shown that the Weyl semimetal that is nonsuperconducting or having a small critical temperature Tc at zero field might become a superconductor at higher temperatures when the magnetic field is tuned to a series of quantized values Hn. The pairing occurs on Landau levels. It is argued that the phenomenon is detectable much easier in Weyl semimetals than in parabolic band metals since the quantum limit already has been approached in several Weyl materials. The effect of Zeeman coupling leading to splitting of the reentrant superconducting regions on the magnetic phase diagram is considered. An experimental signature of the superconductivity on Landau levels is the reduction of magnetoresistivity. This has been observed already in Cd3As2 and several other compounds. The novel kind of quantum oscillations of magnetoresistance detected in ZrTe5 is discussed along these lines.

  5. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    Science.gov (United States)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  6. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  7. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  8. Study of the interaction of atoms with strong laser fields

    International Nuclear Information System (INIS)

    Edwards, M.

    1984-01-01

    Three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks that corresponded to the absorption of more than the minimum number of photons required to ionize the atom. A model approximation here showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis, namely: a study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a two-level atom. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) that attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. This study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm -2

  9. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  10. Dynamics of Molecular Gyroscopes Created by Strong Optical Fields

    Science.gov (United States)

    Mullin, Amy

    2015-03-01

    We explore the behavior of molecules in ultra-high angular momentum states prepared in an optical centrifuge and detected with transient IR absorption spectroscopy. In the optical centrifuge, the polarizable electron cloud of molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. The centrifuge pulse is generated by combining oppositely chirped pulsed of light. Trapped molecules are driven into high angular momentum states that are spatially oriented with the optical field and have energies far above the average at 300 K. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for the super-rotors. Polarization-dependent studies show that the initial angular momentum orientation persists for many collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. Time-dependent population and energy profiles for individual J- states give information about the dynamics of super-rotors. Research support provided by NSF and the University of Maryland.

  11. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  12. Annular billiard dynamics in a circularly polarized strong laser field

    Science.gov (United States)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  13. Hydrogen atom in a strong uniform electric field

    International Nuclear Information System (INIS)

    Damburg, R.Ya.

    1989-01-01

    It has been shown that notwithstanding the separability of the Schroedinger equation for the Lo-Surdo s tark (LS-S) problem for hydrogen, the quasistationary states cannot be always characterized by parabolic quantum numbers of n 1 , n 2 ,m. It is a reason why any numerical procedure of the calculation of the LS-S parameters E 0 and Γ which ignores this circumstance can appear to be invalid for large values of n 1 and F and small ones of n 2 and m. Experimental data on the photoionization of atoms in the presence of an electric field in the vicinity of the Rydberg series limit E=0 are in an accord with theoretical predictions. 32 refs.; 6 figs

  14. The fermionic energy-momentum tensor in terms of currents in an external gauge field

    International Nuclear Information System (INIS)

    Bos, M.

    1986-01-01

    It is shown that for two-dimensional massless Dirac fields interacting with external gauge fields, the energy-momentum tensor can be expressed in terms of the current via the Sugawara-Sommerfield formula. (orig.)

  15. Strong-field physics with singular light beams

    Science.gov (United States)

    Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, Ch.

    2012-10-01

    Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons. The study of optical vortices has led to applications such as particle micro-manipulation, imaging, interferometry, quantum information and high-resolution microscopy and lithography. Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams. To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up. Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation. The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings, where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.

  16. Test of Horizontal Magnetic Field Measurements in the Presence of a Strong Vertical Field

    CERN Document Server

    Vasserman, Isaac

    2004-01-01

    Trajectory straightness is an important parameter defining the performance of free-electron laser (FEL) devices. The first test of horizontal field measurements using Hall probes was done in 1998 as a preparation to the tuning of undulators for the FEL project at the Advanced Photon Source. This work continues the 1998 work, now associated with Linac Coherent Light Source (LCLS) project. Tolerances for the LCLS FEL undulator specify 2 um trajectory excursion in both (horizontal and vertical) planes for a particle energy of 14.1 GeV, which means that measurements of a small horizontal field in presence of strong (up to 1.5 T) vertical field are required. Hall probe measurements under such conditions are complicated due to a planar Hall probe effect. Previous tests done in 1998 showed that a 2- axis Sentron probe is a possible choice. The high sensitivity of horizontal field integrals to the vertical position of the sensor was observed. It was shown that this probe could be used for fast measurements and tuning...

  17. Numerical Hydrodynamics in Strong-Field General Relativity

    Science.gov (United States)

    East, William Edward

    In this thesis we develop and test methods for numerically evolving hydrodynamics coupled to the Einstein field equations, and then apply them to several problems in gravitational physics and astrophysics. The hydrodynamics scheme utilizes high-resolution shock-capturing techniques with flux corrections while the Einstein equations are evolved in the generalized harmonic formulation using finite difference methods. We construct initial data by solving the constraint equations using a multigrid algorithm with free data chosen based on superposing isolated compact objects. One application we consider is the merger of black hole-neutron star and neutron star-neutron star binaries that form through dynamical capture, as may occur in globular clusters or galactic nuclei. These systems can merge with non-negligible orbital eccentricity and display significant variability in dynamics and outcome as a function of initial impact parameter. We study the electromagnetic and gravitational-wave transients that these mergers may produce and their prospects for being detected with upcoming observations. We also introduce a numerical technique that allows solutions to the full Einstein equations to be obtained for extreme-mass-ratio systems where the spacetime is dominated by a known background solution. This technique is based on using the knowledge of a background solution to subtract off its contribution to the truncation error. We use this to study the tidal effects and gravitational radiation from a solar-type star falling into a supermassive black hole. Finally, we utilize general-relativistic hydrodynamics to study ultrarelativistic black hole formation. We study the head-on collision of fluid particles well within the kinetic energy dominated regime (Lorentz factors of 8-12). We find that black hole formation does occur at energies a factor of a few below simple hoop conjecture estimates. We also find that near the threshold for black hole formation, the collision leads to

  18. <strong/>Costs and benefits of cold acclimation in field released Drosophila – Associating laboratory and field results<strong>. strong>

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Sørensen, Jesper Givskov; A. Hoffmann, Ary

    2008-01-01

    Physiological and evolutionary responses to thermal variation are often investigated under controlled laboratory conditions. However, this approach may fail to account for the complexity of natural environments. Here we investigated the costs and benefits of developmental or adult cold acclimation...... that the ability to locate a field resource has a genetic basis with a high heritability since only round of selection on parental flies (F0) revealed clear differences in the ability of offspring (F1 and F2) to locate field resources at cold temperatures. Again we found a poor association between field...... and laboratory performance emphasising the importance of testing thermal resistance under relevant/natural conditions....

  19. Laser-Plasma Interaction in Presence of an Obliquely External Magnetic Field: Application to Laser Fusion without Radioactivity

    Science.gov (United States)

    Mobaraki, M.; Jafari, S.

    2016-08-01

    In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic Geld has been studied. Imposing an external magnetic Geld on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen-Boron (HB) fuel, the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle (from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.

  20. Internal and external potential-field estimation from regional vector data at varying satellite altitude

    Science.gov (United States)

    Plattner, Alain; Simons, Frederik J.

    2017-10-01

    When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics

  1. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    Science.gov (United States)

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-01

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.

  3. Neutral fermion possessing by electric and magnetic moments in external electromagnetic field

    International Nuclear Information System (INIS)

    Khalilov, V.R.

    2001-01-01

    It is shown that in 2+1 dimensions the Dirac equations for a neutral fermion, specified by electric and magnetic dipole moments, is reduced in the electromagnetic field to the Dirac equation for the charged fermion in the external field, characterized by some pseudovector potential. The neutral fermion charge is determined by its dipole moments. The exact solution is found for the Dirac equation for the massive neutral fermion with magnetic and electric dipole moments in the external electromagnetic plane-wave field. The problem on the neutral fermion vacuum polarization in presence of external electromagnetic fields is considered [ru

  4. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  5. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  6. Influence of External Magnetic Fields on Tunneling of Spin-1 Bose Condensate

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong; Sun Jinzuo

    2005-01-01

    In this letter, we have studied the influence of the external magnetic fields on tunneling of the spin-1 Bose condensate. We find that the population transfer between spin-0 and spin-±1 exhibits the step structure under the external cosinusoidal magnetic field and a combination of static and cosinusoidal one, respectively. Compared with the longitudinal component of the external magnetic field, the smaller the transverse component of the magnetic field is, the larger the time scale of exhibiting the step structure does. The tunneling current may exhibit periodically oscillation behavior when the ratio of the transverse component of the magnetic field is smaller than that of the longitudinal component, otherwise it exhibits a damply oscillating behavior. This means that the dynamical spin localization can be adjusted by the external magnetic fields.

  7. Electromagnetic-gravitational conversion cross sections in external electromagnetic fields

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.

    1994-09-01

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs

  8. Numerical simulations of a cylinder wake under a strong axial magnetic field

    Science.gov (United States)

    Dousset, Vincent; Pothérat, Alban

    2008-01-01

    We study the flow of a liquid metal in a square duct past a circular cylinder in a strong externally imposed magnetic field. In these conditions, the flow is quasi-two-dimensional, which allows us to model it using a two-dimensional (2D) model. We perform a parametric study by varying the two control parameters Re and Ha (Ha2 is the ratio of Lorentz to viscous forces) in the ranges [0…6000] and [0…2160], respectively. The flow is found to exhibit a sequence of four regimes. The first three regimes are similar to those of the non-magnetohydrodynamic (non-MHD) 2D circular wake, with transitions controlled by the friction parameter Re /Ha. The fourth one is characterized by vortices raising from boundary layer separations at the duct side walls, which strongly disturbs the Kármán vortex street. This provides the first explanation for the breakup of the 2D Kármán vortex street first observed experimentally by Frank, Barleon, and Müller [Phys. Fluids 13, 2287 (2001)]. We also show that, for high values of Ha (Ha⩾1120), the transition to the fourth regime occurs for Re ∝0.56Ha, and that it is accompanied by a sudden drop in the Strouhal number. In the first three regimes, we show that the drag coefficient and the length of the steady recirculation regions located behind the cylinder are controlled by the parameter Re /Ha4/5. Also, the free shear layer that separates the recirculation region from the free stream is similar to a free MHD parallel layer, with a thickness of the order of Ha-1/2 that is quite different to that of the non-MHD case, and therefore strongly influences the dynamics of this region. We also present one case at Re =3×104 and Ha =1120, where this layer undergoes an instability of the Kelvin-Helmholtz-type.

  9. Dose estimation in embryo or fetus in external fields

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.

    2001-01-01

    The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation

  10. Relations between focusing power of space-charge lenses and external electromagnetic fields

    International Nuclear Information System (INIS)

    Yu Qingchang; Qiu Hong; Huang Jiachang

    1991-01-01

    Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed

  11. Bragg diffraction of light by ultrasonic waves in planargyrotrophic optical waveguides in an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, G.V. [Mozyr` State Pedagogical Institute (Belarus)

    1995-09-01

    Features of Bragg diffraction of light by two-partial surface ultrasonic waves in planar gyrotropic optical waveguides placed in an external electric field are considered. General expressions for complex vector amplitudes of diffracted fields are presented. It is shown that the diffracted waves have elliptic polarization, the ellipticity being determined by the linear anisotropy of the waveguide structure, the anisotropy induced by an external electric field, the anisotropy of photoelasticity, and the crystal gyrotropy. 16 refs., 2 figs.

  12. Pair production by a constant external field in noncommutative QED

    International Nuclear Information System (INIS)

    Chair, N.; Sheikh-Jabbari, M.M.

    2000-09-01

    In this paper we study QED on the noncommutative space in the constant electro-magnetic field background. Using the explicit solutions of the noncommutative version of Dirac equation in such background, we show that there are well-defined in and out-going asymptotic states and also there is a causal Green's function. We calculate the pair production rate in this case. We show that at tree level noncommutativity will not change the pair production and the threshold electric field. We also calculate the pair production rate considering the first loop corrections. In this case we show that the threshold electric field is decreased by the noncommutativity effects. (author)

  13. Equilibrium Shape of Ferrofluid in the Uniform External Field

    Science.gov (United States)

    2017-07-14

    of magnetostatics (when there is no current of free charges , the system of electrostatics and of magnetostatics are the same4). The variational...essentially linear if the constitutive relationship between the field and inductance is linear. At the same time, the second problem is essentially...Eqs. 3–6), ϕ is the scalar field potential and B  is the induction vector, respectively. The symbolic thermodynamic relationship MH ψ

  14. Linear spin-zero quantum fields in external gravitational and scalar fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1977-10-01

    Mathematically rigorous results are given on the quantization of the covariant Klein-Gordon field with an external stationary scalar interaction in a stationary curved space-time. It is shown how, following Segal, Weinless etc., the problem reduces to finding a ''one-particle structure'' for the corresponding classical system. The main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are (1)a discussion of when the equal-time hypersurfaces in a given stationary space-time are Cauchy; (2)a proof that when a one-particle structure exists it is unique a result of general interest for the quantization of linear systems; (3)a modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of ceratin partial differential operators

  15. Linear spin-zero quantum fields in external gravitational and scalar fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1977-11-01

    A general formalism for quantizing the covariant Klein Gordon equation in an arbitrary globally hyperbolic space-time is presented. It is argued that much of the conceptual confusion surrounding ''quantum field theory in curved space-time'' has been caused by the misapplication of a quantization procedure (the single representation formalism) which is really only suitable for quantizing stationary systems. Drawing on a close analogy with time-dependent external field problems in flat space-time, it is argued for the introduction of a new quantization procedure: the many vacuum formalism which accommodates non-stationary situations. In the many vacuum formalism, a whole family of different representations of the field algebra plays a role and dynamics is necessarily described in terms of isomorphisms between different algebras rather than automorphisms of a single algebra. It is shown how this many vacuum approach gives physically sensible results in the flat space-time case. In the curved space-time case, corresponding well defined formalism is obtained relying on rigorous results established in I. A principal feature is that a different vacuum state is obtained for each choice of Cauchy surface together with a choice of lapse and shift functions on that surface. Several questions-mathematical and interpretational- raised by the scheme are discussed

  16. Classical relativistic equations for particles with spin moving in external fields

    NARCIS (Netherlands)

    Dam, H. van; Ruijgrok, Th.W.

    1980-01-01

    We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the

  17. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  18. Quantum electrodynamics at a finite temperature with an external field destroying the stability of the vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A generating functional for expectation values is found for QED at a finite temperature with an external field which destroys the stability of the vacuum. The equations for connected Green functions and the effective action for the mean field are written out. Their representation is obtained in the form of an integral over the proper time for the Green function taking into account temperature effects in a constant uniform field. By means of this representation the polarization operator for the mean field in an external constant uniform field has been calculated

  19. Quantum electrodynamics at finite temperatures in presence of an external field violating the vacuum stability

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A functional generating expectation values is obtained for QED at a finite temperature in presence of an external field violating the vacuum stability. Equations for connected Green's functions and the effective action for the mean field are derived. The Green function is obtained as an integral with respect of the proper time; the representation takes into account temperature effects in a constant homogeneous field. The polarization operator for the mean field in an external constant homogeneous field is calculated by means of the integral representation

  20. Additional external electromagnetic fields for laser microprocessing of metals.

    Science.gov (United States)

    Schütz, V; Bischoff, K; Brief, S; Koch, J; Suttmann, O; Overmeyer, L

    2016-11-14

    Ultra-short pulsed laser processing is a potent tool for microstructuring of a lot of materials. At certain laser parameters, particular periodical and/or quasi-periodical µm-size surface structures evolve apparently during processing. With extended plasmonics theory, it is possible to predict the structure formation, and a systematic technology can be derived to alter the surface for laser processing. In this work, we have demonstrated the modification of the laser processing with applying tailored dynamic surface electro-magnetic fields. Possible improvement in applications is seen in the fields of process efficiency of laser ablation and a superior control of the surface topography.

  1. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-06-01

    The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.

  2. Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field

    Science.gov (United States)

    Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke

    2018-01-01

    We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.

  3. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  4. Stability properties of a toroidal z-pinch in an external magnetic multipole field

    International Nuclear Information System (INIS)

    Eriksson, H.G.

