WorldWideScience

Sample records for strong exciton-photon coupling

  1. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  2. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  3. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  4. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  5. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    Science.gov (United States)

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-01

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  6. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system

    International Nuclear Information System (INIS)

    Cardenas, Paulo C; RodrIguez, Boris A; Quesada, Nicolas; Vinck-Posada, Herbert

    2011-01-01

    We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.

  7. Exciton-plasmon coupling interactions: from principle to applications

    Science.gov (United States)

    Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi

    2018-01-01

    The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  8. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  9. Pronounced enhancement of exciton Rabi oscillation for a two-photon transition based on quantum dot coupling control

    International Nuclear Information System (INIS)

    Luo Jian; Lu Di; Du Chaoling; Liu Youwen; Shi Daning; Lai Wei; Guo Chunlei; Gong Shangqing

    2012-01-01

    We theoretically investigate how to control the Rabi oscillation of excitons of the coupling quantum dots by manipulating static electric fields. Our results show that, for a single-photon process, when direct excitons change into indirect excitons with a bias applied on the sample, the Rabi oscillation rarely alters. However, for the two-photon process, a pronounced enhancement of Rabi oscillation is observed, which can be utilized as the logic gate in quantum information. (paper)

  10. Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity

    KAUST Repository

    Du, Wenna

    2018-03-14

    All-inorganic perovskite micro/nanowire materials hold great promises as nanoscale coherent light source due to their superior optical and electronic properties. The coupling strength between exciton and photon in this system is important for their optical application, however, is rarely studied. In this work, we demonstrated the strong coupling of exciton-photon and polariton lasing in high quality CsPbBr micro/nanowires synthesized by a CVD method. By exploring spatial resolved PL spectra of CsPbBr cavity, we observed mode volume dependent coupling strength with a vacuum Rabi splitting up to 656 meV, as well as significant increase in group index. Moreover, low threshold polariton lasing was achieved at room temperature within strong coupling regime; the polariton characteristic is confirmed by comparing lasing spectra with waveguided output spectra and the dramatically reduced lasing threshold. Our present results provide new avenues to achieve high coupling strengths potentially enabling application of exciting phenomena such as Bose-Einstein condensation of polaritons, efficient light-emitting diodes, and lasers.

  11. Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity

    KAUST Repository

    Du, Wenna; Zhang, Shuai; Shi, Jia; Chen, Jie; Wu, Zhiyong; Mi, Yang; Liu, Zhixiong; Li, Yuanzheng; Sui, Xinyu; Wang, Rui; Qiu, Xiaohui; Wu, Tao; Xiao, Yunfeng; Zhang, Qing; Liu, Xinfeng

    2018-01-01

    for their optical application, however, is rarely studied. In this work, we demonstrated the strong coupling of exciton-photon and polariton lasing in high quality CsPbBr micro/nanowires synthesized by a CVD method. By exploring spatial resolved PL spectra of CsPbBr

  12. Particularities of surface plasmon-exciton strong coupling with large Rabi splitting

    International Nuclear Information System (INIS)

    Symonds, C; Bonnand, C; Plenet, J C; Brehier, A; Parashkov, R; Lauret, J S; Deleporte, E; Bellessa, J

    2008-01-01

    This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission

  13. Strong spin-photon coupling in silicon

    Science.gov (United States)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  14. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  15. Dynamically controlling the emission of single excitons in photonic crystal cavities

    NARCIS (Netherlands)

    Pagliano, F.; Cho, Y.; Xia, T.; Otten, van F.W.M.; Johne, R.; Fiore, A.

    2014-01-01

    Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both singlephoton emission and the strong

  16. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs

  17. Exciton molecule in semiconductors by two-photon absorption

    International Nuclear Information System (INIS)

    Arya, K.; Hassan, A.R.

    1976-07-01

    Direct creation of bi-exciton states by two-photon absorption in direct gap semiconductors is investigated theoretically. A numerical application to the case of CuCl shows that the two-photon absorption coefficient for bi-excitonic transitions is larger than that for two-photon interband transitions by three orders of magnitude. It becomes comparable to that for one-photon excitonic transitions for available laser intensities. The main contribution to this enhancement of the absorption coefficient for the transitions to the bi-exciton states is found to be from the resonance effect

  18. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  19. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  20. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    Science.gov (United States)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  1. Mixed fermion-photon condensate in strongly coupled quantum electrodynamics

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Kushnir, V.A.

    1989-01-01

    The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs

  2. Magneto-exciton transitions in laterally coupled quantum dots

    Science.gov (United States)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  3. Two-photon transitions to exciton polaritons

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1979-08-01

    A semiclassical theory for the creation of excitonic polariton states by two-photon absorption, via an intermediate exciton state, is given. A band model has been introduced which gives the dominant contribution to this process. A numerical calculation is found to be in good agreement with a recent observation in CuCl. (author)

  4. Strong coupling of a single electron in silicon to a microwave photon

    Science.gov (United States)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  5. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.

    Science.gov (United States)

    Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro

    2017-11-02

    In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.

  6. Exciton absorption of entangled photons in semiconductor quantum wells

    Science.gov (United States)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  7. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  8. Excitonic and photonic processes in materials

    CERN Document Server

    Williams, Richard

    2015-01-01

    This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic.  Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties.  Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics,  border security, and nuclear nonproliferation.  Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

  9. Resonant exciton-phonon coupling in ZnO nanorods at room temperature

    Directory of Open Access Journals (Sweden)

    Soumee Chakraborty

    2011-09-01

    Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

  10. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  11. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.

    Science.gov (United States)

    Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L

    2012-02-13

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

  12. Exciton correlations and input–output relations in non-equilibrium exciton superfluids

    International Nuclear Information System (INIS)

    Ye, Jinwu; Sun, Fadi; Yu, Yi-Xiang; Liu, Wuming

    2013-01-01

    The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron–hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg–Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input–output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton–polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron–electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor ν T =1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: ► Establish the relations between photoluminescence and transport measurements. ► Stress the

  13. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces

    Science.gov (United States)

    Gonçalves, P. A. D.; Bertelsen, L. P.; Xiao, Sanshui; Mortensen, N. Asger

    2018-01-01

    The realization and control of polaritons is of paramount importance in the prospect of novel photonic devices. Here, we investigate the emergence of plasmon-exciton polaritons in hybrid structures consisting of a two-dimensional transition-metal dichalcogenide (TMDC) deposited onto a metal substrate or coating a metallic thin film. We determine the polaritonic spectrum and show that, in the former case, the addition of a top dielectric layer and, in the latter case, the thickness of the metal film can be used to tune and promote plasmon-exciton interactions well within the strong-coupling regime. Our results demonstrate that Rabi splittings exceeding 100 meV can readily be achieved in planar dielectric/TMDC/metal structures under ambient conditions. We thus believe that this Rapid Communication provides a simple and intuitive picture to tailor strong coupling in plexcitonics with potential applications for engineering compact photonic devices with tunable optical properties.

  14. Excitons in atomically thin 2D semiconductors and their applications

    Science.gov (United States)

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang

    2017-06-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  15. Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings

    International Nuclear Information System (INIS)

    Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M; MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A; Sarkar, D

    2010-01-01

    Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g (2) (0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.

  16. Ultrastrong exciton-photon coupling in single and coupled organic microcavities

    Science.gov (United States)

    Liu, Bin; Bramante, Rosemary; Valle, Brent; Singer, Kenneth; Khattab, Tawfik; Williams, Jarrod; Twieg, Robert

    2015-03-01

    We have demonstrated ultrastrong light-matter coupling in organic planar microcavities composed of a neat glassy organic dye film between two metallic (aluminum) mirrors in a half-cavity configuration. Such cavities are characterized by Q factors around 10. Tuning the thickness of the organic layer enables the observation of the ultrastrong coupling regime. Via reflectivity measurements, we observe a very large Rabi splitting around 1.227 eV between upper and lower polariton branches at room temperature, and we detect polariton emission from the lower polariton branch via photoluminescence measurements. The large splitting is due to the large oscillator strength of the neat dye glass, and to the match of the low-Q cavity spectral width to the broad absorption width of the dye film material. We also study the interaction between excitonic states of neat glassy organic dye and cavity modes within coupled microcavity structures. The high-reflectivity mirrors are formed from distributed Bragg reflectors (DBR), which are multilayer films fabricated using the coextrusion process, containing alternating layers of high (SAN25, n =1.57) and low (Dyneon THV 220G, n =1.37) refractive index dielectric polymers. Nonlinear optical measurements will be discussed. This research was supported by the National Science Foundation Center for Layered Polymer Systems (CLiPS) under Grant Number DMR-0423914.

  17. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  18. Semiconductor quantum optics with tailored photonic nanostructures

    International Nuclear Information System (INIS)

    Laucht, Arne

    2011-01-01

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings (ΔE ∝5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of single photon emission into the waveguide. The results obtained during the course of this thesis contribute significantly to

  19. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.

    Science.gov (United States)

    Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J

    2017-11-03

    Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

  20. Anisotropic exchange interaction induced by a single photon in semiconductor microcavities

    Science.gov (United States)

    Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.

    2005-12-01

    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

  1. The Exciton-Polariton Dispersion Law under the Action of Strong Pumping in the Region of the M-Band of Luminescence

    Science.gov (United States)

    Khadzhi, P. I.; Nad'kin, L. Yu.; Markov, D. A.

    2018-04-01

    The double-pulse interaction with excitons and biexcitons in semiconductors is studied theoretically. It is shown that the dispersion law of carrier wave has three branches under the action of a powerful pumping in the region of the M-band of luminescence. Values of parameters at which the dispersion law branches can intersect due to the degeneration of the exciton level energy have been found. The effect of a significant change in the force of coupling between the exciton and photon of a weak pulse with a change in the pumping intensity is predicted.

  2. Photon and spin dependence of the resonance line shape in the strong coupling regime

    NARCIS (Netherlands)

    Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel

    2012-01-01

    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings

  3. Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons

    Science.gov (United States)

    Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.

    2018-05-01

    We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.

  4. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    Science.gov (United States)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2012-04-01

    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.

  5. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  6. Inelastic scattering of neutrons by laser photons and excitons in crystals

    International Nuclear Information System (INIS)

    Agranovich, V.M.; Lalov, I.J.

    1975-01-01

    The cross section for the neutron scattering by photons sharply increases in crystals. In view of the fact that a propagating photon in a crystal (polariton), being the superposition of transverse photons and Coulomb excitations (optical phonons, excitons, etc.), involves in the motion also a nucleus subsystem, the cross section for the neutron scattering on the photon turns out to be proportional to the cross section for neutron scattering on nuclei and to the strength function of phonons at the polariton frequency. Numerical estimates for the cross section of the noncoherent photon absorption by a neutron in the case of a LiH crystal in the presence of an intense, electromagnetic radiation point to the possibility of an action of neutron fluxes by laser radiation. A similar effect of involvement (superposition) also takes place for excitons. This fact can be used for calculations of the cross section for neutron inelastic scattering by excitons, which is proportional to the scattering of neutron on nuclei cross section. The paper also discussed the effect of laser radiation of neutron-induced nuclear reaction (radiative capture and threshold reactions)

  7. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  8. Pentacene Excitons in Strong Electric Fields.

    Science.gov (United States)

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Phonon-assisted two-photon exciton transitions in semiconductors

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1987-08-01

    The theory of phonon-assisted two-photon transitions to excitonic states in semiconductors has been theoretically investigated. The effects of both the nonparabolicity of the band and the degeneracy of the valence band have been taken into account. Expressions for the absorption coefficient through different band models are calculated. The numerical applications to CdI 2 and GaP show that the 4-band model gives the dominant contribution which leads to a final s-exciton state. An exciton peak appears at an energy which is close to that recently observed in CdI 2 . The non-parabolic effect enhances the absorption coefficient by a two-order of magnitude. (author). 6 refs, 1 fig., 1 tab

  10. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    Science.gov (United States)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  11. Exciton-polariton dynamics in quantum dot-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica

    2012-07-01

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum

  12. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics

    Science.gov (United States)

    Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.

    2018-04-01

    Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.

  13. Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy

    Science.gov (United States)

    Schneebeli, L.; Kira, M.; Koch, S. W.

    2008-08-01

    It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.

  14. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School

    2018-01-05

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

  15. Strong excitonic interactions in the oxygen K-edge of perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Kota; Miyata, Tomohiro [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Olovsson, Weine [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2017-07-15

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, together with reference oxides, MgO, CaO, SrO, BaO, and TiO{sub 2}, were investigated using a first-principles Bethe–Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti–O–Ti bonds. - Highlights: • Excitonic interaction in oxygen-K edge is investigated. • Strong excitonic interaction is found in the oxygen-K edge of perovskite oxides. • The strong excitonic interaction is ascribed to the low-dimensional and confined electronic structure.

  16. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  17. Bright triplet excitons in caesium lead halide perovskites

    Science.gov (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  18. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Bertelsen, L. P.; Xiao, Sanshui

    2018-01-01

    The realization and control of polaritons is of paramount importance in the prospect of novel photonic devices. Here, we investigate the emergence of plasmon-exciton polaritons in hybrid structures consisting of a two-dimensional transition-metal dichalcogenide (TMDC) deposited onto a metal......-coupling regime. Our results demonstrate that Rabi splittings exceeding 100 meV can readily be achieved in planar dielectric/TMDC/metal structures under ambient conditions. We thus believe that this Rapid Communication provides a simple and intuitive picture to tailor strong coupling in plexcitonics...

  19. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  20. Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence

    Science.gov (United States)

    Yamada, Takumi; Aharen, Tomoko; Kanemitsu, Yoshihiko

    2018-02-01

    The determination of the band gap and exciton energies of lead halide perovskites is very important from the viewpoint of fundamental physics and photonic device applications. By using photoluminescence excitation (PLE) spectra, we reveal the optical properties of CH3NH3PbCl3 single crystals in the near-band-edge energy regime. The one-photon PLE spectrum exhibits the 1 s exciton peak at 3.11 eV. On the contrary, the two-photon PLE spectrum exhibits no peak structure. This indicates photon recycling of excitonic luminescence. By analyzing the spatial distribution of the excitons and photon recycling, we obtain 3.15 eV for the band gap energy and 41 meV for the exciton binding energy.

  1. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.; Luria, Justin; Hyun, Byung-Ryool; Bartnik, Adam C.; Sun, Liangfeng; Lim, Yee-Fun; Marohn, John A.; Wise, Frank W.; Hanrath, Tobias

    2010-01-01

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  2. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.

    2010-05-12

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  3. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  4. Spatially indirect excitons in coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)2 were

  5. Plasmon-exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, A.; Fernández-Dominguez, A.I.; Feist, J.; Rodriguez, S.R.K.; Gómez-Rivas, J.; Garcia-Vidal, F.J.

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton

  6. Optical nutation in the exciton range of spectrum

    International Nuclear Information System (INIS)

    Khadzhi, P. I.; Vasiliev, V. V.

    2013-01-01

    Optical nutation in the exciton range of spectrum is studied in the mean field approximation taking into account exciton-photon and elastic exciton-exciton interactions. It is shown that the features of nutation development are determined by the initial exciton and photon densities, the resonance detuning, the nonlinearity parameter, and the initial phase difference. For nonzero initial exciton and photon concentrations, three regimes of temporal evolution of excitons and photons exist: periodic conversion of excitons to photons and vice versa, aperiodic conversion of photons to excitons, and the rest regime. In the rest regime, the initial exciton and photon densities are nonzero and do not change with time. The oscillation amplitudes and periods of particle densities determined by the system parameters are found. The exciton self-trapping and photon trapping appearing in the system at threshold values of the nonlinearity parameter were predicted. As this parameter increases, the oscillation amplitudes of the exciton and photon densities sharply change at the critical value of the nonlinearity parameter. These two phenomena are shown to be caused by the elastic exciton-exciton interaction, resulting in the dynamic concentration shift of the exciton level

  7. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    Science.gov (United States)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  8. Different regimes of electronic coupling and their influence on exciton recombination in vertically stacked InAs/InP quantum wires

    International Nuclear Information System (INIS)

    Fuster, David; Martinez-Pastor, Juan; Gonzalez, Luisa; Gonzalez, Yolanda

    2006-01-01

    In the present work we study the influence of stacking self-assembled InAs quantum wires (QWRs) on the emission wavelength and the excitonic recombination dynamics. The reduction in the InP spacer layer thickness, d(InP), produces both a size filtering effect towards large wire ensembles and an increase in the vertical coupling for electrons and holes along the stack direction. The different vertical coupling for electrons and holes induces a different behaviour in the exciton recombination dynamics, depending on the InP spacer layer thickness: weak electron coupling and negligible hole coupling for d(InP) > 10 nm, intermediate electron coupling and weak hole coupling for 5 nm ≤ d(InP) ≤ 10 nm and strong electron coupling and moderate hole coupling for d(InP) < 5 nm. Such exciton dynamics have been established by comparing the experimental time decay results with a multi-quantum well model accounting for the vertical carrier coupling

  9. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    International Nuclear Information System (INIS)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A.; Goldberg, David; Menon, Vinod M.

    2013-01-01

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency

  10. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  11. Microscopic description of exciton polaritons in direct two-band semiconductors

    Science.gov (United States)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  12. Frenkel-Charge-Transfer exciton intermixing theory for molecular crystals with two isolated Frenkel exciton states.

    Science.gov (United States)

    Bondarev, Igor; Popescu, Adrian

    We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).

  13. Room-Temperature Exciton Lasing in Ultrathin Film of Coupled Nanocrystals

    International Nuclear Information System (INIS)

    Appavoo, Kannatassen; Xiaoze, Liu; Menon, Vinod; Sfeir, Matthew Y.

    2015-01-01

    We demonstrate exciton lasing in sub-wavelength coupled nanostructures at ultralow fluence threshold, as probed by femtosecond broadband emission and absorption spectroscopy. The complex spectrotemporal dynamics reveal for the first time an excitonic-to-electron-hole plasma lasing mechanism.

  14. Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions

    Science.gov (United States)

    Sukharev, Maxim; Charron, Eric

    2017-03-01

    We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.

  15. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    Science.gov (United States)

    Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  16. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    determined the oscillator strength, quantum efficiency and spin-flip rates of QD excitons as well as their dependencies on emission wavelength and QD size. Enhancement and inhibition of QD spontaneous emission in photonic crystal membranes (PCMs) is observed. Efficient coupling to PCM waveguides...

  17. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    determined the oscillator strength, quantum efficiency and spin-flip rates of QD excitons as well as their dependencies on emission wavelength and QD size. Enhancement and inhibition of QD spontaneous emission in photonic crystal membranes (PCMs) is observed. Efficient coupling to PCM waveguides...

  18. Strong excitonic interactions in the oxygen K-edge of perovskite oxides.

    Science.gov (United States)

    Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu

    2017-07-01

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO 3 , SrTiO 3 , and BaTiO 3 , together with reference oxides, MgO, CaO, SrO, BaO, and TiO 2 , were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  20. Enhanced axion-photon coupling in GUT with hidden photon

    Science.gov (United States)

    Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi

    2018-05-01

    We show that the axion coupling to photons can be enhanced in simple models with a single Peccei-Quinn field, if the gauge coupling unification is realized by a large kinetic mixing χ = O (0.1) between hypercharge and unbroken hidden U(1)H. The key observation is that the U(1)H gauge coupling should be rather strong to induce such large kinetic mixing, leading to enhanced contributions of hidden matter fields to the electromagnetic anomaly. We find that the axion-photon coupling is enhanced by about a factor of 10-100 with respect to the GUT-axion models with E / N = 8 / 3.

  1. Strong Exciton-photon Coupling in Semiconductor Microcavities

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher

    1999-01-01

    The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high directiona......The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high......-optical switches based on semiconductor microcavities....

  2. Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Ivan S., E-mail: ivan.maksymov@uwa.edu.au [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); ARC Centre of Excellence for Nanoscale BioPhotonics, School of Applied Sciences, RMIT University, Melbourne, VIC 3001 (Australia); Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-05-21

    We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.

  3. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya; Yu, Weili; Usman, Anwar; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Alarousu, Erkki; Takanabe, Kazuhiro; Mohammed, Omar F.

    2014-01-01

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  4. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  5. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells.

    Science.gov (United States)

    Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay

    2017-11-28

    Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.

  6. Features of exciton dynamics in molecular nanoclusters (J-aggregates): Exciton self-trapping (Review Article)

    Science.gov (United States)

    Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.

    2016-06-01

    We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.

  7. Bright branes for strongly coupled plasmas

    International Nuclear Information System (INIS)

    Mateos, David; Patino, Leonardo

    2007-01-01

    We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments

  8. Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing; Juluri, Bala Krishna; Jensen, Linlin; Jensen, Lasse; Huang, Tony Jun

    2009-01-01

    We report the dynamic control of plasmon-exciton coupling in Au nanodisk arrays adsorbed with J-aggregate molecules by incident angle of light. The angle-resolved spectra of an array of bare Au nanodisks exhibit continuous shifting of localized surface plasmon resonances. This characteristic enables the production of real-time, controllable spectral overlaps between molecular and plasmonic resonances, and the efficient measurement of plasmon-exciton coupling as a function of wavelength with one or fewer nanodisk arrays. Experimental observations of varying plasmon-exciton coupling match with coupled dipole approximation calculations.

  9. Energy transfer of excitons between quantum wells separated by a wide barrier

    International Nuclear Information System (INIS)

    Lyo, S. K.

    2000-01-01

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy-transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch (Δ) at low temperatures (T). Several important intrinsic energy-transfer mechanisms have been examined, including dipolar coupling, real and virtual photon-exchange coupling, and over-barrier ionization of the excitons via exciton-exciton Auger processes. The transfer rate is calculated as a function of T and the center-to-center distance d between the wells. The rates depend sensitively on T for plane-wave excitons. For localized excitons, the rates depend on T only through the T dependence of the exciton localization radius. For Stokes energy transfer, the dominant energy transfer occurs through a photon-exchange interaction, which enables the excitons from the higher-energy wells to decay into free electrons and holes in the lower-energy wells. The rate has a slow dependence on d, yielding reasonable agreement with recent data from GaAs/Al x Ga 1-x As quantum wells. The dipolar rate is about an order of magnitude smaller for large d (e.g., d=175Aa) with a stronger range dependence proportional to d -4 . However, the latter can be comparable to the radiative rate for small d (e.g., d≤80Aa). For anti-Stokes transfer through exchange-type (e.g., dipolar and photon-exchange) interactions, we show that thermal activation proportional to exp(-Δ/k B T) is essential for the transfer, contradicting a recent nonactivated result based on the Fo''rster-Dexter's spectral-overlap theory. Phonon-assisted transfer yields a negligibly small rate. On the other hand, energy transfer through over-barrier ionization of excitons via Auger processes yields a significantly larger nonactivated rate which is independent of d. The result is compared with recent data

  10. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    Science.gov (United States)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  11. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Theoretical and computational studies of excitons in conjugated polymers

    Science.gov (United States)

    Barford, William; Bursill, Robert J.; Smith, Richard W.

