WorldWideScience

Sample records for strong emission features

  1. The strong 3.3 micron emission line in Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Williams, P.M.

    1982-01-01

    A number of Wolf-Rayet stars have been found to show in their spectra a strong emission feature at 3.28 μm, the wavelength of the 'unidentified' feature observed in some nebular spectra. From comparison of the strength of this line from stars of different spectral type and excitation, it is identified with the CIV (11-10) transition group and shown not to be connected with the circumstellar dust associated with some Wolf-Rayet stars. (author)

  2. Surface emission of InxGa1-xN epilayers under strong optical excitation

    International Nuclear Information System (INIS)

    Jiang, H.X.; Lin, J.Y.; Khan, M.A.; Chen, Q.; Yang, J.W.

    1997-01-01

    Effects of strong optical excitation on the properties of surface emission from an InGaN/GaN heterostructure grown by metal-organic chemical-vapor deposition have been investigated. An intriguing feature observed was that as the excitation intensity increased the surface emission spectrum evolved abruptly from a single dominating band to two dominating bands at a critical intensity. This phenomenon has a sharp phase transition or a switching character and can be accounted for by (i) the formation of an electron endash hole plasma state in the InGaN vertical cavity under strong optical excitation, (ii) the photoreflectance effect (variation of index of refraction with excitation intensity), and (c) the Fabry endash Pacute erot interference effect in the InGaN vertical cavity. These findings are expected to have impact on the design of the laser structures, in particular on the design of the vertical-cavity surface-emitting laser diodes based on III-nitride wide-band-gap semiconductors. copyright 1997 American Institute of Physics

  3. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    Science.gov (United States)

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  4. Laser based imaging of time depending microscopic scenes with strong light emission

    Science.gov (United States)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  5. Variation of emission features in γ2 Velorum

    International Nuclear Information System (INIS)

    Chen, Kwan-Yu; Taylor, M.J.; Oliver, J.P.; Wood, F.B.

    1988-01-01

    The bright southern star (1.82 visual magnitude), γ 2 Velorum, is a spectroscopic binary consisting of a Wolf-Rayet star and an O-type star. The emission lines in its spectrum show variations on the order of minutes as observed by a number of investigators. Photoelectric photometry of γ 2 Velorum was made with the use of the automated 3-inch South Pole Optical Telescope during the austral winters of 1986, 1987 and 1988. Detailed reduction and analysis of the observational data are being carried out and will be presented elsewhere. The result of a sample 5-hour run of the HeII emission line, which is a subset of a 16-hour data set, is given here. The ratio of the brightness measurement of the line feature to that of the continuum is calculated; and power spectrum is computed. The relatively strong peak, which occurs at 19.0 per day, corresponds to a period of 1.26 hours. A sine curve was also fitted to the normal points of these data, computed at 0.004-day intervals, with the use of the method of least squares. This model yields a period of 1.28 hours. The strong agreement between these two methods leads to the belief that this in a real variation in γ 2 Velorum. This new discovery will aid in the study of the nature of the extended atmosphere of the Wolf-Rayet star system

  6. Mid-Infrared Emission Features in the ISM: Feature-to-Features Flux Ratios

    Science.gov (United States)

    Lu, N. Y.

    1998-01-01

    Using a limited, but representative sample of sources in the ISM of our Galaxy with published spectra from the Infrared Space Observatory, we analyze flux ratios between the major mid-IR emission features (EFs) centered around 6.2, 7.7, 8.6 and 11.3 mu, respectively.

  7. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission

    International Nuclear Information System (INIS)

    Ghamsari, Morteza Sasani; Gaeeni, Mohammad Reza; Han, Wooje; Park, Hyung-Ho

    2016-01-01

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO 2 nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO 2 colloidal nanocrystals. HRTEM showed that the diameter of TiO 2 colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO 2 colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO 2 sample has enough potential for optoelectronics applications.

  8. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  9. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  10. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    Wang Yan; Li Xiangdong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  11. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  12. Strong blue emission from zinc hydroxide carbonate nanosheets

    International Nuclear Information System (INIS)

    Mao, Jing; Chen, Xuemin; Ling, Tao; Du, Xiwen

    2016-01-01

    Zinc hydroxide carbonate (ZHC) is a typical layered salt composed of zinc hydroxide layers separated with carbonate ions and water molecules. Studies of morphology control and the constitution of functional ZHC material with intercalated ions has been widely developed. Also, ZnO can be easily obtained by anneal treatment of ZHC, and the porous structure as synthesized had great potential in gas sensors, photocatalysts and dye-sensitized solar cells. However, the optical of ZHC have rarely been investigated. In our research, a strong blue emission of ZHC is reported. The effect of growth time, annealing treatment and modification of surfactants on blue emission have been systematically studied. Combined with information of interior effect of OH groups, crystal structure and electronegativity of surfactants, a possible emission mechanism of ZHC has been proposed.

  13. A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.

    Science.gov (United States)

    Chan; Onaka

    2000-04-10

    We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.

  14. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  15. Highly stable colloidal TiO{sub 2} nanocrystals with strong violet-blue emission

    Energy Technology Data Exchange (ETDEWEB)

    Ghamsari, Morteza Sasani, E-mail: msghamsari@yahoo.com [Laser & Optics Research School, NSTRI, 11155-3486 Tehran (Iran, Islamic Republic of); Gaeeni, Mohammad Reza [Laser & Optics Research School, NSTRI, 11155-3486 Tehran (Iran, Islamic Republic of); Han, Wooje; Park, Hyung-Ho [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2016-10-15

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO{sub 2} nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO{sub 2} colloidal nanocrystals. HRTEM showed that the diameter of TiO{sub 2} colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO{sub 2} colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO{sub 2} sample has enough potential for optoelectronics applications.

  16. C2 emission features in the Red Rectangle : A combined observational laboratory study

    NARCIS (Netherlands)

    Wehres, N.; Romanzin, C.; Linnartz, H.; van Winckel, H.; Tielens, A. G. G. M.

    Context. The Red Rectangle proto-planetary nebula (HD 44179) is known for a number of rather narrow emission features superimposed on a broad extended red emission (ERE) covering the 5000-7500 angstrom regime. The origin of these emission features is unknown. Aims. The aim of the present work is to

  17. Problems related to stimulated electromagnetic emissions, strong turbulence and ionospheric modification

    International Nuclear Information System (INIS)

    Goodman, S.