    1987-01-01

    MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)

  5. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005

    DEFF Research Database (Denmark)

    Olsen, Nils; Sabaka, T.J.; Lowes, F.

    2005-01-01

    When deriving spherical harmonic models of the Earth's magnetic field, low-degree external field contributions are traditionally considered by assuming that their expansion coefficient q(1)(0) varies linearly with the D-st-index, while induced contributions are considered assuming a constant ratio......)(0) for each of the 67 months of Orsted and CHAMP data that have been used. We discuss the advantage of this new parameterization of external and induced field for geomagnetic field modeling, and describe the derivation of candidate models for IGRF 2005....

  6. Effects of the Coulomb potential in interference patterns of strong-field holography with photoelectrons

    Science.gov (United States)

    Shvetsov-Shilovski, N. I.; Lein, M.

    2018-01-01

    Using the semiclassical two-step model for strong-field ionization we investigate the interference structures emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core. For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference patterns significantly.

  7. How DNA is damaged by external electric fields: selective mutation vs. random degradation.

    Science.gov (United States)

    Cerón-Carrasco, José Pedro; Cerezo, Javier; Jacquemin, Denis

    2014-05-14

    DNA is constantly exposed to exogenous agents that randomly damage the genetic code. However, external perturbations might also be used to induce malignant cell death if the mutation processes are controlled. The present communication reports a set of parameters allowing DNA mutation through the use of intense external electric fields. This is a step towards the design of pulsed electric field therapy for genetic diseases.

  8. Swim stress, motion, and deformation of active matter: effect of an external field

    OpenAIRE

    Takatori, Sho C.; Brady, John F.

    2014-01-01

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like t...

  9. Numerical simulation of a backward-facing step flow in a microchannel with external electric field

    Directory of Open Access Journals (Sweden)

    Qing-He Yao

    2015-03-01

    Full Text Available A backward-facing step flow in the microchannel with external electric field was investigated numerically by a high-order accuracy upwind compact difference scheme in this work. The Poisson–Boltzmann and Navier–Stokes equations were computed by the high-order scheme, and the results confirmed the ability of the new solver in simulation of micro-scale electric double layer effects. The flow fields were displayed for different Reynolds numbers; the positions of the vortex saddle point of model with external electric field and model without external electric field were compared. The average velocity increases linearly with the electric field intensity; however, the Joule heating effects cannot be neglected when the electric field intensity increases to a certain level.

  10. Moessbauer study of epsilon-Fe under an external magnetic field

    CERN Document Server

    Nasu, S; Kawakami, T; Tsutsui, T; Endo, S

    2002-01-01

    Using a diamond anvil cell, sup 5 sup 7 Fe Moessbauer measurements of the high-pressure phase of iron, epsilon-Fe at 20 GPa, have been performed at 4.5 K under external magnetic fields up to 7 T. The magnitudes of the hyperfine magnetic fields depend linearly on the external magnetic fields, H sub e sub x sub t. This implies that there is no induced hyperfine field due to the local magnetic moment and epsilon-Fe under 20 GPa at 4.5 K is determined as a Pauli paramagnet.

  11. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  12. SIMULATION OF SYNCHRONIZATION OF NONLINEAR OSCILLATORS BY THE EXTERNAL FIELD

    Directory of Open Access Journals (Sweden)

    V. M. Kuklin

    2017-05-01

    Full Text Available In this paper, the self-consistent model was considered, consisting of a system of oscillators, the coupling between them was assumed to be integral (due to the fields formed as a result of their co-radiation. With the help of this model, the features of synchronization by waves of finite amplitude of a system of oscillators were refined, the initial phase values of which are random. The effect of nonlinearity, in particular, due to the change in the mass of the oscillator due to relativistic effects, was taken into account. It was shown that the nonlinearity does not violate the nature of the energy exchange between the wave and the oscillator system, leading only to a slight decrease in the efficiency of such an exchange.

  13. Moving antiphase boundaries using an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vaideeswaran, Kaushik, E-mail: kaushik.vaideeswaran@alumni.epfl.ch; Shapovalov, Konstantin; Yudin, Petr V.; Setter, Nava [Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Tagantsev, Alexander K. [Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Ferroics Laboratory, Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation)

    2015-11-09

    Antiphase boundaries (APBs) are unique domain walls that may demonstrate switchable polarization in otherwise non-ferroelectric materials such as SrTiO{sub 3} and PbZrO{sub 3}. The current study explores the possibility of displacing such domain walls at the nanoscale. We suggest the possibility of manipulating APBs using the inhomogeneous electric field of an Atomic Force Microscopy (AFM) tip with an applied voltage placed in their proximity. The displacement is studied as a function of applied voltage, film thickness, and initial separation of the AFM tip from the APB. It is established, for example, that for films with thickness of 15 nm, an APB may be attracted under the tip with a voltage of 25 V from initial separation of 30 nm. We have also demonstrated that the displacement is appreciably retained after the voltage is removed, rendering it favorable for potential applications.

  14. High energy heavy ion collisions from the view point of the 'strong field physics'

    International Nuclear Information System (INIS)

    Itakura, Kazunori

    2012-01-01

    In the high energy heavy ion collisions at the facilities like RHIC and LHC, two strongest fields in the present universe are generated. First of all, a very strong electromagnetic field is generated, though its duration is very short due to the very high speed collisions of nuclei and the large electric charges. On the other hand, the nuclei are described as the high density saturation gluon state just before the moment of the collision and the high density gluon is released by the collision. A very strong color electromagnetic field is generated. The color glass condensate (CGC) is a reasonable picture. In this text, dynamics of the GLASMA (Glass + plasma), the new physics brought about by those 'strong fields', are introduced and are explained how the yet unsolved problems of the heavy ion collisions are going to be investigated on the new view point. The mechanism of the apparitions of the strong electromagnetic field and the strong color electromagnetic field are explained at first. The heavy ion collisions can be described as the process CGC to develop into QGP. As the phenomena under the strong electromagnetic field and the heavy ion collisions, their synchrotron radiations, the photon birefringence, the photon decay, the splitting of photons and the chiral phase transitions under high field are picked up. Concerning the strong color electromagnetic field dynamics and the heavy ion collisions, the plasma flux tube dynamics, the color magnetic flux tube, the color electric flux tube and the coexisting case of the color electric field and magnetic field are presented. (S. Funahashi)

  15. Phase-Field simulation of phase decomposition in Fe-Cr-Co alloy under an external magnetic field

    Science.gov (United States)

    Koyama, Toshiyuki; Onodera, Hidehiro

    2004-07-01

    Phase decomposition during isothermal aging of a Fe-Cr-Co ternary alloy under an external magnetic field is simulated based on the phase-field method. In this simulation, since the Gibbs energy available from the thermodynamic CALPHAD database of the equilibrium phase diagram is employed as a chemical free energy, the present calculation provides the quantitative microstructure changes directly linked to the phase diagram. The simulated microstructure evolution demonstrates that the lamella like microstructure elongated along the external magnetic field is evolved with the progress of aging. The morphological and temporal developments of the simulated microstructures are in good agreement with experimental results that have been obtained for this alloy system.

  16. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  17. Regularity and Chaos in the Hydrogen Atom Highly Excited with a Strong Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. Amdouni

    2014-01-01

    Full Text Available The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.

  18. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  19. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  20. Processes in suspensions of nanocomposite microcapsules exposed to external electric fields

    Science.gov (United States)

    Ermakov, A. V.; Lomova, M. V.; Kim, V. P.; Chumakov, A. S.; Gorbachev, I. A.; Gorin, D. A.; Glukhovskoy, E. G.

    2016-04-01

    Microcapsules with and without magnetite nanoparticles incorporated in the polyelectrolyte shell were prepared. The effect of external electric field on the nanocomposite polyelectrolyte microcapsules containing magnetite nanoparticles in the shell was studied in this work as a function of the electric field strength. Effect of electric fields on polyelectrolyte microcapsules and the control over integrity of polyelectrolyte microcapsules with and without inorganic nanoparticles by constant electric field has been investigated. Beads effect, aggregation and deformations of nanocomposite microcapsule shell in response to electric field were observed by confocal laser scanning microscopy (CLSM). Thus, a new approach for effect on the nanocomposite microcapsule, including opening microcapsule shell by an electric field, was demonstrated. These results can be used for creation of new systems for drug delivery systems with controllable release by external electric field.

  1. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  2. Controlling three-dimensional vortices using multiple and moving external fields

    Science.gov (United States)

    Das, Nirmali Prabha; Dutta, Sumana

    2017-08-01

    Spirals or scroll wave activities in cardiac tissues are the cause of lethal arrhythmias. The external control of these waves is thus of prime interest to scientists and physicians. In this article, we demonstrate the spatial control of scroll waves by using external electric fields and thermal gradients in experiments with the Belousov-Zhabotinsky reaction. We show that a scroll ring can be made to trace cyclic trajectories under a rotating electric field. Application of a thermal gradient in addition to the electric field deflects the motion and changes the nature of the trajectory. Our experimental results are analyzed and corroborated by numerical simulations based on an excitable reaction diffusion model.

  3. Effect of external electric field on Cyclodextrin-Alcohol adducts: A ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 6. Effect of external electric field on Cyclodextrin-Alcohol adducts: A DFT study. Kundan Baruah Pradip Kr Bhattacharyya. Regular Articles Volume 127 Issue 6 June 2015 pp 1109-1117 ... Keywords. Membrane; electric field; DFT; reactivity descriptor; MHP.

  4. RichMol: A general variational approach for rovibrational molecular dynamics in external electric fields

    Science.gov (United States)

    Owens, Alec; Yachmenev, Andrey

    2018-03-01

    In this paper, a general variational approach for computing the rovibrational dynamics of polyatomic molecules in the presence of external electric fields is presented. Highly accurate, full-dimensional variational calculations provide a basis of field-free rovibrational states for evaluating the rovibrational matrix elements of high-rank Cartesian tensor operators and for solving the time-dependent Schrödinger equation. The effect of the external electric field is treated as a multipole moment expansion truncated at the second hyperpolarizability interaction term. Our fully numerical and computationally efficient method has been implemented in a new program, RichMol, which can simulate the effects of multiple external fields of arbitrary strength, polarization, pulse shape, and duration. Illustrative calculations of two-color orientation and rotational excitation with an optical centrifuge of NH3 are discussed.

  5. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  6. Field Evaluation of the System Identification Approach for Tension Estimation of External Tendons

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Noh

    2015-01-01

    Full Text Available Various types of external tendons are considered to verify the applicability of tension estimation method based on the finite element model with system identification technique. The proposed method is applied to estimate the tension of benchmark numerical example, model structure, and field structure. The numerical and experimental results show that the existing methods such as taut string theory and linear regression method show large error in the estimated tension when the condition of external tendon is different with the basic assumption used during the derivation of relationship between tension and natural frequency. However, the proposed method gives reasonable results for all of the considered external tendons in this study. Furthermore, the proposed method can evaluate the accuracy of estimated tension indirectly by comparing the measured and calculated natural frequencies. Therefore, the proposed method can be effectively used for field application of various types of external tendons.

  7. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  8. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  9. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  10. Working with MRI: An investigation of occupational exposure to strong static magnetic fields and associated symptoms

    NARCIS (Netherlands)

    Schaap, K.

    2015-01-01

    Magnetic resonance imaging (MRI) makes use of electromagnetic fields in the non-ionizing radiation frequency ranges. One of them is a continuously present strong static magnetic field (SMF), which extends up to several meters around the scanner. Each time an MRI worker performs tasks near the

  11. Sensitivity Analysis and Simulation of Theoretical Response of Ceramics to Strong Magnetic Fields

    Science.gov (United States)

    2016-09-01

    448. 23. Song Q, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. Journal of the American Chemical...Strong Magnetic Fields by Carli A Moorehead, Michael M Kornecki, Victoria L Blair, Raymond E Brennan Approved for... Magnetic Fields by Carli A Moorehead Drexel University, Philadelphia, Pennsylvannia Michael M Kornecki, Victoria L Blair, and Raymond E Brennan

  12. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.

  13. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.

  14. Strong field approximation within a Faddeev-like formalism for laser-matter interactions

    International Nuclear Information System (INIS)

    Popov, Y.; Galstyan, A.; Piraux, B.; Mota-Furtado, F.; O'Mahony, P.F.

    2017-01-01

    We consider the interaction of atomic hydrogen with an intense laser field within the strong-field approximation (SFA). By using a Faddeev-like formalism, we introduce a new perturbative series in the binding potential of the atom. As a first test of this new approach, we calculate the electron energy spectrum in the very simple case of a photon energy higher than the ionisation potential. We show that by contrast to the standard perturbative series in the binding potential obtained within the strong field approximation, the first terms of the new series converge rapidly towards the results we get by solving the corresponding time-dependent Schroedinger equation. (authors)

  15. Charge states of high Z atoms in a strong laser field

    International Nuclear Information System (INIS)

    Susskind, S.M.; Valeo, E.J.; Oberman, C.R.; Bernstein, I.B.

    1989-11-01

    We present a numerical solution of the Thomas-Fermi atom in the presence of a static electric field as a model of the adiabatic response of a heavy atom in the presence of a strong laser field. In this semiclassical approach, we calculate the resulting charge state of the atom and its induced dipole moment after the field is turned on. Due to the scaling properties of the Thomas-Fermi approach, the resulting total atomic charge and dipole moment can be expressed as a universal function of the field. We compare our results with recent ionization experiments performed on noble gases using laser fields. 7 refs., 5 figs

  16. Imaginary potential in strongly coupled N = 4 SYM plasma in a magnetic field

    Science.gov (United States)

    Zhang, Zi-qiang; Hou, De-fu

    2018-03-01

    We study the effect of a constant magnetic field on the imaginary part of a quarkonia potential in a strongly-coupled N = 4 SYM plasma. We consider the pair axis to be aligned perpendicularly and parallel to the magnetic field, respectively. For both cases, we find that the presence of the magnetic field tends to enhance the imaginary potential thus decreasing the thermal width. In addition, the magnetic field has a stronger effect on the imaginary potential when the pair axis is perpendicular to the magnetic field rather than parallel.

  17. Sharp-front wave of strong magnetic field diffusion in solid metal

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian; Wang, Gang-hua; Zhao, Jian-heng [Institute of Fluid Physics, CAEP, P.O. Box 919-105, Mianyang 621900 (China)

    2016-08-15

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  18. Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2013-02-26

    The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.

  19. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.

  20. Plasma coating of nanoparticles in the presence of an external electric field

    Science.gov (United States)

    Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein

    2018-04-01

    Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.

  1. THE EXTRAORDINARY COMPLEX MAGNETIC FIELD OF THE HELIUM-STRONG STAR HD 37776

    International Nuclear Information System (INIS)

    Kochukhov, Oleg; Lundin, Andreas; Romanyuk, Iosif; Kudryavtsev, Dmitry

    2011-01-01

    The early-type chemically peculiar stars often show strong magnetic fields on their surfaces. These magnetic topologies are organized on large scales and are believed to be close to an oblique dipole for most of the stars. In a striking exception to this general trend, the helium-strong star HD 37776 shows an extraordinary double-wave rotational modulation of the longitudinal magnetic field measurements, indicating a topologically complex and, possibly, record-strong magnetic field. Here we present a new investigation of the magnetic field structure of HD 37776, using both simple geometrical interpretation of the longitudinal field curve and detailed modeling of the time-resolved circular polarization line profiles with the help of a magnetic Doppler imaging technique. We derive a model of the magnetic field structure of HD 37776, which reconciles for the first time all magnetic observations available for this star. We find that the local surface field strength does not exceed ∼30 kG, while the overall field topology of HD 37776 is dominated by a non-axisymmetric component and represents by far the most complex magnetic field configuration found among early-type stars.

  2. Integrated field equations methods for the computation of electromagnetic fields in strongly inhomogeneous media

    NARCIS (Netherlands)

    Jorna, P.