    2002-09-01

    We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-binding model of π-conjugated electrons, with 1/r interactions for large r. In both the weak-coupling limit (defined by W>>U) and the strong-coupling limit (defined by Wparticle models. We compare these to density matrix renormalization group (DMRG) calculations, and find good agreement in the extreme limits. We use these analytical results to interpret the DMRG calculations in the intermediate-coupling regime (defined by W~U), most applicable to conjugated polymers. We make the following conclusions. (1) In the weak-coupling limit the bound states are Mott-Wannier excitons, i.e., conduction-band electrons bound to valence-band holes. Singlet and triplet excitons whose relative wave functions are odd under a reflection of the relative coordinate are degenerate. Thus, the 2 1A+g and 1 3A-g states are degenerate in this limit. (2) In the strong-coupling limit the bound states are Mott-Hubbard excitons, i.e., particles in the upper Hubbard band bound to holes in the lower Hubbard band. These bound states occur in doublets of even and odd parity excitons. Triplet excitons are magnons bound to the singlet excitons, and hence are degenerate with their singlet counterparts. (3) In the intermediate-coupling regime Mott-Wannier excitons are the more appropriate description for large dimerization, while for the undimerized chain Mott-Hubbard excitons are the correct description. For dimerizations relevant to polyacetylene and polydiacetylene both Mott-Hubbard and Mott-Wannier excitons are present. (4) For all coupling strengths an infinite number of bound states exist for 1/r interactions for an infinite polymer. As a result of the discreteness of the lattice and the restrictions on the exciton wave functions in one dimension, the progression of states does not follow the Rydberg series. In practice, excitons whose particle-hole separation exceeds the length of the polymer

  13. Probing different regimes of strong field light-matter interaction with semiconductor quantum dots and few cavity photons

    Science.gov (United States)

    Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.

    2016-12-01

    In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.

  14. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  15. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  16. Exciton center-of-mass localization and dielectric environment effect in monolayer WS2

    Science.gov (United States)

    Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem

    2017-06-01

    The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.

  17. Electrical Control of Excitons in Semiconductor Nanostructures

    DEFF Research Database (Denmark)

    Kirsanské, Gabija

    The scope of this thesis covers investigation of the exciton Mott transition in coupled quantum wells, fabrication of photonic-crystal structures with embedded self-assembled quantum dots, and tuning of their properties by means of an external electric field. In the first part of the thesis the f...

  18. Relaxation of nonthermal hh and lh excitons in ZnSe quantum wells

    DEFF Research Database (Denmark)

    Kalt, H.; Hoffmann, J.; Umlauff, M.

    1998-01-01

    The strong exciton-LO phonon coupling in ZnSe QWs gives a direct access to the relaxation dynamics of nonthermal, free heavy-hole and light-hole excitons. Narrow hot-exciton distributions can be generated by LO-phonon assisted exciton formation. The thermalization of these excitons is monitored b...

  19. Comments on exciton-phonon coupling. II

    International Nuclear Information System (INIS)

    Allen, J.W.; Silbey, R.

    1979-01-01

    Two variational calculations of the energy and correlation functions for a simple exciton-phonon coupled system are presented and contrasted to the adiabatic solution and the exact solution. The simpler variational solution leads to two minima and abrupt changes in the properties of the system; an asymmetric variational wavefunction, motivated by the form of perturbation theory for this problem, leads to smooth behavior in agreement with the exact result. (Auth.)

  20. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  1. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  2. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  3. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  4. Confined exciton spectroscopy

    International Nuclear Information System (INIS)

    Torres, Clivia M.S.

    1998-01-01

    Full text: In this work, the exciton is considered as a sensor of the electronic and optical properties of materials such as semiconductors, which have size compared to the exciton De Broglie wavelength, approximately 20 nm, depending on the semiconductor. Examples of electron-phonon, electron-electron, photon-electron, exciton-polariton, phonon-plasmon, are presented, under different confinement conditions such as quantum wells, superlattices

  5. Growth of self-assembled (Ga)InAs/GaAs quantum dots and realization of high quality microcavities for experiments in the field of strong exciton photon coupling

    International Nuclear Information System (INIS)

    Loeffler, Andreas

    2008-01-01

    the exciton could be observed. A Rabi-splitting of about 60 μeV was measured for circular GaInAs dots with an indium content of 43 % and diameters between 20 and 25 nm. we could conclude an oscillator strength of approximately 40-50 for the enlarged quantum dot structures. In contrast to that, the slightly smaller dots with an indium content of 43 % only show an oscillator strength of about 15-20. Furthermore, doped microcavities were realized with regard to electrically driven devices. The investigated electrically driven mircocavities with embedded GaInAs quantum dots were operating in the weak coupling regime and showed a clear Purcell effect with a Purcell factor in resonance of about 10. Due to the use of enlarged GaInAs quantum dots, we were able to reach the strong coupling regime with a vacuum Rabi-splitting of 85 μeV also for electrically driven micropillars. (orig.)

  6. Exciton broadening and band renormalization due to Dexter-like intervalley coupling

    Science.gov (United States)

    Bernal-Villamil, Ivan; Berghäuser, Gunnar; Selig, Malte; Niehues, Iris; Schmidt, Robert; Schneider, Robert; Tonndorf, Philipp; Erhart, Paul; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; Knorr, Andreas; Malic, Ermin

    2018-04-01

    A remarkable property of atomically thin transition metal dichalcogenides (TMDs) is the possibility to selectively address single valleys by circularly polarized light. In the context of technological applications, it is very important to understand possible intervalley coupling mechanisms. Here, we show how the Dexter-like intervalley coupling mixes A and B states from opposite valleys leading to a significant broadening γB_{1s} of the B1s exciton. The effect is much more pronounced in tungsten-based TMDs, where the coupling excitonic states are quasi-resonant. We calculate a ratio γB_{1s}/γA_{1s}≈ 4.0 , which is in good agreement with the experimentally measured value of 3.9+/-0.7 . In addition to the broadening effect, the Dexter-like intervalley coupling also leads to a considerable energy renormalization resulting in an increased energetic distance between A1s and B1s states.

  7. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  8. Electrically tunable single-dot nanocavities in the weak and strong coupling regimes

    DEFF Research Database (Denmark)

    Laucht, Arne; Hofbauer, Felix; Angele, Jacob

    2008-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”....

  9. Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells

    DEFF Research Database (Denmark)

    Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner

    2000-01-01

    A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...

  10. Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures

    NARCIS (Netherlands)

    Dusanowski, L.; Syperek, M.; Marynski, A.; Li, L.H.; Misiewicz, J.; Höfling, S.; Kamp, M.; Fiore, A.; Sek, G.

    2015-01-01

    We demonstrate a non-classical photon emitter at near infrared wavelength based on a single (In,Ga)As/GaAs epitaxially grown columnar quantum dot. Charged exciton complexes have been identified in magneto-photoluminescence. Photon auto-correlation histograms from the recombination of a trion

  11. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    Science.gov (United States)

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  12. Disturbing the coherent dynamics of an excitonic polarization with strong terahertz fields

    Science.gov (United States)

    Drexler, M. J.; Woscholski, R.; Lippert, S.; Stolz, W.; Rahimi-Iman, A.; Koch, M.

    2014-11-01

    We present a paper based on combining four-wave mixing and strong fields in the terahertz frequency range to monitor the time evolution of a disturbed excitonic polarization in a multiple quantum well system. Our findings not only confirm a lower field-dependent ionization threshold for higher excitonic states, but furthermore provide experimental evidence for intraexcitonic Rabi flopping in the time domain. These measurements correspond to the picture of a reversible and irreversible transfer as previously predicted by a microscopic theory.

  13. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  14. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    Science.gov (United States)

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  15. Magneto-exciton dephasing in a single quantum dot

    Science.gov (United States)

    Rodriguez, F. J.; Reyes, A.; Olaya-Castro, A.; Quiroga, L.

    2001-03-01

    Ultrafast spectroscopy experiments on single quantum dot (SQD) in magnetic fields provide a variety of unexpected results, one of them being the recently reported entanglement of exciton states. In order to explore the entanglement robustness, dephasing mechanisms must be considered. By calculating the non-linear time resolved optical spectrum of a SQD, we present a theoretical study on the exciton-exciton scattering contribution to the magneto-exciton dephasing time. Our results show that the time evolution of \\chi^(3) presents, under non-steady-state condition, a beating between the bound biexciton and the first unbound biexciton state in the strong confinement regime. The contribution coming from both left and right polarized emitted photons allows us to predict the creation of exciton entanglement, in agreement with recent experimental results. Previous theoretical works have only addressed the stationary optical response. By contrast, our results based on a full time dependent calculation show new features specially for the fast dephasing case.

  16. Biexciton formation and exciton coherent coupling in layered GaSe

    Science.gov (United States)

    Dey, P.; Paul, J.; Moody, G.; Stevens, C. E.; Glikin, N.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Karaiskaj, D.

    2015-06-01

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ˜2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with "ab initio" theoretical calculations of the phonon spectra, indicate strong interaction with the A1 ' phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  17. Pressure-induced increase of exciton-LO-phonon coupling in a ZnCdSe/ZnSe quantum well

    Science.gov (United States)

    Guo, Z. Z.; Liang, X. X.; Ban, S. L.

    2003-07-01

    The possibility of pressure-induced increase of exciton-LO-phonon coupling in ZnCdSe/ZnSe quantum wells is studied. The ground state binding energies of the heavy hole excitons are calculated using a variational method with consideration of the electron-phonon interaction and the pressure dependence of the parameters. The results show that for quantum wells with intermediate well width, the exciton binding energy and the LO-phonon energy may coincide in the course of pressure increasing, resulting in the increase of exciton-LO-phonon coupling. It is also found that among the pressure-dependent parameters, the influence of the lattice constant is the most important one. The changes of both the effective masses and the dielectric constants have obvious effects on the exciton binding energy, but their influences are counterbalanced.

  18. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    International Nuclear Information System (INIS)

    Hernando, Jordi; Hoogenboom, Jacob; Dijk, Erik van; Garcia-Parajo, Maria; Hulst, Niek F. van

    2008-01-01

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed

  19. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Jordi [Dept. de Quimica, Universitat Autonoma Barcelona, 08193 Cerdanyola del Valles (Spain); Hoogenboom, Jacob [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Dijk, Erik van [Applied Optics Group, MESA Institute for Nanotechnology, University of Twente, 7500AE Enschede (Netherlands); Garcia-Parajo, Maria [IBEC-Institute of BioEngineering of Catalunya, 08028 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain); Hulst, Niek F. van [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain) and ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain)], E-mail: Niek.vanHulst@ICFO.es

    2008-05-15

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed.

  20. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    Science.gov (United States)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  1. Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells

    DEFF Research Database (Denmark)

    Hoffmann, J.; Umlauff, M.; Kalt, H.

    1997-01-01

    Thermalization of hot-exciton populations in ZnSe quantum wells occurs on a time scale of 100 ps. Strong exciton-phonon coupling in II-VI semiconductors leads to a direct access to the thermalization dynamics via time-resolved spectroscopy of phonon-assisted luminescence. The experimental spectra...

  2. Fluorescence Spectroscopy, Exciton Dynamics and Photochemistry of Single Allophycocyanin Trimers

    International Nuclear Information System (INIS)

    Ying, Liming; Xie, Xiaoliang

    1998-01-01

    We report a study of the spectroscopy and exciton dynamics of the allophycocyanin trimer (APC), a light harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed, because of generation of exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible ixciton trap formation within the three quasi-independent pairs of strong interacting a84 and B84 chromophores in APC, as well a photobleaching of individual chromophores. Comparison experiments under continuous wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into exciton dynamics and photochemistry of light-harvesting complexes

  3. Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA

    Science.gov (United States)

    Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.

    2018-02-01

    Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.

  4. Spectral properties of excitons in the bilayer graphene

    Science.gov (United States)

    Apinyan, V.; Kopeć, T. K.

    2018-01-01

    In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.

  5. Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bisti, V. E.; Bayer, M.

    2006-01-01

    The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...

  6. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shayan, Kamran [Department; Rabut, Claire [Department; Kong, Xiaoqing [Department; Li, Xiangzhi [Department; Luo, Yue [Department; Mistry, Kevin S. [National Renewable; Blackburn, Jeffrey L. [National Renewable; Lee, Stephanie S. [Department; Strauf, Stefan [Department

    2017-11-09

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) up to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.

  7. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    CERN Document Server

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  8. Biexciton formation and exciton coherent coupling in layered GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Moody, G. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colarado 80305 (United States); Kovalyuk, Z. D.; Kudrynskyi, Z. R. [Chernivtsi Department, Frantsevich Institute of Material Sciences Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi (Ukraine); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Cantarero, A. [Materials Science Institute, University of Valencia, P.O. Box 2205, 46071 Valencia (Spain); Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States)

    2015-06-07

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A{sub 1}{sup ′} phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  9. Biexciton formation and exciton coherent coupling in layered GaSe

    International Nuclear Information System (INIS)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D.; Moody, G.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.

    2015-01-01

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A 1 ′ phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal

  10. New nonlinear optical effect: self-reflection phenomenon due to exciton-biexciton-light interaction in semiconductors

    Science.gov (United States)

    Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.

    2002-05-01

    The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.

  11. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  12. Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons

    Energy Technology Data Exchange (ETDEWEB)

    Wallraff, Andreas [ETH Zurich (Switzerland)

    2013-07-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.

  13. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    Science.gov (United States)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; Heinz, Tony F.; Marie, Xavier; Amand, Thierry; Urbaszek, Bernhard

    2018-04-01

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.

  14. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  15. Controlled coupling of NV defect centers to plasmonic and photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Michael, E-mail: michael.barth@physik.hu-berlin.d [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Schietinger, Stefan; Schroeder, Tim; Aichele, Thomas; Benson, Oliver [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)

    2010-09-15

    Nitrogen-vacancy (NV) defect centers in diamond have recently emerged as promising candidates for a number of applications in the fields of quantum optics and quantum information, such as single photon generation and spin qubit operations. The performance of these defect centers can strongly be enhanced through coupling to plasmonic and photonic nanostructures, such as metal particles and optical microcavities. Here, we demonstrate the controlled assembly of such hybrid structures via manipulation with scanning near-field probes. In particular, we investigate the plasmonic enhancement of the single photon emission through coupling to gold nanospheres as well as the coupling of diamond nanocrystals to the optical modes of microsphere resonators and photonic crystal cavities. These systems represent prototypes of fundamental nanophotonic/plasmonic elements and provide control on the generation and coherent transfer of photons on the level of a single quantum emitter.

  16. Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem

    Science.gov (United States)

    Bazrafshan Moghaddam, Hossein; McDonough, Evan; Namba, Ryo; Brandenberger, Robert H.

    2018-05-01

    We study the generation of magnetic fields during inflation making use of a coupling of the inflaton and moduli fields to electromagnetism via the photon kinetic term, and assuming that the coupling is an increasing function of time. We demonstrate that the strong coupling problem of inflationary magnetogenesis can be avoided by incorporating the destabilization of moduli fields after inflation. The magnetic field always dominates over the electric one, and thus the severe constraints on the latter from backreaction, which are the demanding obstacles in the case of a decreasing coupling function, do not apply to the current scenario. However, we show that this loophole to the strong coupling problem comes at a price: the normalization of the amplitude of magnetic fields is determined by this coupling term and is therefore suppressed by a large factor after the moduli destabilization completes. From this we conclude that there is no self-consistent and generic realization of primordial magnetogenesis producing scale-invariant fields in the case of an increasing kinetic coupling.

  17. Theory of two-photon absorption by exciton states in cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Ai Viet; Nguyen Toan Thang.

    1987-06-01

    The coefficient of the absorption of two polarized photons is calculated for direct band gap semiconductors with degenerate valence bands. Wannier-Mott exciton states are included in both the intermediate and final states. Numerical calculations are performed for ZnSe and are compared with Sondergeld's experimental and theoretical results. (author). 11 refs, 2 tabs

  18. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  19. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    Science.gov (United States)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  20. Measurement of Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  1. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    Science.gov (United States)

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon.

    Science.gov (United States)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-10

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1 ( 4 G) →  6 A 1 ( 6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn 2+ -Mn 2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  3. Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate

    Science.gov (United States)

    Voronova, N. S.; Elistratov, A. A.; Lozovik, Yu. E.

    2015-10-01

    We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations consist of the particle exchange between the photon and exciton states in the polariton system without any oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover from Rabi-like to Josephson-like oscillations is predicted.

  4. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-02-01

    Full Text Available We report the preparation of monolayer (n = 1, few-layer (n = 2–5 and 3D (n = ∞ organic lead bromide perovskite nanoplatelets (NPLs by tuning the molar ratio of methylammonium bromide (MABr and hexadecammonium bromide (HABr. The absorption spectrum of the monolayer (HA2PbBr4 perovskite NPLs shows about 138 nm blue shift from that of 3D MAPbBr3 perovskites, which is attributed to strong quantum confinement effect. We further investigate the two-photon photoluminescence (PL of the NPLs and measure the exciton binding energy of monolayer perovskite NPLs using linear absorption and two-photon PL excitation spectroscopy. The exciton binding energy of monolayer perovskite NPLs is about 218 meV, which is far larger than tens of meV in 3D lead halide perovskites.

  5. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.

    Science.gov (United States)

    Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Luo, Jian-Hua; Kim, Nam-Chol; Chen, Li-Qun

    2017-10-16

    We perform a theoretical study of the bistable four-wave mixing (FWM) response in a coupled system comprised of a semiconductor quantum dot (SQD) and a photonic crystal (PC) nanocavity in which the SQD is embedded. It is shown that the shape of the FWM spectrum can switch among single-peaked, double-peaked, triple-peaked, and four-peaked arising from the vacuum Rabi splitting and the exciton-nanocavity coupling. Especially, we map out bistability phase diagrams within a parameter subspace of the system, and find that it is easy to turn on or off the bistable FWM response by only adjusting the excitation frequency or the pumping intensity. Our results offer a feasible means for measuring the SQD-PC nanocavity coupling strength and open a new avenue to design optical switches and memories.

  6. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  7. Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer.

    Science.gov (United States)

    Pak, Sangyeon; Lee, Juwon; Lee, Young-Woo; Jang, A-Rang; Ahn, Seongjoon; Ma, Kyung Yeol; Cho, Yuljae; Hong, John; Lee, Sanghyo; Jeong, Hu Young; Im, Hyunsik; Shin, Hyeon Suk; Morris, Stephen M; Cha, SeungNam; Sohn, Jung Inn; Kim, Jong Min

    2017-09-13

    van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS 2 /WS 2 vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS 2 to MoS 2 in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.

  8. Density matrix of strongly coupled quantum dot - microcavity system

    International Nuclear Information System (INIS)

    Nguyen Van Hop

    2009-01-01

    Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.

  9. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  10. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.; Hauke, N.

    2009-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning...... switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components....

  11. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  12. A study of polaritonic transparency in couplers made from excitonic materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Racknor, Chris [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  13. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    Science.gov (United States)

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  14. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    Science.gov (United States)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  15. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan; Hao, Kai; Dass, Chandriker Kavir; Singh, Akshay; Xu, Lixiang; Tran, Kha; Chen, Chang-Hsiao; Li, Ming-yang; Li, Lain-Jong; Clark, Genevieve; Bergh ä user, Gunnar; Malic, Ermin; Knorr, Andreas; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures.

    Science.gov (United States)

    Beke, David; Károlyházy, Gyula; Czigány, Zsolt; Bortel, Gábor; Kamarás, Katalin; Gali, Adam

    2017-09-06

    Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.

  18. Communication: Strong excitonic and vibronic effects determine the optical properties of Li₂O₂

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Bass, J. D.; Thygesen, Kristian Sommer

    2011-01-01

    The band structure and optical absorption spectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide ion...

  19. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  20. Exciton in vertically coupled type II quantum dots in threading magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Cantillo, J., E-mail: jhofry@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Universidad de la Guajira, Riohacha (Colombia); Escorcia-Salas, G. Elizabeth, E-mail: elizabethescorcia@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Mikhailov, I.D., E-mail: mikhail2811@gmail.com [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Sierra-Ortega, J., E-mail: jsierraortega@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia)

    2014-11-15

    We analyze the energy spectrum of a neutral exciton confined in a semiconductor heterostructure formed by two vertically coupled axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside dots tunneling between them while the hole generally is placed in the exterior region close to the symmetry axis. Solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are presented for the energies of bonding and anti-bonding lowest-lying of the exciton states and for the density of states for different InP/GaInP quantum dots' morphologies and the magnetic field strength values.

  1. Ultrafast Mid-Infrared Intra-Excitonic Response of Individualized Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Wang, Jigang; Graham, Matt W.; Ma, Yingzhong; Fleming, Graham R.; Kaindl, Robert A.

    2009-01-01

    The quasi-1D confinement and reduced screening of photoexcited charges in single-walled carbon nanotubes (SWNTs) entails strongly-enhanced Coulomb interactions and exciton binding energies. Such amplified electron-hole (e-h) correlations have important implications for both fundamental physics and optoelectronic applications of nanotubes. The availability of 'individualized' SWNT ensembles with bright and structured luminescence has rendered specific tube chiralities experimentally accessible. In these samples, evidence for excitonic behavior was found in absorption-luminescence maps, two-photon excited luminescence, or ultrafast carrier dynamics. Here, we report ultrafast mid-infrared (mid-IR) studies of individualized SWNTs, evidencing strong photoinduced absorption around 200 meV in semiconducting tubes of (6,5) and (7,5) chiralities. This manifests the observation of quasi-1D intra-excitonic transitions between different relative-momentum states, in agreement with the binding energy and calculated oscillator strength. Our measurements further reveal a saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs. The transient mid-IR response represents a new tool, unhindered by restrictions of momentum or interband dipole moment, to investigate the density and dynamics of SWNT excitons.

  2. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  3. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    International Nuclear Information System (INIS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-01-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  4. Exciton absorption spectrum of thin Ag sub 2 ZnI sub 4

    CERN Document Server

    Yunakova, O N; Kovalenko, E N

    2002-01-01

    In Ag sub 2 ZnI sub 4 compound thin films one investigated into the electron spectrum of absorption within 3-6 eV photon energy range. The boundary of interband absorption is determined to correspond to the direct permitted transitions with E sub g = 3.7 eV forbidden gap width. A strong exciton band at E = 3.625 eV (80 K) GAMMA half width temperature run of which within 80-390 K range is governed by exciton-phonon interaction typical for quasi-single-dimensional excitons, is adjacent to the absorption boundary. At T <= 390 K one observes a bend in E(T) and GAMMA(T) dependences associated with generation of the Frenkel defects and followed by transfer of Ag ions to the interstices and vacancies of the compound crystalline lattice

  5. Strongly Enhanced Free-Exciton Luminescence in Microcrystalline CsPbBr3 Films

    Science.gov (United States)

    Kondo, Shin-ichi; Kakuchi, Mitsugu; Masaki, Atsushi; Saito, Tadaaki

    2003-07-01

    The luminescence properties of CsPbBr3 films prepared via the amorphous phase by crystallization are dominated by free-exciton emission, and only a weak trace of emission due to trapped excitons was observed, in contrast to the case of bulk CsPbBr3 crystals. In particular, the films in the microcrystalline state show by more than an order of magnitude stronger free-exciton emission than in the polycrystalline state. The enhanced free-exciton emission is suggestive of excitonic superradiance.