    1993-05-01

    Optical pumping of the ionospheric plasma by high-frequency radio waves produces a state of turbulence. Several consequences of the pumping are considered in this thesis. At reflection altitude the plasma is thought to be dominated by parametric instabilities and strong turbulence; these are both encapsulated in the so called Zakharov equations. The Zakharov equations are derived and generalised from kinetic theory. Limits of validity, corrections to the ion sound speed,effective ponderomotive force, nonlinear damping and other generalisation are included. As an example of the difference a kinetic approach makes, the threshold for parametric instabilities is seen to be lowered in a kinetic plasma. Mostly relevant to the upper hybrid layer is the recent discovery in the pumping experiments of stimulated electromagnetic emissions (SEE). In particular one feature of SEE which occurs around the cyclotron harmonics and depends on density striations is investigated. The observed frequency of emission, dependency on striations, time evolution and cutoff frequency below which the feature does not occur, are explained. Two theoretical approaches are taken. The first is a parametric three wave decay instability followed by a nonlinear mixing to produce SEE. Thresholds for the instability are well within experimental capacity. The second, less orthodox, approach, is a finite amplitude model. The finite amplitude model goes beyond the traditional parametric approach by being able to predict radiated power output. Miscellaneous aspects of a turbulent ionosphere are also examined. The dependency of the scattering cross section of a turbulent plasma upon higher order perturbations is considered. In a turbulent plasma, density gradients steeper than characteristic plasma scales may develop. The case of calculating the dielectric permittivity for a linear gradient of arbitrary steepness is considered

  18. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  19. Cigarette Design Features: Effects on Emission Levels, User Perception, and Behavior.

    Science.gov (United States)

    Talhout, Reinskje; Richter, Patricia A; Stepanov, Irina; Watson, Christina V; Watson, Clifford H

    2018-01-01

    This paper describes the effects of non-tobacco, physical cigarette design features on smoke emissions, product appeal, and smoking behaviors - 3 factors that determine smoker's exposure and related health risks. We reviewed available evidence for the impact of filter ventilation, new filter types, and cigarettes dimensions on toxic emissions, smoker's perceptions, and behavior. For evidence sources we used scientific literature and websites providing product characteristics and marketing information. Whereas filter ventilation results in lower machine-generated emissions, it also leads to perceptions of lighter taste and relative safety in smokers who can unwittingly employ more intense smoking behavior to obtain the desired amount of nicotine and sensory appeal. Filter additives that modify smoke emissions can also modify sensory cues, resulting in changes in smoking behavior. Flavor capsules increase the cigarette's appeal and novelty, and lead to misperceptions of reduced harm. Slim cigarettes have lower yields of some smoke emissions, but smoking behavior can be more intense than with standard cigarettes. Physical design features significantly impact machine-measured emission yields in cigarette smoke, product appeal, smoking behaviors, and exposures in smokers. The influence of current and emerging design features is important in understanding the effectiveness of regulatory actions to reduce smoking-related harm.

  20. A Sample of Quasars with Strong Nitrogen Emission Lines from the Sloan Digital Sky Survey

    DEFF Research Database (Denmark)

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne

    2008-01-01

    We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7......We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7...

  1. Highly concentrated zinc oxide nanocrystals sol with strong blue emission

    International Nuclear Information System (INIS)

    Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.

    2011-01-01

    Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.

  2. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  3. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  4. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2014-01-01

    recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time

  5. Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features

    International Nuclear Information System (INIS)

    Huo Hong; Zhang Qiang; He Kebin; Yao Zhiliang; Wang Xintong; Zheng Bo; Streets, David G.; Wang Qidong; Ding Yan

    2011-01-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. - Highlights: → We examine vehicle emissions in 22 Chinese cities of different types and locations. → Vehicle emission factors of the cities differ by 50-90% due to distinct local features. → Each vehicle type contributes differently to total emissions among the cities. → A substantial increase in vehicle emissions in most Chinese cities is foreseeable. → City-specific fleet and local features are important in research and policy making. - Vehicle emission characteristics of Chinese cities are remarkably different, and local features need to be taken into account in vehicle emission studies and control strategy.

  6. Wolf-Rayet stars featured in emission-line galaxies

    International Nuclear Information System (INIS)

    Kunth, D.

    1982-01-01

    In the galaxy Tololo 3 (NGC 3125) recent observations by the author and Sargent (1981) have revealed the presence of an unusual strong and broad He II 4686 emission. The origin of this line together with some nitrogen lines (e.g. N V 4620 and N III 4638) is attributed to Wolf-Rayet stars, mostly of WN types. (Auth.)

  7. Origins of the 3.28 μm dust emission feature

    International Nuclear Information System (INIS)

    Gatley, I.

    1984-01-01

    Some practical problems encountered in making spectroscopic observations in the 3 - 4 μm wavelength range are discussed. Emphasis is placed on the interpretation of observations of the Galactic center, and their implications for the origins of the 3.28 μm dust emission feature. These observations suggest, in contrast to some previous analyses, that the carrier of the 3.28 μm feature may be a common, non-volatile component of interstellar grains. (author)

  8. Guilt by Association: The 13 Micron Dust Emission Feature and Its Correlation to Other Gas and Dust Features

    Science.gov (United States)

    Sloan, G. C.; Kraemer, Kathleen E.; Goebel, J. H.; Price, Stephan D.

    2003-09-01

    A study of all full-scan spectra of optically thin oxygen-rich circumstellar dust shells in the database produced by the Short Wavelength Spectrometer on ISO reveals that the strength of several infrared spectral features correlates with the strength of the 13 μm dust feature. These correlated features include dust features at 19.8 and 28.1 μm and the bands produced by warm carbon dioxide molecules (the strongest of which are at 13.9, 15.0, and 16.2 μm). The database does not provide any evidence for a correlation of the 13 μm feature with a dust feature at 32 μm, and it is more likely that a weak emission feature at 16.8 μm arises from carbon dioxide gas rather than dust. The correlated dust features at 13, 20, and 28 μm tend to be stronger with respect to the total dust emission in semiregular and irregular variables associated with the asymptotic giant branch than in Mira variables or supergiants. This family of dust features also tends to be stronger in systems with lower infrared excesses and thus lower mass-loss rates. We hypothesize that the dust features arise from crystalline forms of alumina (13 μm) and silicates (20 and 28 μm). Based on observations with the ISO, a European Space Agency (ESA) project with instruments funded by ESA member states (especially the Principal Investigator countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of the Institute of Space and Astronautical Science (ISAS) and the National Aeronautics and Space Administration (NASA).

  9. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  10. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  11. Cigarette Design Features: Effects on Emission Levels, User Perception, and Behavior.

    NARCIS (Netherlands)

    Talhout, Reinskje; Richter, Patricia A; Stepanov, Irina; Watson, Christina V; Watson, Clifford H

    This paper describes the effects of non-tobacco, physical cigarette design features on smoke emissions, product appeal, and smoking behaviors - 3 factors that determine smoker's exposure and related health risks.

  12. The infrared emission features in the spectrum of the Wolf-Rayet star WR 48a

    NARCIS (Netherlands)

    Chiar, JE; Peeters, E; Tielens, A. G. G. M.