    2005-01-01

    Electromagnetic field theory plays a very important role in present-day technology; examples of technologies based on electromagnetism that are inextricably bound up with every day life are: radar, remote sensing, geoelectromagnetics, bioelectromagnetics, antennas, wireless communication, optics,

  3. Electron temperature control by an external magnetic field in solenoidal inductive discharge

    International Nuclear Information System (INIS)

    Lee, Min-Hyong; Ku, Ju-Hwan; Hwang, Kwang-Tae; Chung, Chin-Wook

    2009-01-01

    Electron temperature control is performed by controlling the external magnetic field strength in a solenoidal inductive discharge. As the magnetic field strength increases, the electron temperature of the plasma bulk decreases. The temperature at the discharge center falls from 3.1 to 1.5 eV when a 52 G dc magnetic field is applied. This decrease in the temperature is accompanied by a decrease in the plasma density. The change in temperature by the magnetic field is caused by both the electron confinement and the restriction of electron transport by the magnetic field in solenoidal inductive discharge.

  4. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  5. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong

    2004-01-01

    In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior

  6. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    OpenAIRE

    Yu, Zhao-xian; Jiao, Zhi-yong

    2003-01-01

    In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...

  7. Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumandeep; Srivastava, Sunita; Tankeshwar, K. [Department of Physics, Panjab University, Chandigarh-160014 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India 151001 (India)

    2016-05-23

    We report the electronic properties of electrically gated heterostructures of black and blue phosphorene with graphene. The heterostructure of blue phosphorene with graphene is energetically more favorable than black phospherene/graphene. However, both are bonded by weak interlayer interactions. Graphene induces the Dirac cone character in both heterostructure which shows tunabilities with external electric field. It is found that Dirac cone get shifted depending on the polarity of external electric field that results into the so called self induced p-type or n-type doping effect. These features have importance in the fabrication of nano-electronic devices based on the phosphorene/graphene heterostructures.

  8. Using global magnetospheric models for simulation and interpretation of Swarm external field measurements

    DEFF Research Database (Denmark)

    Moretto, T.; Vennerstrøm, Susanne; Olsen, Nils

    2006-01-01

    simulated external contributions relevant for internal field modeling. These have proven very valuable for the design and planning of the up-coming multi-satellite Swarm mission. In addition, a real event simulation was carried out for a moderately active time interval when observations from the Orsted...... it consistently underestimates the dayside region 2 currents and overestimates the horizontal ionospheric closure currents in the dayside polar cap. Furthermore, with this example we illustrate the great benefit of utilizing the global model for the interpretation of Swarm external field observations and......, likewise, the potential of using Swarm measurements to test and improve the global model....

  9. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  10. Improvement of the density limit with an external helical field on JFT-2M tokamak

    International Nuclear Information System (INIS)

    Tamai, H.; Shoji, T.; Nagashima, K.; Miura, Y.; Yamauchi, T.; Ogawa, H.; Kawashima, H.; Matsuda, T.; Mori, M.; Ida, K.; Ohdachi, S.

    1995-01-01

    The density limit is increased by the application of an external helical field in the JFT-2M tokamak. The effect of the magnetic stochasticity due to the external field is investigated to study the mechanism of the improved density limit related to the edge plasma behaviour. The improvement is correlated with the retardation of the increase in the plasma inductance. At the improved density limit, local radiation loss is modified by the helical field, in which that from the vicinity of separatrix X-point is remarkably reduced, while that from outboard edge is slightly increased. The formation of a positive radial electric field at the plasma edge is also observed in the presence of the helical field. ((orig.))

  11. Influence of External Static Magnetic Fields on Properties of Metallic Functional Materials

    Directory of Open Access Journals (Sweden)

    Xiaowei Zuo

    2017-12-01

    Full Text Available Influence of external static magnetic fields on solidification, solid phase transformation of metallic materials have been reviewed in terms of Lorentz force, convection, magnetization, orientation, diffusion, and so on. However, the influence of external static magnetic fields on properties of metallic functional materials is rarely reviewed. In this paper, the effect of static magnetic fields subjected in solidification and/or annealing on the properties of Fe–Ga magnetostrictive material, high strength high conductivity Cu-based material (Cu–Fe and Cu–Ag alloys, and Fe–Sn magnetic material were summarized. Both the positive and negative impacts from magnetic fields were found. Exploring to maximize the positive influence of magnetic fields is still a very meaningful and scientific issue in future.

  12. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005

    DEFF Research Database (Denmark)

    Olsen, Nils; Sabaka, T.J.; Lowes, F.

    2005-01-01

    Q(1) of induced to external coefficients. A value of Q(1) = 0.27 was found from Magsat data and has been used by several authors when deriving recent field models from Orsted and CHAMP data. We describe a new approach that considers external and induced field based on a separation of D-st = E-st + I......-st into external (E-st) and induced (I-st) parts using a 1D model of mantle conductivity. The temporal behavior of q(1)(0) and of the corresponding induced coefficient are parameterized by E-st and I-st, respectively. In addition, we account for baseline-instabilities of D-st by estimating a value of q(1...

  13. Deflection modeling of permanent magnet spherical chains in the presence of external magnetic fields

    International Nuclear Information System (INIS)

    O'Donoghue, Kilian; Cantillon-Murphy, Pádraig

    2013-01-01

    This work examines the interaction of permanently magnetised spheres in the presence of external magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in 4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields, neglecting gravitational effects, with good agreement between the theoretical model and experimental results. This spherical chain structure could be used as an end effector for catheters as a deflection mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation around tight corners in endoluminal minimally invasive clinical applications. - Highlights: • We model the interaction of magnetic spheres with uniform external fields. • Analytical models are presented for two spheres interacting with an external field. • Numerical methods are used to model the interaction of N spheres in chain formations. • These models are tested experimentally. • We report good agreement between experiment and theory

  14. Influence of periodic external fields in multiagent models with language dynamics

    Science.gov (United States)

    Palombi, Filippo; Ferriani, Stefano; Toti, Simona

    2017-12-01

    We investigate large-scale effects induced by external fields, phenomenologically interpreted as mass media, in multiagent models evolving with the microscopic dynamics of the binary naming game. In particular, we show that a single external field, broadcasting information at regular time intervals, can reverse the majority opinion of the population, provided the frequency and the effectiveness of the sent messages lie above well-defined thresholds. We study the phase structure of the model in the mean field approximation and in numerical simulations with several network topologies. We also investigate the influence on the agent dynamics of two competing external fields, periodically broadcasting different messages. In finite regions of the parameter space we observe periodic equilibrium states in which the average opinion densities are reversed with respect to naive expectations. Such equilibria occur in two cases: (i) when the frequencies of the competing messages are different but close to each other; (ii) when the frequencies are equal and the relative time shift of the messages does not exceed half a period. We interpret the observed phenomena as a result of the interplay between the external fields and the internal dynamics of the agents and conclude that, depending on the model parameters, the naming game is consistent with scenarios of first- or second-mover advantage (to borrow an expression from the jargon of business strategy).

  15. Variational Monte Carlo calculations of lithium atom in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Doma, S. B., E-mail: sbdoma@alexu.edu.eg [Alexandria University, Mathematics Department, Faculty of Science (Egypt); Shaker, M. O.; Farag, A. M. [Tanta University, Mathematics Department, Faculty of Science (Egypt); El-Gammal, F. N., E-mail: famta-elzahraa4@yahoo.com [Menofia University, Mathematics Department, Faculty of Science (Egypt)

    2017-01-15

    The variational Monte Carlo method is applied to investigate the ground state and some excited states of the lithium atom and its ions up to Z = 10 in the presence of an external magnetic field regime with γ = 0–100 arb. units. The effect of increasing field strength on the ground state energy is studied and precise values for the crossover field strengths were obtained. Our calculations are based on using accurate forms of trial wave functions, which were put forward in calculating energies in the absence of magnetic field. Furthermore, the value of Y at which ground-state energy of the lithium atom approaches to zero was calculated. The obtained results are in good agreement with the most recent values and also with the exact values.

  16. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  17. Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition

    Science.gov (United States)

    Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team

    2017-10-01

    We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.

  18. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  19. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  20. Plane Couette flow in the presence of a strong centrifugal field

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1982-05-01

    The Pomraning problem of plane Couette flow in a strong centrifugal field is studied by several methods: a half-range polynomial expansion of the linearized BGK equation; the Liu-Lees method; and a new matching approximation constructed to give the correct solution in the free-molecule limit. The matching approximation, which appears valid for strong enough centrifugal field, predicts major differences from hydrodynamic behaviour, and suggests ways in which the lack of convergence of one method studied may be corrected. (author)

  1. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  2. Field-Free Alignment and Strong Field Control of Molecular Rotors

    Science.gov (United States)

    Spanner, Michael

    2004-12-01

    Methods of controlling molecular rotations using linearly polarized femtosecond and picosecond pulses are considered and analyzed theoretically. These laser pulses, typically in the infrared, are highly non-resonant with respect to the electronic degrees of freedom of the molecules and have intensities of ~ 10^13 to 10^14 W/cm?. It is shown how these laser pulses can force small linear molecules to align with the direction of the electric field vector of the laser both in the presence of the laser field as well as after the application of a short laser pulse. Recent experiments on laser-induced molecular alignment are modeled and excellent agreement between experiment and theory is found. Additional methods of controlling molecular rotational dynamics are outlined. The first method considers the forced rotational acceleration of diatomic molecules, called the optical centrifuge. Here, the direction of polarization of a linearly polarized laser field is made to smoothly rotate faster and faster. The molecules, which tend to align with the polarization vector of the laser field, follow the rotation of the laser polarization and are accelerated to high angular momentum. The second method considers the control of field-free rotational dynamics by applying phase shifts to the molecular wave function at select times called fractional revivals. At these select moments, an initially localized wave function splits into several copies of the initial state. Adding phase shifts to the copies then induces interference effects which can be used to control the subsequent evolution of the rotational wave function. This same control scheme has a close link to quantum information and this connection is outlined. Finally, a recently proposed method of controlling the quantum dynamics of the classically chaotic kicked rotor system [J. Gong and P. Brumer, Phys. Rev. Lett. 86, 1741 (2001)] is analyzed from a phase space perspective. It is shown that the proposed quantum control can be

  3. Self propagating high temperature synthesis of metal oxides. Reactions in external magnetic fields

    CERN Document Server

    Aguas, M D

    2001-01-01

    The preparation of metal oxides by Self-Propagating High-Temperature Synthesis is reported. The reactions are started with a point source of ignition; typically a hot wire. A synthesis wave is observed moving out from the point source and reactions terminate in seconds. Products obtained can be classified into ferrites (magnetic applications) and stannates (gas sensing applications). Ferrites were synthesised under variable external magnetic fields. The synthesis wave is hotter in the presence of an external magnetic field for hard ferrite synthesis. For spinel ferrites the opposite was observed. Materials synthesised in the field show differences in their bulk magnetic properties (coercivity and saturation magnetisation), structures and microstructures. Combustion reactions in large fields revealed changes in unit cell volume (shrinkage was observed for hard ferrites while expansion was observed for spinel ferrites). SHS synthesised hard ferrites show two distinct components; one has large grain structure co...

  4. Neutral meson properties under an external magnetic field in nonlocal chiral quark models

    Science.gov (United States)

    Gómez Dumm, D.; Izzo Villafañe, M. F.; Scoccola, N. N.

    2018-02-01

    We study the behavior of neutral meson properties in the presence of a static uniform external magnetic field in the context of nonlocal chiral quark models. The formalism is worked out introducing Ritus transforms of Dirac fields, which allow to obtain closed analytical expressions for π0 and σ meson masses and for the π0 decay constant. Numerical results for these observables are quoted for various parametrizations. In particular, the behavior of the π0 meson mass with the magnetic field is found to be in good agreement with lattice QCD results. It is also seen that the Goldberger-Treiman and Gell-Mann-Oakes-Renner chiral relations remain valid within these models in the presence of the external magnetic field.

  5. Chaotic oscillations in electron beam with virtual cathode in external magnetic field

    Science.gov (United States)

    Hramov, A. E.; Koronovskiy, A. A.; Kurkin, S. A.; Rempen, I. S.

    2011-11-01

    This article presents the results of a numerical study of external magnetic field influence on the conditions and mechanisms of virtual cathode (VC) formation in a relativistic electron beam. It also considers other related issues, e.g. peculiarities of nonlinear dynamics of electron beam with VC under changed external magnetic field, different mechanisms of VC oscillation chaotisation leading to complication of vircator system dynamics and appearance of multi-frequency VC oscillations. General systemic mechanism of VC oscillation chaotisation has been identified which is connected with formation of electronic patterns in electron beam whose interaction in the common field of spatial charge determines appearance of additional inner feedback. Transition from chaotic to periodical oscillation regime is found to be connected with destroying the mechanism of secondary electronic structures (electron bunches) formation. Besides, the influence of extent of screening of electron gun from magnetic field is discussed.

  6. The Effect of External Magnetic Field on Dielectric Permeability of Multiphase Ferrofluids

    Science.gov (United States)

    Dotsenko, O. A.; Pavlova, A. A.; Dotsenko, V. S.

    2018-03-01

    Nowadays, ferrofluids are applied in various fields of science and technology, namely space, medicine, geology, biology, automobile production, etc. In order to investigate the feasibility of applying ferrofluids in magnetic field sensors, the paper presents research into the influence of the external magnetic field on dielectric permeability of ferrofluids comprising magnetite nanopowder, multiwall carbon nanotubes, propanetriol and deionized water. The real and imaginary parts of the dielectric permeability change respectively by 3.7 and 0.5% when applying the magnetic field parallel to the electric. The findings suggest that the considered ferrofluid can be used as a magnetic level gauge or in design of variable capacitors.

  7. Spin polarization tuning in the graphene quantum dot by using in-plane external electric field

    International Nuclear Information System (INIS)

    Modarresi, M.; Roknabadi, M.R.; Shahtahmasebi, N.

    2014-01-01

    Electronic, magnetic and transport properties of a nano-graphene dot have been studied by using the DFT and tight binding methods. In the tight binding calculations, the interaction between electrons is modeled using the Hubbard Hamiltonian. By comparison between the eigen-values and density of states in the tight binding and DFT models, we tabulate a set of tight-binding parameters to describe graphene quantum dots for future works. The effects of a single vacancy and an in-plane external electric field on the spin-dependent transport of graphene quantum dot have been investigated. Transport through GQD between two GNR is studied by using Green's function formalism. Our results confirm an intrinsic spin-dependent current and relatively large spin polarization through the GQD in the presence of a single vacancy and zigzag edge. It is also shown that an in-plane external electric field controls the spin-polarization in graphene quantum dot. - Graphical abstract: We study the spin polarization in the presence of an external electric field. Highlights: • A tight binding study of transport through GNR/GQD/GNR is presented. • Our results show a relatively large spin polarization in the current–voltage curve. • Spin polarization is controlled by using an in-plane external electric field

  8. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    Science.gov (United States)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  9. Solution of Dirac Equation in External Yang-Mills Gauge Field

    Science.gov (United States)

    Koshelkin, A. V.

    2011-05-01

    The exact solution of the Dirac equation in the external non-abelian SU(N) gauge field, which is governed by the Yang-Mills equations and is in the form of a plane wave on the light cone, is obtained.

  10. Excess vibrational modes of a crystal in an external non-affine field

    Indian Academy of Sciences (India)

    Thermal displacement fluctuations in a crystal may be classified as either “affine” or “non-affine”. While the former couples to external stress with familiar consequences, the response of a crystal when nonaffine displacements are enhanced using the thermodynamically conjugate field, is relatively less studied. We examine ...

  11. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  12. Effect of an External Electric Field on Positronium Formation in Positron Spur

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1975-01-01

    The decrease of positronium (Ps) formation in condensed matter caused by the presence of an external electric field is discussed in terms of the spur reaction model of Ps formation. The rather few experimental results available are shown to be in good agreement with the predictions of the model...

  13. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field

    NARCIS (Netherlands)

    Smallenburg, F.; Vutukuri, H.R.; Imhof, A.; van Blaaderen, A.; Dijkstra, M.

    2012-01-01

    Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the surrounding solvent acquire a dipole moment in a homogeneous external electric (magnetic) field. The resulting dipolar interactions can lead to aggregation of the particles into string-like clusters. Recently,

  14. Interaction of plane gravitational and electromagnetic waves in an external gravitational field

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Interaction of gravitational and electromagnetic waves in an external gravitational field for two classes of metric gravitation theories is considered. As a result conditions for resonance interaction are determined, and possibility of continuous amplification of plane electromagnetic wave with plane gravitational wave is shown

  15. On ground-state wave functions for Sutherland-Calogero Systems in an external field

    International Nuclear Information System (INIS)

    Inozemtsev, V.I.; Meshcheryakov, D.V.