  6. Search for new photon couplings in a magnetic field

    International Nuclear Information System (INIS)

    Cameron, R.E.

    1992-01-01

    Of great interest to particle physics is the question of the existence of new, light, pseudoscalar (or scalar) particles. In particular, the existence of a light pseudoscalar boson, known as the axion, would prove a solution to the strong CP problem. These particles, which must be very weakly coupled to ordinary matter, could also be the missing matter in the universe. The author attempted to produce axions in the laboratory by shining a laser beam through a transverse magnetic field. Only light polarized parallel to the magnetic field produces axions, so the polarization state of the light was carefully controlled. To increase the production of axions, the author constructed a multipass optical cavity that makes the light travel as much as 4 km through the magnetic field region. Using two different methods to detect the production of axions, limits were set on the axion coupling to two photons. In the first experiment, the change in polarization of the light was measured. To do this, the author constructed an ellipsometer, which could measure changes in polarization angle as small as 4 x 10 -11 rad. From the absence of an optical rotation due to the production of axions, it was possible to set a limit on axion coupling to two photons of g aγγ -7 GeV -1 . In the second experiment the author attempted to more directly measure the production of axions. In this case the axions were reconverted to photons, and the regenerated photons were counted by a low dark current photomultiplier tube. No photons in excess of the dark current were detected and the limit on axion coupling to two photons from this experiment is g aγγ -7 GeV -1

  7. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    2008-01-01

    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...... taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides....

  8. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    International Nuclear Information System (INIS)

    Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D

    2014-01-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)

  9. Positronium-photon and photon-positronium quantum transitions in strong magnetic fields

    International Nuclear Information System (INIS)

    Leinson, L.B.; Oraevskii, V.N.; Radio-Wave Propagation, Academy of Sciences of the USSR)

    1985-01-01

    The wave functions and energy levels of bound electron-positron pairs in a strong magnetic field H>>α 2 H 0 , where H 0 = m 2 0 c 3 /eh = 4.4 x 10 13 G and α = e 2 /hc, are found in the nonrelativistic approximation. The probabilities of one-photon annihilation of positronium and of the inverse transition from a resonance photon to a positronium atom are calculated. It is shown that in a sufficiently strong magnetic field H∼H 0 , when the probability of one-photon annihilation is considerably greater than the probability of two-photon annihilation of positronium, the lifetime of the decay photon with respect to the inverse transformation to a positronium atom is so small that the decay photon cannot propagate freely in the magnetic field. Therefore, the lifetime of the positronium atom in the case H∼H 0 is determined by the two-photon decay. The possibility of the decay γ→γ 1 +γ 2 via intermediate positronium states in a magnetic field with curved field lines is discussed

  10. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    Science.gov (United States)

    Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan

    2017-12-01

    The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  11. Density of states and excitonic condensation in the double layer correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Apinyan, V., E-mail: v.apinyan@int.pan.wroc.pl; Kopeć, T.K.

    2016-01-15

    We consider the single-particle density of states (DOS) in the strongly correlated double layer (DL) system, without applied external fields. We demonstrate an unusual collapse effect in the spectrum of the normal single-particle spectral function at the particular high-symmetry point corresponding to the specific bunching-point solution of the chemical potential in the Frenkel channel. We show that at the low-temperature limit the anomalous spectral function obeys a concave like structure, which is directly related to the interlayer pair formation and condensation. We calculate the normal DOS functions, and we find their temperature dependence for different values of the interlayer Coulomb interaction parameter. We show that the normal electron and hole DOS functions demonstrate typical condensates double peak structures on the background of the excitonic pair formation quasiparticle spectra and we have found the evidence of the hybridization gap in the case of high-temperature limit, and small interlayer coupling parameter. Meanwhile, we show a possible crossover from the excitonic condensate regime into the band insulator state. The structure of the normal DOS spectra, in the Frenkel channel and for the strong interlayer coupling regime, is found gapless for all temperature limits, which clearly indicates the strong coherence effects in the DL structure, and the excitonic condensates therein. We have shown that the excitonic pair formation and pair condensation occur simultaneously in the DL system, in contrast with the purely three-dimensional (3D) or two-dimensional cases (2D), discussed previously.

  12. Final Report, DOE grant DE-FG02-99ER45780, "Indirect Excitons in Coupled Quantum Wells"

    Energy Technology Data Exchange (ETDEWEB)

    Snoke, david W. [University of Pittsburgh

    2014-07-21

    The is the final technical report for this project, which was funded by the DOE from 1999 to 2012. The project focused on experimental studies of spatially indirect excitons in coupled quantum wells, with the aim of understanding the quantum physics of these particles, including such effects as pattern formation due to electron-hole charge separation, the Mott plasma-insulator transition, luminescence up-conversion through field-assisted tunneling, luminescence line shifts due to many-body renormalization and magnetic field effects on tunneling, and proposed effects such as Bose-Einstein condensation of indirect excitons and phase separation of bright and dark indirect excitons. Significant results are summarized here and the relation to other work is discussed.

  13. Strongly bound excitons in monolayer PtS2 and PtSe2

    KAUST Repository

    Sajjad, M.

    2018-01-22

    Based on first-principles calculations, the structural, electronic, and optical properties of monolayers PtS2 and PtSe2 are investigated. The bond stiffnesses and elastic moduli are determined by means of the spring constants and strain-energy relations, respectively. Dynamic stability is confirmed by calculating the phonon spectra, which shows excellent agreement with experimental reports for the frequencies of the Raman-active modes. The Heyd-Scuseria-Ernzerhof functional results in electronic bandgaps of 2.66 eV for monolayer PtS2 and 1.74 eV for monolayer PtSe2. G0W0 calculations combined with the Bethe-Salpeter equation are used to predict the optical spectra and exciton binding energies (0.78 eV for monolayer PtS2 and 0.60 eV for monolayer PtSe2). It turns out that the excitons are strongly bound and therefore very stable against external perturbations.

  14. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  15. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    Science.gov (United States)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  16. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  17. Bragg polaritons in a ZnSe-based unfolded microcavity at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K.; Rahman, SK. S.; Cornelius, M.; Kaya, T.; Gutowski, J. [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klein, T.; Gust, A.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klembt, S. [Institut Néel, Université Grenoble Alpes and CNRS, B.P. 166, 38042 Grenoble (France)

    2016-03-21

    In this contribution, we present strong coupling of ZnSe quantum well excitons to Bragg modes resulting in the formation of Bragg polariton eigenstates, characterized by a small effective mass in comparison to a conventional microcavity. We observe an anticrossing of the excitonic and the photonic component in our sample being a clear signature for the strong-coupling regime. The anticrossing is investigated by changing the detuning between the excitonic components and the Bragg mode. We find anticrossings between the first Bragg mode and the heavy- as well as light-hole exciton, respectively, resulting in three polariton branches. The observed Bragg-polariton branches are in good agreement with theoretical calculations. The strong indication for the existence of strong coupling is traceable up to a temperature of 200 K, with a Rabi-splitting energy of 24 meV and 13 meV for the Bragg mode with the heavy- and light-hole exciton, respectively. These findings demonstrate the advantages of this sample configuration for ZnSe-based devices for the strong coupling regime.

  18. Influence of the sign of the coupling on the temperature dependence of optical properties of one-dimensional exciton models

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, L [CCMAR and FCT, Universidade of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2008-10-14

    A new physical cause for a temperature-dependent double peak in exciton systems is put forward within a thermal equilibrium approach for the calculation of optical properties of exciton systems. Indeed, it is found that one-dimensional exciton systems with only one molecule per unit cell can have an absorption spectrum characterized by a double peak provided that the coupling between excitations in different molecules is positive. The two peaks, whose relative intensities vary with temperature, are located around the exciton band edges, being separated by an energy of approximately 4V, where V is the average coupling between nearest neighbours. For small amounts of diagonal and off-diagonal disorder, the contributions from the intermediate states in the band are also visible as intermediate structure between the two peaks, this being enhanced for systems with periodic boundary conditions. At a qualitative level, these results correlate well with experimental observations in the molecular aggregates of the thiacarbocyanine dye THIATS and in the organic crystals of acetanilide and N-methylacetamide.

  19. Influence of the sign of the coupling on the temperature dependence of optical properties of one-dimensional exciton models

    International Nuclear Information System (INIS)

    Cruzeiro, L

    2008-01-01

    A new physical cause for a temperature-dependent double peak in exciton systems is put forward within a thermal equilibrium approach for the calculation of optical properties of exciton systems. Indeed, it is found that one-dimensional exciton systems with only one molecule per unit cell can have an absorption spectrum characterized by a double peak provided that the coupling between excitations in different molecules is positive. The two peaks, whose relative intensities vary with temperature, are located around the exciton band edges, being separated by an energy of approximately 4V, where V is the average coupling between nearest neighbours. For small amounts of diagonal and off-diagonal disorder, the contributions from the intermediate states in the band are also visible as intermediate structure between the two peaks, this being enhanced for systems with periodic boundary conditions. At a qualitative level, these results correlate well with experimental observations in the molecular aggregates of the thiacarbocyanine dye THIATS and in the organic crystals of acetanilide and N-methylacetamide

  20. Phonon effects on the radiative recombination of excitons in double quantum dots

    Science.gov (United States)

    Karwat, Paweł; Sitek, Anna; Machnikowski, Paweł

    2011-11-01

    We study theoretically the radiative recombination of excitons in double quantum dots in the presence of carrier-phonon coupling. We show that the phonon-induced pure dephasing effects and transitions between the exciton states strongly modify the spontaneous emission process and make it sensitive to temperature, which may lead to nonmonotonic temperature dependence of the time-resolved luminescence. We show also that, under specific resonance conditions, the biexcitonic interband polarization can be coherently transferred to the excitonic one, leading to an extended lifetime of the total coherent polarization, which is reflected in the nonlinear optical spectrum of the system. We study the stability of this effect against phonon-induced decoherence.

  1. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    International Nuclear Information System (INIS)

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  2. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  3. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  4. Exciton-phonon coupling in a CsPbBr3 single nanocrystal

    Science.gov (United States)

    Ramade, Julien; Andriambariarijaona, Léon Marcel; Steinmetz, Violette; Goubet, Nicolas; Legrand, Laurent; Barisien, Thierry; Bernardot, Frédérick; Testelin, Christophe; Lhuillier, Emmanuel; Bramati, Alberto; Chamarro, Maria

    2018-02-01

    We have performed micro-photoluminescence measurements on a single CsPbBr3 nanocrystal (NC) with a size comparable to the Bohr diameter (7 nm). When the NC has an orthorhombic crystal symmetry, we observe an exciton fine structure composed of three peaks linearly polarized. We took advantage of the polarization properties of micro-photoluminescence to monitor in situ both the energy and linewidth of individual peaks when increasing temperature. We reveal that two regimes exist, at low and high temperature, which are dominated by acoustic or longitudinal optical phonon (Fröhlich term) couplings, respectively. The acoustic contribution does not change when the energy of the excitonic transition varies in the range of 2.46-2.62 eV, i.e., with NC sizes corresponding to this range. We find that line broadening is mainly ruled by the Fröhlich term, which is consistent with the polar nature of CsPbBr3.

  5. Realization and optical characterisation of micro-cavities in strong coupling regime using self-assembled multi-quantum wells structure of 2D perovskites

    International Nuclear Information System (INIS)

    Lanty, Gaetan

    2011-01-01

    The research work which is reported in this manuscript focuses on 2D perovskites and their use to obtain micro-cavities working in the strong coupling regime. Perovskite structure forms a multi-quantum wells in which the excitonic states have a high oscillator strength and a large binding energy (a few 100 MeV) due to quantum and dielectric confinement effects. A first axis of this work was to collect information on the excitonic properties of these materials. On a particular perovskite (PEPI), we performed photoluminescence and pump-probe measurements, which seem to suggest the existence, under high excitation density, a process of Auger recombination of excitons. A second research axis was to put in cavity thin layers of some perovskites. With PEPI and PEPC perovskites, we have shown that the realization of micro-cavities with a quality factor of the order of ten is sufficient to obtain at room temperature, the strong coupling regime in absorption and emission with Rabi splitting up to 220 MeV. A bottleneck effect has been clearly demonstrated for the PEPI microcavity. We have also shown that perovskites could be associated with inorganic semiconductors in 'hybrid' micro-cavities. According Agranovich et al., these micro-cavities could present polariton lasing with lower quality factors. To this end, the ZnO/MFMPB association seems particularly promising. (author)

  6. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    Science.gov (United States)

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  7. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    International Nuclear Information System (INIS)

    Zhang, Xian-Fu; Zhang, Ya-Kui

    2015-01-01

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ f ). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ f ) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ f and τ f values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ f and τ f values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions

  8. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian-Fu, E-mail: zhangxianfu@tsinghua.org.cn [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China); MPC Technologies, Hamilton, ON, Canada L8S 3H4 (Canada); Zhang, Ya-Kui [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China)

    2015-10-15

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ{sub f}). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ{sub f}) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ{sub f} and τ{sub f} values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ{sub f} and τ{sub f} values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions.

  9. Refractive index modulation based on excitonic effects in GaInAs-InP coupled asymmetric quantum wells

    DEFF Research Database (Denmark)

    Thirstrup, Carsten

    1995-01-01

    The effect of excitons in GaInAs-InP coupled asymmetric quantum wells on the refractive index modulation, is analyzed numerically using a model based on the effective mass approximation. It is shown that two coupled quantum wells brought in resonance by an applied electric field will, due...

  10. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity

    Science.gov (United States)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena

    2017-06-01

    A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined

  11. Rotational symmetry breaking and topological phase transition in the exciton-polariton condensate of gapped 2D Dirac material

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of bosonic quasiparticles consisting of the exciton and the cavity photon known as polariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped Dirac material such as the transition metal dichalcogenide (TMD) MoS2 or WTe2. Specifically, in forming excitons, the electron-photon coupling from the optical selection rule due to the Berry phase competes against, rather than cooperates with, the Coulomb interaction. We find that this competition gives rise to the spontaneous breaking of the rotational symmetry in the polariton condensate and also drives topological phase transition, both novel features in polariton condensation. We also investigate the possible detection of this competition through photoluminescence. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  12. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  13. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  14. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.

    Science.gov (United States)

    Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R

    2018-02-22

    Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

  15. Coupling-reducing k-points for photonic crystal fibre calculations

    DEFF Research Database (Denmark)

    Albertsen, Maja; Lægsgaard, Jesper; Barkou Libori, Stig Eigil

    2003-01-01

    When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice of the tran......When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice...... of the transverse Bloch wave vector, k. We describe a method to derive k-points that minimize the coupling between repeated images of the guided modes in real space. Calculations have been done for a quadratic and a triangular photonic crystal fiber structure. With the new coupling reducing (CR) k...

  16. Theoretical investigation of the hyper-Raman scattering in hexagonal semiconductors under two-photon excitation near resonance with the An=2 exciton level

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The hyper-Raman scattering of light by LO-phonons under two-photon excitation near resonance with the An=2 exciton level in the wurtzite semiconductors A2B6 was theoretically investigated, taking into account the influence of the complex structure of the top valence band.

  17. Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides

    Science.gov (United States)

    Li, Run-Ze; Dong, Xi-Ying; Li, Zhi-Qing; Wang, Zi-Wu

    2018-07-01

    We theoretically investigate the correction of exciton Bohr radius in monolayer transition metal dichalcogenides (TMDCs) on different polar substrates arising from the exciton-optical phonon coupling, in which both the intrinsic longitudinal optical phonon and surface optical phonon modes couple with the exciton are taken into account. We find that the exciton Bohr radius is enlarged markedly due to these coupling. Moreover, it can be changed on a large scale by modulating the polarizability of polar substrate and the internal distance between the monolayer TMDCs and polar substrate. Theoretical result provides a potential explanation for the variation of the exciton Bohr radius in experimental measurement.

  18. Visualization of Excitonic Structure in the Fenna-Matthews-Olson Photosynthetic Complex by Polarization-Dependent Two-Dimensional Electronic Spectroscopy

    International Nuclear Information System (INIS)

    Fleming, Graham; Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Wen, Jianzhong; Blankenship, Robert E.; Fleming, Graham R.

    2008-01-01

    Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Inter-chromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography in combination with predictions of transition energies and couplings in the chromophore site basis. Here, we demonstrate that coarse-grained excitonic structural information in the form of projection angles between transition dipole moments can be obtained from polarization-dependent two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal rather than the photon echo signal is considered. The method provides an experimental link between atomic and electronic structure and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, energy transfer connecting two particular exciton states in the protein is isolated as being the primary contributor to a cross peak in the nonrephasing 2D spectrum at 400 fs under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored polarization sequences to separate and monitor individual relaxation pathways

  19. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    International Nuclear Information System (INIS)

    Sharma, A.; Dhar, S.; Singh, B. P.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.

    2013-01-01

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material

  20. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.; Dhar, S., E-mail: dhar@phy.iitb.ac.in; Singh, B. P. [Physics Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Nayak, C.; Bhattacharyya, D. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Jha, S. N. [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (India)

    2013-12-07

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material.

  1. Excitonic condensation in systems of strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan

    2015-01-01

    Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  2. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  3. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    Science.gov (United States)

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  4. Observation of surface excitons in rare gas solids

    International Nuclear Information System (INIS)

    Saile, V.; Skibowski, M.; Steinmann, W.; Guertler, P.; Koch, E.E.; Kozevnikov, A.

    1976-04-01

    Evidence is obtained for the excitation of surface excitons in solid Ar, Kr and Xe in optical transmission and reflection experiments using synchrotron radiation. They are located at photon energies ranging from 0.6 eV for Ar to 0.1 eV for Xe below the corresponding bulk excitons excited from the valence bands. Their halfwidths (20-50 MeV) is less than half the values found for the bulk excitons. Some are split by an amount considerably smaller than the spin orbit splitting of the valence bands. (orig.) [de

  5. Fluctuations of tunneling currents in photonic and polaritonic systems

    Science.gov (United States)

    Mantsevich, V. N.; Glazov, M. M.

    2018-04-01

    Here we develop the nonequilibrium Green's function formalism to analyze the fluctuation spectra of the boson tunneling currents. The approach allows us to calculate the noise spectra in both equilibrium and nonequilibrium conditions. The proposed general formalism is applied to several important realizations of boson transport, including the tunneling transport between two reservoirs and the case where the boson current flows through the intermediate region between the reservoirs. Developed theory can be applied for the analysis of the current noise in waveguides, coupled optical resonators, quantum microcavities, etc., where the tunneling of photons, exciton-polaritons, or excitons can be realized.

  6. Strong room-temperature ultraviolet to red excitons from inorganic organic-layered perovskites, (MX4 (M=Pb, Sn, Hg; X=I-, Br-)

    Science.gov (United States)

    Ahmad, Shahab; Prakash, G. Vijaya

    2014-01-01

    Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.

  7. Wannier-Mott Excitons in Nanoscale Molecular Ices

    Science.gov (United States)

    Chen, Y.-J.; Muñoz Caro, G. M.; Aparicio, S.; Jiménez-Escobar, A.; Lasne, J.; Rosu-Finsen, A.; McCoustra, M. R. S.; Cassidy, A. M.; Field, D.

    2017-10-01

    The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 ×107 V m-1 , are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

  8. Strong WW scattering at photon linear colliders

    International Nuclear Information System (INIS)

    Berger, M.S.

    1994-06-01

    We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson

  9. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  10. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  11. Bose-Einstein condensation and indirect excitons: a review.

    Science.gov (United States)

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  12. Plasmonic-photonic crystal coupled nanolaser

    International Nuclear Information System (INIS)

    Zhang, Taiping; Callard, Ségolène; Jamois, Cécile; Chevalier, Céline; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices. (paper)

  13. Excitonic bistabilities, instabilities and chaos in laser-pumped semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An; Nguyen Trung Dan; Hoang Xuan Nguyen

    1992-07-01

    The Hurwitz criteria are used for a stability analysis of the steady state excitonic optical bistability curves in a semiconductor pumped by an external laser resonant with the exciton level. Besides the middle branch of the bistability curves which is unstable in the sense of the linear stability theory, we have found other domains of instability in the upper and lower branches of the steady state curves. Numerical results show that a possible route to chaos in the photon-exciton system is period-doubling self-oscillation process. The influence of the presence of free carriers that coexist with the excitons is also discussed. (author). 16 refs, 6 figs

  14. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    Efficient and high quality single-photon sources is a key element in quantum information processing using photons. As a consequence, much current research is focused on realizing all-solid-state nanophotonic single-photon sources. Single photons can be harvested with high efficiency if the emitter...... is coupled efficiently to a single enhanced mode. One popular approach has been to couple single quantum dots to a nanocavity but a limiting factor in this configuration is that in order to apply the photon it should subsequently be coupled out of the cavity, reducing the overall efficiency significantly...

  15. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F., E-mail: fro_brito@yahoo.com.m [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Alejo-Armenta, C. [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Coyoacan 04510, DF (Mexico); Camarillo, E.; Hernandez A, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico); Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, AP 14-740, 07000, DF (Mexico); Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico)

    2011-05-15

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 {mu}m, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: {yields} Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. {yields} Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. {yields} The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  16. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    International Nuclear Information System (INIS)

    Ramos-Brito, F.; Alejo-Armenta, C.; Garcia-Hipolito, M.; Camarillo, E.; Hernandez A, J.; Falcony, C.; Murrieta S, H.

    2011-01-01

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 μm, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: → Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. → Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. → The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  17. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    Science.gov (United States)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  18. Phase diagram of incoherently driven strongly correlated photonic lattices

    Science.gov (United States)

    Biella, Alberto; Storme, Florent; Lebreuilly, José; Rossini, Davide; Fazio, Rosario; Carusotto, Iacopo; Ciuti, Cristiano

    2017-08-01

    We explore theoretically the nonequilibrium photonic phases of an array of coupled cavities in presence of incoherent driving and dissipation. In particular, we consider a Hubbard model system where each site is a Kerr nonlinear resonator coupled to a two-level emitter, which is pumped incoherently. Within a Gutzwiller mean-field approach, we determine the steady-state phase diagram of such a system. We find that, at a critical value of the intercavity photon hopping rate, a second-order nonequilibrium phase transition associated with the spontaneous breaking of the U(1 ) symmetry occurs. The transition from an incompressible Mott-like photon fluid to a coherent delocalized phase is driven by commensurability effects and not by the competition between photon hopping and optical nonlinearity. The essence of the mean-field predictions is corroborated by finite-size simulations obtained with matrix product operators and corner-space renormalization methods.