    2002-01-01

    We present the first detection of unidentified infrared (UIR) emission features at similar to6.4 and 7.9 mum in the spectrum of the dusty WC8 Wolf-Rayet star WR 48a. Based on the H-deficient nature of WC stars, we attribute the emission features to large carbonaceous molecules or amorphous carbon

  13. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. (Western Ontario Univ., London (Canada) CNRS, Institut d' Astrophysique, Paris (France))

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  14. Emission features in the spectrum of NGC 7027 near 3.3 microns at very high resolution

    International Nuclear Information System (INIS)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P.

    1991-01-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs

  15. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  16. A sol-gel method for preparing ZnO quantum dots with strong blue emission

    International Nuclear Information System (INIS)

    Chen Zhong; Li Xiaoxia; Du Guoping; Chen Nan; Suen, Andy Y.M.

    2011-01-01

    ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 deg. C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 deg. C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed. - Highlights: → ZnO quantum dots (QDs) with strong blue emission were prepared by sol-gel method. → ZnO QDs had a pure spectral blue with the chromaticity coordinates (0.166, 0.215). → Optimal reaction time and temperature were 7 h and 60 deg. C, respectively.

  17. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    Science.gov (United States)

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  18. Anomalous radon emission as precursor of medium to strong earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria [National Institute of R& D for Optoelectronics, MG5 Bucharest -Magurele, 077125 Romania (Romania)

    2016-03-25

    Anomalous radon (Rn{sup 222}) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth’s crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.

  19. Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Peterson, B. M.

    2005-01-01

    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability ...... are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request....

  20. Outflow of chromospheric emission features from the rim of a sunspot

    Science.gov (United States)

    Liu, S.-Y.

    1973-01-01

    In viewing a 16 mm movie made from a time sequence of spectroheliograms, some of these emission features are found to move outward from the rim of the sunspot until they are eventually lost in the small plage. There are two interpretations for the streaming of the magnetic features. It is possible that kinks in the line of force propagate along a horizontal extension of the penumbral magnetic field. Alternatively, fragments of the sunspot magnetic field are carried away by the photospheric velocity field.

  1. Temporal feature of X-ray laser plasma observed from 3ω0/2, 2ω0 harmonic emission

    International Nuclear Information System (INIS)

    Li Wenhong; Mei Qiyong; Zhao Xuewei; Chen Yuting; Chunyu Shutai

    1995-01-01

    Temporal feature of X-ray laser plasma density was observed from 3ω 0 /2, 2ω 0 harmonic emission in the experiments. The temporal feature of 3ω 0 /2 harmonic emission of the germanium film is much different from that of the slab germanium target. The production of x-ray laser is closely related to 3ω 0 /2 harmonic emission in the slab germanium targets

  2. Detection of the 3.4- and 2.8-micron emission features in Comet Bradfield (1987s)

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.; Owen, T.C.; Mumma, M.J.

    1990-01-01

    Comet Bradfield's 3.4-micron C-H emission feature at 3.4 microns, as well as the emission feature near 2.8 microns, exhibit spectral shapes similar to those noted in Comets Halley and Wilson; the derived abundances of the C-H bonds in all three comets are also comparable (within water production rate uncertainties). These data support the hypothesis that the species responsible for the 3.4- and 2.8-micron features may be common to all comets. Beyond this, the widely differing ages of the three comets suggest that the 3.4-micron feature-emitting organics are not the product of surface irradiation processes after the comets' formation. 25 refs

  3. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  4. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  5. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    DEFF Research Database (Denmark)

    Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-01-01

    the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...

  6. Strong white light emission from a processed porous silicon and its photoluminescence mechanism

    International Nuclear Information System (INIS)

    Karacali, T.; Cicek, K.

    2011-01-01

    We have prepared various porous silicon (PS) structures with different surface conditions (any combination of oxidation, carbonization as well as thermal annealing) to increase the intensity of photoluminescence (PL) spectrum in the visible range. Strong white light (similar to day-light) emission was achieved by carrying out thermal annealing at 1100 deg. C after surface modification with 1-decene of anodic oxidized PS structures. Temperature-dependent PL measurements were first performed by gradually increasing the sample temperature from 10 to 300 K inside a cryostat. Then, we analyzed the measured spectrum of all prepared samples. After the analysis, we note that throughout entire measured spectrum, only two main peaks corresponding to blue and green-orange emission lines (which can be interpreted by quantum size effect and/or configuration coordinate model) were seem to be predominant for all temperature range. To further reveal and analysis these peaks, finally, measured data were inputted into the formula of activation energy of thermal excitation. We found that activation energies of blue and green-orange lines were approximately 49.3 and 44.6 meV, respectively. - Highlights: →Light emitting devices based on silicon technology are of great interest in illumination and display applications. → We have achieved strong white light (similar to day-light) emission from porous silicon. → The most important impact of carbonization on porous silicon and post annealing is the enhancement of room temperature luminescence.

  7. Possible detection of an emission feature near 584 A in the direction of G191-B2B

    Science.gov (United States)

    Green, James; Bowyer, Stuart; Jelinsky, Patrick

    1990-01-01

    A possible spectral emission feature is reported in the direction of the nearby hot white dwarf G191-B2B at 581.5 + or - 6 A with a significance of 3.8 sigma. This emission has been identified as He I 584.3 A. The emission cannot be due to local geocoronal emission or interplanetary backscatter of solar He I 584 A emission because the feature is not detected in a nearby sky exposure. Possible sources for this emission are examined, including the photosphere of G191-B2B, the comparison star G191-B2A, and a possible nebulosity near or around G191-B2B. The parameters required to explain the emission are derived for each case. All of these explanations require unexpected physical conditions; hence we believe this result must receive confirming verification despite the statistical likelihood of the detection.

  8. Possible detection of an emission feature near 584 A in the direction of G191-B2B

    International Nuclear Information System (INIS)

    Green, J.; Bowyer, S.; Jelinsky, P.

    1990-01-01

    A possible spectral emission feature is reported in the direction of the nearby hot white dwarf G191-B2B at 581.5 + or - 6 A with a significance of 3.8 sigma. This emission has been identified as He I 584.3 A. The emission cannot be due to local geocoronal emission or interplanetary backscatter of solar He I 584 A emission because the feature is not detected in a nearby sky exposure. Possible sources for this emission are examined, including the photosphere of G191-B2B, the comparison star G191-B2A, and a possible nebulosity near or around G191-B2B. The parameters required to explain the emission are derived for each case. All of these explanations require unexpected physical conditions; hence we believe this result must receive confirming verification despite the statistical likelihood of the detection. 15 refs

  9. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    Science.gov (United States)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  10. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada.