    1984-01-01

    Conditions are considered under which the ground-state wave functions of quantum systems of interacting particles n an external field are factorizable and can be found explicitly. The corresponding classical systems of particles are completely integrable; in the quantum case an extra integral of motion is constructed for a two-particle system

  16. Equation of state of strange quark matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2012-01-01

    Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars

  17. One-electron atomic-molecular ions containing lithium in a strong magnetic field

    International Nuclear Information System (INIS)

    Olivares-Pilon, H; Turbiner, A V; Vieyra, J C Lopez; Baye, D

    2010-01-01

    The one-electron lithium-containing Coulomb systems of atomic type Li 2+ and molecular type Li 5+ 2 , LiHe 4+ and LiH 3+ are studied in the presence of a strong magnetic field B ≤ 10 7 au in a non-relativistic framework. They are considered at the Born-Oppenheimer approximation of zero order (infinitely massive centres) within the parallel configuration (molecular axis parallel to the magnetic field). The variational and Lagrange-mesh methods are employed, complementing each other. It is demonstrated that the molecular systems LiH 3+ , LiHe 4+ and Li 5+ 2 can exist for sufficiently strong magnetic fields B ∼> 10 4 au and that Li 5+ 2 can even be stable at magnetic fields typical of magnetars.

  18. Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field

    International Nuclear Information System (INIS)

    Movsesyan, A.M.; Fedorov, M.V.

    1989-01-01

    The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration

  19. Polarization operator in quantum electrodynamics with a pair-producing external field

    International Nuclear Information System (INIS)

    Barashev, V.P.; Shvartsman, Sh.M.; Shabad, A.E.

    1986-01-01

    Various radiative processes with one-photon initial state are treated in QED with pair-producing external field. It is shown that the probabilities of such processes are expressed in terms of two different polarization operators. For the case of a constant field the polarization operator which is expressed through the so-called causal Green electron function, is calculated. This operator has never been calculated previously. It enters the formula for probability of production of N arbitrary pairs by a photon

  20. Nuclear β decay with a massive neutrino in an external electromagnetic field

    International Nuclear Information System (INIS)

    Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.

    1986-01-01

    Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)

  1. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  2. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  3. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  4. Nonequilibrium electrophoresis of an ion-selective microgranule for weak and moderate external electric fields

    Science.gov (United States)

    Frants, E. A.; Ganchenko, G. S.; Shelistov, V. S.; Amiroudine, S.; Demekhin, E. A.

    2018-02-01

    Electrokinetics and the movement of charge-selective micro-granules in an electrolyte solution under the influence of an external electric field are investigated theoretically. Straightforward perturbation analysis is applied to a thin electric double layer and a weak external field, while a numerical solution is used for moderate electric fields. The asymptotic solution enables the determination of the salt concentration, electric charge distribution, and electro-osmotic velocity fields. It may also be used to obtain a simple analytical formula for the electrophoretic velocity in the case of quasi-equilibrium electrophoresis (electrophoresis of the first kind). This formula differs from the famous Helmholtz-Smoluchowski relation, which applies to dielectric microparticles, but not to ion-selective granules. Numerical calculations are used to validate the derived formula for weak external electric fields, but for moderate fields, nonlinear effects lead to a significant increase in electrophoretic mobility and to a transition from quasi-equilibrium electrophoresis of the first kind to nonequilibrium electrophoresis of the second kind. Theoretical results are successfully compared with experimental data.

  5. The Effect of External Magnetic Fields on the MRT Instability in MagLIF

    Science.gov (United States)

    Hess, Mark; Peterson, Kyle; Weis, Matthew; Lau, Yue Ying

    2014-10-01

    Recent experiments on MagLIF which incorporate an external B-field suggest that the MRT instability within the liner has a different behavior than without the B-field. Previous work by Chandrasekhar and Harris have illustrated how the MRT growth rate, assuming fixed liner density and fixed acceleration, can change due to the presence of an external B-field. In this work, we show how the growth rate of the MRT instability is dynamically affected by the rapidly varying acceleration, liner density, and surface magnetic field, which is composed of the external B-field and the drive B-field of the liner in the MagLIF experiments. In addition, we also examine the effects of finite liner resistivity on MRT growth, which gives rise to an additional time scale corresponding to magnetic diffusion. We discuss the implications of this result for future MagLIF designs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  6. Two regimes in conductivity and the Hall coefficient of underdoped cuprates in strong magnetic fields.

    Science.gov (United States)

    Gor'kov, L P; Teitel'baum, G B

    2014-01-29

    We address recent experiments shedding light on the energy spectrum of under and optimally doped cuprates at temperatures above the superconducting transition. Angle resolved photoemission reveals coherent excitation only near nodal points on parts of the 'bare' Fermi surface known as the Fermi arcs. The question debated in the literature is whether the small normal pocket, seen via quantum oscillations, exists at higher temperatures or forms below a charge order transition in strong magnetic fields. Assuming the former case as a possibility, expressions are derived for the resistivity and the Hall coefficient (in weak and strong magnetic fields) with both types of carriers participating in the transport. There are two regimes. At higher temperatures (at a fixed field) electrons are dragged by the Fermi arcs' holes. The pocket being small, its contribution to conductivity and the Hall coefficient is negligible. At lower temperatures electrons decouple from holes behaving as a Fermi gas in the magnetic field. As the mobility of holes on the arcs decreases in strong fields with a decrease of temperature, below a crossover point the pocket electrons prevail, changing the sign of the Hall coefficient in the low temperature limit. Such behavior finds its confirmation in recent high-field experiments.

  7. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  8. Do strong, static magnetic fields act on living beings and chemical reactions

    International Nuclear Information System (INIS)

    Demmer, W.

    1986-01-01

    In general, magnetic fields are said to have no direct influence on living beings or simple chemical reactions. There is, however, evidence to confirm that changes in the earth's magnetic field or of artificially produced magnetic fields can alter the activity of different neuronal enzyme systems. An effect on the synthesis of β-galactosidase in the bacterium Escherichia coli by a feeble magnetic field (0.2 to 0.8 mT) and disturbances of the embryogenesis of frogs by a strong magnetic field (1.0 T) have been described. These and similar investigations with whole cells raise the question as to what the effect of magnetic fields on isolated and purified enzymes will be. (orig./SHA) [de

  9. Effects of Exponential Nonlinear Electrodynamics and External Magnetic Field on Holographic Superconductors

    Science.gov (United States)

    Sheykhi, A.; Abdollahzadeh, Z.

    2018-03-01

    We investigate the effects of an external magnetic field as well as exponential nonlinear electrodynamics on the properties of s-wave holographic superconductors. Our strategy for this study is the matching method, which is based on the match of the solutions near the horizon and on the boundary at some intermediate point. When the magnetic field is turned off, we obtain the critical temperature as well as the condensation operator and show that the critical exponent is still 1/2, which is the universal value in the mean field theory. Then, we turn on the magnetic field and obtain the critical magnetic field, B c , in order to study its behavior in terms of the temperature. Interestingly enough, we find that in the presence of exponential nonlinear electrodynamics, the critical temperature decreases, while the critical magnetic field increases compared to the Maxwell case. We also observe that the critical magnetic field increases with increasing the nonlinear parameter b.

  10. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  11. Parity violation effects in the hydrogen atom in the field of a strong electromagnetic wave

    International Nuclear Information System (INIS)

    Labzovsky, L.N.; Mitrushchenkov, A.O.

    1989-01-01

    The parity violation effects in the hydrogen atom in a strong electromagnetic laser field are considered. It is shown that there is the possibility of hyperrate measurements of different constants of the weak interaction in the hydrogen magnetic resonance experiments. (orig.)

  12. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    NARCIS (Netherlands)

    Kenjeres, S.

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations

  13. The permanent magnet systems generating strong stray fields with large localization region

    International Nuclear Information System (INIS)

    Samofalov, V.N.; Belozorov, D.P.; Ravlik, A.G.

    2008-01-01

    Three systems of permanent magnets, which produce strong magnetic stray fields (SFs) with H>B r =4πM r were studied in this work. Remarkable feature of the developed systems is localization of the strong fields in large region with linear dimension Δr comparable to characteristic magnet dimension a. The first system composed of uniformly magnetized magnets generates sufficiently homogeneous strong SFs, which amounts up to 1.5 of magnets induction B r . The second system with nonuniform magnetization is represented by cylindrical and hemispheric magnets their magnetization vector directed at every point along the radius. Such distribution of magnetization is assumed to be the consequence of magnet radial crystal texture resulting in a high uniaxial anisotropy field H K . It is shown that maximal SFs can exist on the flat surface of cylindrical magnet at the distance r from its axis and their limiting value equals to 4πM r ln(2a/r). Here, the localization region of the fields is comparable to diameter of cylindrical magnet Δr∼2R. As for the hemisphere its SFs are less than corresponding SFs for the cylinder. The third so-called quasi-nonuniform system consists of uniformly magnetized cylindrical sectors their magnetization vector is directed along the sector bisectrix. The strong SFs and their localization region are calculated in details for this case. The passage to radial magnetized cylinder is considered

  14. The Bekenstein bound in strongly coupled O(N) scalar field theory

    International Nuclear Information System (INIS)

    Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.

    2009-09-01

    We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)

  15. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Lee, Taekoon, E-mail: jykim@kunsan.ac.kr, E-mail: tlee@kunsan.ac.kr [Department of Physics, Kunsan National University, Daihakro 558, Kunsan 573-701 (Korea, Republic of)

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  16. The D sup - centre in a quantum well in the presence of parallel electric and strong magnetic fields

    CERN Document Server

    Monozon, B S

    2003-01-01

    An analytical approach to the problem of a negatively charged donor in an infinitely deep quantum well (QW) in the presence of parallel electric and strong magnetic external fields both directed perpendicular to the heteroplanes is developed. The double adiabatic approximation is employed. The dependences of the binding energy on the field strengths, the width of the well and the position of the impurity within the well are derived in explicit form. The effect of the inversion of the electric field is investigated. It is shown that the combined potential acting on the 'outer' electron resembles that of a double QW. When the levels associated with the two effective QWs anticross, a resonant structure arises. The explicit dependence of the resonant splitting on the width of the QW, the strength of the electric field and the position of the impurity are obtained. Using the parameters associated with the GaAs QW, estimates of the inversion shift of the binding energy and the frequency of the emitted resonant radi...

  17. Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field

    International Nuclear Information System (INIS)

    Vagin, Dmitry V.; Polyakov, Oleg P.

    2008-01-01

    Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems

  18. A shear-mode magnetoelectric heterostructure for harvesting external magnetic field energy

    Science.gov (United States)

    He, Wei; Zhang, Jitao; Lu, Yueran; Yang, Aichao; Qu, Chiwen; Yuan, Shuai

    2017-03-01

    In this paper, a magnetoelectric (ME) energy harvester is presented for scavenging external magnetic field energy. The proposed heterostructure consists of a Terfenol-D plate, a piezoelectric PZT5H plate, a NdFeB magnet, and two concentrators. The external magnetic field is concentrated to the Terfenol-D plate and the PZT5H plate working in shear-mode, which can potentially increase the magnetoelectric response. Experiments have been performed to verify the feasibility of the harvester. Under the magnetic field of 0.6 Oe, the device produces a RMS voltage of 0.53 V at the resonant frequency of 32.6 kHz. The corresponding output power reaches 44.96 μW across a 3.1 kΩ matching resistor.

  19. Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field

    Science.gov (United States)

    Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.

    2017-08-01

    Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.

  20. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V M [Department of Theoretical Physics, I. I. Mechnikov Odessa National University, 65026 Odessa (Ukraine); Djuric, Z [Silvaco Data System, Silvaco Technology Centre, Compass Point, St. Ives PE27 5JL (United Kingdom); Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Sakan, N M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Tkachenko, I M [Department of Applied Mathematics, ETSII, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022 (Spain)

    2004-07-21

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N{sub e}, and temperature, T, varied within the following limits: 10{sup 19} {<=} N{sub e} {<=} 10{sup 21} cm{sup -3} and 2 x 10{sup 4} {<=} T {<=} 10{sup 6} K, respectively. The external electric field frequency, f, varied in the range 3 GHz{<=} f {<=} 0.05{omicron}{sub p}, where {omicron}{sub p} is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications.

  1. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    International Nuclear Information System (INIS)

    Adamyan, V M; Djuric, Z; Mihajlov, A A; Sakan, N M; Tkachenko, I M

    2004-01-01

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N e , and temperature, T, varied within the following limits: 10 19 ≤ N e ≤ 10 21 cm -3 and 2 x 10 4 ≤ T ≤ 10 6 K, respectively. The external electric field frequency, f, varied in the range 3 GHz≤ f ≤ 0.05ο p , where ο p is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications

  2. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  3. Nonlinear dispersion of resonance extraordinary wave in a plasma with strong magnetic field

    International Nuclear Information System (INIS)

    Krasovitskiy, V. B.; Turikov, V. A.; Sotnikov, V. I.

    2007-01-01

    In this paper, the efficiency of electron acceleration by a short, powerful laser pulse propagating across an external magnetic field is investigated. Conditions for the decay of a laser pulse with frequency close to the upper hybrid resonance frequency are analyzed. It is also shown that a laser pulse propagating as an extraordinary wave in cold, magnetized, low-density plasma takes the form of a nonlinear wave with the modulated amplitude (envelope soliton). Finally, simulation results on the interaction of an electromagnetic pulse with a semi-infinite plasma, obtained with the help of an electromagnetic relativistic PIC code, are discussed and a comparison with the obtained theoretical results is presented

  4. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Kirill Tuchin

    2013-01-01

    Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

  5. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  6. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  7. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-01-01

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field

  8. Destruction of Spiral Wave Using External Electric Field Modulated by Logistic Map

    International Nuclear Information System (INIS)

    Ma Jun; Chen Yong; Jin Wuyin

    2007-01-01

    Evolution of spiral wave generated from the excitable media within the Barkley model is investigated. The external gradient electric field modulated by the logistic map is imposed on the media (along x- and y-axis). Drift and break up of spiral wave are observed when the amplitude of the electric field is modulated by the chaotic signal from the logistic map, and the whole system could become homogeneous finally and the relevant results are compared when the gradient electric field is modulated by the Lorenz or Roessler chaotic signal.

  9. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  10. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  11. Effects of external magnetic field on biodistribution of nanoparticles: A histological study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tony [Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Hua, M.-Y. [Department of Chemical and Material Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan (China); Chen Jyhping [Department of Chemical and Material Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan (China); Wei, K.-C. [Department of Neurosurgery, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Chang, Y.-J. [Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Jou, M.-J. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)]. E-mail: yhma@mail.cgu.edu.tw

    2007-04-15

    This study investigates the effect of external magnetic fields on the biodistribution of nanoparticles (NP). A NdFeB magnet of 2.4 kG was externally applied over the left femoral artery or right kidney. The 250 nm dextran-coated Fe{sub 3}O{sub 4} NP was injected via tail vein in healthy rats, and organs were taken 1 or 24 h later. Prussian blue stain revealed that NP were more rapidly retained in the liver and spleen than in the lungs. NP aggregation observed in the kidney and femoral artery after application of external magnets was time dependent. Hollow organs such as the intestine, colon, and urinary bladder retained little NP.

  12. Effects of external magnetic field on biodistribution of nanoparticles: A histological study

    International Nuclear Information System (INIS)

    Wu, Tony; Hua, M.-Y.; Chen Jyhping; Wei, K.-C.; Jung, S.-M.; Chang, Y.-J.; Jou, M.-J.; Ma, Y.-H.

    2007-01-01

    This study investigates the effect of external magnetic fields on the biodistribution of nanoparticles (NP). A NdFeB magnet of 2.4 kG was externally applied over the left femoral artery or right kidney. The 250 nm dextran-coated Fe 3 O 4 NP was injected via tail vein in healthy rats, and organs were taken 1 or 24 h later. Prussian blue stain revealed that NP were more rapidly retained in the liver and spleen than in the lungs. NP aggregation observed in the kidney and femoral artery after application of external magnets was time dependent. Hollow organs such as the intestine, colon, and urinary bladder retained little NP

  13. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  14. Surface modification of ZnS films by applying an external magnetic field in vacuum chamber

    Science.gov (United States)

    Ehsani, M. H.; Zarei Moghadam, R.; Rezagholipour Dizaji, H.; Kameli, P.