  19. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    Science.gov (United States)

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  20. The strong will of the photon

    International Nuclear Information System (INIS)

    Schuler, Gerhard

    1993-01-01

    Among today's elementary particles, the photon, the massless carrier of the electromagnetic force, plays a special role. At high energy, it has a dual character - sometimes pointlike and structureless, elsewhere with a hadronic structure. This is reminiscent of the duality of radiation and matter established at the beginning of the century. But while this wave-particle duality is understood in quantum mechanics, we have no complete description of high energy hadronic interactions. Quantum chromodynamics, the field theory of quarks and gluons, comes nearest, but calculations are not always possible. Physicists have to resort to intuitive pictures and models to supplement formal theory. The hadronic Side of the photon is a rich field, both theoretically and experimentally, studied using a range of reactions at all the major front-line accelerators and storage rings, culminating most recently with first data from the new HERA electron proton collider at DESY, Hamburg. The photon was first regarded as structureless. The first hint of photon structure was probably electronpositron pair creation by photons in an electromagnetic field. In relativistic quantum field theory, a particle contains not only its 'bare' state, but also contributions from all states coupled to it by the interaction. Thus in quantum terms the photon also contains electron-positron pairs, which can materialize in high-energy reactions

  1. Strong-coupling theory of superconductivity

    International Nuclear Information System (INIS)

    Rainer, D.; Sauls, J.A.

    1995-01-01

    The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)

  2. Role of many-body effects in the coherent dynamics of excitons in low-temperature-grown GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Webber, D.; Hacquebard, L.; Hall, K. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Liu, X.; Dobrowolska, M.; Furdyna, J. K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-10-05

    Femtosecond four-wave mixing experiments on low-temperature-grown (LT-) GaAs indicate a polarization-dependent nonlinear optical response at the exciton, which we attribute to Coulomb-mediated coupling between excitons and electron-hole pairs simultaneously excited by the broad-bandwidth laser pulses. Strong suppression of the exciton response through screening by carriers injected by a third pump pulse was observed, an effect that is transient due to rapid carrier trapping. Our findings highlight the need to account for the complex interplay of disorder and many-body effects in the design of ultrafast optoelectronic devices using this material.

  3. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    Science.gov (United States)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  4. A theoretical study of exciton energy levels in laterally coupled quantum dots

    International Nuclear Information System (INIS)

    Barticevic, Z; Pacheco, M; Duque, C A; Oliveira, L E

    2009-01-01

    A theoretical study of the electronic and optical properties of laterally coupled quantum dots, under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton energy levels of such laterally coupled quantum-dot systems, together with the corresponding wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an extended variational approach in which the magnetoexciton states are simultaneously obtained. One achieves the expected limits of one single quantum dot, when the distance between the dots is zero, and of two uncoupled quantum dots, when the distance between the dots is large enough. Moreover, present calculations-with appropriate structural dimensions of the two-dot system-are shown to be in agreement with measurements in self-assembled laterally aligned GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in GaAs/GaAlAs quantum wells.

  5. Efficient fiber-coupled single-photon sources based on quantum dots

    DEFF Research Database (Denmark)

    Daveau, Raphaël Sura

    refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices.......6 %. This latter method opens a promising future for increasing the eciency and reliability of planar chip-based single-photon sources. Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronic and photonic circuits. We show theoretically that two coupled...... semiconductor quantum wells are ecient cooling media because they support long-lived indirect electron-hole pairs. These pairs can be thermally excited to distinct higher-energy states with faster radiative recombination, thereby creating an ecient escape channel to remove thermal energy from the system. From...

  6. Sub-threshold investigation of two coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    2009-01-01

    The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed.......The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed....

  7. Controlling the exciton energy of a nanowire quantum dot by strain fields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Zhang, Jiaxiang; Ding, Fei, E-mail: f.ding@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, Helmholtz Strasse 20, 01069 Dresden (Germany); Zadeh, Iman Esmaeil; Jöns, Klaus D.; Fognini, Andreas; Zwiller, Val [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Reimer, Michael E. [Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1 (Canada); Dalacu, Dan; Poole, Philip J. [National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtz Strasse 20, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Strasse 70, 09107 Chemnitz (Germany)

    2016-05-02

    We present an experimental route to engineer the exciton energies of single quantum dots in nanowires. By integrating the nanowires onto a piezoelectric crystal, we controllably apply strain fields to the nanowire quantum dots. Consequently, the exciton energy of a single quantum dot in the nanowire is shifted by several meVs without degrading its optical intensity and single-photon purity. Second-order autocorrelation measurements are performed at different strain fields on the same nanowire quantum dot. The suppressed multi-photon events at zero time delay clearly verify that the quantum nature of single-photon emission is well preserved under external strain fields. The work presented here could facilitate on-chip optical quantum information processing with the nanowire based single photon emitters.

  8. Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2016-01-01

    We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...

  9. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy.

    Science.gov (United States)

    Yarita, Naoki; Tahara, Hirokazu; Ihara, Toshiyuki; Kawawaki, Tokuhisa; Sato, Ryota; Saruyama, Masaki; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-04-06

    Metal-halide perovskite nanocrystals (NCs) are promising photonic materials for use in solar cells, light-emitting diodes, and lasers. The optoelectronic properties of these devices are determined by the excitons and exciton complexes confined in their NCs. In this study, we determined the relaxation dynamics of charged excitons and biexcitons in CsPbBr 3 NCs using femtosecond transient-absorption (TA), time-resolved photoluminescence (PL), and single-dot second-order photon correlation spectroscopy. Decay times of ∼40 and ∼200 ps were obtained from the TA and PL decay curves for biexcitons and charged excitons, respectively, in NCs with an average edge length of 7.7 nm. The existence of charged excitons even under weak photoexcitation was confirmed by the second-order photon correlation measurements. We found that charged excitons play a dominant role in luminescence processes of CsPbBr 3 NCs. Combining different spectroscopic techniques enabled us to clarify the dynamical behaviors of excitons, charged excitons, and biexcitons.

  10. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  11. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...

  12. Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film.

    Science.gov (United States)

    Bhoi, Biswanath; Kim, Bosung; Kim, Junhoe; Cho, Young-Jun; Kim, Sang-Koog

    2017-09-20

    We experimentally demonstrate strongly enhanced coupling between excited magnons in an Yttrium Iron Garnet (YIG) film and microwave photons in an inverted pattern of split-ring resonator (noted as ISRR). The anti-crossing effects of the ISRR's photon mode and the YIG's magnon modes were found from |S 21 |-versus-frequency measurements for different strengths and directions of externally applied magnetic fields. The spin-number-normalized coupling strength (i.e. single spin-photon coupling) [Formula: see text] was determined to 0.194 Hz ([Formula: see text] = 90 MHz) at 3.7 GHz frequency. Furthermore, we found that additional fine features in the anti-crossing region originate from the excitation of different spin-wave modes (such as the magnetostatic surface and the backward-volume magnetostatic spin-waves) rather than the Kittel-type mode. These spin-wave modes, as coupled with the ISRR mode, modify the anti-crossing effect as well as their coupling strength. An equivalent circuit model very accurately reproduced the observed anti-crossing effect and its coupling strength variation with the magnetic field direction in the planar-geometry ISRR/YIG hybrid system. This work paves the way for the design of new types of high-gain magnon-photon coupling systems in planar geometry.

  13. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass

    Science.gov (United States)

    Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe

    2017-10-01

    The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.

  14. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  15. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    Science.gov (United States)

    Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.

    2013-12-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  16. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  17. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  18. Holographic photon production in heavy ion collisions

    International Nuclear Information System (INIS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-01-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N=4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser’s phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  19. Holographic photon production in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iatrakis, Ioannis [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Kiritsis, Elias [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Department of Physics, University of Crete,71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,71003 Heraklion (Greece); APC, Univ Paris Diderot, Sorbonne Paris Cité, APC, UMR 7164 CNRS,F-75205 Paris (France); Shen, Chun [Department of Physics, McGill University,3600 University Street, Montreal, QC, H3A 2T8 (Canada); Yang, Di-Lun [Theoretical Research Division, Nishina Center, RIKEN, Wako,Saitama 351-0198 (Japan)

    2017-04-07

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N=4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser’s phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  20. Characterization of InP and InGaN quantum dots for single photon sources and AlGaInAs quantum dots in intermediate band solar cells

    International Nuclear Information System (INIS)

    Kremling, Stefan

    2014-01-01

    single QDs. Finally, the emission of single photons has been demonstrated using autocorrelation measurements. For a more efficient diffraction-limited output coupling of photons, the InP QDs grown by cyclic material deposition were embedded in micropillar resonator structures and investigated by means of spectroscopy. First, structures with different diameters were characterized by photoluminescence spectroscopy. Second, the energy of a single QD exciton and the energy of the cavity were tuned into resonance by changing the temperature. In the regime of weak coupling a luminescence enhancement due to the Purcell Effect was observed. Finally, also in the regime of weak coupling, the emission of single photons has been demonstrated by autocorrelation measurements. In terms of applications, electrical operations are desirable. Therefore, the Bragg mirrors of the micropillar resonator were doped for an efficient current injection and electrical contacts were deposited. After basic electrical characterization, the regime of weak coupling of a single QD exciton and the cavity resulting in a luminescence enhancement were demonstrated by the Purcell effect. Finally, the emission of single photons based on autocorrelation measurements is shown. In this chapter, the luminescence properties of single InGaN QD were investigated. Based on the wurtzite crystal structure of nitrite-compound semiconductors strong piezoelectric fields occur that lead to strongly linearly polarized luminescence. Several QDs were investigated and statistical studies were performed. Excitation power depending measurements allows one to identify the different exciton states of a single QD. In addition, the emission of single photons of InGaN QDs up to a temperature of 50 K was demonstrated for the first time. In the final chapter, an application of QDs in solar cells is presented to specifically exploit the unique properties of QDs in optical devices. The concept of the intermediate band solar cell utilizes

  1. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  2. Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics.

    Science.gov (United States)

    Li, Yong Jun; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2016-02-10

    Nanophotonics has received broad research interest because it may provide an alternative opportunity to overcome the fundamental limitations of electronic circuits. So far, diverse photonic functions, such as light generation, modulation, and detection, have been realized based on various nano-materials. The exact structural features of these material systems, including geometric characteristics, surface morphology, and material composition, play a key role in determining the photonic functions. Therefore, rational designs and constructions of materials on both morphological and componential levels, namely nanoarchitectonics, are indispensable for any photonic device with specific functionalities. Recently, a series of nanowire heterojunctions (NWHJs), which are usually made from two or more kinds of material compositions, were constructed for novel photonic applications based on various interactions between different materials at the junctions, for instance, energy transfer, exciton-plasmon coupling, or photon-plasmon coupling. A summary of these works is necessary to get a more comprehensive understanding of the relationship between photonic functions and architectonics of NWHJs, which will be instructive for designing novel photonic devices towards integrated circuits. Here, photonic function oriented nanoarchitectonics based on recent breakthroughs in nanophotonic devices are discussed, with emphasis on the design mechanisms, fabrication strategies, and excellent performances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multiphonon resonant Raman scattering in the semimagnetic semiconductor Cd1-xMnxTe: Froehlich and deformation potential exciton-phonon interaction

    International Nuclear Information System (INIS)

    Riera, R; Rosas, R; Marin, J L; Bergues, J M; Campoy, G

    2003-01-01

    A theory describing multiphonon resonant Raman scattering (MPRRS) processes in wide-gap diluted magnetic semiconductors is presented, with Cd 1-x Mn x Te as an example. The incident radiation frequency ω l is taken above the fundamental absorption region. The photoexcited electron and hole make real transitions through the LO phonon, when one considers Froehlich (F) and deformation potential (DP) interactions. The strong exchange interaction, typical of these materials, leads to a large spin splitting of the exciton states in the magnetic field. Neglecting Landau quantization, this Zeeman splitting gives rise to the formation of eight bands (two conduction and six valence ones) and ten different exciton states according to the polarization of the incident light. Explicit expressions for the MPRRS intensity of second and third order, the indirect creation and annihilation probabilities, the exciton lifetime, and the probabilities of transition between different exciton states and different types of exciton as a function of ω l and the external magnetic field are presented. The selection rules for all hot exciton transitions via exciton-photon interaction and F and DP exciton-phonon interactions are investigated. The exciton energies, as a function of B, the Mn concentration x, and the temperature T, are compared to a theoretical expression. Graphics for creation and annihilation probabilities, lifetime, and Raman intensity of second and third order are discussed

  4. Excitonic optical bistability in n-type doped semiconductors

    International Nuclear Information System (INIS)

    Nguyen Ba An; Le Thi Cat Tuong

    1991-07-01

    A resonant monochromatic pump laser generates coherent excitons in an n-type doped semiconductor. Both exciton-exciton and exciton-donor interactions come into play. The former interaction can give rise to the appearance of optical bistability which is heavily influenced by the latter one. When optical bistability occurs at a fixed laser frequency both its holding intensity and hysteresis loop size are shown to decrease with increasing donor concentration. Two possibilities are suggested for experimentally determining one of the two parameters of the system - the exciton-donor coupling constant and the donor concentration, if the other parameter is known beforehand. (author). 36 refs, 2 figs

  5. Charge separation in excitonic and bipolar solar cells - A detailed balance approach

    International Nuclear Information System (INIS)

    Kirchartz, Thomas; Rau, Uwe

    2008-01-01

    A generalized solar cell model for excitonic and classical, bipolar solar cells is developed that describes the combined transport and interaction of electrons, holes and excitons. Both, conventional inorganic solar cells as well as organic solar cells, where excitons play a dominant role for energy transport, turn out to be special cases of this model. Due to the inclusion of photon recycling effects, the approach is compatible with the principle of detailed balance and the Shockley-Queisser limit. We show how varying the interaction between excitons and charge carriers as well as varying the respective mobilities of the different species changes the operation mode of the solar cell path between excitonic and bipolar

  6. Growth of self-assembled (Ga)InAs/GaAs quantum dots and realization of high quality microcavities for experiments in the field of strong exciton photon coupling; Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren hoechster Guete fuer Experimente zur starken Exziton-Photon-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Andreas

    2008-11-05

    cavity mode and the exciton could be observed. A Rabi-splitting of about 60 {mu}eV was measured for circular GaInAs dots with an indium content of 43 % and diameters between 20 and 25 nm. we could conclude an oscillator strength of approximately 40-50 for the enlarged quantum dot structures. In contrast to that, the slightly smaller dots with an indium content of 43 % only show an oscillator strength of about 15-20. Furthermore, doped microcavities were realized with regard to electrically driven devices. The investigated electrically driven mircocavities with embedded GaInAs quantum dots were operating in the weak coupling regime and showed a clear Purcell effect with a Purcell factor in resonance of about 10. Due to the use of enlarged GaInAs quantum dots, we were able to reach the strong coupling regime with a vacuum Rabi-splitting of 85 {mu}eV also for electrically driven micropillars. (orig.)

  7. Coherent response of a semiconductor microcavity in the strong coupling regime

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Ferreira, R.; Delalande, C.; Roussignol, Ph; Bogani, F.

    2000-05-01

    We have studied the coherent dynamics of a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond time resolution in a backscattering geometry. Evidence is brought of the resolution of a homogeneous polariton line in an inhomogeneously broadened exciton system. Surprisingly, photon-like polaritons exhibit an inhomogeneous dephasing. Moreover, we observe an unexpected stationary coherence up to 8 ps for the lower polariton branch close to resonance. All these experimental results are well reproduced within the framework of a linear dispersion theory assuming a coherent superposition of the reflectivity and resonant Rayleigh scattering signals with a well-defined relative phase.

  8. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants.

    Science.gov (United States)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag + is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag + is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag + . This optical activation process and the associated modification of the electronic configuration of Ag + remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag + to paramagnetic Ag 2+ . The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  9. Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy

    International Nuclear Information System (INIS)

    Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda

    2014-01-01

    We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)

  10. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  11. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, C. J., E-mail: c.j.lewins@bath.ac.uk; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-07-28

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  12. Exciton Coupling in Circular Dichroic Spectroscopy as a Tool for Establishing the Absolute Configuration of alpha,beta-Unsaturated Esters of Allylic Alcohols

    DEFF Research Database (Denmark)

    Lauridsen, A.; Cornett, Claus; Christensen, S. B.

    1991-01-01

    alpha-beta-Unsaturated esters of allylic alcohols have been shown to exhibit exciton coupling by circular dichroic spectroscopy. This coupling permits the establishment of the absolute configuration. The method was used to prove the absolute configuration at C-2 of archangelolide. Detailed NMR sp...

  13. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    International Nuclear Information System (INIS)

    Ahmad, Shahab; Vijaya Prakash, G.; Baumberg, Jeremy J.

    2013-01-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C 12 H 25 NH 3 ) 2 PbI 4(1−y) Br 4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices

  14. Strong Coupling Corrections in Quantum Thermodynamics

    Science.gov (United States)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.

    2018-03-01

    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

  15. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  16. Excitons in tunnel coupled CdTe and (Cd,Mn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Terletskii, Oleg; Ryabchenko, Sergiy; Tereshchenko, Oleksandr [Institute of Physics NASU, pr. Nauki 46, 03680 Kyiv (Ukraine); Sugakov, Volodymyr; Vertsimakha, Ganna [Institute for Nuclear Research NASU, pr. Nauki 47, 03680 Kyiv (Ukraine); Karczewski, Grzegorz [Institute of Physics PAS, Al. Lotnikow 32/46, PL-02-668 Warsaw (Poland)

    2017-05-15

    The photoluminescence (PL) from structures containing Cd{sub 0.95}Mn{sub 0.05}Te and CdTe quantum wells (QWs) separated by a narrow (1.94 nm) barrier was studied. The PL lines of comparable intensities from several possible exciton states were observed simultaneously at energy distances substantially exceeding kT. This means that the energy transfer in the studied systems is slower than the radiative recombination of the confined excitons. For the CdTe QW width of about 8.7-9 nm, indirect excitons with the electron and heavy hole chiefly localized in the CdTe and Cd{sub 1-x}Mn{sub x}Te QWs, respectively, were detected in the magnetic field. These indirect excitons have PL energy of about 10-20 meV above the PL line of the direct excitons in the CdTe QW. The observation of the PL from the indirect excitons which are not the lowest excitations in the structure is a distinctive feature of the system. Photoluminescence intensity dependence on the energy and the magnetic field. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Plasmon exciton-polariton lasing

    NARCIS (Netherlands)

    Ramezani, M.; Halpin, H.A.; Feist, J.; Fernández-Dominguez, A.; Rodriguez, S.R.K.; Garcia-Vidal, F.J.; Gomez-Rivas, J.

    2017-01-01

    Strong light-matter interaction leads to the appearance of new states, i.e. exciton-polaritons, with photophysical properties rather distinct from their constituents. Recent developments in fabrication techniques allow us to make metallic structures with strong electric field confinement in

  18. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  19. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  20. Self-trapped excitonic green emission from layered semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  1. Self-trapped excitonic green emission from layered semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-08-15

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  2. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  3. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  4. The nature of singlet excitons in oligoacene molecular crystals

    KAUST Repository

    Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Brédas, J. L.; Silbey, R. J.; Spano, F. C.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.

  5. Quantum condensation from a tailored exciton population in a microcavity

    International Nuclear Information System (INIS)

    Eastham, P. R.; Phillips, R. T.

    2009-01-01

    An experiment is proposed on the coherent quantum dynamics of a semiconductor microcavity containing quantum dots. Modeling the experiment using a generalized Dicke model, we show that a tailored excitation pulse can create an energy-dependent population of excitons, which subsequently evolves to a quantum condensate of excitons and photons. The population is created by a generalization of adiabatic rapid passage and then condenses due to a dynamical analog of the BCS instability.

  6. Self-localization of excitons in a periodically modulated molecular medium

    International Nuclear Information System (INIS)

    Zabolotskii, A. A.

    2006-01-01

    Electromagnetic field propagation is analyzed in a one-dimensional Bragg grating consisting of periodically arranged linear molecules making up a resonant medium. Dye J-aggregates and conjugated polymers are considered as examples of the medium. Both adiabatic and nonadiabatic dynamics of the acoustic waves generated by electromagnetic field in the system are examined. The effects of exciton-phonon and exciton-phonon-photon interactions on the band structure and formation of self-localized excitations are examined on various time scales. A new mechanism for controlling bandgap parameters in a bistable regime is described. Some effects of electromagnetic-field nonuniformity on generation of phonons in molecules and exciton self-localization are investigated

  7. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  8. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    Science.gov (United States)

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  9. Effect of interface disorder on quantum well excitons and microcavity polaritons

    International Nuclear Information System (INIS)

    Savona, Vincenzo

    2007-01-01

    The theory of the linear optical response of excitons in quantum wells and polaritons in planar semiconductor microcavities is reviewed, in the light of the existing experiments. For quantum well excitons, it is shown that disorder mainly affects the exciton centre-of-mass motion and is modelled by an effective Schroedinger equation in two dimensions. For polaritons, a unified model accounting for quantum well roughness and fluctuations of the microcavity thickness is developed. Numerical results confirm that polaritons are mostly affected by disorder acting on the photon component, thus confirming existing studies on the influence of exciton disorder. The polariton localization length is estimated to be in the few-micrometres range, depending on the amplitude of disorder, in agreement with recent experimental findings

  10. Multiple exciton generation in chiral carbon nanotubes: Density functional theory based computation

    Science.gov (United States)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilina, Svetlana; Kilin, Dmitri

    2017-10-01

    We use a Boltzmann transport equation (BE) to study time evolution of a photo-excited state in a nanoparticle including phonon-mediated exciton relaxation and the multiple exciton generation (MEG) processes, such as exciton-to-biexciton multiplication and biexciton-to-exciton recombination. BE collision integrals are computed using Kadanoff-Baym-Keldysh many-body perturbation theory based on density functional theory simulations, including exciton effects. We compute internal quantum efficiency (QE), which is the number of excitons generated from an absorbed photon in the course of the relaxation. We apply this approach to chiral single-wall carbon nanotubes (SWCNTs), such as (6,2) and (6,5). We predict efficient MEG in the (6,2) and (6,5) SWCNTs within the solar spectrum range starting at the 2Eg energy threshold and with QE reaching ˜1.6 at about 3Eg, where Eg is the electronic gap.

  11. Nonlinear spectroscopy of excitons and biexcitons in ZnS

    International Nuclear Information System (INIS)

    Pavlov, L.I.; Paskov, P.P.; Lalov, I.J.