    Science.gov (United States)

    Kohnert, Katrin; Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Sachs, Torsten

    2017-07-19

    Arctic permafrost caps vast amounts of old, geologic methane (CH 4 ) in subsurface reservoirs. Thawing permafrost opens pathways for this CH 4 to migrate to the surface. However, the occurrence of geologic emissions and their contribution to the CH 4 budget in addition to recent, biogenic CH 4 is uncertain. Here we present a high-resolution (100 m × 100 m) regional (10,000 km²) CH 4 flux map of the Mackenzie Delta, Canada, based on airborne CH 4 flux data from July 2012 and 2013. We identify strong, likely geologic emissions solely where the permafrost is discontinuous. These peaks are 13 times larger than typical biogenic emissions. Whereas microbial CH 4 production largely depends on recent air and soil temperature, geologic CH 4 was produced over millions of years and can be released year-round provided open pathways exist. Therefore, even though they only occur on about 1% of the area, geologic hotspots contribute 17% to the annual CH 4 emission estimate of our study area. We suggest that this share may increase if ongoing permafrost thaw opens new pathways. We conclude that, due to permafrost thaw, hydrocarbon-rich areas, prevalent in the Arctic, may see increased emission of geologic CH 4 in the future, in addition to enhanced microbial CH 4 production.

  12. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  13. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  14. The first detection of neutral hydrogen in emission in a strong spiral lens

    Science.gov (United States)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  15. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  16. Permafrost thaw strongly reduces allowable CO2 emissions for 1.5°C and 2°C

    Science.gov (United States)

    Kechiar, M.; Gasser, T.; Kleinen, T.; Ciais, P.; Huang, Y.; Burke, E.; Obersteiner, M.

    2017-12-01

    We quantify how the inclusion of carbon emission from permafrost thaw impacts the budgets of allowable anthropogenic CO2 emissions. We use the compact Earth system model OSCAR v2.2 which we expand with a permafrost module calibrated to emulate the behavior of the complex models JSBACH, ORCHIDEE and JULES. When using the "exceedance" method and with permafrost thaw turned off, we find budgets very close to the CMIP5 models' estimates reported by IPCC. With permafrost thaw turned on, the total budgets are reduced by 3-4%. This corresponds to a 33-45% reduction of the remaining budget for 1.5°C, and a 9-13% reduction for 2°C. When using the "avoidance" method, however, permafrost thaw reduces the total budget by 3-7%, which corresponds to reductions by 33-56% and 56-79% of the remaining budget for 1.5°C and 2°C, respectively. The avoidance method relies on many scenarios that actually peak below the target whereas the exceedance method overlooks the carbon emitted by thawed permafrost after the temperature target is reached, which explains the difference. If we use only the subset of scenarios in which there is no net negative emissions, the permafrost-induced reduction in total budgets rises to 6-15%. Permafrost thaw therefore makes the emission budgets strongly path-dependent. We also estimate budgets of needed carbon capture in scenarios overshooting the temperature targets. Permafrost thaw strongly increases these capture budgets: in the case of a 1.5°C target overshot by 0.5°C, which is in line with the Paris agreement, about 30% more carbon must be captured. Our conclusions are threefold. First, inclusion of permafrost thaw systematically reduces the emission budgets, and very strongly so if the temperature target is overshot. Second, the exceedance method, that is the only one that complex models can follow, only partially accounts for the effect of slow non-linear processes such as permafrost thaw, leading to overestimated budgets. Third, the newfound

  17. The infrared emission bands. III. Southern IRAS sources.

    Science.gov (United States)

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features.

  18. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Airborne IPDA-Lidar Measurements: Methodology and Experimental Results

    Science.gov (United States)

    Ehret, G.; Amediek, A.; Wirth, M.; Fix, A.; Kiemle, C.; Quatrevalet, M.

    2016-12-01

    We report on a new method and on the first demonstration to quantify emission rates from strong greenhouse gas (GHG) point sources using airborne Integrated Path Differential Absorption (IPDA) Lidar measurements. In order to build trust in the self-reported emission rates by countries, verification against independent monitoring systems is a prerequisite to check the reported budget. A significant fraction of the total anthropogenic emission of CO2 and CH4 originates from localized strong point sources of large energy production sites or landfills. Both are not monitored with sufficiently accuracy by the current observation system. There is a debate whether airborne remote sensing could fill in the gap to infer those emission rates from budgeting or from Gaussian plume inversion approaches, whereby measurements of the GHG column abundance beneath the aircraft can be used to constrain inverse models. In contrast to passive sensors, the use of an active instrument like CHARM-F for such emission verification measurements is new. CHARM-F is a new airborne IPDA-Lidar devised for the German research aircraft HALO for the simultaneous measurement of the column-integrated dry-air mixing ratio of CO2 and CH4 commonly denoted as XCO2 und XCH4, respectively. It has successfully been tested in a serious of flights over Central Europe to assess its performance under various reflectivity conditions and in a strongly varying topography like the Alps. The analysis of a methane plume measured in crosswind direction of a coal mine ventilation shaft revealed an instantaneous emission rate of 9.9 ± 1.7 kt CH4 yr-1. We discuss the methodology of our point source estimation approach and give an outlook on the CoMet field experiment scheduled in 2017 for the measurement of anthropogenic and natural GHG emissions by a combination of active and passive remote sensing instruments on research aircraft.

  19. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    Science.gov (United States)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  20. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face

    International Nuclear Information System (INIS)

    Harborth, Peter; Fuß, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-01-01

    Highlights: ► First measurements of N 2 O and CH 4 emissions from an MBT landfill. ► High N 2 O emissions from recently deposited material. ► N 2 O emissions associated with aeration and the occurrence of nitrite and nitrate. ► Strong negative correlation between CH 4 and N 2 O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH 4 ) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH 4 and nitrous oxide (N 2 O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N 2 O emissions of 20–200 g CO 2 eq. m −2 h −1 magnitude (up to 428 mg N m −2 h −1 ) were observed within 20 m of the working face. CH 4 emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO 2 eq. m −2 h −1 . The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N 2 O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N 2 O and CH 4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N 2 O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH 4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N 2 O emissions, especially at MBT landfills

  1. Anatomy of the AGN in NGC 5548. IX. Photoionized emission features in the soft X-ray spectra

    Science.gov (United States)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Gu, Liyi; Costantini, E.; Kriss, G. A.; Bianchi, S.; Branduardi-Raymont, G.; Behar, E.; Di Gesu, L.; Ponti, G.; Petrucci, P.-O.; Ebrero, J.

    2018-04-01

    The X-ray narrow emission line region (NELR) of the archetypal Seyfert 1 galaxy NGC 5548 has been interpreted as a single-phase photoionized plasma that is absorbed by some of the warm absorber components. This scenario requires those overlaying warm absorber components to have larger distance (to the central engine) than the X-ray NELR, which is not fully consistent with the distance estimates found in the literature. Therefore, we reanalyze the high-resolution spectra obtained in 2013-2014 with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton to provide an alternative interpretation of the X-ray narrow emission features. We find that the X-ray narrow emission features in NGC 5548 can be described by a two-phase photoionized plasma with different ionization parameters (logξ = 1.3 and 0.1) and kinematics (vout = -50 and -400 km s-1), and no further absorption by the warm absorber components. The X-ray and optical NELR might be the same multi-phase photoionized plasma. Both X-ray and optical NELR have comparable distances, asymmetric line profiles, and the underlying photoionized plasma is turbulent and compact in size. The X-ray NELR is not the counterpart of the UV/X-ray absorber outside the line of sight because their distances and kinematics are not consistent. In addition, X-ray broad emission features that we find in the spectrum can be accounted for by a third photoionized emission component. The RGS spectrum obtained in 2016 is analyzed as well, where the luminosity of most prominent emission lines (the O VII forbidden line and O VIII Lyα line) are the same (at a 1σ confidence level) as in 2013-2014.