    2017-09-01

    In this paper, ZnS films were prepared using pulsed laser deposition technique in vacuum chamber in the presence and absence of an external magnetic field. The applied magnetic field effects on optical properties and film growth conditions were studied. For this reason, morphological, structural and optical properties of the grown films have been investigated by atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and UV-vis spectroscopy analysis techniques. The structural studies revealed that the ZnS films deposited at 200 °C crystallized in hexagonal structure. The results showed the improvement of the film crystallinity upon grain size increment and the surface morphology modification resulted from applying an external magnetic field. Using the UV-vis spectroscopy data, absorption coefficient (α), refractive index (n) and extinction coefficient (k) of the samples were calculated. The band gap energy (E g) and Urbach energy were also calculated by Tauc, ASF and DASF methods. The results show that by applying magnetic field, the band gap and Urbach energies reduced, due to improvement in the film crystallinity. For describing the magnetic field effect, a simulation of applied magnetic field effect on vapor flux in vacuum chamber was performed using Multi-Physics COMSOL package.

  15. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Amzel, Tal; Sternheim, Marek; Belkin, Shimshon; Rubin, Adi; Shacham-Diamand, Yosi; Freeman, Amihay

    2011-01-01

    Highlights: → We present an electrochemical whole-cell biochip that can apply electric fields. → We examine the integration of cells on a biochip using electrophoretic deposition. → The effect of electric fields on the whole-cell biosensor has been demonstrated. → Relatively short DC electric pulse improves the performance of whole-cell biosensors. → Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that

  16. MHD-equilibrium and stability of a z-pinch in an external magnetic field

    International Nuclear Information System (INIS)

    Brynolf, J.

    1982-05-01

    The freeboundary of a sharp z-pinch plasma surrounded by four external conductors, all carrying the same current, is solved. This problem, which is considered as two-dimensional, is transformed by a conformal mapping of the vacuum domain onto the outside of the unit circle. In this area both the complex potential and the mapping itself are analytical functions with wellknown boundary values and hence they can be solved unicely. For the configuration where the external conductors lie in the corner of a square, an analytical expression for the coordinates of the surface is found. Each ratio between the plasma and the vacuum currents results in a family of surfaces in which each member can be labeled either with the magnetic field strength on the surface or with the distance to the external conductors. In section III, the energy principle is used to investigate the stability of the equilibrium configurations against two-dimensional displacements. They are found both analytically and by computer to be unstable for all parametervalues. Without external currents any translation gives marginal stability. For the case with conductors froming a square an analysis of the stability against ridig-body translation gives the opposite result. Then the external currents instead have a stabilizing effect. (Author)

  17. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    International Nuclear Information System (INIS)

    Endrödi, Gergely

    2015-01-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB<1 GeV 2 . On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB=3.25 GeV 2 . Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  18. Time-Resolved Photoelectron Angular Distributions from Strong-Field Ionization of Rotating Naphthalene Molecules

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Stapelfeldt, Henrik; Dimitrovski, Darko

    2011-01-01

    A nanosecond laser pulse confines the spatial orientation of naphthalene in 1D or 3D while a femtosecond kick pulse initiates rotation of the molecular plane around the fixed long axis. Time-dependent photoelectron angular distributions (PADs), resulting from ionization by an intense femtosecond...... probe pulse, exhibit pronounced changes as the molecular plane rotates. Enhanced 3D alignment, occurring shortly after the kick pulse, provides strongly improved contrast in molecular-frame PADs. Calculations in the strong-field approximation show that the striking structures observed in the PADs...

  19. Drag force in strongly coupled { N }=4 supersymmetric Yang–Mills plasma in a magnetic field

    Science.gov (United States)

    Zhang, Zi-qiang; Ma, Ke; Hou, De-fu

    2018-02-01

    Applying AdS/CFT correspondence, we study the effect of a constant magnetic field { B } on the drag force associated with a heavy quark moving through a strongly-coupled { N }=4 supersymmetric Yang–Mills plasma. The quark is considered moving transverse and parallel to { B }. It is shown that for transverse case, the drag force is linearly dependent on { B } in all regions, while for parallel case, the drag force increases monotonously with increasing { B } and also reveals a linear behavior in the regions of strong { B }. In addition, we find that { B } has a more important effect in the transverse case than for the parallel.

  20. Experimental observation of strong radiation reaction in the field of an ultra-intense laser

    Science.gov (United States)

    Sarri, G.; Poder, K.; Tamburini, M.; di Piazza, A.; Keitel, C. H.; Zepf, M.

    2017-10-01

    Describing radiation reaction in an electromagnetic field is one of the most fundamental outstanding problems in electrodynamics. It consists of determining the dynamics of a charged particle fully taking into account self-forces (loosely referred to as radiation reaction) resulting from the radiation fields generated by the particle whilst it is accelerated. Radiation reaction has only been invoked to explain the radiative properties of powerful astrophysical objects, such as pulsars and quasars. From a theoretical standpoint, this phenomenon is subject of fervent debate and this impasse is worsened by the lack of experimental data, due to extremely high fields required to trigger these effects. Here, we report on the first experimental evidence of strong radiation reaction during the interaction of an ultra-relativistic electron beam with an intense laser field, beyond a purely classical description.

  1. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  2. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  3. Strong-field effects in Rabi oscillations between a single state and a superposition of states

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Milner, V.; Hepburn, J. W.

    2011-01-01

    Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.

  4. Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields

    Science.gov (United States)

    Chakraborty, A.; Mishra, S. R.

    2018-01-01

    Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.

  5. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif; Ahmad, Shabbir; Ahmad, Shahzad, E-mail: shahzadahmadbzu@gmail.com; Ashraf, Muhammad; Asif, Muhammad [Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan (Postal Code: 60800) (Pakistan)

    2015-10-15

    In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms of both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.

  6. Manipulating Majorana zero modes on atomic rings with an external magnetic field

    Science.gov (United States)

    Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali

    2016-01-01

    Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles--the Majorana bound states--can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field.

  7. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-10-01

    Full Text Available In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms of both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.

  8. First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved

    Science.gov (United States)

    Berdyugina, S. V.; Harrington, D. M.; Kuzmychov, O.; Kuhn, J. R.; Hallinan, G.; Kowalski, A. F.; Hawley, S. L.

    2017-09-01

    We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55+/- 4{M}{{J}} and age of 22 ± 4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.

  9. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  10. Study of Strong Magnetic Fields Using Parametric Instability in a Magnetised Plasma

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Anderson, A. A.; Bauer, B. S.; Yates, K.

    2014-10-01

    Generation of strong magnetic fields with a strength of 10--50 MG plays a key role in some recent conceptions for controlled fusion. We suggest a laser method for measuring the local magnetic field, B > 10 MG, based on the parametric decay of the laser radiation to ω/2 and 3/2 ω harmonics which are generated in the area with the electron density of a quarter of the critical plasma density. Spectral components of parametric harmonics carry a signature of both the plasma temperature and strong magnetic field. A two-plasmon decay of laser radiation was studied in a magnetized plasma at the 1 MA pulsed power Zebra facility at the University of Nevada, Reno. Dense magnetized plasma with a magnetic field of 1--3 MG was created by the 1MA current flowing in the metal rod 0.7--2 mm in diameter. Radiation from the narrowband laser with intensity >1014 W/cm2 was focused on the surface plasma. Spectrum of the backscattering 3/2 ω harmonic included ``red'' and ``blue'' shifted components. Large 2-3 nm shifts of spectral components was identified with laser heating of plasma. Components with a small 0.1 nm spectral shift of may be linked to the magnetic field. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  11. Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum

    Directory of Open Access Journals (Sweden)

    Psaltis Dimitrios

    2008-11-01

    Full Text Available Neutron stars and black holes are the astrophysical systems with the strongest gravitational fields in the universe. In this article, I review the prospect of using observations of such compact objects to probe some of the most intriguing general relativistic predictions in the strong-field regime: the absence of stable circular orbits near a compact object and the presence of event horizons around black-hole singularities. I discuss the need for a theoretical framework, within which future experiments will provide detailed, quantitative tests of gravity theories. Finally, I summarize the constraints imposed by current observations of neutron stars on potential deviations from general relativity.

  12. Chiral soliton lattice and charged pion condensation in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Yamamoto, Naoki [Department of Physics, Keio University,Yokohama 223-8522 (Japan)

    2017-04-21

    The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.

  13. Attosecond counter-rotating-wave effect in xenon driven by strong fields

    Science.gov (United States)

    Anand, M.; Pabst, Stefan; Kwon, Ojoon; Kim, Dong Eon

    2017-05-01

    We investigate the subfemtosecond dynamics of a highly excited xenon atom coherently driven by a strong control field at which the Rabi frequency of the system is comparable to the frequency of a driving laser. The widely used rotating-wave approximation breaks down at such fields, resulting in features such as the counter-rotating-wave (CRW) effect. We present a time-resolved observation of the CRW effect in the highly excited 4 d-1n p xenon using attosecond transient absorption spectroscopy. Time-dependent many-body theory confirms the observation and explains the various features of the absorption spectrum seen in experiment.

  14. Integrated electronic transport and thermometry at milliKelvin temperatures and in strong magnetic fields.

    Science.gov (United States)

    Samkharadze, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A

    2011-05-01

    We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK.

  15. Gauge invariance and photon emission from ground state atoms in the presence of external electromagnetic field

    International Nuclear Information System (INIS)

    Maquet, A.; Rahman, N.K.

    1987-01-01

    The relevance of gauge invariance in considering the question of emission of photons in the presence of external electromagnetic field from the ground state of quantum mechanical systems is studied. With an exact numerical calculation for atomic hydrogen, it is shown that the photons cannot be unequivocally assigned to have been emitted from the ground state due to the invariance of gauge of the probability for the process

  16. The Conformer Specific Rotational Spectrum of 3-PHENYLPROPIONITRILE Utilizing Strong Field Coherence Breaking

    Science.gov (United States)

    Fritz, Sean; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zwier, Timothy S.

    2017-06-01

    The 8-18 GHz conformer specific rotational spectrum of gauche- and anti-3-phenylpropionitrile (C6H5-CH2-CH2-CN) conformers has been recorded using the strong field coherence breaking (SFCB) technique [1] with a modified line picking scheme for multiple selective excitations (MSE). As the recombination product of benzyl and cyanomethyl resonance-stabilized radicals, 3-phenylpropionitrile is a likely component of the complex organics in Titan's atmosphere, motivating its structural characterization. Details of the modified line picking scheme, hyperfine constants and relative population ratios of the two conformers will be presented. [1] A.O Hernandez-Castillo, Chamara Abeysekera, Brian M. Hays, Timothy S. Zwier, "Broadband Multi-Resonant Strong Field Coherence Breaking as a Tool for Single Isomer Microwave Spectroscopy." J. Chem. Phys. 145, 114203 (2016).

  17. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  18. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  19. Carrier envelope phase effects in molecular dissociation by few-cycle strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, K I [Hellenic Army Academy, Department of Natural Science and Applications, Vari (Greece); Constantoudis, V [Institute of Microelectronics, NCSR ' Demokritos' , Athens (Greece); Mercouris, Th [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Nicolaides, C A, E-mail: dimi@eie.g [Physics Department, National Technical University, Athens (Greece)

    2009-11-01

    Multiphoton molecular dissociation produced by few-cycle strong laser fields of mid-infrared wave lengths is studied theoretically. The dependence of the carrier envelope phase (CEP) on the photodissociation dynamics is investigated using both quantum and classical nonperturbative approaches. Our results show that dissociation is affected by the changes of the CEP. A detailed analysis shows that this dependence is sensitive to the duration and to the shape of the pulse.

  20. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  1. Role of high-order dispersion on strong-field laser-molecule interactions

    Science.gov (United States)

    Dantus, Marcos; Nairat, Muath

    2016-05-01

    Strong-field (1012- 1016 W/ cm2) laser-matter interactions are characterized by the extent of fragmentation and charge of the resulting ions as a function of peak intensity and pulse duration. Interactions are influenced by high-order dispersion, which is difficult to characterize and compress. Fourth-order dispersion (FOD) causes a time-symmetric pedestal, while third-order dispersion (TOD) causes a leading (negative) or following (positive) pedestal. Here, we report on strong-field interactions with pentane and toluene molecules, tracking the molecular ion and the doubly charged carbon ion C2+ yields as a function of TOD and FOD for otherwise transform-limited (TL) 35fs pulses. We find TL pulses enhance molecular ion yield and suppress C2+ yield, while FOD reverses this trend. Interestingly, the leading pedestal in negative TOD enhances C2+ yield compared to positive TOD. Pulse pedestals are of particular importance in strong-field science because target ionization or alignment can be induced well before the main pulse arrives. A pedestal following an intense laser pulse can cause sequential ionization or accelerate electrons causing cascaded ionization. Control of high-order dispersion allows us to provide strong-field measurements that can help address the mechanisms responsible for different product ions in the presence and absence of pedestals. Financial support of this work comes from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, DOE SISGR (DE-SC0002325)

  2. Differentiating weak ties and strong ties among external sources of influences for enterprise resource planning (ERP) adoption

    Science.gov (United States)

    Aubert, Benoit; Léger, Pierre-Majorique; Larocque, Denis

    2012-05-01

    Enterprise resource planning (ERP) systems represent a major IT adoption decision. ERP adoption decisions, in the chemicals and allied products sectors, were examined between 1994 and 2005. Networks of strong ties and weak ties partners are investigated. Results show that neighbouring companies linked with strong ties can have an influence on organisations making such adoption decision. Past decisions made by major trading partners have a significant influence on the decision to adopt an ERP system for a given organisation. This reflects the complex nature of the knowledge required for such adoption.

  3. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  4. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  5. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  6. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    International Nuclear Information System (INIS)

    Seipt, Daniel

    2012-01-01

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10 24 W/cm 2 and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An

  7. Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Popp, J., E-mail: jana.popp@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Borin, D.Yu., E-mail: dmitry.borin@tu-dresden.de [Technische Universität Dresden, Magnetofluiddynamics, Measuring and Automation Technology, D-01062 Dresden (Germany); Stepanov, G.V., E-mail: gstepanov@mail.ru [State Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany)

    2017-06-01

    The development of sensor systems with a complex adaptive regulation of the operating sensitivity and behaviour is an actual scientific and technical challenge. Smart materials like magneto-sensitive elastomers (MSE) are seen as one potential solution for this problem, since their mechanical properties may be controlled by external magnetic fields. The present paper deals with the investigation of elastic and damping properties of MSE containing magnetically soft particles under the influence of a uniform magnetic field. Based on the measurement of the first eigenfrequency of free bending vibrations of a fixed beam, the effective Young's modulus is evaluated theoretically and also numerically using Finite Element Method. It is shown that this parameter, as well as the first eigenfrequency of the beam, increases monotonically with the magnitude of the applied magnetic field. The results are aimed to develop an acceleration sensor with adaptive magnetically controllable sensitivity range for the detection of external mechanical stimuli of the environment. - Highlights: • The motion behaviour of magneto-sensitive elastomers (MSE) with magnetically soft particles is investigated. • The first eigenfrequency of free bending vibrations of an MSE beam can be controlled by a uniform magnetic field. • Based on the experimental results, the effective Young's modulus of the system is evaluated theoretically and numerically. • The Young's modulus increases monotonically with the magnitude of the applied magnetic field. • The controlled mechanical compliance of MSE may be used for development of sensor systems with adaptive sensitivity range.

  8. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Kenjeres, Sasa

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell's equations (Biot-Savart/Ampere's law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery

  9. Modeling of mechanisms responsible for ELM mitigation by external magnetic field perturbations

    International Nuclear Information System (INIS)

    Tokar, M.Z.; Rogister, A.L.; Wolf, R.C.; Singh, R.; Kaw, P.