    1989-01-01

    Four- photon spectroscopy on exciton and biexciton states in ZnS is reported at T = 10 K. The Nd:YAG laser is used as a fundamental source in the experimental setup. Second harmonic radiation ω 2 pumps the dye laser of ω 1 tunable frequency. The ZnS single crystal is placed in an optical cryostat for resonant spectroscopy at low temperature. Four-photon mixing ω 3 = 2ω 1 -ω 2 signal is separated by MDR-23 monochromator and is registered by a laser photometer. The hexagonal ZnS crystal is experimentally investigated when the waves ω 1 and ω 2 propagate colinear with the optical axis. The crystal is cut along the (1120) plane. The photon 2ℎω 1 energy scans over the range 3.895-3.940 eV. The dispersion of I 3 (ω 3 ) upon 2ℎω 1 is obtained. Three resonances are registered E M = 3.8964, E B 1 = 3.9010 and E B 2 = 3.9311 eV. The recorded low temperature resonance in dispersion of nonlinearity χ (3) are identified with B 1 s and B 2 s excitons as well as with biexciton in ZnS which is observed for the first time in this crystal. An experimental dependence of the signal I 3 (ω 3 ) intensity upon the pump I 1 (ω 1 ) is obtained. The E M resonance is saturated with the I 1 (ω 1 ) enhancement while the E B 1 resonance increases. Authors explain such a behaviour by the fact that the recombination probability of the biexcitons to excitons increases with the pump level growth. Estimations for the exciton density and the bounding energy are given. (author)

  12. Excitonic Effects in Methylammonium Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xihan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lu, Haipeng [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Ye [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  13. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  14. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    Science.gov (United States)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  15. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  16. Dark excitons in transition metal dichalcogenides

    Science.gov (United States)

    Malic, Ermin; Selig, Malte; Feierabend, Maja; Brem, Samuel; Christiansen, Dominik; Wendler, Florian; Knorr, Andreas; Berghäuser, Gunnar

    2018-01-01

    Monolayer transition metal dichalcogenides (TMDs) exhibit a remarkably strong Coulomb interaction that manifests in tightly bound excitons. Due to the complex electronic band structure exhibiting several spin-split valleys in the conduction and valence band, dark excitonic states can be formed. They are inaccessibly by light due to the required spin-flip and/or momentum transfer. The relative position of these dark states with respect to the optically accessible bright excitons has a crucial impact on the emission efficiency of these materials and thus on their technological potential. Based on the solution of the Wannier equation, we present the excitonic landscape of the most studied TMD materials including the spectral position of momentum- and spin-forbidden excitonic states. We show that the knowledge of the electronic dispersion does not allow to conclude about the nature of the material's band gap since excitonic effects can give rise to significant changes. Furthermore, we reveal that an exponentially reduced photoluminescence yield does not necessarily reflect a transition from a direct to a nondirect gap material, but can be ascribed in most cases to a change of the relative spectral distance between bright and dark excitonic states.

  17. Nuclear physics from strong coupling QCD

    CERN Document Server

    Fromm, Michael

    2009-01-01

    The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

  18. Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

    KAUST Repository

    Guldin, S.

    2011-09-20

    One way to successfully enhance light harvesting of excitonic solar cells is the integration of optical elements that increase the photon path length in the light absorbing layer. Device architectures which incorporate structural order in form of one- or three-dimensional refractive index lattices can lead to the localization of light in specific parts of the spectrum, while retaining the cell\\'s transparency in others. Herein, we present two routes for the integration of photonic crystals (PCs) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block copolymers, resulting in a double layer dye-sensitized solar cell with increased light absorption from the 3D PC element. An alternative route is based on the fact that the refractive index of the mesoporous layer can be finely tuned by the interplay between block copolymer self-assembly and hydrolytic TiO2 sol-gel chemistry. Alternating deposition of high and low refractive index layers enables the integration of a 1D PC into a DSC.

  19. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...... times slower in the lateral direction between aggregates. Exciton hopping between aggregates is found to show a subtle dependence on interchain coupling, aggregate size, and Boltzmann statistics. Additionally, a clear correlation is observed between the effective exciton diffusion coefficient...

  20. Anatomy of an Exciton : Vibrational Distortion and Exciton Coherence in H- and J-Aggregates

    NARCIS (Netherlands)

    Tempelaar, Roel; Stradomska, Anna; Knoester, Jasper; Spano, Frank C.

    2013-01-01

    In organic materials, coupling of electronic excitations to vibrational degrees of freedom results in polaronic excited states. Through numerical calculations, we demonstrate that the vibrational distortion field accompanying such a polaron scales as the product of the excitonic interaction field

  1. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  2. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  3. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  4. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    OpenAIRE

    Bawendi M.G.; Strasfeld D.; Roitblat A.; Sachs H.; Gdor I.; Ruhman S.

    2013-01-01

    Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times tha...

  5. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  6. Exciton fission in monolayer transition metal dichalcogenide semiconductors.

    Science.gov (United States)

    Steinhoff, A; Florian, M; Rösner, M; Schönhoff, G; Wehling, T O; Jahnke, F

    2017-10-27

    When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory, we show that the thermodynamic fission-fusion balance of excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as well as charge carrier doping. We propose the observation of these effects by studying exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-state counterparts of high-energy collider experiments on the induced fission of composite particles.

  7. Theory of Excitonic Delocalization for Robust Vibronic Dynamics in LH2.

    Science.gov (United States)

    Caycedo-Soler, Felipe; Lim, James; Oviedo-Casado, Santiago; van Hulst, Niek F; Huelga, Susana F; Plenio, Martin B

    2018-06-11

    Nonlinear spectroscopy has revealed long-lasting oscillations in the optical response of a variety of photosynthetic complexes. Different theoretical models that involve the coherent coupling of electronic (excitonic) or electronic-vibrational (vibronic) degrees of freedom have been put forward to explain these observations. The ensuing debate concerning the relevance of either mechanism may have obscured their complementarity. To illustrate this balance, we quantify how the excitonic delocalization in the LH2 unit of Rhodopseudomonas acidophila purple bacterium leads to correlations of excitonic energy fluctuations, relevant coherent vibronic coupling, and importantly, a decrease in the excitonic dephasing rates. Combining these effects, we identify a feasible origin for the long-lasting oscillations observed in fluorescent traces from time-delayed two-pulse single-molecule experiments performed on this photosynthetic complex and use this approach to discuss the role of this complementarity in other photosynthetic systems.

  8. Center vortices at strong couplings and all couplings

    International Nuclear Information System (INIS)

    Greensite, J.

    2001-01-01

    Motivations for the center vortex theory of confinement are discussed. In particular, it is noted that the abelian dual Meissner effect, which is the signature of dual superconductivity, cannot adequately describe the confining force at large distance scales. A long-range effective action is derived from strong-coupling lattice gauge theory in D=3 dimensions, and it is shown that center vortices emerge as the stable saddlepoints of this action. Thus, in the case of strong couplings, the vortex picture is arrived at analytically. I also respond briefly to a recent criticism regarding maximal center gauge. (author)

  9. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  10. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  11. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...

  12. Coupling of a single active nanoparticle to a polymer-based photonic structure

    Directory of Open Access Journals (Sweden)

    Dam Thuy Trang Nguyen

    2016-03-01

    Full Text Available The engineered coupling between a guest moiety (molecule, nanoparticle and the host photonic nanostructure may provide a great enhancement of the guest optical response, leading to many attractive applications. In this article, we describe briefly the basic concept and some recent progress considering the coupling of a single nanoparticle into a photonic structure. Different kinds of nanoparticles of great interest including quantum dots and nitrogen-vacancy centers in nanodiamond for single photon source, nonlinear nanoparticles for efficient nonlinear effect and sensors, magnetic nanoparticles for Kerr magneto-optical effect, and plasmonic nanoparticles for ultrafast optical switching and sensors, are briefly reviewed. We focus further on the coupling of plasmonic gold nanoparticles and polymeric photonic structures by optimizing theoretically the photonic structures and developing efficient way to realize desired hybrid structures. The simple and low-cost fabrication technique, the optical enhancement of the fluorescent nanoparticles induced by the photonic structure, as well as the limitations, challenges and appealing prospects are discussed in details.

  13. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    Science.gov (United States)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  14. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs

    Science.gov (United States)

    Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo

    2017-09-01

    We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.

  15. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Makarov, Nikolay S; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, István; Klimov, Victor I

    2016-04-13

    Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton-exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger

  16. Picosecond dynamics of internal exciton transitions in CdSe nanorods

    DEFF Research Database (Denmark)

    Cooke, D. G.; Jepsen, Peter Uhd; Lek, Jun Yan

    2013-01-01

    . The onset of exciton-LO phonon coupling appears as a bleach in the optical conductivity spectra at the LO phonon energy for times > 1 ps after excitation. Simulations show a suppressed exciton temperature due to thermally excited hole states being rapidly captured onto ligands or unpassivated surface states...

  17. Excitonic dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.

    1998-01-01

    The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....

  18. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    Science.gov (United States)

    Gdor, I.; Sachs, H.; Roitblat, A.; Strasfeld, D.; Bawendi, M. G.; Ruhman, S.

    2013-03-01

    Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times that of the band gap.

  19. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    Directory of Open Access Journals (Sweden)

    Bawendi M.G.

    2013-03-01

    Full Text Available Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times that of the band gap.

  20. Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2017-08-01

    The size- and dimensionality-dependence of excitonic effects and related properties in semiconductor nanostructures are theoretically studied in detail within the effective-mass approximation. When nanostructure sizes become smaller than the bulk exciton Bohr radius, excitonic effects are significantly enhanced with reducing size or dimensionality. This is as a result of quantum confinement in more directions leading to larger exciton binding energies and normalized exciton oscillator strengths. These excitonic effects originate from electron-hole Coulombic interactions, which strongly enhance the oscillator strength between the electron and hole. It is also established that the universal scaling of exciton binding energy versus the inverse of the exciton Bohr radius follows a linear scaling law. Herein, we propose a stretched exponential law for the size scaling of optical gap, which is in good agreement with the calculated data. Due to differences in the confinement dimensionality, the radiative lifetime of low-dimensional excitons becomes shorter than that of bulk excitons. The size dependence of the exciton radiative lifetimes is in good agreement with available experimental data. This strongly enhanced electron-hole exchange interaction is expected in low-dimensional structures due to enriched excitonic effects. The main difference in nanostructures compared to the bulk can be interpreted in terms of the enhanced excitonic effects induced by exciton localization. The enhanced excitonic effects are expected to be of importance in developing stable and high-efficiency nanoscale excitonic optoelectronic devices.

  1. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  2. Bistable Topological Insulator with Exciton-Polaritons

    Science.gov (United States)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2017-12-01

    The functionality of many nonlinear and quantum optical devices relies on the effect of optical bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we report the resonance response and bistability of topological edge states. A balance between the pump, loss, and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of the propagation direction of the dominant edge state. Our results facilitate the development of practical applications of topological photonics.

  3. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  4. Optique quantique dans les microcavités semi-conductrices

    Science.gov (United States)

    Giacobino, Elisabeth; Karr, Jean-Philippe; Messin, Gaëtan; Eleuch, Hichem; Baas, Augustin

    Investigations of quantum effects in semiconductor quantum-well microcavities interacting with laser light in the strong-coupling regime are presented. Modifications of quantum fluctuations of the outgoing light are expected due to the non-linearity originating from coherent exciton-exciton scattering. In the strong-coupling regime, this scattering translates into a four-wave mixing interaction between the mixed exciton-photon states, the polaritons. Squeezing and giant amplification of the polariton field and of the outgoing light field fluctuations are predicted. However, polariton-phonon scattering is shown to yield excess noise in the output field, which may destroy the non-classical effects. Experiments demonstrate evidence for giant amplification due to coherent four-wave mixing of polaritons. Noise reduction below the thermal noise level was also observed. To cite this article: E. Giacobino et al., C. R. Physique 3 (2002) 41-52

  5. Coherent Vortices in Strongly Coupled Liquids

    International Nuclear Information System (INIS)

    Ashwin, J.; Ganesh, R.

    2011-01-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  6. Coherent Vortices in Strongly Coupled Liquids

    Science.gov (United States)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  7. Femtosecond dynamics of excitons in π-conjugated oligomers: the role of intrachain two-exciton states in the formation of interchain species

    Science.gov (United States)

    Klimov, Victor I.; McBranch, Duncan W.; Barashkov, Nikolay N.; Ferraris, John P.

    1997-10-01

    We report femtosecond transient absorption results for solutions and thin films of a substituted oligomer of poly(para-phenylene vinylene) performed over wide spectral and pump-intensity ranges. Solutions and films exhibit a photoinduced absorption (PA) band with dynamics matching those of the stimulated emission, demonstrating unambiguously that these features originate from intrachain singlet excitons. Thin films exhibit an additional short-wavelength PA band with pump-independent dynamics, indicating the formation of non-emissive interchain excitons. Correlations in the dynamics of the two PA features, as well as the intensity-dependence, provide strong evidence that the formation of interchain excitons is mediated by intrachain two-exciton states.

  8. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves...

  9. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    Science.gov (United States)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  10. Competing role of Interactions in Synchronization of Exciton-Polariton condensates

    Science.gov (United States)

    Khan, Saeed; Tureci, Hakan E.

    We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled traps. Our analysis is based on an expansion in non-Hermitian modes that take into account the trapping potential and the pump-induced complex-valued potential. We find that polariton-polariton and reservoir-polariton interactions play competing roles in the emergence of a synchronized phase as pumping power is increased, leading to qualitatively different synchronized phases. Crucially, these interactions can also act against each other to hinder synchronization. We present a phase diagram and explain the general characteristics of these phases using a generalized Adler equation. Our work sheds light on dynamics strongly influenced by competing interactions particular to incoherently pumped exciton-polariton condensates, which can lead to interesting features in recently engineered polariton lattices. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  11. Magnetic-field-dependent optical properties and interdot correlations in coupled quantum dots

    International Nuclear Information System (INIS)

    Bellucci, Devis; Troiani, Filippo; Goldoni, Guido; Molinari, Elisa

    2005-01-01

    We theoretically investigate the properties of neutral and charged excitons in vertically coupled quantum dots, as a function of the in-plane magnetic field. The single-particle states are computed by numerically solving the 3D effective-mass equation, while the neutral- and charged-exciton states are obtained by means of a configuration interaction approach. We show that the field determines an enhancement of the interdot correlations, resulting in unexpected carrier localization. The field effect on the excitonic binding energies is also discussed, and is shown to strongly depend on the charging

  12. Theoretical treatment of the processes involving the dipole transitions to the lowest exciton states in hexagonal semiconductors

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The treatment of the two-photon transitions to the An=1 exciton level and the resonant Raman scattering of light by LO-phonons is given for the hexagonal semiconductors A2B6, taking into account the influence of the complex top valence band and anisotropy of the exciton effective mass.

  13. Higher-order amplitude squeezing of photons propagating through a semiconductor

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    Photon amplitude K th power squeezing is studied when the coherent photon propagates through a semiconductor containing the exciton. If the exciton is prepared initially in a coherent state, the photon may become amplitude K th power squeezed. It is shown that, in the short-time limit, the photon squeezing in the P direction does not appear at all while that in the X direction is possible for all the amplitude power K. In the latter case, the amount of squeezing is larger for higher power K. Dependences on all the system parameters as well as on the output light detection moment are investigated in detail. (author). 14 refs, 8 figs

  14. Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo

    Science.gov (United States)

    Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.; Massey, Sara C.; Ting, Po-Chieh; Martin, Elizabeth C.; Hunter, C. Neil; Engel, Gregory S.

    2017-10-01

    In photosynthetic organisms, the pigment-protein complexes that comprise the light-harvesting antenna exhibit complex electronic structures and ultrafast dynamics due to the coupling among the chromophores. Here, we present absorptive two-dimensional (2D) electronic spectra from living cultures of the purple bacterium, Rhodobacter sphaeroides, acquired using gradient assisted photon echo spectroscopy. Diagonal slices through the 2D lineshape of the LH1 stimulated emission/ground state bleach feature reveal a resolvable higher energy population within the B875 manifold. The waiting time evolution of diagonal, horizontal, and vertical slices through the 2D lineshape shows a sub-100 fs intra-complex relaxation as this higher energy population red shifts. The absorption (855 nm) of this higher lying sub-population of B875 before it has red shifted optimizes spectral overlap between the LH1 B875 band and the B850 band of LH2. Access to an energetically broad distribution of excitonic states within B875 offers a mechanism for efficient energy transfer from LH2 to LH1 during photosynthesis while limiting back transfer. Two-dimensional lineshapes reveal a rapid decay in the ground-state bleach/stimulated emission of B875. This signal, identified as a decrease in the dipole strength of a strong transition in LH1 on the red side of the B875 band, is assigned to the rapid localization of an initially delocalized exciton state, a dephasing process that frustrates back transfer from LH1 to LH2.

  15. Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters

    Science.gov (United States)

    Liao, Zeyang; Nha, Hyunchul; Zubairy, M. Suhail

    2016-11-01

    We develop a general dynamical theory for studying a single-photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or nonidentical. In this theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single-photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literature, can significantly modify the dynamics of the emitter system as well as the characteristics of the output field if the emitter separation is much smaller than the resonance wavelength. Nonidentical emitters can also strongly couple to each other if their energy difference is less than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but nonzero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switches and ultranarrow single-photon frequency comb generator.

  16. New method for control over exciton states in quantum wells

    International Nuclear Information System (INIS)

    Maslov, A Yu; Proshina, O V

    2010-01-01

    The theoretical study of the exciton states in the quantum well is performed with regard to the distinctions of the dielectric properties of quantum well and barrier materials. The strong exciton-phonon interaction is shown to be possible in materials with high ionicity. This leads to the essential modification of the exciton states. The relationship between the exciton binding energy, along with oscillator strength and the barrier material dielectric properties is found. This suggests the feasibility of the exciton spectrum parameter control by the choice of the barrier material. It is shown that such exciton spectrum engineering also is possible in the quantum wells based on the materials with low ionicity. The reason is the dielectric confinement effect in the quantum wells.

  17. Exciton behavior in GaAs/AlGaAs coupled double quantum wells with interface disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, E.M., E-mail: eldermantovani@yahoo.com.b [Departamento de Fisica, Universidade Estadual de Londrina, CP 6001, CEP 86051-970 Londrina, Parana (Brazil); Duarte, J.L.; Pocas, L.C.; Dias, I.F.L.; Laureto, E. [Departamento de Fisica, Universidade Estadual de Londrina, CP 6001, CEP 86051-970 Londrina, Parana (Brazil); Quivy, A.A.; Lamas, T.E. [Laboratorio de Novos Materiais Semicondutores, Instituto de Fisica, Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)

    2010-03-15

    In this work, we present a detailed study on the optical properties of two GaAs/Al{sub 0.35}Ga{sub 0.65}As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e{sub 1}-hh{sub 1} transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed.

  18. Site-controlled quantum dots coupled to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Rigal, B.; de Lasson, Jakob Rosenkrantz; Jarlov, C.

    2016-01-01

    We demonstrate selective optical coupling of multiple, site controlled semiconductor quantum dots (QDs) to photonic crystal waveguide structures. The impact of the exact position and emission spectrum of the QDs on the coupling efficiency is elucidated. The influence of optical disorder and end-r...

  19. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  20. Light exiting from real photonic band gap crystals is diffuse and strongly directional

    NARCIS (Netherlands)

    Koenderink, A.F.; Vos, Willem L.

    2003-01-01

    Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency:

  1. Observation of squeezed states with strong photon-number oscillations

    International Nuclear Information System (INIS)

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-01

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  2. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  3. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    Science.gov (United States)

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  4. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  5. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, S., E-mail: brazov@lptms.u-psud.fr [Université Paris-Saclay, LPTMS, CNRS, Univ. Paris-sud (France); Kirova, N. [Université Paris-Saclay, LPS, CNRS, Univ. Paris-sud (France)

    2016-03-15

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  6. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  7. Qubit absorption refrigerator at strong coupling

    Science.gov (United States)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  8. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio

    Science.gov (United States)

    Jaroszewicz, Leszek R.; Stasiewicz, Karol A.; Marć, Paweł; Szymański, Michał

    2010-09-01

    In the paper a new broadband photonic crystal fiber coupler is presented. The proper application of the biconical taper technology has been used for manufacturing the coupler without air holes collapse in LMA10 fiber (NKT Photonics Crystal). This coupler, operates in the weakly coupling condition, protects coupling operation in range from 900 nm to 1700 nm. The coupling ratio between output arms is depending on wavelength and can be tuning by selection the proper input state of polarization. It gives opportunity to use the broadband crystal fiber coupler in many applications in which it is necessary to tune a coupling between output arms during the measurement.

  9. Nonlinearity of the refractive index due to an excitonic molecule resonance state in CdS

    International Nuclear Information System (INIS)

    Baumert, R.; Broser, I.; Buschick, K.

    1986-01-01

    The authors report the observation of an intensity-dependent refractive-index nonlinearity in CdS due to a resonance state where an excitonic molecule is created by induced absorption of light. The refractive index n as a function of the incident laser photon energy E is measured directly by light refraction in thin crystal prisms. A renormalized dielectric function describes the measured n(E) spectra well. This strong refractive-index nonlinearity is well suited to produce an optical bistability and to further strengthen the evidence of CdS to be an important material for laser-induced dynamic gratings

  10. Excitons in van der Waals heterostructures

    DEFF Research Database (Denmark)

    Latini, Simone; Olsen, Thomas; Thygesen, Kristian Sommer

    2015-01-01

    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions, a systematic investigation of the role of screening on two......-dimensional (2D) excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model, which assumes a dielectric function of the form epsilon(q) = 1 + 2 pi alpha q, and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons...... exciton binding energies in both isolated and supported 2D materials. For isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model, and both are in good agreement with ab initio many-body calculations. On the other hand, for more complex structures...

  11. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  12. The confinement effect in spherical inhomogeneous quantum dots and stability of excitons

    Directory of Open Access Journals (Sweden)

    F. Benhaddou

    2017-06-01

    Full Text Available We investigate in this work the quantum confinement effect of exciton in spherical inhomogeneous quantum dots IQDs. The spherical core is enveloped by two shells. The inner shell is a semiconductor characterized by a small band-gap. The core and the outer shell are the same semiconductor characterized by a large band-gap. So there is a significant gap-offset creating a deep potential well where the excitons are localized and strongly confined. We have adopted the Ritz variational method to calculate numerically the excitonic ground state energy and its binding energy in the strong, moderate and low confinement regimes. The results show that the Ritz variational method is in good agreement with the perturbation method in strong confinement. There is a double confinement effect and dual control. The calculation checks the effective Rydberg R* at the asymptotic limit of bulk semiconductor when the thickness takes very large values. The excitonic binding energy increases, Thus giving the excitons a high stability even at ambient temperature. These nanosystems are promising in several applications: lighting, detection, biological labeling and quantum computing.

  13. Ultrastrong Coupling Few-Photon Scattering Theory

    Science.gov (United States)

    Shi, Tao; Chang, Yue; García-Ripoll, Juan José

    2018-04-01

    We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.

  14. Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers

    Science.gov (United States)

    Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.

    2009-03-01

    Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.

  15. Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; Maier, Sebastian; McCutcheon, Dara

    2015-01-01

    -controlled semiconductor quantum dot to an external resonant laser field. For strong continuous-wave driving we observe the characteristic Mollow triplet and analyze the Rabi splitting and sideband widths as a function of driving strength and temperature. The sideband widths increase linearly with temperature...... and the square of the driving strength, which we explain via coupling of the exciton to longitudinal acoustic phonons. We also find an increase of the Rabi splitting with temperature, which indicates a temperature induced delocalization of the excitonic wave function resulting in an increase of the oscillator...... strength. Finally, we demonstrate coherent control of the exciton excited state population via pulsed resonant excitation and observe a damping of the Rabi oscillations with increasing pulse area, which is consistent with our exciton-photon coupling model. We believe that our work outlines the possibility...

  16. Optical properties of semiconductors quantum microcavity structures

    International Nuclear Information System (INIS)

    Afshar, A.M.