  2. Modeling vehicle emissions in different types of Chinese cities: importance of vehicle fleet and local features.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; He, Kebin; Yao, Zhiliang; Wang, Xintong; Zheng, Bo; Streets, David G; Wang, Qidong; Ding, Yan

    2011-10-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Low emissions system featured on compressor drive

    International Nuclear Information System (INIS)

    Curtis, T.

    1995-01-01

    A high speed power turbine is offered as an option with direct drive capability for pipeline compressors and other high-speed applications. As developed, it features ease of maintenance with rotor and nozzle assembly in a single cartridge to allow quick change-out or replacement of parts on site. The new compressor drive builds extensively on proven technology and is expected to provide lower installed and life-cycle costs per unit horsepower than previous units. During its development stages, M ampersand IE preformed cost and risk assessment of several design configurations and concluded that a derivative approach based on the standard unit was an optimal solution in the 39,000 shp range. A two-shaft gas turbine is expected to be applied in the industrial and commercial marine markets, including 50- and 60-Hertz power generation applications, pipeline compression, gas injection, and fast ferry commercial marine uses. Emissions controls for the system will include water or steam injection using a standard combustor or M and IE's DLE combustion system

  4. Rh-Catalyzed annulations of N-methoxybenzamides with ketenimines: synthesis of 3-aminoisoindolinones and 3-diarylmethyleneisoindolinones with strong aggregation induced emission properties.

    Science.gov (United States)

    Zhou, Xiaorong; Peng, Zhixing; Zhao, Hongyang; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-08-23

    Rhodium-catalyzed C-H activation/annulation reactions of ketenimines with N-methoxybenzamides furnished 3-aminoisoindolin-1-ones and 3-(diarylmethylene)isoindolin-1-ones. The synthesized 3-(diarylmethylene)isoindolin-1-ones exhibited aggregation induced emissions in aqueous tetrahydrofuran solution and strong green-yellow emissions in solids.

  5. Solid-State Chemistry as a Formation Mechanism for C 4N 2 Ice and Possibly the Haystack (220 cm -1 ice emission feature) in Titan's Stratosphere as Observed by Cassini CIRS

    Science.gov (United States)

    Anderson, Carrie; Samuelson, Robert E.; McLain, Jason L.; Nna Mvondo, Delphine; Romani, Paul; Flasar, F. Michael

    2016-10-01

    A profusion of organic ices containing hydrocarbons, nitriles, and combinations of their mixtures comprise Titan's complex stratospheric cloud systems, and are typically formed via vapor condensation. These ice particles are then distributed throughout the mid-to-lower stratosphere, with an increased abundance near the winter poles (see Anderson et al., 2016). The cold temperatures and the associated strong circumpolar winds that isolate polar air act in much the same way as on Earth, giving rise to compositional anomalies and stratospheric clouds that provide heterogeneous chemistry sites.Titan's C4N2 ice emission feature at 478 cm-1 and "the Haystack," a strong unidentified stratospheric ice emission feature centered at 220 cm-1, share a common characteristic. Even though both are distinctive ice emission features evident in Cassini Composite InfraRed (CIRS) far-IR spectra, no associated vapor emission features can be found in Titan's atmosphere. Without a vapor phase, solid-state chemistry provides an alternate mechanism beside vapor condensation for producing these observed stratospheric ices.Anderson et al., (2016) postulated that C4N2 ice formed in Titan's stratosphere via the solid-state photochemical reaction HCN + HC3N → C4N2 + H2 can occur within extant HCN-HC3N composite ice particles. Such a reaction, and potentially similar reactions that may produce the Haystack ice, are specific examples of solid-state chemistry in solar system atmospheres. This is in addition to the reaction HCl + ClONO2 → HNO3 + Cl2, which is known to produce HNO3 coatings on terrestrial water ice particles, a byproduct of the catalytic chlorine chemistry that produces ozone holes in Earth's polar stratosphere (see for example, Molina et al., 1987 Soloman, 1999).A combination of radiative transfer modeling of CIRS far-IR spectra, coupled with optical constants derived from thin film transmittance spectra of organic ice mixtures obtained in our Spectroscopy for Planetary ICes

  6. On the Origin of the 3.3 μ m Unidentified Infrared Emission Feature

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, Seyedabdolreza; Zhang, Yong; Kwok, Sun, E-mail: sunkwok@hku.hk [Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2017-08-20

    The 3.3 μ m unidentified infrared emission feature is commonly attributed to the C–H stretching band of aromatic molecules. Astronomical observations have shown that this feature is composed of two separate bands at 3.28 and 3.30 μ m, and the origin of these two bands is unclear. In this paper, we perform vibrational analyses based on quantum mechanical calculations of 153 organic molecules, including both pure aromatic molecules and molecules with mixed aromatic/olefinic/aliphatic hydridizations. We find that many of the C–H stretching vibrational modes in polycyclic aromatic hydrocarbon (PAH) molecules are coupled. Even considering the uncoupled modes only, the correlation between the band intensity ratios and the structure of the PAH molecule is not observed, and the 3.28 and 3.30 μ m features cannot be directly interpreted in the PAH model. Based on these results, the possible aromatic, olefinic, and aliphatic origins of the 3.3 μ m feature are discussed. We suggest that the 3.28 μ m feature is assigned to aromatic C–H stretch whereas the 3.30 μ m feature is olefinic. From the ratio of these two features, the relative olefinic to aromatic content of the carrier can be determined.

  7. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    Energy Technology Data Exchange (ETDEWEB)

    Romero, V.H. [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); De la Rosa, E., E-mail: elder@cio.mx [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Velazquez-Salazar, J.J. [Department of Physics and Astronomy, The University of Texas at San Antonio One UTSA Circle, San Antonio TX 78249 (United States)

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  8. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Science.gov (United States)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  9. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    International Nuclear Information System (INIS)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime

  10. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  11. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  12. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel; Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa; Gladders, Michael D.; Rigby, Jane R.; Dahle, Hakon; Florian, Michael

    2017-01-01

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  13. Strongly lensed neutral hydrogen emission: detection predictions with current and future radio interferometers

    Science.gov (United States)

    Deane, R. P.; Obreschkow, D.; Heywood, I.

    2015-09-01

    Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.