    2007-01-01

    Edge-Localized Modes (ELMs) is an intrinsic feature of the high confinement H-mode in tokamaks. On the one hand, they are beneficial for stationary discharge performance by expelling from the plasma impurities produced at the machine walls. On the other hand, under reactor conditions type I ELMs would themselves lead to a dramatic increase of impurity release and cause very large pulse heat loads on divertor plates. Therefore, it is crucial to find a way to mitigate ELMs without negative consequences for the plasma. Recent experiments on the tokamak D-III D have demonstrated that by applying resonant magnetic field perturbations from external coils, large type I ELMs can be effectively mitigated without any significant loss of confinement quality. This mode of operation is highly desirable for future fusion reactors and therefore it is very important to achieve an understanding of physical mechanism leading to ELMs suppression through external field perturbations. In the present contribution ballooning-pealing MHD instability considered normally as the main cause of the edge localized modes of type I, is theoretically examined in the presence of external magnetic field perturbations by applying a mode-mode coupling technique. It is demonstrated that through non-linear interaction, leading to the generation of side bands which suck energy from the main mode, such perturbations can raise the threshold of MHD instabilities. The synergy of this effect with the influence of external perturbations on the particle and energy transport in the edge transport barrier is studied by applying a simple model for the time variation of plasma parameters in the edge transport barrier. It is demonstrated that this synergy can be very beneficial for the plasma performance. In future experiments on JET and ITER it may lead to a noticeable increase of the pedestal pressure compared to the standard H-mode operation. (author)

  10. Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection

    Directory of Open Access Journals (Sweden)

    Atef El Jery

    2010-05-01

    Full Text Available The influence of an external oriented magnetic field on entropy generation in natural convection for air and liquid gallium is numerically studied in steady-unsteady states by solving the mass, the momentum and the energy conservation equations. Entropy generation depends on five parameters which are: the Prandtl number, the irreversibility coefficients, the inclination angle of the magnetic field, the thermal Grashof and the Hartmann numbers. Effects of these parameters on total and local irreversibilities as well as on heat transfer and fluid flow are studied. It was found that the magnetic field tends to decrease the convection currents, the heat transfer and entropy generation inside the enclosure. Influence of inclination angle of the magnetic field on local irreversibility is then studied.

  11. e-e scattering in the presence of an external field

    International Nuclear Information System (INIS)

    Bergou, J.; Varro, S.; Fedorov, M.V.

    1980-08-01

    A nonrelativistic treatment is given of electron-electron scattering in the presence of a laser field. The field is accounted for by the external field approximation and is represented by a circularly polarized monochromatic plane-wave field. A simple analytic expression is derived for the transition amplitude which is shown to exhibit internal resonances as well as intensity dependent shifts. The former is the nonrelativistic limit of the resonant Moeller scattering predicted previously by Oleinik (1967a). The latter, however, appears is a higher order of v/c and is consequently negligible for very slow electrons. The differential cross section of the scattering is also given where the effect of the spin and symmetry is taken into account explicitly. The width of resonances is introduced phenomenologically but its connection with previous methods is established. Consideration is also given to the experimental conditions under which the effects may become observable. (author)

  12. Characteristics of electron emission from PZT ferroelectric cathode under strong accelerating field

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yasushi [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan)]. E-mail: hayashi@es.titech.ac.jp; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan); Flechtner, Donald [High Voltage Laboratory, Cornell University, Ithaca, NY (United States)

    2002-02-07

    We have studied emission characteristics of a PZT ferroelectric cathode under the influence of a strong accelerating field by varying the triggering conditions. The beam current pulse reveals a rising and a steady phase. In the rising phase, the time variation of the beam current is found to be linearly dependent on both the trigger voltage and the diode voltage at the time when the current starts. In the steady phase, field emission characteristics are observed. The results show that the diode voltage is not only accelerating the emitted electrons but also assisting the electron emission from the ferroelectric cathode. An empirical model is proposed and is found to yield a reasonable beam current pulse when the electric field on the surface of the cathode is uniformly distributed. It also provides us with a new possibility to diagnose the emission process of a ferroelectric electron gun. (author)

  13. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  14. The process γγ → νν-bar in a strong magnetic field

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.

    2003-01-01

    A general analysis of the three-vertex loop amplitude in a strong magnetic field, based on the asymptotic form of the electron propagator in the field, is performed. In order to investigate the photon-neutrino process γγ → νν-bar, the vertex combinations of the scalar-vector-vector (SVV), pseudoscalar- vector-vector (PVV), 3-vector (VVV), and axial-vector-vector (AVV) types are considered. It is shown that only the SVV amplitude grows linearly with the magnetic-field strength, while in the other amplitudes, PVV, VVV, and AVV, the linearly growing terms are cancelled. The process γγ → νν-bar is investigated in the left-right-symmetric extension of the standard model of electroweak interaction, where the effective scalar ννee coupling could exist. Possible astrophysical manifestations of the considered process are discussed [ru

  15. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  16. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  17. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suvajit [Department of Chemistry, Hetampur Raj High School, Hetampur, Birbhum 731124, West Bengal (India); Sinha, Sudarson Sekhar [Department of Chemistry and Biochemistry, Jackson State University, Mississippi, MS 39217-0510 (United States); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2013-11-29

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r{sub 0}). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role.

  18. Effects of neutral distribution and external magnetic field on plasma momentum in electrodeless plasma thrusters

    Science.gov (United States)

    Takase, Kazuki; Takahashi, Kazunori; Takao, Yoshinori

    2018-02-01

    The effects of neutral distribution and an external magnetic field on plasma distribution and thruster performance are numerically investigated using a particle-in-cell simulation with Monte Carlo collisions (PIC-MCC) and the direct simulation Monte Carlo (DSMC) method. The modeled thruster consists of a quartz tube 1 cm in diameter and 3 cm in length, where a double-turn rf loop antenna is wound at the center of the tube and a solenoid is placed between the loop antenna and the downstream tube exit. A xenon propellant is introduced from both the upstream and downstream sides of the thruster, and the flow rates are varied while maintaining the total gas flow rate of 30 μg/s. The PIC-MCC calculations have been conducted using the neutral distribution obtained from the DSMC calculations, which were applied with different strengths of the magnetic field. The numerical results show that both the downstream gas injection and the external magnetic field with a maximum strength near the thruster exit lead to a shift of the plasma density peak from the upstream to the downstream side. Consequently, a larger total thrust is obtained when increasing the downstream gas injection and the magnetic field strength, which qualitatively agrees with a previous experiment using a helicon plasma source.

  19. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    International Nuclear Information System (INIS)

    Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas

    2013-01-01

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role

  20. The random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization

    Science.gov (United States)

    Monthus, Cécile; Garel, Thomas

    2012-09-01

    To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent νFS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent νtyp ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent {\

  1. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  2. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide

    Science.gov (United States)

    Li, Dehui; Cheng, Rui; Zhou, Hailong; Wang, Chen; Yin, Anxiang; Chen, Yu; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng

    2015-07-01

    The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN-Al2O3-MoS2 and GaN-Al2O3-MoS2-Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multilayer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multilayer MoS2 is comparable to or higher than that in monolayers. This strong electroluminescence can be attributed to electric-field-induced carrier redistribution from the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space. The electric-field-induced electroluminescence is general for other layered materials including WSe2 and can open up a new pathway towards transition metal dichalcogenide-based optoelectronic devices.

  3. Ordering kinetics of lamella-forming block copolymers under the guidance of various external fields studied by dynamic self-consistent field theory.

    Science.gov (United States)

    Wan, Xiaomin; Gao, Tong; Zhang, Liangshun; Lin, Jiaping

    2017-03-01

    Self-consistent field theory with a dynamic extension is exploited to investigate the kinetics of the lamellar formation of symmetric block copolymers under the direction of external fields. In particular, three types of directed self-assembly methods - a permanent field for chemo-epitaxy, a dynamic field for zone annealing and an integrated permanent/dynamic field - are examined. For the chemo-epitaxy involving sparsely prepatterned substrates or zone annealing, the block copolymers generally develop into polycrystalline nanostructures with multiple orientations due to the lack of strong driving forces for eliminating the long-lived imperfections in a limited time. As the integrated chemo-epitaxy and zone annealing method is applied to the block copolymer systems, single-crystalline nanostructures with precisely registered orientations are achieved in a short annealing time owing to the mutual acceleration of defect annihilations, which cannot be produced by the conventional techniques alone. Furthermore, the integrated method allows the rapid fabrication of well-ordered nanostructures on the extremely sparse prepatterned substrates. Our theoretical work may serve to rationalize the faster modern nanolithographic fabrication of smaller microelectronic components using lower-spatial-frequency templates.

  4. Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields

    International Nuclear Information System (INIS)

    Herrera, H.; Calderon, A.; Gonzalez de la Cruz, G.

    2007-01-01

    Full text: Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al x Ga 1-x N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work we solve analytically the Schrodinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)

  5. Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, H.; Calderon, A. [CICATA-IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Gonzalez de la Cruz, G. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2006-07-01

    Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al{sub x}Ga{sub 1-x}N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work, we solve analytically the Schroedinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)

  6. Two-photon annihilation of thermal pairs in strong magnetic fields

    Science.gov (United States)

    Baring, Matthew G.; Harding, Alice K.

    1992-01-01

    The annihilation spectrum of pairs with 1-D thermal distributions in the presence of a strong magnetic field is calculated. Numerical analysis of the spectrum are performed for mildly relativistic temperatures and for different angles of emission with respect to field lines. Teragauss magnetic fields are assumed so that conditions are typical of gamma ray burst and pulsar environments. The spectra at each viewing angle reveal asymmetric line profiles that are signatures of the magnetic broadening and red shifting of the line: these asymmetries are more prominent for small viewing angles. Thermal Doppler broadening tends to dominate in the right wing of the line and obscures the magnetic broadening more at high temperatures and smaller viewing angles. This angular dependence of the line asymmetry may prove a valuable diagnostic tool. For low temperatures and magnetic field strengths, useful analytic expressions are presented for the line width, and also for the annihilation spectrum at zero viewing angle. The results presented find application in gamma ray burst and pulsar models, and may prove very helpful in deducing field strengths and temperatures of the emission regions of these objects from line observations made by Compton GRO and future missions.

  7. Separation of lithospheric, external, and core components of the south polar geomagnetic field at satellite altitudes

    Science.gov (United States)

    Alsdorf, Douglas E.; von Frese, Ralph R. B.; Arkani-Hamed, Jafar; Noltimier, Hallan C.

    1994-03-01

    We present a new approach to producing scalar Magsat magnetic anomaly maps based on correlation coefficient filtering and the use of almost all of the available orbits. Our method differs from earlier techniques with respect to the following: (1) Passes are selected based on their variance properties rather than planetary indices such as Kp. (2) The core field model is least squares fit to individual passes and subsequently removed instead of substracting the model directly. This technique replaces band pass filtering or polynomial trend removal methods. (3) Each selected pass is sorted geographically and by local time, placed into one of four different altitude bands, and correlation coefficient filtered with the two adjacent passes. The filtering is the second step toward isolating the static lithospheric signal from the more dynamic external field signals. (4) Least squares collocation is used to grid the correlated passes; subsequently, the dawn and dusk maps are also correlation filtered providing another step toward removal of external fields. (5) The four resultant total field maps are continued to a common altitude and again correlation filtered for the static lithospheric anomalies. (6) The filtered results are then averaged together to provide a new total field map of the lithosphere south of 40 deg S latitude. Our total field map differs from previous efforts over the crustal blocks of West Antarctica. We obtained a positive anomaly over Edward VII Peninsula, extending into the Byrd subglacial basin and obtained a negative anomaly over the Ellsworth Mountains and parts of the Byrd subglacial basin. Also, a positive anomaly extending from the Ross Sea to offshore Wilkes Land is present in our map; however, this feature is absent in other maps. Positive anomalies marking the Weddell Sea in previous efforts are not present in our map. Prominent external field anomalies in the quadrant offshore of Wilkes Land are present in all previous efforts; however

  8. Influence of external fields and environment on the dynamics of a phase-qubit-resonator system

    International Nuclear Information System (INIS)

    Berman, G. P.; Chumak, A. A.

    2011-01-01

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive, -bath, and -qubit interaction. The renormalization of the resonator frequency caused by the qubit-resonator interaction is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during measurement time on the fidelity of a single-shot measurement is studied. The relation between fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state toward its stationary value is derived. The possibility of controlling this state by varying the amplitude and frequency of drive is shown.

  9. Furry picture for quantum electrodynamics with pair-creating external field

    International Nuclear Information System (INIS)

    Fradkin, E.S.

    1981-01-01

    The perturbation theory is constructed for QED, for which the interaction with the external pair-creating field is kept exactly. An explicit expression for the perturbation theory causal electron propagator is found. Special features of usage of the unitarity conditions for calculating the total probabilities of radiative processes in the case are discussed. Exact Green functions are introduced and the functional formulation is discussed. Perturbation theory for calculating the mean values of the Heisenberg operators, in particular, of the mean electromagnetic field is built in the case under consideration. Effective Lagrangian which generates the exact equation for the mean electromagnetic field is introduced. Functional representations for the generating functionals introduced in the paper are discussed. (author)

  10. Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiao, E-mail: cqhy1127@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Zhi-yong, E-mail: wzyong@cqut.edu.cn [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Xie, Zhong-Xiang [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China)

    2013-08-15

    We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann–Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.

  11. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  12. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.

    Science.gov (United States)

    Schuster, D I; Wallraff, A; Blais, A; Frunzio, L; Huang, R-S; Majer, J; Girvin, S M; Schoelkopf, R J

    2005-04-01

    We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape with measurement power is observed and theoretically explained. For weak measurement a long intrinsic dephasing time of T2>200 ns of the qubit is found.

  13. Peculiarities of two-electron atom ionization in strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    One-dimensional model of helium atom in strong field of electromagnetic wave of femtosecond activity is plotted within the Hartree method frames. Comparison of 'exact' calculations with the calculations conducted within the frames of the 'frozen' and 'passive' electrons is made. The nonmonotonous dependence of one-dimensional ionization probability on the radiation intensity is found. It is shown that the ionization minima are connected with multiphoton resonances between various atomic states, originating due to the Stark effect. It is supposed that the effect of ionization suppression in this case is related to interference stabilization

  14. An analytical method for the investigation of instability of a collisionless plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Zakharov, V.U.

    1993-01-01

    An analytical method for the investigation of special types of dispersion relations is presented. In particular, analysis of the propagation of small-amplitude hydromagnetic waves in a collisionless plasma in a strong magnetic field leads to such dispersion relations. The fifth-degree dispersion relation corresponding to a particular case is considered. The necessary stability condition for a steady state and conditions for the degeneration of small-amplitude waves are derived. A comparison with other methods for the analysis of similar dispersion relations is also presented. (author)

  15. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    Directory of Open Access Journals (Sweden)

    R. A. Ganeev

    2013-01-01

    Full Text Available New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications.

  16. Vibrational Excitation of Diatomic Molecular Ions in Strong Field Ionization of Diatomic Molecules

    International Nuclear Information System (INIS)

    Kjeldsen, Thomas K.; Madsen, Lars Bojer

    2005-01-01

    A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse

  17. Numerical Detector Theory for the Longitudinal Momentum Distribution of the Electron in Strong Field Ionization

    Science.gov (United States)

    Tian, Justin; Wang, Xu; Eberly, J. H.

    2017-05-01

    The lack of analytical solutions for the exit momentum in the laser-driven tunneling theory is a well-recognized problem in strong field physics. Theoretical studies of electron momentum distributions in the neighborhood of the tunneling exit depend heavily on ad hoc assumptions. In this Letter, we apply a new numerical method to study the exiting electron's longitudinal momentum distribution under intense short-pulse laser excitation. We present the first realizations of the dynamic behavior of an electron near the so-called tunneling exit region without adopting a tunneling approximation.

  18. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.

    2015-01-01

    Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015

  19. Viscosity in strongly interacting quantum field theories from black hole physics.

    Science.gov (United States)

    Kovtun, P K; Son, D T; Starinets, A O

    2005-03-25

    The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of variant Planck's over 2pi/4pik(B) for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.