    1996-12-01

    The principal phenomenon investigated in this thesis is vacuum Rabi coupling in semiconductor microcavity structures. In these structures quantum well excitons are embedded in a Fabry - Perot like cavity, defined by two semiconductor dielectric mirrors. In such a system the coupled exciton and cavity photon mode form a mixed - mode polariton, where on - resonance there are two branches, each having 50% exciton and 50% photon character. The separation between the upper and lower branches is a measure of the coupling strength where the strength is dependent on the exciton oscillator strength. This interaction is known as vacuum Rabi coupling, and clear anticrossing is seen when the exciton is tuned through the cavity. In our reflectivity experiments we demonstrate control of the coupling between the cavity mode and the exciton by varying temperature, applied electric or magnetic field. Modelling of the reflectivity spectra and the tuning was done using a Transfer Matrix Reflectivity (TMR) model or a linear dispersion model, where in both cases the excitons are treated as Lorentz oscillators. Temperature tuning is achieved because exciton energy decreases with temperature at a much faster rate than the cavity mode. We have demonstrated vacuum Rabi coupling of the cavity mode with both the heavy - hole and light - hole excitons. Electric field tuning is achieved via the quantum confined Stark effect which decreases the exciton energy with increasing field, whilst at the same time the cavity mode energy remains constant. A study of how the electric field reduction of exciton oscillator strength reduces the vacuum Rabi coupling strength is performed. We report the first observation in a semiconductor structure of motional narrowing, seen in both electric field and in temperature tuning experiments at high magnetic field. In magnetic field studies we show how magnetic field induced increase in exciton oscillator strength affects the vacuum Rabi coupling. We also show by

  17. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  18. Strong coupling of collection of emitters on hyperbolic meta-material

    Science.gov (United States)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  19. Double shadow of a regular phantom black hole as photons couple to the Weyl tensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yang; Chen, Songbai; Jing, Jiliang [Hunan Normal University, Institute of Physics and Department of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)

    2016-11-15

    We have studied the shadow of a regular phantom black hole as photons couple to the Weyl tensor. We find that due to the coupling photons with different polarization directions propagate along different paths in the spacetime so that there exists a double shadow for a black hole, which is quite different from that in the non-coupling case where only a single shadow emerges. The overlap region of the double shadow, the umbra, of the black hole increases with the phantom charge and decreases with the coupling strength. The dependence of the penumbra on the phantom charge and the coupling strength is converse to that of the umbra. Combining with the supermassive central object in our Galaxy, we estimated the shadow of the black hole as the photons couple to the Weyl tensor. Our results show that the coupling brings about richer behaviors of the propagation of coupled photon and the shadow of the black hole in the regular phantom black hole spacetime. (orig.)

  20. On the equivalence of two approaches in the exciton-polariton theory

    International Nuclear Information System (INIS)

    Ha Vinh Tan; Nguyen Toan Thang

    1983-02-01

    The polariton effect in the optical processes involving photons with energies near that of an exciton is investigated by the Bogolubov diagonalization and the Green function approaches in a simple model of the direct band gap semiconductor with the electrical dipole allowed transition. To take into account the non-resonant terms of the interaction Hamiltonian of the photon-exciton system the Green function approach derived by Nguyen Van Hieu is presented with the use of Green's function matrix technique analogous to that suggested by Nambu in the theory of superconductivity. It is shown that with the suitable choice of the phase factors the renormalization constants are equal to the diagonalization coefficients. The disperson of polaritons and the matrix elements of processes with the participation of polaritons are identically calculated by both methods. However the Green function approach has an advantage in including the damping effect of polaritons. (author)

  1. Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria.

    Science.gov (United States)

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2009-08-27

    We applied two-photon fluorescence excitation spectroscopy to LH2 complex from purple bacteria Allochromatium minutissimum and Rhodobacter sphaeroides . Bacteriochlorophyll fluorescence was measured under two-photon excitation of the samples within the 1200-1500 nm region. Spectra were obtained for both carotenoid-containing and -depleted complexes of each bacterium to allow their direct comparison. The depletion of carotenoids did not alter the two-photon excitation spectra of either bacteria. The spectra featured a wide excitation band around 1350 nm (2x675 nm, 14,800 cm(-1)) which strongly resembled two-photon fluorescence excitation spectra of similar complexes published by other authors. We consider obtained experimental data to be evidence of direct two-photon excitation of bacteriochlorophyll excitonic states in this spectral region.

  2. Excitons in insulators

    International Nuclear Information System (INIS)

    Grasser, R.; Scharmann, A.

    1983-01-01

    This chapter investigates absorption, reflectivity, and intrinsic luminescence spectra of free and/or self-trapped (localized) excitons in alkali halides and rare gas solids. Introduces the concepts underlying the Wannier-Mott and Frenkel exciton models, two extreme pictures of an exciton in crystalline materials. Discusses the theoretical and experimental background; excitons in alkali halides; and excitons in rare gas solids. Shows that the intrinsic optical behavior of wide gap insulators in the range of the fundamental absorption edge is controlled by modified Wannier-Mott excitons. Finds that while that alkali halides only show free and relaxed molecular-like exciton emission, in rare gas crystals luminescence due to free, single and double centered localized excitons is observed. Indicates that the simultaneous existence of free and self-trapped excitons in these solid requires an energy barrier for self-trapping

  3. Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Siping [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053 (China); Yu, Rong, E-mail: rong-yu2013@163.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Jiahua, E-mail: huajia-li@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Wu, Ying [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-12-28

    We explore the entanglement generation and the corresponding dynamics between two separate nitrogen-vacancy (NV) centers in diamond nanocrystal coupled to a photonic molecule consisting of a pair of coupled photonic crystal (PC) cavities. By calculating the entanglement concurrence with readily available experimental parameters, it is found that the entanglement degree strongly depends on the cavity-cavity hopping strength and the NV-center-cavity detuning. High concurrence peak and long-lived entanglement plateau can be achieved by properly adjusting practical system parameters. Meanwhile, we also discuss the influence of the coupling strength between the NV centers and the cavity modes on the behavior of the concurrence. Such a PC-NV system can be employed for quantum entanglement generation and represents a building block for an integrated nanophotonic network in a solid-state cavity quantum electrodynamics platform. In addition, the present theory can also be applied to other similar systems, such as two single quantum emitters positioned close to a microtoroidal resonator with the whispering-gallery-mode fields propagating inside the resonator.

  4. 2D optical photon echo spectroscopy of a self-assembled quantum dot

    International Nuclear Information System (INIS)

    Fingerhut, Benjamin P.; Mukamel, Shaul; Richter, Marten; Luo, Jun-Wei; Zunger, Alex

    2013-01-01

    Simulations of two dimensional coherent photon echo (2D-PE) spectra of self-assembled InAs/GaAs quantum dots (QD) in different charged states are presented revealing the coupling between the individual mono-exciton X q transitions and contributions of bi-excitons XX q . The information about the XX q states is crucial for various application scenarios of QDs, like e.g. highly efficient solar cells. The simulations rely on a microscopic description of the electronic structure by high-level atomistic many-body pseudopotential calculations. It is shown that asymmetric diagonal peak shapes and double cross-peaks are the result of XX q state contributions to the PE signal by analyzing the contributions of the individual pathways excited state emission, ground state bleach and excited state absorption. The results show that from the detuned X q and XX q contributions the bi-exciton binding energies of the XX q manifold are revealed in 2D-PE signals. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  6. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  7. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  8. Polariton condensation with localized excitons and propagating photons

    International Nuclear Information System (INIS)

    Keeling, Jonathan; Eastham, P.R.; Szymanska, M.H.; Littlewood, P.B.

    2004-01-01

    We estimate the condensation temperature for microcavity polaritons, allowing for their internal structure. We consider polaritons formed from localized excitons in a planar microcavity, using a generalized Dicke model. At low densities, we find a condensation temperature T c ∝ρ, as expected for a gas of structureless polaritons. However, as T c becomes of the order of the Rabi splitting, the structure of the polaritons becomes relevant, and the condensation temperature is that of a BCS-like mean-field theory. We also calculate the excitation spectrum, which is related to observable quantities such as the luminescence and absorption spectra

  9. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    Science.gov (United States)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness pentacene despite having a reasonably thick rubrene interlayer, that too with higher triplet energy (T1=1.12 eV) than pentacene (T1= 0.86 eV), makes its operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  10. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.

    Science.gov (United States)

    You, Lixing; Wu, Junjie; Xu, Yingxin; Hou, Xintong; Fang, Wei; Li, Hao; Zhang, Weijun; Zhang, Lu; Liu, Xiaoyu; Tong, Limin; Wang, Zhen; Xie, Xiaoming

    2017-12-11

    High-performance superconducting nanowire single-photon detectors (SNSPDs) have facilitated numerous experiments and applications, particularly in the fields of modern quantum optics and quantum communication. Two kinds of optical coupling methods have thus far been developed for SNSPDs: one produces standard fiber-coupled SNSPDs in which the fibers vertically illuminate the meandered nanowires; the other produces waveguide-coupled SNSPDs in which nanowires are fabricated on the surface of a waveguide that guides photons, and the fibers are coupled to the waveguide. In this paper, we report on first experimental demonstration of a new type of SNSPD that is coupled with a microfiber (MF). Photons are guided by the MF and are evanescently absorbed by the nanowires of the SNSPD when the MF is placed on top of superconducting NbN nanowires. Room-temperature optical experiments indicated that this device has a coupling efficiency of up to 90% when a 1.3 μm-diameter MF is used for light with wavelength of 1550 nm. We were also able to demonstrate that our MF-coupled detector achieved system detection efficiencies of 50% and 20% at incident wavelengths of 1064 and 1550 nm, respectively, for a 2 μm-diameter MF at 2.2K. We expect that MF-coupled SNSPDs may show both high efficiency and broadband characteristics upon optimization and will be used for various novel applications, such as micro/nano-fiber optics.

  11. Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Andrey A. Chernyuk

    2006-02-01

    Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.

  12. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    Science.gov (United States)

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B.

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate 6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  13. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    Science.gov (United States)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  14. Excitonic condensation of strongly correlated electrons: the case of Pr.sub.0.5./sub. Ca.sub.0.5./sub. CoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 90, č. 23 (2014), "235112-1"-"235112-5" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * strongly correlated electrons * cobaltites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  15. Nonlinear spectroscopy of the bound exciton states in CdSe single crystals

    International Nuclear Information System (INIS)

    Lisitsa, M.P.; Onishchenko, N.A.; Stolyarenko, A.V.; Ananchenko, V.V.; Polishchuk, S.V.

    1989-01-01

    The study is devoted to the pulsed laser radiation effect on the time-resolved variations of free and bound exciton bands region at the helium temperature. A gradual disappearance of the bound I 2 exciton state is observed with increase of the excitation intensity I in CdSe transmission spectra. This phenomenon is explained by the fact that despite of the shorter life of I 2 excitons as compared to the free ones, the concentration of the centres on which they localize is rather low (≤10 16 cm -3 ) while the evolution of the light-generated electron-hole pairs is such as the most probable recombination through the bound excitons. The transmission spectrum kinetics is studied. The intensity limitation of the laser pulse transmitted through the crystal in the region of the exciton ground state region is shown to be related with two-photon absorption (TPA) in which the exciton state is an intermediate level. The calculation results are in good agreement with the experiment. The estimations show the giant TPA coefficient of ∼10 3 cm/MW. The evolution of photoexcited nonequilibrium electron-hole pairs is studied. The possibility of using CdSe single crystals as spectrum-selective limiters of the laser pulses is shown. (author)

  16. Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Lee A. [Center; Sykes, Matthew E. [Center; Wu, Yimin A. [Center; Schaller, Richard D. [Center; Department; Wiederrecht, Gary P. [Center; Fry, H. Christopher [Center

    2017-08-29

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  17. Energy spectra from coupled electron-photon slowing down

    International Nuclear Information System (INIS)

    Beck, H.L.

    1976-08-01

    A coupled electron-photon slowing down calculation for determining electron and photon track length in uniform homogeneous media is described. The method also provides fluxes for uniformly distributed isotropic sources. Source energies ranging from 10 keV to over 10 GeV are allowed and all major interactions are treated. The calculational technique and related cross sections are described in detail and sample calculations are discussed. A listing of the Fortran IV computer code used for the calculations is also included. 4 tables, 7 figures, 16 references

  18. Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher

    1998-01-01

    The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...

  19. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  20. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    International Nuclear Information System (INIS)

    Freiberg, Arvi; Raetsep, Margus; Timpmann, Kou; Trinkunas, Gediminas

    2009-01-01

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q y electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes

  1. Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: A wavelength-dependent selective spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)], E-mail: arvi.freiberg@ut.ee; Raetsep, Margus; Timpmann, Kou [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Trinkunas, Gediminas [Insitute of Physics, Savanoriu pr. 231, LT-02300 Vilnius (Lithuania)

    2009-02-23

    Spectral characteristics of the optically excited states in the ring-shaped quasi-one-dimensional aggregates comprising 18 and 32 tightly coupled bacteriochlorophyll a molecules have been investigated using selective spectroscopy methods and theoretical modelling of the data. Distinguished by the lowest electronic transition energies in the LH2 and LH1 antenna complexes these aggregates govern the functionally important ultrafast funneling of solar excitation energy in the photosynthetic membranes of purple bacteria. It was found by using a sophisticated differential fluorescence line narrowing method that exciton-phonon coupling in terms of the dimensionless Huang-Rhys factor is strong in these systems, justifying an excitonic polaron theoretical approach for the data analysis. Although we reached this qualitative conclusion already previously, in this work essential dependence of the exciton-phonon coupling strength and reorganization energy on excitation wavelength as well as on excitation light fluence has been established. We then show that these results corroborate with the properties of excitonic polarons in diagonally disordered ensembles of the aggregates. Furthermore, the weighted density of states of the phonon modes, which is an important characteristic of dynamical systems interacting with their surroundings, was derived. Its shape, being similar for all studied circular aggregates, deviates significantly from a reference profile describing local response of a protein to the Q{sub y} electronic transition in a single bacteriochlorophyll a molecule. Similarities of the data for regular and B800 deficient mutant LH2 complexes indicate that the B800 pigments have no direct influence on the electronic states of the B850 aggregate system. Consistent set of model parameters was determined, unambiguously implying that excitonic polarons, rather than bare excitons are proper lowest-energy optical excitations in the LH1 and LH2 antenna complexes.

  2. ZZ ENDLIB, Coupled Electron and Photon Transport Library in ENDL Format

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The LLNL Evaluated Nuclear Data Library has existed since 1958 in a succession of forms and formats. The present form is as a machine-independent character file format and contains data for the evaluated atomic relaxation data library (EADL), the evaluated photon interaction data library (EPDL), and the evaluated electron interaction data library (EEDL). The purpose of these libraries is to furnish data for coupled electron-photon transport calculations. In order to perform coupled photon-electron transport calculations, all three libraries are required. The UCRL-ID-117796 report included in the documentation for this package provides information on the contents and formats for all three libraries, which are included in this package. All of these libraries span atomic numbers, Z, from 1 to 100. Additionally the electron and photon interaction libraries cover the incident particle energy range from 10 eV to 100 GeV

  3. Excitons in InP/InAs inhomogeneous quantum dots

    International Nuclear Information System (INIS)

    Assaid, E; Feddi, E; Khamkhami, J El; Dujardin, F

    2003-01-01

    Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a crit and a 2D , for which important changes of the exciton binding occur. The former critical value, a crit , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a 2D , corresponds to a maximum of the exciton binding energy and to the most pronounced bidimensional character of the exciton

  4. Top quark electric dipole and Z gamma gamma couplings at a photon collider

    CERN Document Server

    Poulose, P

    2001-01-01

    Effect of the top quark electric dipole coupling and the Z gamma gamma coupling is studied in the pair production of top quark at a photon collider using CP-violating asymmetries. Our results show that with a photon collider of geometrical luminosity of 20 fb sup - sup 1 it is possible to put limits of the order of 0.1 on the Z gamma gamma coupling and about 2.5x10 sup - sup 1 sup 7 e cm on the top quark electric dipole coupling using these asymmetries.

  5. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  6. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.

    Science.gov (United States)

    Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei

    2014-07-17

    We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.

  7. Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles

    Science.gov (United States)

    Aggarwal, A. Vikas; Thiessen, Alexander; Idelson, Alissa; Kalle, Daniel; Würsch, Dominik; Stangl, Thomas; Steiner, Florian; Jester, Stefan-S.; Vogelsang, Jan; Höger, Sigurd; Lupton, John M.

    2013-11-01

    Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment.

  8. Energy dissipation of free exciton polaritons in semiconducting films

    International Nuclear Information System (INIS)

    De Crescenzi, M.; Harbeke, G.; Tosatti, E.

    1978-08-01

    The effective (thickness-dependent) light absorption coefficient K(ω,d) is discussed for thin semiconducting films in the frequency range of free, spatially dispersive exciton polaritons. We find that (i) it oscillates strongly for small film thicknesses; (ii) it exhibits a slanted peak lineshape; (iii) its integrated strength also depends upon the exciton damping and extrapolates to zero for vanishing damping

  9. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  10. Energy relaxation and transfer in excitonic trimer

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Urbanec, Martin

    2004-01-01

    Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ

  11. Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing.

    Science.gov (United States)

    Li, Mingjie; Wei, Qi; Muduli, Subas Kumar; Yantara, Natalia; Xu, Qiang; Mathews, Nripan; Mhaisalkar, Subodh G; Xing, Guichuan; Sum, Tze Chien

    2018-06-01

    At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical-gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low-threshold (as low as ≈8 µJ cm -2 ) linearly polarized lasing from solution-processed Ruddlesden-Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite-difference time-domain simulations validate that the mixed lower-dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher-dimensional RP perovskites (functioning as the active gain media). Furthermore, structure-lasing-threshold relationship (i.e., correlating the content of lower-dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual-wavelength lasing from these quasi-2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self-assembled multilayer planar waveguide gain media favorable for developing efficient lasers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Continuous energy adjoint Monte Carlo for coupled neutron-photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Although the theory for adjoint Monte Carlo calculations with continuous energy treatment for neutrons as well as for photons is known, coupled neutron-photon transport problems present fundamental difficulties because of the discrete energies of the photons produced by neutron reactions. This problem was solved by forcing the energy of the adjoint photon to the required discrete value by an adjoint Compton scattering reaction or an adjoint pair production reaction. A mathematical derivation shows the exact procedures to follow for the generation of an adjoint neutron and its statistical weight. A numerical example demonstrates that correct detector responses are obtained compared to a standard forward Monte Carlo calculation. (orig.)

  13. Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T '-ReSe2

    DEFF Research Database (Denmark)

    Arora, Ashish; Noky, Jonathan; Drueppel, Matthias

    2017-01-01

    and photoluminescence spectroscopy of excitons in 1T '-ReSe2. On reducing the crystal thickness from bulk to a monolayer, we observe a strong blue shift of the optical band gap from 1.37 to 1.50 eV. The excitons are strongly polarized with dipole vectors along different crystal directions, which persist from bulk down......Atomically thin materials such as graphene or MoS2 are of high in-plane symmetry. Crystals with reduced symmetry hold the promise for novel optoelectronic devices based on their anisotropy in current flow or light polarization. Here, we present polarization-resolved optical transmission...... crystal. In addition, we find in our calculations a direct band gap in 1T '-ReSe2 regardless of crystal thickness, indicating weak interlayer coupling effects on the band gap characteristics. Our results pave the way for polarization-sensitive applications, such as optical logic circuits operating...

  14. Quantum complementarity of cavity photons coupled to a three-level system

    International Nuclear Information System (INIS)

    Vilardi, R.; Savasta, S.; Di Stefano, O.; Ridolfo, A.; Portolan, S.

    2011-01-01

    Recently a device enabling the ultrafast all-optical control of the wave-particle duality of light was proposed [Ridolfo et al., Phys. Rev. Lett. 106, 013601 (2011)]. It is constituted by a three-level quantum emitter strongly coupled to a microcavity and can be realized by exploiting a great variety of systems ranging from atomic physics and semiconductor quantum dots to intersubband polaritons and Cooper pair boxes. Control pulses with specific arrival times, performing which-path and quantum-eraser operations, are able to destroy and recover interference almost instantaneously. Here we show that the coherence sudden death implies the sudden birth of a higher order correlation function storing coherence. Such storing enables coherence rebirth after the arrival of an additional suitable control pulse. We derive analytical calculations describing the all-optical control of the wave-particle duality and the entanglement-induced switch-off of the strong coupling regime. We also present analytical calculations describing a homodynelike method exploiting pairs of phase locked pulses with precise arrival times to probe the optical control of wave-particle duality of this system. Within such a method the optical control of wave-particle duality can be directly probed by just detecting the photons escaping the microcavity.

  15. Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures

    Science.gov (United States)

    Skopelitis, Petros; Cherotchenko, Evgenia D.; Kavokin, Alexey V.; Posazhennikova, Anna

    2018-03-01

    We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.

  16. Patterns of strong coupling for LHC searches

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Da [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, People’s Republic of (China); Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Pomarol, Alex [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland); Dept. de Física and IFAE-BIST,Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Rattazzi, Riccardo [Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Riva, Francesco [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland)

    2016-11-23

    Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or WW scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.

  17. Coherent detection of THz-induced sideband emission from excitons in the nonperturbative regime

    Science.gov (United States)

    Uchida, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Tanaka, K.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.; Hirori, H.

    2018-04-01

    Strong interaction of a terahertz (THz) wave with excitons induces nonperturbative optical effects such as Rabi splitting and high-order sideband generation. Here, we investigated coherent properties of THz-induced sideband emissions from GaAs/AlGaAs multiquantum wells. With increasing THz electric field, optical susceptibility of the THz-dressed exciton shows a redshift with spectral broadening and extraordinary phase shift. This implies that the field ionization of the 1 s exciton modifies the THz-dressed exciton in the nonperturbative regime.

  18. Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe 2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xinpeng [State; Li, Fangfei [State; Lin, Jung-Fu [Department; Gong, Yuanbo [State; Huang, Xiaoli [State; Huang, Yanping [State; Han, Bo [State; Zhou, Qiang [State; Cui, Tian [State

    2017-07-19

    Tailoring the excitonic properties in two-dimensional monolayer transition metal dichalcogenides (TMDs) through strain engineering is an effective means to explore their potential applications in optoelectronics and nanoelectronics. Here we report pressure-tuned photon emission of trions and excitons in monolayer MoSe2 via a diamond anvil cell (DAC) through photoluminescence measurements and theoretical calculations. Under quasi-hydrostatic compressive strain, our results show neutral (X0) and charged (X–) exciton emission of monolayer MoSe2 can be effectively tuned by alcohol mixture vs inert argon pressure transmitting media (PTM). During this process, X– emission undergoes a continuous blue shift until reaching saturation, while X0 emission turns up splitting. The pressure-dependent charging effect observed in alcohol mixture PTM results in the increase of the X– exciton component and facilitates the pressure-tuned emission of X– excitons. This substantial tunability of X– and X0 excitons in MoSe2 can be extended to other 2D TMDs, which holds potential for developing strained and optical sensing devices.

  19. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  20. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    Science.gov (United States)

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  1. Complete quantum control of exciton qubits bound to isoelectronic centres.

    Science.gov (United States)

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  2. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    Science.gov (United States)

    Hestand, Nicholas J.

    significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. (Abstract shortened by ProQuest.).