  14. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  15. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  16. A Study of the 3.3 and 3.4 μm Emission Features in Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.; Geballe, T. R.; Kwok, Sun

    2007-06-01

    Medium-resolution spectra have been obtained of seven carbon-rich proto-planetary nebulae (PPNs) and one young planetary nebula from 3.2 to 3.8 μm, an interval containing the prominent hydrocarbon CH stretches at 3.3 and 3.4 μm due to aromatic and aliphatic structures, respectively. The 3.3 μm feature is newly identified in IRAS 23304+6147, 22223+4327, and 06530-0213 and is confirmed in Z02229+6208. Three of the PPNs emit in the 3.4 μm feature, two of these being new identifications, IRAS 20000+3239 and 01005+7910, with two others showing possible detections. The 3.3 and 3.4 μm emission features in IRAS 22272+5435 are seen in the nebula offset from the star but not at the position of the central star, consistent with the 2003 results of Goto et al. A similar distribution is seen for the 3.3 μm feature in IRAS 22223+4327. All of the PPNs except IRAS 22272+5435 show Class A 3 μm emission features. These observations, when combined with those of the approximately equal number of other carbon-rich PPNs previously observed, demonstrate that there are large differences in the 3 μm emission bands, even for PPNs with central stars of similar spectral type, and thus that the behavior of the bands does not depend solely on spectral type. We also investigated other possible correlations to help explain these differences. These differences do not depend on the C/O value, since the Class B sources fall within the C/O range found for Class A. All of these 3.3 μm sources also show C2 absorption and 21 μm emission features, except IRAS 01005+7910, which is the hottest source at B0. This research is based on observations made at the W. M. Keck Observatory by Gemini staff, supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. The W. M. Keck Observatory is

  17. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    Energy Technology Data Exchange (ETDEWEB)

    Harborth, Peter, E-mail: p.harborth@tu-bs.de [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Fuß, Roland [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Münnich, Kai [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany); Flessa, Heinz [Institute of Climate-Smart Agriculture, Johann Heinrich von Thünen Institute, Braunschweig (Germany); Fricke, Klaus [Department of Waste and Resource Management, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig (Germany)

    2013-10-15

    Highlights: ► First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ► High N{sub 2}O emissions from recently deposited material. ► N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ► Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20–200 g CO{sub 2} eq. m{sup −2} h{sup −1} magnitude (up to 428 mg N m{sup −2} h{sup −1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup −2} h{sup −1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  18. Field emission properties and strong localization effect in conduction mechanism of nanostructured perovskite LaNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India); Department of Physics, College of Engineering, Pune 411005, Maharashtra (India); Tanty, Narendra; Patra, Ananya; Prasad, V. [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2016-08-22

    We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.

  19. Study of luminous emissions associated to electron emissions in radiofrequency cavities; Etude des emissions lumineuses associees aux emissions electroniques dans les cavites hyperfrequences

    Energy Technology Data Exchange (ETDEWEB)

    Maissa, S

    1996-11-26

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author) 102 refs.

  20. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  1. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    Science.gov (United States)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  2. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others

    2017-07-01

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

  3. Very Strong TeV Emission as $\\gamma$-Ray Burst Afterglows

    CERN Document Server

    Totani, T

    1998-01-01

    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \\sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \\sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \\sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. ...

  4. Coherent emission mechanisms in astrophysical plasmas

    Science.gov (United States)

    Melrose, D. B.

    2017-12-01

    Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient ({d}f(v_allel )/{d}v_allel >0) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying {d}f(v)/{d}v>0) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent

  5. Features of the use of charge-coupled devices in emission spectroscopic analysis

    International Nuclear Information System (INIS)

    Livshits, A.M.; Peleznev, A.V.

    1993-01-01

    Multielement radiation receivers based on linear charge-coupled photodiode devices have become more aand more widely used recently in spectroscopic analysis. The main feature of such receivers is their ability to record not only the intensity of the incident light flux, but also its spatial distribution. This article considers the advantages and disadvantages of charge-coupled devices when used in emission spectroscopic analysis. The main methods nd devices employed for this purpose and discussed here can be divided into four types: photographic photometry, visual styloscopy, quantometry, and successive analysis. 4 refs., 1 fig

  6. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  7. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.

    Science.gov (United States)

    Harborth, Peter; Fuss, Roland; Münnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-01

    Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20-200gCO2eq.m(-2)h(-1) magnitude (up to 428mgNm(-2)h(-1)) were observed within 20m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30-40m from the working face, where they reached about 10gCO2eq.m(-2)h(-1). The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000ppmv in material below the emission hotspot. At a depth of 50cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The detectability of radio emission from exoplanets

    Science.gov (United States)

    Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.

    2018-05-01

    Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.

  9. A TALE OF THREE MYSTERIOUS SPECTRAL FEATURES IN CARBON-RICH EVOLVED STARS: THE 21 μm, 30 μm, AND “UNIDENTIFIED INFRARED” EMISSION FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ajay; Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Jiang, B. W., E-mail: amishra@mail.missouri.edu, E-mail: lia@missouri.edu, E-mail: bjiang@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2015-03-20

    The mysterious “21 μm” emission feature seen almost exclusively in the short-lived protoplanetary nebula (PPN) phase of stellar evolution remains unidentified since its discovery two decades ago. This feature is always accompanied by the equally mysterious, unidentified “30 μm” feature and the so-called “unidentified infrared” (UIR) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm which are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The 30 μm feature is commonly observed in all stages of stellar evolution from the asymptotic giant branch through PPN to the planetary nebula phase. We explore the interrelations among the mysterious 21, 30 μm, and UIR features of the 21 μm sources. We derive the fluxes emitted in the observed UIR, 21, and 30 μm features from published Infrared Space Observatory or Spitzer/IRS spectra. We find that none of these spectral features correlate with each other. This argues against a common carrier (e.g., thiourea) for both the 21 μm feature and the 30 μm feature. This also does not support large PAH clusters as a possible carrier for the 21 μm feature.

  10. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    Science.gov (United States)

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  11. ON IRON MONOXIDE NANOPARTICLES AS A CARRIER OF THE MYSTERIOUS 21 μm EMISSION FEATURE IN POST-ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Li, Aigen; Jiang, B. W.; Liu, J. M.

    2013-01-01

    A prominent mysterious emission feature peaking at ∼20.1 μm—historically known as the '21 μm' feature—is seen in over two dozen Galactic and Magellanic Cloud carbon-rich, post-asymptotic giant branch (post-AGB) stars. The nature of its carrier remains unknown since the first detection of the 21 μm feature in 1989. Over a dozen materials have been suggested as possible carrier candidates. However, none of them has been accepted: they either require too much material (compared to what is available in the circumstellar shells around these post-AGB stars), or exhibit additional emission features that are not seen in these 21 μm sources. Recently, iron monoxide (FeO) nanoparticles seem to be a promising carrier candidate as Fe is an abundant element and FeO emits exclusively at ∼21 μm. In this work, using the proto-typical protoplanetary nebula HD 56126 as a test case, we examine FeO nanoparticles as a carrier for the 21 μm feature by modeling their infrared emission, with FeO being stochastically heated by single stellar photons. We find that FeO emits too broad a 21 μm feature to explain that observed and the Fe abundance required to be locked up in FeO exceeds what is available in HD 56126. We therefore conclude that FeO nanoparticles are not likely to be responsible for the 21 μm feature

  12. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  13. Strong visible-light emission of ZnS nanocrystals embedded in sol-gel silica xerogel

    International Nuclear Information System (INIS)

    Yang Ping; Lue, M.-K.; Song, C.-F.; Zhou, G.-J.; Ai, Z.-P.; Xu Dong; Yuan, D.-R.; Cheng, X.-F.