  20. Transport coefficients of InSb in a strong magnetic field

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-02-01

    Improvement of a superconducting magnet system makes induction of a strong magnetic field easier. This fact gives us a possibility of energy conversion by the Nernst effect. As the first step to study the Nernst element, we measured the conductivity, the Hall coefficient, the thermoelectric power and the Nernst coefficient of the InSb, which is one of candidates of the Nernst elements. From this experiment, it is concluded that the Nernst coefficient is smaller than the theoretical values. On the other hand, the conductivity, the Hall coefficient and the thermoelectric power has the values expected by the theory. (author)

  1. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2013-01-01

    with situations where the ensemble average of the force deviates considerably from the force calculated at the average position of the trajectories of the ensemble. We identify the general trends for the applicability of the semiclassical model in terms of intensity, ellipticity, and wavelength of the laser pulse......By comparison with the solution of the time-dependent Schrödinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  2. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  3. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  4. Strong-field photoelectron holography of atoms by bicircular two-color laser pulses

    Science.gov (United States)

    Li, Min; Jiang, Wei-Chao; Xie, Hui; Luo, Siqiang; Zhou, Yueming; Lu, Peixiang

    2018-02-01

    We study photoelectron holography in strong bicircular two-color laser fields by solving the time-dependent Schrödinger equation (TDSE) and a semiclassical rescattering model with implementing interference effect. The holographic patterns observed in the TDSE are well recaptured by the semiclassical rescattering model. Four types of photoelectron holographic interferences between the forward scattered and nonscattered trajectories are predicted by the semiclassical rescattering model in the bicircular two-color laser field. We find that those holographic patterns are spatially separated from each other in the electron momentum distribution. We further show that the dependence of the initial transverse momentum at the tunnel exit on the ionization time for the rescattering electron is recorded by the holographic patterns.

  5. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  6. Influence of the initial angular distribution on strong-field molecular dissociation

    Science.gov (United States)

    Yu, Youliang; Zeng, Shuo; Hernández, J. V.; Wang, Yujun; Esry, B. D.

    2016-08-01

    We study few-cycle, strong-field dissociation of aligned H2+ by solving the time-dependent Schrödinger equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look at the dependence on the relative angle θ0 between the laser polarization and the symmetry axis of a well-aligned initial distribution, as well as the dependence on the delay between the "pump" pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for θ0=90∘ can be appreciable even though the transitions involved are purely parallel. We therefore address the limits of the commonly held "ball-and-stick" picture for molecules in intense fields as well as the validity of the axial recoil approximation.

  7. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  8. Colored, spinning classical particle in an external non-Abelian gauge field

    International Nuclear Information System (INIS)

    Arodz, H.

    1982-04-01

    Classical non-relativistic equations of motion are derived for a colored, spinning point-like particle in an external SU(2) gauge field from Dirac equation. It is found that in addition to the classical spin and color spin vectors, S, I, it is necessary to introduce a new classical dynamical variable [Jsup(ab)], a,b = 1,2,3, describing a mixing of the spin and color. The constraint relations between [Jsup(ab)], S, I are also found. (Auth.)

  9. Water droplets' internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field.

    Science.gov (United States)

    Sakai, Munetoshi; Kono, Hiroki; Nakajima, Akira; Sakai, Hideki; Abe, Masahiko; Fujishima, Akira

    2010-02-02

    On a superhydrophobic surface, the internal fluidity of water droplets with different volumes (15, 30 microL) and their horizontal motion in an external electric field were evaluated using particle image velocimetry (PIV). For driving of water droplets on a superhydrophobic coating between parallel electrodes, it was important to place them at appropriate positions. Droplets moved with slipping. Small droplets showed deformation that is more remarkable. Results show that the dielectrophoretic force induced the initial droplet motion and that the surface potential gradient drove the droplets after reaching the middle point between electrodes.

  10. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  11. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  12. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields......-effective-mass states in the energy-momentum space of the conduction band. Further, we observe the typical accompanying effects of saturable absorption on the THz pulses, such as an increase of the group delay, as the peak electric field of the pulse increases. In this paper we present the results of nonlinear THz time....... The semiconductor conductivity, and hence the THz absorption, is modulated due to the acceleration of carriers in strong THz fields, leading to an increase of the effective mass of the electron population, as the electrons are redistributed from the low-momentum, low-effective-mass states to the high-momentum, high...

  13. Breakdown of the Chiral Anomaly in Weyl Semimetals in a Strong Magnetic Field

    Science.gov (United States)

    Kim, Pilkwang; Ryoo, Ji Hoon; Park, Cheol-Hwan

    2017-12-01

    The low-energy quasiparticles of Weyl semimetals are a condensed-matter realization of the Weyl fermions introduced in relativistic field theory. Chiral anomaly, the nonconservation of the chiral charge under parallel electric and magnetic fields, is arguably the most important phenomenon of Weyl semimetals and has been explained as an imbalance between the occupancies of the gapless, zeroth Landau levels with opposite chiralities. This widely accepted picture has served as the basis for subsequent studies. Here we report the breakdown of the chiral anomaly in Weyl semimetals in a strong magnetic field based on ab initio calculations. A sizable energy gap that depends sensitively on the direction of the magnetic field may open up due to the mixing of the zeroth Landau levels associated with the opposite-chirality Weyl points that are away from each other in the Brillouin zone. Our study provides a theoretical framework for understanding a wide range of phenomena closely related to the chiral anomaly in topological semimetals, such as magnetotransport, thermoelectric responses, and plasmons, to name a few.

  14. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  15. Pair production in a strong electric field with back-reaction

    International Nuclear Information System (INIS)

    Eisenberg, J.M.; Kluger, Y.; Svetitsky, B.

    1992-01-01

    We present a summary of the present status of efforts to solve the problem in which pairs are produced in a strong electric field, are accelerated by it, and then react back on it through the counter-field produced by their current. This picture has been used by Bialas and Czyz and others as a model for effects that may possibly arise in the study of the quark-gluon plasma. We here give a didactic review of recent developments in this back-reaction problem. We first present a simple version of the theory of pair tunneling from a fixed electric field, and then sketch how this has been applied to the quark-gluon plasma. Then we turn to a field formulation of the problem for charged bosons, which leads to the need to carry out a renormalization program, outlined again in simple terms. Numerical results for this program are presented for one spatial dimension, the corresponding physical behaviour of the system is discussed, and the implications for three spatial dimensions are considered. We exhibit a phenomenological transport equation embodying physics that is essentially identical to that of the field formulation, thus helping to tie the model of Bialas and Czyz for the quark-gluon plasma to a field-theory formulation. Last, we note the status of extensions to the problem with three space dimensions; the fermion case; the formulation in terms of boost-invariant variables (as desirable for the quark-gluon plasma); and transport equations derived in a fundamental and consistent fashion. 5 figs., 13 refs. (author)

  16. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  17. Charge transfer of He2 + with H in a strong magnetic field

    Science.gov (United States)

    Liu, Chun-Lei; Zou, Shi-Yang; He, Bin; Wang, Jian-Guo

    2015-09-01

    By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He2 + +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. Project supported by the National Natural Science Foundation of China (Grants Nos. 11104017, 11025417, 11275029, and 11474032), the National Basic Research Programm of China (Grant No. 2013CB922200), and the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics (Grant Nos. 2014B09036 and 2013A0102005).

  18. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field

    Science.gov (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.

    2017-03-01

    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  19. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields

    Science.gov (United States)

    Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

  20. Adiabatic theory of strong-field photoelectron momentum distributions near a backward rescattering caustic

    Science.gov (United States)

    Morishita, Toru; Tolstikhin, Oleg I.

    2017-11-01

    We present a comprehensive treatise on the derivation of the factorization formula describing strong-field photoelectron momentum distributions near the outermost backward rescattering caustic within the adiabatic theory and its validation by calculations. The formula derived holds for ionization by linearly polarized laser pulses of sufficiently low frequency and becomes exact as the frequency tends to zero for a fixed pulse amplitude. The convergence of the results obtained from the formula to accurate photoelectron momentum distributions obtained by solving the time-dependent Schrödinger equation is demonstrated. The formula is shown to work quantitatively in both tunneling and over-the-barrier regimes of ionization for finite-range potentials as well as potentials with a Coulomb tail. This paves the way for future applications of the present theory in strong-field physics. In particular, the explicit analytical form of the returning photoelectron wave packet given here enables one to extract differential cross sections for elastic scattering of a photoelectron on the parent ion from experimental photoelectron momentum distributions.

  1. Describing nonequilibrium behavior in strongly correlated materials via dynamical mean-field theory

    Science.gov (United States)

    Freericks, James

    2010-03-01

    Dynamical mean-field theory was introduced in 1989 and has become one of the most successful methods for solving models of strongly correlated electrons in equilibrium (it becomes exact in the infinite-dimensional limit). In this talk, I show how to generalize dynamical mean-field theory to nonequilibrium situations. For transient response, one discretizes the Kadanoff-Baym-Keldysh contour then solves the discrete problem directly. For steady-state response, one can formulate a theory directly in the long-time limit for the retarded Green's functions. These techniques are applied to the problem of the quenching of Bloch oscillations due to electron-electron interactions and to the problem of time-resolved pump/probe photoemission spectroscopy of strongly correlated electrons when a system is driven to a nonequilibrium steady state and cannot be described by the quasiequilibrium approximation with an effective temperature. This work was completed in collaboration with Tom Devereaux, Sasha Joura, Hulikal Krishnamurthy, Brian Moritz, Thomas Pruschke, Volodomyr Turkowski, and Velko Zlati'c. Recent references include: J. K. Freericks, V. M. Turkowski, and V. Zlati'c, Phys. Rev. Lett. 97, 266408 (2006); J. K. Freericks, Phys. Rev. B 77, 075109 (2008); A. V.Joura, J. K. Freericks, and Th. Pruschke, Phys. Rev. Lett. 101, 196401 (2008); J. K. Freericks, H. R. Krishnamurthy and Th. Pruschke, Phys. Rev. Lett. 102, 136401 (2009); and B. Moritz, T. P. Devereaux, and J. K. Freericks, arXiv:0908.1807.

  2. The challenge of external validity in policy-relevant systematic reviews: a case study from the field of substance misuse.

    Science.gov (United States)

    Pearson, Mark; Coomber, Ross

    2010-01-01

    To critically evaluate the methods utilized in the conduct of a systematic review in the field of substance misuse. Participant-observation in the review process, semi-structured interviews with review team members and management and structured observation of the process of guidance development. An 'arm's-length' government body. Review team members, management and the committee responsible for producing evidence-based guidance for policy and practice. Data from interviews and (participant-)observation were reflected upon critically in order to increase understanding of the systematic review process. The application of systematic review methods produced an evidence base that did not inform the development of guidance to the extent that it could have done: (i) an emphasis upon internal research validity produced an evidence base with an emphasis on short-term interventions at the level of the individual; (ii) criteria for appraising the external validity of studies were not developed sufficiently; and (iii) the systematic review of evidence and development of guidance are strongly reliant upon the judgement of reviewers and committee members. Prioritizing internal validity in a systematic review risks producing an evidence base that is not informed adequately by the wider determinants of health and which does not give sufficient consideration to external validity. The use of appropriate methods requires that commissioners of systematic reviews are clear at the outset how the review is proposed to be utilized. Review methods such as meta-ethnography and realist synthesis could contribute to making the frameworks within which judgements are made more explicit.

  3. The random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization

    International Nuclear Information System (INIS)

    Monthus, Cécile; Garel, Thomas

    2012-01-01

    To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent ν FS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent ν typ ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent ν pure Q (d=2)≅0.6 3 of the pure two-dimensional quantum Ising model), and the typical exponent ν h ≃ 1 for the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at infinite-disorder critical points. We also measure, within the disordered phase, the fluctuation exponent ω ≃ 0.35 which is compatible with the directed polymer exponent ω DP (1+1)= 1/3 in (1 + 1) dimensions. (paper)

  4. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    Science.gov (United States)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  5. Molecules in strong laser fields. In depth study of H2 molecule

    International Nuclear Information System (INIS)

    Awasthi, Manohar

    2009-01-01

    -threshold-ionization peaks is also demonstrated. The CI-TDSE results for H 2 are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H 2 molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B 1 Σ u + of H 2 is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H 2 molecule, the results for larger molecules like N 2 , O 2 and C 2 H 2 in the DFT-SAE framework are presented. (orig.)

  6. Molecules in strong laser fields. In depth study of H{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Manohar

    2009-10-29

    above-threshold-ionization peaks is also demonstrated. The CI-TDSE results for H{sub 2} are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H{sub 2} molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B{sup 1}{sigma}{sub u}{sup +} of H{sub 2} is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H{sub 2} molecule, the results for larger molecules like N{sub 2}, O{sub 2} and C{sub 2}H{sub 2} in the DFT-SAE framework are presented. (orig.)

  7. rf breakdown with external magnetic fields in 201 and 805 MHz cavities

    Directory of Open Access Journals (Sweden)

    R. B. Palmer

    2009-03-01

    Full Text Available Neutrino factory and muon collider cooling lattices require both high gradient rf cavities and strong focusing solenoids. Experiments have shown that there may be serious problems operating rf in the required magnetic fields. Experimental observations using vacuum rf cavities in magnetic fields are discussed, current published models of breakdown with and without magnetic fields are briefly summarized, and some of their predictions compared with observations. A new theory of magnetic field dependent breakdown is presented. It is proposed that electrons emitted by field emission on asperities on one side of a cavity are focused by the magnetic field to the other side where they induce mechanical fatigue leading to cavity surface damage in small spots. Metal is then electrostatically drawn from the molten spots, becomes vaporized and ionized by field emission from the remaining damage, and causes breakdown. The theory is fitted to existing 805 MHz data and predictions are made for performance at 201 MHz. The model predicts breakdown gradients significantly below those specified for either the International Scoping Study neutrino factory or a muon collider. Possible solutions to these problems are discussed, including designs for magnetically insulated rf in which the cavity walls are designed to be parallel to chosen magnetic field contour lines and consequently damage from field emission is expected to be suppressed. An experimental program that could study these problems and their possible solution is outlined. We also mention the use of high pressure gas as an alternative possible solution.

  8. Effects of confinement and external fields on structure and transport in colloidal dispersions in reduced dimensionality

    International Nuclear Information System (INIS)

    Wilms, D; Virnau, P; Binder, K; Deutschländer, S; Siems, U; Franzrahe, K; Henseler, P; Keim, P; Schwierz, N; Maret, G; Nielaba, P

    2012-01-01

    In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder. We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss the laser induced de-mixing for the three different possible couplings to the external potential. The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations. Due to misfits between multiples of the lattice parameter and the channel widths, a variety of ordered and disordered lattice structures have been observed. The resulting local lattice structures and defect probabilities are studied for various cross sections. The influence of a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior. Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal liquid. This work contains sections reviewing previous work by the authors as well as new, unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing regime in binary systems in external light fields, configurations for shear induced effects at structured walls, studies on the effect of confinement on the structures

  9. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    International Nuclear Information System (INIS)

    Serkov, A. A.; Rakov, I. I.; Simakin, A. V.; Kuzmin, P. G.; Shafeev, G. A.; Mikhailova, G. N.; Antonova, L. Kh.; Troitskii, A. V.; Kuzmin, G. P.

    2016-01-01

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction with magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.

  10. Oscillator representation method in the theory of a hydrogen atom in an external field

    International Nuclear Information System (INIS)

    Dinejkhan, M.

    1996-01-01

    The Wick-ordering method called the Oscillator representation in the non-relativistic Schroedinger equation is proposed to calculate the energy spectrum for spherically symmetric and axially symmetric potentials allowing the existence of a bound state. In particular, the method is applied to calculate the energy spectrum of (2s)-states of a hydrogen atom in a uniform magnetic field of an arbitrary strength. In the perturbation (external field) approximation, the energy spectrum of the so-called quadratic and spherical quadratic Zeeman problem and the problem of a hydrogen atom in a generalized van der Waals potential is calculated analytically. The results of the zeroth approximation of oscillator representation are in good agreement with the exact values. 31 refs., 3 tabs

  11. Population and phase dynamics of F=1 spinor condensates in an external magnetic field

    International Nuclear Information System (INIS)

    Romano, D.R.; Passos, E.J.V. de

    2004-01-01

    We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability

  12. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies.