  3. Homoconjugation vs. Exciton Coupling in Chiral α,β-Unsaturated Bicyclo[3.3.1]nonane Dinitrile and Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Gintautas Bagdžiūnas

    2014-07-01

    Full Text Available The chiroptical properties of enantiomerically pure bicyclo[3.3.1]nona-2,6-diene-2,6-dicarbonitrile and related acids were studied by circular dichroism spectroscopy and theoretical computations. A consideration of the molecular structure of the synthesized difunctional compounds revealed that chromophores are predisposed to transannular through-space interaction due to a favourable conformation of the bicyclic skeleton and a rather small interchromophoric distance. Evidence for non-exciton-type coupling between the two acrylonitrile and acrylate moieties in 3 and 4, respectively, was obtained by chiroptical spectroscopy and DFT calculations.

  4. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  5. Towards the coupling of single photons from dye molecules to a photonic waveguide

    Science.gov (United States)

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  6. Exciton polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO

    Science.gov (United States)

    Chichibu, S. F.; Uedono, A.; Tsukazaki, A.; Onuma, T.; Zamfirescu, M.; Ohtomo, A.; Kavokin, A.; Cantwell, G.; Litton, C. W.; Sota, T.; Kawasaki, M.

    2005-04-01

    Static and dynamic responses of excitons in state-of-the-art bulk and epitaxial ZnO are reviewed to support the possible realization of polariton lasers, which are coherent and monochromatic light sources due to Bose condensation of exciton-polaritons in semiconductor microcavities (MCs). To grasp the current problems and to pave the way for obtaining ZnO epilayers of improved quality, the following four principal subjects are treated: (i) polarized optical reflectance (OR), photoreflectance (PR) and photoluminescence (PL) spectra of the bulk and epitaxial ZnO were recorded at 8 K. Energies of PR resonances corresponded to those of upper and lower exciton-polariton branches, where A-, B- and C-excitons couple simultaneously to an electromagnetic wave. PL peaks due to the corresponding polariton branches were observed. Longitudinal-transverse splittings (ωLT) of the corresponding excitons were 1.5, 11.1 and 13.1 meV, respectively. The latter two values are more than two orders of magnitude greater than that of GaAs being 0.08 meV. (ii) Using these values and material parameters, corresponding vacuum-field Rabi splitting of exciton-polaritons coupled to a model MC mode was calculated to be 191 meV, which is the highest value ever reported for semiconductor MCs and satisfies the requirements to observe the strong exciton-light coupling regime necessary for polariton lasing above room temperature. (iii) Polarized OR and PR spectra of an out-plane nonpolar (1\\,1\\,\\bar{2}\\,0) ZnO epilayer grown by laser-assisted molecular beam epitaxy (L-MBE) were measured, since ZnO quantum wells (QWs) grown in nonpolar orientations are expected to show higher emission efficiencies due to the elimination of spontaneous and piezoelectric polarization fields normal to the QW plane. They exhibited in-plane anisotropic exciton resonances according to the polarization selection rules for anisotropically-strained wurzite material. (iv) Impacts of point defects on the nonradiative

  7. Dynamics of symmetry breaking in strongly coupled QED

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1988-10-01

    I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs

  8. Superstrong coupling of thin film magnetostatic waves with microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufeng; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Zou, Changling [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States); Jiang, Liang [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-01-14

    We experimentally demonstrated the strong coupling between a microwave cavity and standing magnetostatic magnon modes in a yttrium iron garnet film. Such strong coupling can be observed for various spin wave modes under different magnetic field bias configurations, with a coupling strength inversely proportional to the transverse mode number. A comb-like spectrum can be obtained from these high order modes. The collectively enhanced magnon-microwave photon coupling strength is comparable with the magnon free spectral range and therefore leads to the superstrong coupling regime. Our findings pave the road towards designing a new type of strongly hybridized magnon-photon system.

  9. Measuring W photon couplings in a 500 GeV e+e- collider

    International Nuclear Information System (INIS)

    Yehudai, E.

    1991-08-01

    The Standard Model gives definite predictions for the W-photon couplings. Measuring them would test an important ingredient of the model. In this work we study the capability of a 500 GeV e + e - collider to measure these couplings. We study the most general C and P conserving WWλ vertex. This vertex contains two free parameters, κ and λ. We look at three processes: e + e - → W + W - , eλ → Wν and λλ → W + W - . For each process we present analytical expressions of helicity amplitudes for arbitrary values of κ and λ. We consider three different sources for the initial photon(s). The first two are breamsstrahlung and beamstrahlung (photon radiation induced by the collective fields of the opposite bunch). Both occur naturally in the collider environment. The third is a photon beam generated by scattering low energy laser light off a high energy electron beam. We examine potential observables for each process, calculating their sensitivity to κ and λ, and estimating the accuracy with which they can be measured. Assuming Standard Model values are actually measured, we present the region in the κ-λ plane to which the W couplings can be restricted with a given confidence level. We find that combining the three processes, one can measure κ and λ with accuracy of 0.01--0.02

  10. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  11. Exciton broadening in WS2 /graphene heterostructures

    International Nuclear Information System (INIS)

    Hill, Heather M.; Rigosi, Albert F.; Raja, Archana

    2017-01-01

    Here, we have used optical spectroscopy to observe spectral broadening of WS 2 exciton reflectance peaks in heterostructures of monolayer WS 2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5–10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs.

  12. Strongly coupled models at the LHC

    International Nuclear Information System (INIS)

    Vries, Maikel de

    2014-10-01

    In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision

  13. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    Science.gov (United States)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  14. Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots

    Science.gov (United States)

    Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin

    2015-08-01

    The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.

  15. Optical spectroscopy and system–bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model

    Energy Technology Data Exchange (ETDEWEB)

    Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2016-12-20

    Highlights: • Standard Frenkel exciton model is extended to include inter-band coupling. • It is formally linked with configuration interaction method of quantum chemistry. • Spectral shifts due to inter-band coupling are found in molecular aggregates. • Effects of peak amplitude redistribution in two-dimensional spectra are found. - Abstract: Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system–bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.

  16. Excitons in van der Waals Heterostructures: A theoretical study

    DEFF Research Database (Denmark)

    Latini, Simone

    )electronics devices, e.g. light emitting diodes, solar cells, ultra-fast photodetectors, transistors etc., have been successfully fabricated. It is well established that for isolated 2D semiconductors and vdWHs the optical response is governed by excitonic effects. While it is understood that the reduced amount...... of electronic screening in freestanding 2D materials is the main origin of extraordinarily strongly bound excitons, a theoretical understanding of excitonic effects and of how the electronic screening is affected for the more complex case of multi-layer structures is still lacking due to the computational...... in a generalized hydrogenic model to compute exciton binding energies in isolated, supported, or encapsulated 2D semiconductors. The non-locality of the dielectric screening is inherently included in our method and we can successfully describe the non-hydrogenic Rydberg series of low-dimensional systems...

  17. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012

  19. Holographic gauge mediation via strongly coupled messengers

    International Nuclear Information System (INIS)

    McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske

    2010-01-01

    We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.

  20. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  1. Single-photon sources

    International Nuclear Information System (INIS)

    Lounis, Brahim; Orrit, Michel

    2005-01-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information

  2. Electrical control of charged carriers and excitons in atomically thin materials

    Science.gov (United States)

    Wang, Ke; De Greve, Kristiaan; Jauregui, Luis A.; Sushko, Andrey; High, Alexander; Zhou, You; Scuri, Giovanni; Taniguchi, Takashi; Watanabe, Kenji; Lukin, Mikhail D.; Park, Hongkun; Kim, Philip

    2018-02-01

    Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.

  3. Dynamics of levitated nanospheres: towards the strong coupling regime

    International Nuclear Information System (INIS)

    Monteiro, T S; Millen, J; Pender, G A T; Barker, P F; Marquardt, Florian; Chang, D

    2013-01-01

    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realizing quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regime, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ω M and single-photon optomechanical coupling strength parameters g are a function of the optical field intensities, in contrast to usual set-ups where ω M and g are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r = 20–500 nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use these data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light–matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r ∼> 100 nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes. (paper)

  4. Fundamental principles of nanostructures and multiple exciton generation effect in quantum dots

    International Nuclear Information System (INIS)

    Turaeva, N.; Oksengendler, B.; Rashidova, S.

    2011-01-01

    In this work the theoretical aspects of the effect of multiple exciton generation in QDs has been studied. The statistic theory of multiple exciton generation in quantum dots is presented based on the Fermi approach to the problem of multiple generation of elementary particles at nucleon-nucleon collisions. Our calculations show that the quantum efficiencies of multiple exciton generation in various quantum dots at absorption of single photon are in a good agreement with the experimental data. The microscopic mechanism of this effect is based on the theory of electronic 'shaking'. In the work the deviation of averaged multiplicity of MEG effect from the Poisson law of fluctuations has been investigated. Besides, the role of interface electronic states of quantum dot and ligand has been considered by means of quantum mechanics. The size optimization of quantum dot has been arranged to receive the maximum multiplicity of MEG effect. (authors)

  5. Search for chameleon particles via photon regeneration

    International Nuclear Information System (INIS)

    Chou, Aaron S.; CCPP, New York U.

    2008-01-01

    We report the first results from the GammeV search for chameleon particles, which may be created via photon-photon interactions within a strong magnetic field. The chameleons are assumed to have matter effects sufficiently strong that they reflect from all solid surfaces of the apparatus, thus evading detection in our previous search for weakly-interacting axion-like particles. We implement a novel technique to create and trap the reflective particles within a jar and to detect them later via their afterglow as they slowly convert back into photons. These measurements provide the first experimental constraints on the couplings of chameleons to photons

  6. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  7. Excitons in InP/InAs inhomogeneous quantum dots

    CERN Document Server

    Assaid, E; Khamkhami, J E; Dujardin, F

    2003-01-01

    Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a sub c sub r sub i sub t and a sub 2 sub D , for which important changes of the exciton binding occur. The former critical value, a sub c sub r sub i sub t , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a ...

  8. Inverse Funnel Effect of Excitons in Strained Black Phosphorus

    Directory of Open Access Journals (Sweden)

    Pablo San-Jose

    2016-09-01

    Full Text Available We study the effects of strain on the properties and dynamics of Wannier excitons in monolayer (phosphorene and few-layer black phosphorus (BP, a promising two-dimensional material for optoelectronic applications due to its high mobility, mechanical strength, and strain-tunable direct band gap. We compare the results to the case of molybdenum disulphide (MoS_{2} monolayers. We find that the so-called funnel effect, i.e., the possibility of controlling exciton motion by means of inhomogeneous strains, is much stronger in few-layer BP than in MoS_{2} monolayers and, crucially, is of opposite sign. Instead of excitons accumulating isotropically around regions of high tensile strain like in MoS_{2}, excitons in BP are pushed away from said regions. This inverse funnel effect is moreover highly anisotropic, with much larger funnel distances along the armchair crystallographic direction, leading to a directional focusing of exciton flow. A strong inverse funnel effect could enable simpler designs of funnel solar cells and offer new possibilities for the manipulation and harvesting of light.

  9. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  10. On nonlinear dynamics of a dipolar exciton BEC in two-layer graphene

    International Nuclear Information System (INIS)

    Berman, O.L.; Kezerashvili, R.Ya.; Kolmakov, G.V.

    2012-01-01

    The nonlinear dynamics of a Bose–Einstein condensate (BEC) of dipolar excitons in two-layer graphene is studied. It is demonstrated that a steady turbulent state is formed in this system. A comparison between the dynamics of the exciton BEC in two-layer graphene and those in GaAs/AlGaAs coupled quantum wells shows that turbulence is a general effect in a BEC.

  11. Probing WWγ and WWγγ couplings with high energy photon beams

    International Nuclear Information System (INIS)

    Choi, S.Y.; Schrempp, F.

    1991-12-01

    We examine the potential of a future 500 GeV linear e + e - collider for probing anomalous WW γ and WW γγ couplings in the so-called γ(γ)model, corresponding to colliding γe and γγ beams from Compton backscattering of laser light. We consider in detail the 'minimal' set (k γ , λ γ ) of CP conserving anomalous couplings and present first results for the CP violating 'partner' couplings (anti K γ , anti l γ ) as well. The reactions under consideration are γe → Wν, γγ → W + W - and, as a reference, also e + e - → W + W - . We discuss the impact of both circular polarization of laser photons and polarized e(anti e) beams. Photon 'beams' due to classical Bremsstrahlung are also studied for comparison. We analyze in detail, how changes of the assumed machine parameters, cuts and systematic errors affect the sensitivity to the anomalous couplings. (orig.)

  12. Characterization of a Fiber-Coupled 36-Core 3-Mode Photonic Lantern Spatial Multiplexer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice.......A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice....

  13. Equilibration and hydrodynamics at strong and weak coupling

    Science.gov (United States)

    van der Schee, Wilke

    2017-11-01

    We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.

  14. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations

    International Nuclear Information System (INIS)

    Xiao, Y-F; Gao, J; McMillan, J F; Yang, X; Wong, C W; Zou, X-B; Chen, Y-L; Han, Z-F; Guo, G-C

    2008-01-01

    In this paper, a scalable photonic crystal cavity array, in which single embedded quantum dots (QDs) are coherently interacting, is studied theoretically. Firstly, we examine the spectral character and optical delay brought about by the coupled cavities interacting with single QDs, in an optical analogue to electromagnetically induced transparency. Secondly, we then examine the usability of this coupled QD-cavity system for quantum phase gate operation and our numerical examples suggest that a two-qubit system with fidelity above 0.99 and photon loss below 0.04 is possible.

  15. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  16. Excited hexagon Wilson loops for strongly coupled N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Kotanski, J. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy

    2010-10-15

    This work is devoted to the six-gluon scattering amplitude in strongly coupled N=4 supersymmetric Yang-Mills theory. At weak coupling, an appropriate high energy limit of the so-called remainder function, i.e. of the deviation from the BDS formula, may be understood in terms of the lowest eigenvalue of the BFKL hamiltonian. According to Alday et al., amplitudes in the strongly coupled theory can be constructed through an auxiliary 1-dimensional quantum system. We argue that certain excitations of this quantum system determine the Regge limit of the remainder function at strong coupling and we compute its precise value. (orig.)

  17. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...... potential. However, the device requires a delicate, sharp needle-like taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission...

  18. Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Fu Ying-Jhe

    2010-01-01

    Full Text Available Abstract We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs and quantum rings (QRs. For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X, biexcitons (XX, and positive trions (X−. For negative trions (X− in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections.

  19. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  20. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement...... of the quasi-Gaussian emission mode, but with inverted TPW where the apex is the cone's base, leads to even larger efficiencies. In addition, these inverted TPWs make the electric pumping of the emitters compatible with these large efficiencies....

  1. Effects of π-conjugation attenuation on the photophysics and exciton dynamics of poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L. X.; Jager, W. J.; Niemczyk, M. P.; Wasielewski, M. R.

    1999-01-01

    The effect of π-conjugation attenuation on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 are examined in solution. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of polymers 1 and 2 were compared to those of the homopolymer, poly(2,5-bis(2'-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). A series of changes in the photophysics of polymers 1 and 2 were found as a result of π-conjugation attenuation. These changes include blue shifts in absorption and emission spectra, spectral diffusion in stimulated emission, enhancement in photoluminescence quantum yields and lifetimes, and increases in photoinduced absorption intensities and lifetimes. These changes are systematically more pronounced in polymer 1 than in polymer 2 and are correlated with π-conjugation attenuation in the polymers due to twisting of the 2,2'-bipyridine groups about the 2,2' single bond. An exciton dynamics model involving an ensemble of initial exciton states localized on oligomeric segments within the polymer with different conjugation lengths is proposed to describe the observed differences between polymers 1 and 2 and BEH-PPV. When the electronic coupling between these segments is strong, the polymer displays characteristics that are close to those of a one-dimensional semiconductor. However, when these couplings are weakened by groups, such as the 2,2'-bipyridine that attenuate π-conjugation, the polymer displays properties of an ensemble of oligomers

  2. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2015-09-18

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.

  3. Two-photon couplings of quarkonia with arbitrary JPC

    International Nuclear Information System (INIS)

    Barnes, T.; Tennessee Univ., Knoxville, TN

    1992-01-01

    We present theoretical results for the two-photon widths of relativistic quarkonium states with arbitrary angular momenta. These relativistic formulas are required to obtain reasonable agreement with the absolute scale of quarkonium decay rates to two photons, and have previously only been derived for spin-singlet q bar q states. We also evaluate these formulas numerically for ell ≤3 q = u, d states in a Coulomb-plus-linear q bar q potential model. Light-quark higher-ell and radially-excited q bar q states should be observable experimentally, as their two-photon widths are typically found to be ∼1 KeV. The radially-excited 1 S 0 higher-mass quarkonium states such as c bar c and b bar b should also be observable in γγ, but orbitally-excited c bar c states with ell>1 and b bar b states with ell>0 are expected to have very small two-photon widths. The helicity structure of the higher-ell q bar q couplings is predicted to be nontrivial, with both λ=0 and λ=2γγ final states contributing significantly; these results may be useful as signatures for q bar q states

  4. Perovskite Excitonics : Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase

    NARCIS (Netherlands)

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Wang, Qingqian; Loi, Maria Antonietta; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2018-01-01

    Understanding exciton formation is of fundamental importance for emerging optoelectronic materials, like hybrid organic-inorganic perovskites, as excitons are the lowest-energy photoexcitations in semiconductors, are electrically neutral, and do not directly contribute to charge transport, but can

  5. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  6. The strong coupling from tau decays without prejudice

    International Nuclear Information System (INIS)

    Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago

    2014-01-01

    We review our recent determination of the strong coupling α s from the OPAL data for non-strange hadronic tau decays. We find that α s (m τ 2 )=0.325±0.018 using fixed-order perturbation theory, and α s (m τ 2 )=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data

  7. The strong coupling from tau decays without prejudice

    Science.gov (United States)

    Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago

    2014-08-01

    We review our recent determination of the strong coupling αs from the OPAL data for non-strange hadronic tau decays. We find that αs (mτ2)= 0.325 ± 0.018 using fixed-order perturbation theory, and αs (mτ2)= 0.347 ± 0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.

  8. Excitonic processes at organic heterojunctions

    Science.gov (United States)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  9. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  10. Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mørk, Jesper; Lodahl, Peter

    2011-01-01

    We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range of probl......’s tensor and show how interference between different light scattering pathways is responsible for this nontrivial detector response...

  11. Spin-dependent exciton-exciton interaction potential in two- and three-dimensional structure semiconductors under excitation

    International Nuclear Information System (INIS)

    Nguyen Ba An; Hoang Ngoc Cam; Nguyen Trung Dan

    1990-08-01

    Analytical expressions of the exciton-exciton interaction potentials have been approximately derived in both 2D and 3D structure materials exhibiting explicit dependences on exciton momentum difference, momentum transfer, electron-hole effective mass ratio and two-exciton state spin symmetry. Numerical calculations show that the character of the exciton-exciton interaction is determined by all of the above-mentioned dependences. (author). 32 refs, 7 figs

  12. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    International Nuclear Information System (INIS)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu

    2012-01-01

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  13. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-06-28

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  14. Discovery of iron group impurity ion spin states in single crystal Y{sub 2}SiO{sub 5} with strong coupling to whispering gallery photons

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do; Creedon, Daniel L.; Le Floch, Jean-Michel [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Probst, Sebastian [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Bushev, Pavel [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany); Tobar, Michael E., E-mail: michael.tobar@uwa.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Western Australia, Crawley 6009 (Australia)

    2015-06-08

    Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at much lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.

  15. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    International Nuclear Information System (INIS)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J.; Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R.; Fischer, D.; Weber, T.; Zouros, T. J. M.; Duesterer, S.

    2007-01-01

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne 2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I 12 W/cm 2 and significant contributions of three-photon ionization as I increases. Ne 2+ recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies

  16. Strong coupling in a gauge invariant field theory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)

    1963-01-15

    I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.

  17. The strong coupling from tau decays without prejudice

    Energy Technology Data Exchange (ETDEWEB)

    Boito, Diogo [Physik Department T31, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Golterman, Maarten [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Jamin, Matthias [Institució Catalana de Recerca i Estudis Avançats (ICREA), IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Maltman, Kim [Department of Mathematics and Statistics, York University, Toronto, ON Canada M3J 1P3 (Canada); CSSM, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Osborne, James [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Peris, Santiago [Department of Physics, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)

    2014-08-15

    We review our recent determination of the strong coupling α{sub s} from the OPAL data for non-strange hadronic tau decays. We find that α{sub s}(m{sub τ}{sup 2})=0.325±0.018 using fixed-order perturbation theory, and α{sub s}(m{sub τ}{sup 2})=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.

  18. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  19. Reflection and extinction of light by self-assembled monolayers of a quinque-thiophene derivative: A coherent scattering approach

    Energy Technology Data Exchange (ETDEWEB)

    Gholamrezaie, Fatemeh; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Leeuw, Dago M. de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2016-06-07

    Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.

  20. The quantum Zeno and anti-Zeno effects with strong system-environment coupling.

    Science.gov (United States)

    Chaudhry, Adam Zaman

    2017-05-11

    To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly interacting with their environment. In this paper, we investigate what happens to a quantum system under the action of repeated measurements if the quantum system is strongly interacting with its environment. We consider as the quantum system a single two-level system coupled strongly to a collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem in the strong system-environment coupling regime tractable. We find that the strong coupling case exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, the effective decay rate does not depend linearly on the spectral density of the environment. This then means that, in the strong coupling regime that we investigate, increasing the system-environment coupling strength can actually decrease the effective decay rate. We also consider a collection of two-level atoms coupled strongly with a common environment. In this case, we find that there are further differences between the weak and strong coupling cases since the two-level atoms can now indirectly interact with one another due to the common environment.

  1. Exciton Rydberg series in mono- and few-layer WS2

    Science.gov (United States)

    Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.

    2014-03-01

    Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.

  2. Quantum optics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean

    2016-01-01

    We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...

  3. Co-existence of free and self-trapped excitons in J-aggregates

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Lebedenko, A.N.; Sorokin, A.V.; Yefimova, S.L.

    2005-01-01

    Nature of excited electronic states of amphi-PIC J-aggregates, which are the source of the self-trapping states, have been investigated using low-temperature site-selective, time-resolved spectroscopy techniques. The self-trapping states are shown to evolve from the delocalized exciton states within the J-band. The strongly localized electronic states located on the low-frequency edge of the J-band, are not able to form polaronic states and, hence, the polaronic relaxation process is particularly collective one. The exciton self-trapping is more effective in J-aggregates with strong disorder, requires overcoming a self-trapping barrier

  4. Optical spectroscopy and imaging of the higher energy excitons and bandgap of monolayer MoS2

    Science.gov (United States)

    Borys, Nicholas; Bao, Wei; Barnard, Edward; Ko, Changhyun; Tongay, Sefaatin; Wu, Junqiao; Yang, Li; Schuck, P. James

    Monolayer MoS2 (ML-MoS2) exhibits a rich manifold of excitons that dictate optoelectronic performance and functionality. Disentangling these states, which include the quasi-particle bandgap, is critical for developing 2D optoelectronic devices that operate beyond the optical bandgap. Whereas photoluminescence (PL) spectroscopy only probes the lowest-energy radiative state and absorption spectroscopy fails to discriminate energetically degenerate states, photoluminescence excitation (PLE) spectroscopy selectively probes only the excited states that thermalize to the emissive ground state exciton. Using PLE spectroscopy of ML-MoS2, we identify the Rydberg series of the exciton A and exciton B states as well as signatures of the quasi-particle bandgap and coupling between the indirect C exciton and the lowest-energy A exciton, which have eluded previous PLE studies. The assignment of these states is confirmed with density functional theory. Mapping the PLE spectrum reveals spatial variations of the higher-energy exciton manifold and quasi-particle bandgap which mirror the heterogeneity in the PL but also indicate variations in local exciton thermalization processes and chemical potentials.