    2003-01-01

    ZnS nanoparticles embedded in novel porous phosphor silica xerogel have been synthesized by sol-gel processing. Their fluorescence properties have been evaluated and compared with those of the Na + -doped and un-doped silica xerogels. Stable and strong visible-light emission of the doped samples has been observed. The relative fluorescence intensities of the samples doped with ZnS nanoparticles (S 2- ions have been obtained by the water solution of NaS) are the highest among all of the doped samples. Its relative fluorescence intensity is about 7.5 times of that of the un-doped silica xerogel and about 300 times of that of pure ZnS nanoparticles. The emission wavelength of the ZnS-doped and Na + -doped samples is the same as that of the un-doped silica xerogel and ZnS nanoparticles (λ em =440-450 nm). This high efficiency luminescence of the doped silica xerogels has been assigned to the luminescence centers of ZnS nanoparticles and Na + in the porous phosphorescence silica xerogel

  14. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis

    International Nuclear Information System (INIS)

    Huong, Tran Thu; Vinh, Le Thi; Phuong, Ha Thi; Khuyen, Hoang Thi; Anh, Tran Kim; Tu, Vu Duc; Minh, Le Quoc

    2016-01-01

    In this report, we are presenting the controlled fabrication results of the strong emission YVO 4 : Eu 3+ nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO 4 : Eu 3+ prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO 4 : Eu 3+ nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of 5 D 0 – 7 F j (j=1, 2, 3, and 4) of Eu 3+ ions with the highest luminescence intensity of 5 D 0 → 7 F 2 transition. - Highlights: • The strong emission YVO 4 :Eu 3+ nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO 4 :Eu 3+ nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO 4 :Eu 3+ nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  15. Study of luminous emissions associated to electron emissions in radiofrequency cavities

    International Nuclear Information System (INIS)

    Maissa, S.

    1996-01-01

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author)

  16. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  17. Studies of the jet in BL Lacertae. I. Recollimation shock and moving emission features

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M. H.; Hovatta, T. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Meier, D. L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Arshakian, T. G. [I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Homan, D. C. [Department of Physics, Denison University, Granville, OH 43023 (United States); Kovalev, Y. Y. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Lister, M. L.; Richards, J. L. [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Pushkarev, A. B.; Savolainen, T., E-mail: mhc@astro.caltech.edu [Max-Planck-Institut für Radioastronomie, Auf Dem Hügel 69, D-53121 Bonn (Germany)

    2014-06-01

    Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at a position angle of –166.°6 that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical two-dimensional relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock (RCS). Because of this, and the close analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as an RCS. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model, the beam has Lorentz factor Γ{sub beam}{sup gal}≈3.5 in the frame of the host galaxy and the fast mode wave has Lorentz factor Γ{sub Fwave}{sup beam}≈1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features, β{sub app} = v{sub app}/c = 10. In this model the Lorentz factor of the pattern in the galaxy frame is approximately three times larger than that of the beam itself.

  18. US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox

    International Nuclear Information System (INIS)

    Grafton, R. Quentin; Kompas, Tom; Long, Ngo Van; To, Hang

    2014-01-01

    Using energy data over the period 1981–2011 we find that US biofuels subsidies and production have provided a perverse incentive for US fossil fuel producers to increase their rate of extraction that has generated a weak green paradox. Further, in the short-run if the reduction in the CO 2 emissions from a one-to-one substitution between biofuels and fossil fuels is less than 26 percent, or less than 57 percent if long run effect is taken into account, then US biofuels production is likely to have resulted in a strong green paradox. These results indicate that subsidies for first generation biofuels, which yield a low level of per unit CO 2 emission reduction compared to fossil fuels, might have contributed to additional net CO 2 emissions over the study period. - Highlights: • US biofuels subsidies increased fossil fuel extraction from 1981 to 2011. • US biofuels subsidies likely increased carbon emissions from 1981 to 2011. • Governments must consider effects of biofuel subsidies on fossil fuel extraction

  19. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  20. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  1. Guilt by Association: The 13 micron Dust Feature in Circumstellar Shells and Related Spectral Features

    Science.gov (United States)

    Sloan, G. C.; Kraemer, K. E.; Goebel, J. H.; Price, S. D.

    A study of spectra from the SWS on ISO of optically thin oxygen-rich dust shells shows that the strength of the 13 micron dust emission feature is correlated with the CO2 bands (13--17 microns) and dust emission features at 19.8 and 28.1 microns. SRb variables tend to show stronger 13 micron features than Mira variables, suggesting that the presence of the 13 micron and related features depends on pulsation mode and mass-loss rate. The absence of any correlation to dust emission features at 16.8 and 32 microns makes spinel an unlikely carrier. The most plausible carrier of the 13 micron feature remains crystalline alumina, and we suggest that the related dust features may be crystalline silicates. When dust forms in regions of low density, it may condense into crystalline grain structures.

  2. Detailed observations of NGC 4151 with IUE-III. Variability of the strong emission lines from 1978 February to 1980 May

    International Nuclear Information System (INIS)

    Ulrich, M.H.; Boksenberg, A.; Bromage, G.E.

    1983-11-01

    Observations of the variability of the three strong ultraviolet emission lines in the Seyfert galaxy NGC 4151 (CIV, CIII, and MgII) are used to study the structure of the broad line region and the nuclear energy source of this active galaxy. (author)

  3. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  4. Can we bet on negative emissions to achieve the 2°C target even under strong carbon cycle feedbacks?

    Science.gov (United States)

    Tanaka, K.; Yamagata, Y.; Yokohata, T.; Emori, S.; Hanaoka, T.