    Science.gov (United States)

    Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek

    2017-03-31

    Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.

  13. A model of the response of GMR of metallic multilayers to external magnetic field

    Directory of Open Access Journals (Sweden)

    Uba J.I.

    2015-12-01

    Full Text Available It has not been possible to transform resistivity models in terms of magnetic field in order to account for variation of giant magnetoresistance (GMR with external magnetic field, which would have led to determination of material properties. This problem is approached mathematically via variation calculus to arrive at an exponential function that fits observed GMR values. Using this model in free electron approximation, the mean Fermi vector, susceptibility and total density of states of a number of metallic multilayers are determined from their reported GMR values. Susceptibility is found to depend on interface roughness and antiferromagnetic (AF coupling; thus, it gives qualitative measure of interface quality and AF coupling. Comparison of susceptibilities and GMRs of electrodeposited and ion beam sputtered Co/Cu structures shows that a rough interface suppresses GMR in the former but enhances it in the latter.

  14. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A. A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University),” 9, Institutsky lane, Dolgoprudny, 141700 Moscow (Russian Federation); Rakov, I. I.; Simakin, A. V.; Kuzmin, P. G. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G. A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Mikhailova, G. N.; Antonova, L. Kh.; Troitskii, A. V.; Kuzmin, G. P. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2016-08-01

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction with magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.

  15. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  16. Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure

    Science.gov (United States)

    Ariu, G.; Hamerton, I.; Ivanov, D.

    2016-01-01

    This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs). The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.

  17. Influence of external field and consequent impurity breathing on excitation profile of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suvajit [Department of Chemistry, Hetampur Raj High School, Hetampur, Birbhum 731124, West Bengal (India); Ghosh, Manas, E-mail: mgphyschem@gmail.com [Department of Chemistry, Physical Chemistry Section, Visva-Bharati University, Santiniketan, Birbhum 731235, West Bengal (India)

    2013-06-15

    Excitation in quantum dots is an important phenomenon. Realizing the importance we investigate the excitation behavior of a repulsive impurity doped quantum dot induced by an external oscillatory field. As an obvious consequence the simultaneous oscillation of spatial stretch of impurity domain has also been taken into account. The impurity potential has been assumed to have a Gaussian nature. The ratio of two oscillations (η) has been exploited to understand the nature of excitation. Indeed it has been found that the said ratio could orchestrate the excitation in a truly elegant way. Apart from the ratio, the dopant location also plays some meaningful role towards modulating the excitation rate. The present study also indicates the attainment of stabilization in the excitation rate as soon as η surpasses a threshold value irrespective of the dopant location. Moreover, prior to the onset of stabilization we also envisage minimization in the excitation rate at some typical η values depending on the dopant location. The critical analysis of pertinent impurity parameters provides important perception about the physics behind the excitation process. -- Highlights: ► The excitation profile of impurity doped quantum dot has been investigated. ► The dot is subject to external oscillatory field. ► Concomitant time-dependence in spatial stretch of impurity has been introduced. ► Minimization in excitation rate is observed as a function of two oscillation ratios. ► Role of dopant location has also been analyzed.

  18. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong

    2016-10-01

    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  19. Experimental investigation on heat transfer rate of Co–Mn ferrofluids in external magnetic field

    Directory of Open Access Journals (Sweden)

    Margabandhu M.

    2016-06-01

    Full Text Available Manganese substituted cobalt ferrite (Co1–xMnxFe2O4 with x = 0, 0.3, 0.5, 0.7 and 1 nanopowders were synthesized by chemical coprecipitation method. The synthesized magnetic nanoparticles were investigated by various characterization techniques, such as X-ray diffraction (XRD, vibrating sample magnetometry (VSM, scanning electron microscopy (SEM and thermogravimetric and differential thermal analysis (TG/DTA. The XRD results confirmed the presence of cubic spinel structure of the prepared powders and the average crystallite size of magnetic particles ranging from 23 to 45 nm. The VSM results showed that the magnetic properties varied with an increase in substituted manganese while SEM analysis showed the change in the morphology of obtained magnetic nanoparticles. The TG/DTA analysis indicated the formation of crystalline structure of the synthesized samples. The heat transfer rate was measured in specially prepared magnetic nanofluids (nanoparticles dispersed in carrier fluid transformer oil as a function of time and temperature in presence of external magnetic fields. The experimental analysis indicated enhanced heat transfer rate of the magnetic nanofluids which depended upon the strength of external magnetic field and chemical composition.

  20. Anisotropic diffusion across an external magnetic field and large-scale fluctuations in magnetized plasmas.

    Science.gov (United States)

    Holod, I; Zagorodny, A; Weiland, J

    2005-04-01

    The problem of random motion of charged particles in an external magnetic field is studied under the assumption that the Langevin sources produce anisotropic diffusion in velocity space and the friction force is dependent on the direction of particle motion. It is shown that in the case under consideration, the kinetic equation describing particle transitions in phase space is reduced to the equation with a Fokker-Planck collision term in the general form (non-isotropic friction coefficient and nonzero off-diagonal elements of the diffusion tensor in the velocity space). The solution of such an equation has been obtained and the explicit form of the transition probability is found. Using the obtained transition probability, the mean-square particle displacements in configuration and velocity space were calculated and compared with the results of numerical simulations, showing good agreement. The obtained results are used to generalize the theory of large-scale fluctuations in plasmas to the case of anisotropic diffusion across an external magnetic field. Such diffusion is expected to be observed in the case of an anisotropic k spectrum of fluctuations generating random particle motion (for example, in the case of drift-wave turbulence).

  1. Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure

    Directory of Open Access Journals (Sweden)

    Ariu G.

    2016-01-01

    Full Text Available This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs. The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.

  2. Quantum systems subjected to periodic and quasiperiodic external fields; Sistemas quanticos sujeitos a campos externos periodicos e quaseperiodicos

    Energy Technology Data Exchange (ETDEWEB)

    Hey, Heyder

    1996-12-31

    We have study three quantum systems under time dependent external fields. The first one is an harmonic oscillator and the external field is quasiperiodic. We prove that the autocorrelation spectrum is absolutely transient continuous covering the real line on the resonant case or pure point under supplementary diophantine conditions. The second one refers to the spin tunneling. We show that an external periodic field may causes a blocking of spin tunneling. The last problem concerns to the resonances of the Floquet spectrum on the non-perturbative region of parameters for the model of an atom with one bound state under an external periodic field. The problems of Quantum Chaology and Quantum Stability are the predominant points of view in this work. (author) 59 refs., 15 figs., 6 tabs.

  3. Rationale for a GRAVSAT-MAGSAT mission: A perspective on the problem of external/internal transient field effects

    Science.gov (United States)

    Hermance, J. F.

    1985-01-01

    The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.

  4. On the response of a system with bound states of particles to the perturbation by the external electromagnetic field

    Directory of Open Access Journals (Sweden)

    Yu.V.Slyusarenko

    2006-01-01

    Full Text Available The response of the system, consisting of two types of opposite-charged fermions and their bound states (hydrogen-like atoms, to the perturbation by the external electromagnetic field in low particle kinetic energies region is studied. Investigations are based on using a new formulation of the second quantization method that includes a capability of forming the particle bound states [1]. Expressions for Green functions that describe the system response to the external electromagnetic field and take into account the presence of particle bound states (atoms are found. Macroscopic parameters of the system, such as conductivity, permittivity and magnetic permeability in terms of these Green functions are found. As an example, the perturbation of the ideal hydrogen-like plasma by the external electromagnetic field in low temperature region is considered. Expressions for the values are found that describe the ideal gas of hydrogen-like atoms Bose-condensate response to the external electromagnetic field.

  5. A boundary condition to the Khokhlov-Zabolotskaya equation for modeling strongly focused nonlinear ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2015-10-28

    An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parameters were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.

  6. The mass limit of white dwarfs with strong magnetic fields in general relativity

    International Nuclear Information System (INIS)

    Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong

    2014-01-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)

  7. Photogeneration of neutrino and axions under stimulating effect of strong magnetic field

    CERN Document Server

    Skobelev, V V

    2001-01-01

    The processes of the neutrino and axions photoproduction on the gamma(Ze) -> gamma(nu nu-bar), gamma alpha nuclei, as well as the photon inelastic scattering on the gamma gamma -> gamma(nu nu-bar), gamma alpha photon are considered within the frames of the developed two-dimensional co-variant theory for calculating the matrix of the Feynman diagrams in the strong magnetic field. The contribution of the neutrino radiative photoproduction on the nuclei to the luminosity of the magnetic neutron stars on the early stages of their evolution may compete with the URCA-processes, because the matrix elements in the four-pole diagram depend linearly on the induction of B magnetic field by the B values approx 10 sup 3 -10 sup 4 B sub 0 (B sub 0 = m sub e sup 2 /|e| = 4.41 x 10 sup 1 sup 3 Gs). The evaluation of the axion mass upper boundary, compatible with other independent results, is obtained from the condition of the neutrino luminosity prevailing over the axion one at supposed temperature and magnetic field inducti...

  8. Calculation of low-frequency sound fields in irregular waveguides with strong backscattering

    Science.gov (United States)

    Gulin, O. E.

    2008-07-01

    An approach is developed for calculating the sound fields in a non-stratified sea medium with irregularities that are not weak. The method of cross sections for horizontal parts of acoustic modes is used to obtain first-order causal equations that are equivalent to the boundary-value problem. A matrix equation describing the backscattered field of modes is analyzed, and the conditions that determine the weakness of the irregularities of the medium and the validity of the known approximate methods of sound field calculations are considered. The approximation of unidirectional propagation is represented in the form of quadratures. The example of a 2D shallow-water waveguide with a strongly irregular profile of a perfectly rigid bottom is considered to illustrate the advantages of the proposed approach in comparison with the approximate methods for specific low frequencies. The qualitative and quantitative differences that arise because of taking into account the backscattering between the curves of propagation losses corresponding to the exact solution and the conventional approximate methods are discussed.

  9. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  10. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    Science.gov (United States)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-11-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  11. Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields

    Science.gov (United States)

    Wolf, Michael; Blackmore, James C.; Kuwata, Yoshiaki

    2011-01-01

    Lighter-than-air vehicles such as hot-air balloons have been proposed for exploring Saturn s moon Titan, as well as other bodies with significant atmospheres. For these vehicles to navigate effectively, it is critical to incorporate the effects of surrounding wind fields, especially as these winds will likely be strong relative to the control authority of the vehicle. Predictive models of these wind fields are available, and previous research has considered problems of planning paths subject to these predicted forces. However, such previous work has considered the wind fields as known a priori, whereas in practical applications, the actual wind vector field is not known exactly and may deviate significantly from the wind velocities estimated by the model. A probabilistic 3D path-planning algorithm was developed for balloons to use uncertain wind models to generate time-efficient paths. The nominal goal of the algorithm is to determine what altitude and what horizontal actuation, if any is available on the vehicle, to use to reach a particular goal location in the least expected time, utilizing advantageous winds. The solution also enables one to quickly evaluate the expected time-to-goal from any other location and to avoid regions of large uncertainty. This method is designed for balloons in wind fields but may be generalized for any buoyant vehicle operating in a vector field. To prepare the planning problem, the uncertainty in the wind field is modeled. Then, the problem of reaching a particular goal location is formulated as a Markov decision process (MDP) using a discretized space approach. Solving the MDP provides a policy of what actuation option (how much buoyancy change and, if applicable, horizontal actuation) should be selected at any given location to minimize the expected time-to-goal. The results provide expected time-to-goal values from any given location on the globe in addition to the action policy. This stochastic approach can also provide

  12. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals.

    Science.gov (United States)

    Willingham, D; Brenes, D A; Winograd, N; Wucher, A

    2011-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C 60 + cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C 60 + primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data.

  13. Spatial characterization of Bessel-like beams for strong-field physics.

    Science.gov (United States)

    Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A

    2017-02-06

    We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.

  14. Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation

    CERN Document Server

    Fortin, Jean-Francois

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.

  15. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-07

    In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.

  16. Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics

    Science.gov (United States)

    Lloyd, David T.; O'Keeffe, Kevin; Wyatt, Adam S.; Anderson, Patrick N.; Treacher, Daniel; Hooker, Simon M.

    2017-02-01

    We report the operation of an optical parametric amplifier (OPA) capable of producing gigawatt peak-power laser pulses with tunable wavelength in either the visible or near-infrared spectrum. The OPA has two distinct operation modes (i) generation of > 350 μJ, sub 100 fs pulses, tunable between 1250 - 1550 nm; (ii) generation of > 170 μJ, sub 150 fs pulses tunable between 490 - 530 nm. We have recorded high-order harmonic spectra over a wide range of driving wavelengths. This flexible source of femtosecond pulses presents a useful tool for exploring the wavelength-dependence of strong-field phenomena, in both the multi-photon and tunnel ionization regimes.

  17. Resonance fluorescence spectrum of two atoms, coherently driven by a strong resonant laser field

    International Nuclear Information System (INIS)

    Ficek, Z.; Tanas, R.; Kielich, S.

    1981-01-01

    In Lehmberg's approach, we consider the resonance fluorescence spectrum of two radiatively interacting atoms. In the strong field limit we have obtained analytical solutions for the spectrum of the symmetric and antisymmetric modes without decoupling approximation. Our solutions are valid for all values of the distance r 12 separating the atoms. The spectrum of the symmetric modes contains additional sidebands in 2Ω (Ω is the Rabi frequency) with amplitude dependent on (a/Ω) 2 , where a is a parameter dependent on r 12 . The antisymmetric part of the spectrum has no additional sidebands in 2Ω. For small distances r 12 (a = 1) our results for the symmetric modes are identical with those of Agarwal et al. apart from the so-called scaling factor. For large distance r 12 (a = 0) the spectra of the symmetric and antisymmetric modes are identical with the well-known one-atom spectrum. (orig.)

  18. Influence of strong magnetic fields on laser pulse propagation in underdense plasma

    Science.gov (United States)

    Wilson, T. C.; Li, F. Y.; Weikum, M.; Sheng, Z. M.

    2017-06-01

    We examine the interaction between intense laser pulses and strongly magnetised plasmas in the weakly relativistic regime. An expression for the electron Lorentz factor coupling both relativistic and cyclotron motion nonlinearities is derived for static magnetic fields along the laser propagation axis. This is applied to predict modifications to the refractive index, critical density, group velocity dispersion and power threshold for relativistic self-focusing. It is found that electron quiver response is enhanced under right circularly-polarised light, decreasing the power threshold for various instabilities, while a dampening effect occurs under left circularly-polarised light, increasing the power thresholds. Derived theoretical predictions are tested by one- and three-dimensional particle-in-cell simulations.

  19. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    Science.gov (United States)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  20. Contribution to the study of molecular multi-ionisation and multifragmentation in strong laser field

    International Nuclear Information System (INIS)

    Hering, P.

    1999-12-01

    Molecular multi-ionization in strong laser field is studied using different experimental and theoretical techniques. In the 10 13 -10 16 W/cm 2 laser intensity range, the strong non-linear laser-molecule coupling allows the absorption of energies necessary to the ejection of valence electrons. The double ionization is characterized by the production of doubly charged molecular ions and by charge separation channels such as A + + B + . For molecular charge states greater than two, the multi-ionization dynamics study is based on the observables due to the multifragmentation, which are the fragments charge states and initial momenta. For strong intensities in the 1015-1016 w/cm 2 range, the multicharged atomic ions production efficiency depends on the initial electronic density localization of the molecule. For intensities less than 5 x 10 14 w/cm 2 , double ionization leads to the simultaneous emission of two electrons from the molecule. The two-missing electrons fragmentation channels appear at internuclear equilibrium distance following the Franck-Condon principle. For more than two-missing electrons channels, the internuclear distance of excitation is more difficult to determine. However the reported different experiments show that the multifragmentation dynamics is independent of the electronic emission dynamics. The theoretical approach is based on the Thomas-Fermi equations and allows a non-perturbative description of the laser-molecule coupling. The calculated fragmentation kinetic energies are smaller than the coulombic repulsion energies calculated at the internuclear equilibrium distance because of an electronic screening effect. This model reproduce the experimental fragmentation 'energy releases obtained experimentally for molecules such as N 2 , CO 2 or N 2 O. (author)