  5. Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source

    International Nuclear Information System (INIS)

    Suemune, Ikuo; Nakajima, Hideaki; Liu, Xiangming; Odashima, Satoru; Asano, Tomoya; Iijima, Hitoshi; Huh, Jae-Hoon; Idutsu, Yasuhiro; Sasakura, Hirotaka; Kumano, Hidekazu

    2013-01-01

    We have realized metal-coated semiconductor nanostructures for a stable and efficient single-photon source (SPS) and demonstrated improved single-photon extraction efficiency by the selection of metals and nanostructures. We demonstrate with finite-difference time-domain (FDTD) simulations that inclination of a pillar sidewall, which changes the structure to a nanocone, is effective in improving the photon extraction efficiency. We demonstrate how such nanocone structures with inclined sidewalls are fabricated with reactive ion etching. With the optimized design, a photon extraction efficiency to outer airside as high as ∼97% generated from a quantum dot in a nanocone structure is simulated, which is the important step in realizing SPS on-demand operations. We have also examined the direct contact of such a metal-embedded nanocone structure with a single-mode fiber facet as a simple and practical method for preparing fiber-coupled SPS and demonstrated practical coupling efficiencies of ∼16% with FDTD simulation. (paper)

  6. Pressure induced increase of the exciton phonon interaction in ZnO/(ZnMg)O quantum wells

    International Nuclear Information System (INIS)

    Jarosz, D.; Suchocki, A.; Kozanecki, A.; Teisseyre, H.; Kamińska, A.

    2016-01-01

    It is a well-established experimental fact that exciton-phonon coupling is very efficient in ZnO. The intensities of the phonon-replicas in ZnO/(ZnMg)O quantum structures strongly depend on the internal electric field. We performed high-pressure measurements on the single ZnO/(ZnMg)O quantum well. We observed a strong increase of the intensity of the phonon-replicas relative to the zero phonon line. In our opinion this effect is related to pressure induced increase of the strain in quantum structure. As a consequence, an increase of the piezoelectric component of the electric field is observed which leads to an increase of the intensity of the phonon-replicas.

  7. The Cornwall-Norton model in the strong coupling regime

    International Nuclear Information System (INIS)

    Natale, A.A.

    1991-01-01

    The Cornwall-Norton model is studied in the strong coupling regime. It is shown that the fermionic self-energy at large momenta behaves as Σ(p) ∼ (m 2 /p) ln (p/m). We verify that in the strong coupling phase the dynamically generated masses of gauge and scalar bosons are of the same order, and the essential features of the model remain intact. (author)

  8. Coupling of (ultra- relativistic atomic nuclei with photons

    Directory of Open Access Journals (Sweden)

    M. Apostol

    2013-11-01

    Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  9. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  10. Equilibration and hydrodynamics at strong and weak coupling

    NARCIS (Netherlands)

    Schee, Wilke van der

    2017-01-01

    We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate

  11. Strong coupling and quasispinor representations of the SU(3) rotor model

    International Nuclear Information System (INIS)

    Rowe, D.J.; De Guise, H.

    1992-01-01

    We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)

  12. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  13. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    International Nuclear Information System (INIS)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua; Gong Zhao

    2008-01-01

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 μm, the splitting length of the devices is only 35 μm even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits

  14. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua [Department of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou (China); Gong Zhao [Zhejiang University City College, 310027 Hangzhou (China)

    2008-05-07

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 {mu}m, the splitting length of the devices is only 35 {mu}m even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits.

  15. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-01-01

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation

  16. Modeling loss and backscattering in a photonic-bandgap fiber using strong perturbation

    Science.gov (United States)

    Zamani Aghaie, Kiarash; Digonnet, Michel J. F.; Fan, Shanhui

    2013-02-01

    We use coupled-mode theory with strong perturbation to model the loss and backscattering coefficients of a commercial hollow-core fiber (NKT Photonics' HC-1550-02 fiber) induced by the frozen-in longitudinal perturbations of the fiber cross section. Strong perturbation is used, for the first time to the best of our knowledge, because the large difference between the refractive indices of the two fiber materials (silica and air) makes conventional weak-perturbation less accurate. We first study the loss and backscattering using the mathematical description of conventional surface-capillary waves (SCWs). This model implicitly assumes that the mechanical waves on the core wall of a PBF have the same power spectral density (PSD) as the waves that develop on an infinitely thick cylindrical tube with the same diameter as the PBF core. The loss and backscattering coefficients predicted with this thick-wall SCW roughness are 0.5 dB/km and 1.1×10-10 mm-1, respectively. These values are more than one order of magnitude smaller than the measured values (20-30 dB/km and ~1.5×10-9 mm-1, respectively). This result suggests that the thick-wall SCW PSD is not representative of the roughness of our fiber. We found that this discrepancy occurs at least in part because the effect of the finite thickness of the silica membranes (only ~120 nm) is neglected. We present a new expression for the PSD that takes into account this finite thickness and demonstrates that the finite thickness substantially increases the roughness. The predicted loss and backscattering coefficients predicted with this thin-film SCW PSD are 30 dB/km and 1.3×10-9 mm-1, which are both close to the measured values. We also show that the thin-film SCW PSD accurately predicts the roughness PSD measured by others in a solid-core photonic-crystal fiber.

  17. Hanle model of a spin-orbit coupled Bose-Einstein condensate of excitons in semiconductor quantum wells

    Science.gov (United States)

    Andreev, S. V.; Nalitov, A. V.

    2018-04-01

    We present a theoretical model of a driven-dissipative spin-orbit coupled Bose-Einstein condensate of indirect excitons in semiconductor quantum wells (QW's). Our steady-state solution of the problem shares analogies with the Hanle effect in an optical orientation experiment. The role of the spin pump in our case is played by Bose-stimulated scattering into a linearly-polarized ground state and the depolarization occurs as a result of exchange interaction between electrons and holes. Our theory agrees with the recent experiment [A. A. High et al., Phys. Rev. Lett. 110, 246403 (2013), 10.1103/PhysRevLett.110.246403], where spontaneous emergence of spatial coherence and polarization textures have been observed. As a complementary test, we discuss a configuration where an external magnetic field is applied in the structure plane.

  18. Quantum Logic with Cavity Photons From Single Atoms.

    Science.gov (United States)

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  19. Coherent dynamics of interwell excitons in GaAs/AlxGa1-xAs superlattices

    DEFF Research Database (Denmark)

    Mizeikis, V.; Birkedal, Dan; Langbein, Wolfgang Werner

    1997-01-01

    Coherent exciton dynamics in a GaAs/AlxGa1-xAs narrow-miniband superlattice is studied by spectrally resolved transient four-wave mixing. Coherent optical properties of the investigated structure are found to be strongly affected by the existence of two different heavy-hole excitonic states. One...

  20. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu; Raman, Aaswath; Fan, Shanhui

    2012-01-01

    to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar

  1. Impact of the glass transition on exciton dynamics in polymer thin films

    Science.gov (United States)

    Ehrenreich, Philipp; Proepper, Daniel; Graf, Alexander; Jores, Stefan; Boris, Alexander V.; Schmidt-Mende, Lukas

    2017-11-01

    In the development of organic electronics, unlimited design possibilities of conjugated polymers offer a wide variety of mechanical and electronic properties. Thereby, it is crucially important to reveal universal physical characteristics that allow efficient and forward developments of new chemical compounds. In particular for organic solar cells, a deeper understanding of exciton dynamics in polymer films can help to improve the charge generation process further. For this purpose, poly(3-hexylthiophene) (P3HT) is commonly used as a model system, although exciton decay kinetics have found different interpretations. Using temperature-dependent time-resolved photoluminescence spectroscopy in combination with low-temperature spectroscopic ellipsometry, we can show that P3HT is indeed a model system in which excitons follow a simple diffusion/hopping model. Based on our results we can exclude the relevance of hot-exciton emission as well as a dynamic torsional relaxation upon photoexcitation on a ps time scale. Instead, we depict the glass transition temperature of polymers to strongly affect exciton dynamics.

  2. Exciton fine structure in CdSe nanoclusters

    International Nuclear Information System (INIS)

    Leung, K.; Pokrant, S.; Whaley, K.B.

    1998-01-01

    The fine structure in the CdSe nanocrystal absorption spectrum is computed by incorporating two-particle electron-hole interactions and spin-orbit coupling into a tight-binding model, with an expansion in electron-hole single-particle states. The exchange interaction and spin-orbit coupling give rise to dark, low-lying states that are predominantly triplet in character, as well as to a manifold of exciton states that are sensitive to the nanocrystal shape. Near the band gap, the exciton degeneracies are in qualitative agreement with the effective mass approximation (EMA). However, instead of the infinite lifetimes for dark states characteristic of the EMA, we obtain finite radiative lifetimes for the dark states. In particular, for the lowest, predominantly triplet, states we obtain radiative lifetimes of microseconds, in qualitative agreement with the experimental measured lifetimes. The resonant Stokes shifts obtained from the splitting between the lowest dark and bright states are also in good agreement with experimental values for larger crystallites. Higher-lying states exhibit significantly more complex behavior than predicted by EMA, due to extensive mixing of electron-hole pair states. copyright 1998 The American Physical Society

  3. Electrons, holes, and excitons in GaAs polytype quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Climente, Juan I.; Segarra, Carlos; Rajadell, Fernando; Planelles, Josep, E-mail: josep.planelles@uji.es [Departament de Química Física i Analítica, Universitat Jaume I, E-12080 Castelló (Spain)

    2016-03-28

    Single and multi-band k⋅p Hamiltonians for GaAs crystal phase quantum dots are used to assess ongoing experimental activity on the role of such factors as quantum confinement, spontaneous polarization, valence band mixing, and exciton Coulomb interaction. Spontaneous polarization is found to be a dominating term. Together with the control of dot thickness [Vainorius et al., Nano Lett. 15, 2652 (2015)], it enables wide exciton wavelength and lifetime tunability. Several new phenomena are predicted for small diameter dots [Loitsch et al., Adv. Mater. 27, 2195 (2015)], including non-heavy hole ground state, strong hole spin admixture, and a type-II to type-I exciton transition, which can be used to improve the absorption strength and reduce the radiative lifetime of GaAs polytypes.

  4. Probing the Higgs couplings to photons in h→4ℓ at the LHC.

    Science.gov (United States)

    Chen, Yi; Harnik, Roni; Vega-Morales, Roberto

    2014-11-07

    We explore the sensitivity of the Higgs decay to four leptons, the so-called golden channel, to higher dimensional loop-induced couplings of the Higgs boson to ZZ, Zγ, and γγ pairs, allowing for general CP mixtures. The larger standard model tree level coupling hZ(μ)Z(μ) is the dominant "background" for the loop-induced couplings. However, this large background interferes with the smaller loop-induced couplings, enhancing the sensitivity. We perform a maximum likelihood analysis based on analytic expressions of the fully differential decay width for h→4ℓ (4ℓ≡2e2μ,4e,4μ), including all interference effects. We find that the spectral shapes induced by Higgs couplings to photons are particularly different than the hZ(μ)Z(μ) background leading to enhanced sensitivity to these couplings. We show that even if the h→γγ and h→4ℓ rates agree with that predicted by the standard model, the golden channel has the potential to probe both the CP nature as well as the overall sign of the Higgs coupling to photons well before the end of a high-luminosity LHC.

  5. Weak and strong coupling equilibration in nonabelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, Liam [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Kurkela, Aleksi [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Faculty of Science and Technology, University of Stavanger,4036 Stavanger (Norway); Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder,Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado,Boulder, Colorado 80309 (United States); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge, MA 02139 (United States); Zhu, Yan [Department of Physics, University of Jyväskyla, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics,P.O. Box 64, 00014 University of Helsinki (Finland)

    2016-04-06

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  6. Weak and strong coupling equilibration in nonabelian gauge theories

    International Nuclear Information System (INIS)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; Schee, Wilke van der; Zhu, Yan

    2016-01-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  7. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun; Li, Hong; Cortecchia, Daniele; Soci, Cesare; Bredas, Jean-Luc

    2017-01-01

    calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level

  8. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  9. An improved limit on the axion-photon coupling from the CAST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Andriamonje, S.; Aune, S.; Dafni, T.; Ferrer Ribas, E.; Giomataris, I.; Irastorza, I.G. [CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, (France); Autiero, D.; Barth, K.; Davenport, M.; Di Lella, L.; Lasseur, C.; Papaevangelou, T.; Placci, A.; Stewart, L.; Walckiers, L.; Zioutas, K. [CERN, European Org Nucl Res, CH-1211 Geneva 23, (Switzerland); Belov, A.; Gninenko, S. [Russian Acad Sci, Inst Nucl Res, Moscow, (Russian Federation); Beltran, B.; Carmona, J.M.; Cebrian, S.; Gomez, H.; Irastorza, I.G.; Luzon, G.; Morales, A.; Morales, J.; Ortiz, A.; Rodriguez, A.; Ruz, J.; Villar, J. [Univ Zaragoza, Inst Fis Nucl and Altas Energias, Zaragoza, (Spain); Brauninger, H.; Englhauser, J.; Friedrich, P.; Kuster, M. [Max Planck Inst Extraterr Phys, D-85748 Garching, (Germany); Collar, J.I.; Miller, D.; Vieira, J. [Univ Chicago, Enrico Fermi Inst and KICP, Chicago, IL 60637 (United States); Dafni, T.; Hoffmann, D.H.H.; Kuster, M.; Riege, H. [Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, (Germany); Eleftheriadis, C.; Liolios, A.; Savvidis, I. [Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, (Greece); Fanourakis, G.; Geralis, T.; Kousouris, K. [Natl Ctr Sci Res Demokritos, Athens, (Greece); Fischer, H.; Franz, J.; Heinsius, F.H.; Kang, D.; Konigsmann, K.; Vogel, J. [Univ Freiburg, Freiburg, (Germany)] (and others)

    2007-04-15

    We have searched for solar axions or similar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) set-up with improved conditions in all detectors. From the absence of excess x-rays when the magnet was pointing to the Sun, we set an upper limit on the axion-photon coupling of g{sub a{gamma}} {<=} 8.8 x 10{sup -11} GeV{sup -1} at 95% CL for m{sub a} {<=} 0.02 eV. This result is the best experimental limit over a broad range of axion masses and for m{sub a} {<=} 0.02 eV also supersedes the previous limit derived from energy-loss arguments on globular cluster stars. (authors)

  10. Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions

    International Nuclear Information System (INIS)

    Kojima, O.; Mizoguchi, K.; Nakayama, M..

    2005-01-01

    We have investigated the dynamical properties of the coherent longitudinal optical (LO) phonon in CuI thin films grown on a NaCl substrate by vacuum deposition. The intense coherent LO phonon in the CuI thin film is observed under the exciton-excitation conditions. Moreover, the pump-energy dependence of the amplitude of the coherent LO phonon shows peaks at the heavy-hole and light-hole exciton energies. The enhancement of the coherent LO phonon under the exciton-resonance condition is much larger than that in an ordinary semiconductor quantum well system such as a GaAs/AlAs one. These facts demonstrate that the intense coherent LO phonon is generated under the exciton-excitation condition in a material with a strong exciton-phonon interaction such as CuI

  11. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  12. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk

  13. Illuminating the future of silicon photonics: optical coupling of carbon nanotubes to microrings

    International Nuclear Information System (INIS)

    Kato, Y K

    2015-01-01

    Advances in carbon nanotube material quality and processing techniques have led to an increased interest in nanotube photonics. In particular, emission in the telecommunication wavelengths makes nanotubes compatible with silicon photonics. Noury et al (2014 Nanotechnology 25 215201) have reported on carbon nanotube photoluminescence coupled to silicon microring resonators, underscoring the advantage of combining carbon nanotube emitters with silicon photonics. Their results open up the possibility of using nanotubes in other waveguide-based devices, taking advantage of well-established technologies. (viewpoint)

  14. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    Science.gov (United States)

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  15. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders

    2011-01-01

    Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...

  16. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  17. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Tong, Ning-Hua [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany)

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  18. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    Science.gov (United States)

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  19. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    Science.gov (United States)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  20. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    Science.gov (United States)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  1. Strong environmental coupling in a Josephson parametric amplifier

    International Nuclear Information System (INIS)

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.

    2014-01-01

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  2. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  3. Measurement of photon (also +jets) production cross sections, jets production cross sections and extraction of the strong coupling constant

    CERN Document Server

    Villaplana Perez, Miguel; The ATLAS collaboration

    2017-01-01

    The production of prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD and can be used to probe the proton structure. The ATLAS collaboration has performed precise measurements of the inclusive production of isolated prompt photons at a centre-of-mass energy of 13 TeV, differential in both rapidity and the photon transverse momentum. In addition, the integrated and differential cross sections for isolated photon pairs and tri-photon production 8 TeV have been measured. The results are compared with state-of-the-art theory predictions at NLO in QCD and with predictions of several MC generators. The production of prompt photons in association with jets provides an additional testing ground for perturbative QCD (pQCD) with a hard colourless probe less affected by hadronisation effects than jet production. The ATLAS collaboration has studied the dynamics of isolated-photon production in association with gluon, light and heavy quark final states in pp collisions at a centre-of-...

  4. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  5. Chaos desynchronization in strongly coupled systems

    International Nuclear Information System (INIS)

    Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng

    2007-01-01

    The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed

  6. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  7. Far-field coupling in nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  8. Multi-Excitonic Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  9. Two-dimensional multiferroics in monolayer group IV monochalcogenides

    Science.gov (United States)

    Wang, Hua; Qian, Xiaofeng

    2017-03-01

    Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.

  10. Anomalous photon-gauge boson coupling contribution to the exclusive vector boson pair production from two photon exchange in pp collisions at 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Martins, D. E.; Vilela Pereira, A.; Sá Borges, J. [Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro-RJ, 20550-900 (Brazil); Rebello Teles, P. [Centro Brasileiro de Pesquisas Físicas - CBPF, Rio de Janeiro-RJ, 22290-180 (Brazil)

    2015-04-10

    We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.

  11. The strongly coupled quark-gluon plasma created at RHIC

    International Nuclear Information System (INIS)

    Heinz, Ulrich

    2009-01-01

    The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory

  12. Double perovskites with strong spin-orbit coupling

    Science.gov (United States)

    Cook, Ashley M.

    We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally

  13. Optical nonlinearity and bistability in the bound exciton energy range of CdS

    International Nuclear Information System (INIS)

    Hoenig, T.; Gutowski, J.

    1988-01-01

    Under high excitation conditions thick CdS samples show pronounced broad-band nonlinear transmission in the bound exciton region and up to a wavelength of about 515 nm at cryo-temperatures. This behavior is only explainable in a model based on impurity neutralization and bound exciton creation. The suitability of these nonlinearities to yield optical bistability will be shown. Bistable operation is investigated in dependence of crystal thickness, impurity concentration, excitation density, wavelength, and temperature. A strong correlation to acceptor-bound exciton generation is obtained, and the explanation of this bistable operation fits well with that of the above mentioned transmission behavior. (author)

  14. Electrical control of optical orientation of neutral and negatively charged excitons in an n -type semiconductor quantum well

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.; Lazarev, M. V.; Sapega, V. F.; Gammon, D.; Bracker, A. S.

    2007-01-01

    We report electric field induced increase of spin orientation of negatively charged excitons (trions) localized in n -type GaAs/AlGaAs quantum well. Under resonant excitation of free neutral heavy-hole excitons, the polarization of trions increases dramatically with electrical injection of electrons. The polarization enhancement correlates strongly with trion/exciton luminescence intensity ratio. This effect results from a very efficient trapping of free neutral excitons by the quantum well interfacial fluctuations (“natural” quantum dots) containing resident electrons.

  15. Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    International Nuclear Information System (INIS)

    Wen, P; Nelson, Keith A; Christmann, G; Baumberg, J J

    2013-01-01

    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded. (paper)

  16. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    Science.gov (United States)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  17. Phase transition from strong-coupling expansion

    International Nuclear Information System (INIS)

    Polonyi, J.; Szlachanyi, K.

    1982-01-01

    Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)

  18. Self-interacting asymmetric dark matter coupled to a light massive dark photon

    International Nuclear Information System (INIS)

    Petraki, Kalliopi; Pearce, Lauren; Kusenko, Alexander

    2014-01-01

    Dark matter (DM) with sizeable self-interactions mediated by a light species offers a compelling explanation of the observed galactic substructure; furthermore, the direct coupling between DM and a light particle contributes to the DM annihilation in the early universe. If the DM abundance is due to a dark particle-antiparticle asymmetry, the DM annihilation cross-section can be arbitrarily large, and the coupling of DM to the light species can be significant. We consider the case of asymmetric DM interacting via a light (but not necessarily massless) Abelian gauge vector boson, a dark photon. In the massless dark photon limit, gauge invariance mandates that DM be multicomponent, consisting of positive and negative dark ions of different species which partially bind in neutral dark atoms. We argue that a similar conclusion holds for light dark photons; in particular, we establish that the multi-component and atomic character of DM persists in much of the parameter space where the dark photon is sufficiently light to mediate sizeable DM self-interactions. We discuss the cosmological sequence of events in this scenario, including the dark asymmetry generation, the freeze-out of annihilations, the dark recombination and the phase transition which gives mass to the dark photon. We estimate the effect of self-interactions in DM haloes, taking into account this cosmological history. We place constraints based on the observed ellipticity of large haloes, and identify the regimes where DM self-scattering can affect the dynamics of smaller haloes, bringing theory in better agreement with observations. Moreover, we estimate the cosmological abundance of dark photons in various regimes, and derive pertinent bounds

  19. Generation of large scale GHZ states with the interactions of photons and quantum-dot spins

    Science.gov (United States)

    Miao, Chun; Fang, Shu-Dong; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang

    2018-03-01

    We present a deterministic scheme for generating large scale GHZ states in a cavity-quantum dot system. A singly charged quantum dot is embedded in a double-sided optical microcavity with partially reflective top and bottom mirrors. The GHZ-type Bell spin state can be created and two n-spin GHZ states can be perfectly fused to a 2n-spin GHZ state with the help of n ancilla single-photon pulses. The implementation of the current scheme only depends on the photon detection and its need not to operate multi-qubit gates and multi-qubit measurements. Discussions about the effect of the cavity loss, side leakage and exciton cavity coupling strength for the fidelity of generated states show that the fidelity can remain high enough by controlling system parameters. So the current scheme is simple and feasible in experiment.

  20. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.