    2015-12-01

    Negative emission technologies such as Bioenergy with Carbon dioxide Capture and Storage (BioCCS) play an ever more crucial role in meeting the 2°C stabilization target. However, such technologies are currently at their infancy and their future penetrations may fall short of the scale required to stabilize the warming. Furthermore, the overshoot in the mid-century prior to a full realization of negative emissions would give rise to a risk because such a temporal but excessive warming above 2°C might amplify itself by strengthening climate-carbon cycle feedbacks. It has not been extensively assessed yet how carbon cycle feedbacks might play out during the overshoot in the context of negative emissions. This study explores how 2°C stabilization pathways, in particular those which undergo overshoot, can be influenced by carbon cycle feedbacks and asks their climatic and economic consequences. We compute 2°C stabilization emissions scenarios under a cost-effectiveness principle, in which the total abatement costs are minimized such that the global warming is capped at 2°C. We employ a reduced-complexity model, the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2), which comprises a box model of the global carbon cycle, simple parameterizations of the atmospheric chemistry, and a land-ocean energy balance model. The total abatement costs are estimated from the marginal abatement cost functions for CO2, CH4, N2O, and BC.Our preliminary results show that, if carbon cycle feedbacks turn out to be stronger than what is known today, it would incur substantial abatement costs to keep up with the 2°C stabilization goal. Our results also suggest that it would be less expensive in the long run to plan for a 2°C stabilization pathway by considering strong carbon cycle feedbacks because it would cost more if we correct the emission pathway in the mid-century to adjust for unexpectedly large carbon cycle feedbacks during overshoot. Furthermore, our

  5. Detection of the 3.4 micron emission feature in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r) and an observational summary

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.

    1991-01-01

    The 3.4 micron emission feature due to cometary organics was detected in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r). Features-to-continuum ratios in these two comets were higher than those expected from the trend seen in other comets to date. Three micron spectra of eight comets are reviewed. The 3.4 micron band flux is better correlated with the water production rate than with the dust production rate in this sample of comets. High feature-to-continuum ratios in P/Brorsen-Metcalf and Okazaki-Levy-Rudenko can be explained by the low dust-to-gas ratios of these two comets. The observations to date are consistent with cometary organics being present in all comets (even those for which no 3.4 micron feature was evident) at comparable abundances with respect to water. The emission mechanism and absolute abundance of the organics are not well determined; either gas-phase fluorescence or thermal emission from hot grains is consistent with the heliocentric distance dependence of the 3.4 micron band flux. There is an overall similarity in the spectral profiles of the 3.4 micron feature in comets; however, there are some potentially significant differences in the details of the spectra. 30 refs

  6. Strong diameter-dependence of nanowire emission coupled to waveguide modes

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Abujetas, Diego R.; Sánchez-Gil, José A. [Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas Serrano, 121, 28006 Madrid (Spain); Bakkers, Erik P. A. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gómez Rivas, Jaime, E-mail: j.gomezrivas@differ.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)

    2016-03-21

    The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guided modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.

  7. OPTICAL LINE EMISSION IN BRIGHTEST CLUSTER GALAXIES AT 0 < z < 0.6: EVIDENCE FOR A LACK OF STRONG COOL CORES 3.5 Gyr AGO?

    International Nuclear Information System (INIS)

    McDonald, Michael

    2011-01-01

    In recent years the number of known galaxy clusters beyond z ∼> 0.2 has increased drastically with the release of multiple catalogs containing >30,000 optically detected galaxy clusters over the range 0 0.3, hinting at an earlier epoch of strong cooling. We compare the evolution of emission-line nebulae to the X-ray-derived cool core (CC) fraction from the literature over the same redshift range and find overall agreement, with the exception that an upturn in the strong CC fraction is not observed at z > 0.3. The overall agreement between the evolution of CCs and optical line emission at low redshift suggests that emission-line surveys of galaxy clusters may provide an efficient method of indirectly probing the evolution of CCs and thus provide insights into the balance of heating and cooling processes at early cosmic times.

  8. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail: Christoph.Reich@tu-berlin.de; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  9. Intrinsic polarization changes and the H-alpha and CA II emission features in T-Tauri stars

    Science.gov (United States)

    Svatos, J.; Solc, M.

    1981-12-01

    On the basis of the correlation between polarization and emission features observed in certain T-Tauri stars, it is concluded that flaring effects associated with UV and/or X-ray irradiation and with increased magnetic field are responsible for the intrinsic polarization changes in T-Tauri stars. The correlation between emission Ca II lines and polarization degree both in Miras and T-Tau stars is thought to support the contention that the intrinsic polarization changes are due to the irradiation of silicate-like grains. In some T-Tau stars the increase in the magnetic field can be the principal agent causing the polarization increase due to the enhanced orientation of elongated grains.

  10. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian

    2011-01-01

    Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so...... cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...... projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters...

  11. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    Science.gov (United States)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  12. Laboratory simulation of infrared astrophysical features

    International Nuclear Information System (INIS)

    Rose, L.A.

    1979-01-01

    Laboratory infrared emission and absorption spectra have been taken of terrestrial silicates, meteorites and lunar soils in the form of micrometer and sub-micrometer grains. The emission spectra were taken in a way that imitates telescopic observations. The purpose was to see which materials best simulate the 10 μm astrophysical feature. The emission spectra of dunite, fayalite and Allende give a good fit to the 10 μm broadband emission feature of comets Bennett and Kohoutek. A study of the effect of grain size on the presence of the 10 μm emission features of dunite shows that for particles larger than 37 μm no feature is seen. The emission spectrum of the Murray meteorite, a Type 2 carbonaceous chondrite, is quite similar to the intermediate resolution spectrum of comet Kohoutek in the 10 μm region. Hydrous silicates or amorphous magnesium silicates in combination with high-temperature condensates, such as olivine or anorthite, would yield spectra that match the intermediate resolution spectrum of comet Kohoutek in the 10 μm region. Glassy olivine and glassy anorthite in approximately equal proportions would also give a spectrum that is a good fit to the cometary 10 μm feature. (Auth.)

  13. Silicate emission feature in the spectrum of comet Mueller 1993a

    Science.gov (United States)

    Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

    1994-01-01

    An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

  14. The first full-resolution measurements of Auroral Medium Frequency Burst Emissions

    Science.gov (United States)

    Bunch, N. L.; Labelle, J.; Weatherwax, A.; Hughes, J.

    2008-12-01

    Auroral MF burst is a naturally occurring auroral radio emission which appears unstructured on resolution of previous measurements, is observed in the frequency range of 0.8-4.5 MHz, and has typical amplitudes of around 10-14 V2/m2Hz, and durations of a few minutes. The emission occurs at substorm onset. Since Sept 2006, Dartmouth has operated a broadband (0-5 MHz) interferometer at Toolik Lake, Alaska (68° 38' N, 149° 36' W, 68.51 deg. magnetic latitude), designed for the study of auroral MF burst emissions. Normal operation involves taking snapshots of waveforms from four spaced antennas from which wave spectral and directional information is obtained. However, the experiment can also be run in "continuous mode" whereby the signal from a selected antenna is sampled continuously at 10 M samples/second. A "continuous mode" campaign was run 0800-1200 UT (~2200-0200 MLT) daily from March 21 to April 19, 2008. During this campaign more than twenty auroral MF burst emissions were observed, including three extraordinarily intense examples lasting approximately two minutes each. These observations represent the highest time and frequency resolution data ever collected of MF burst emissions. These data allow us to better characterize the null near twice the electron gyrofrequency identified in previous experiments, since examples of this feature observed during this campaign display a strong null ~50 kHz in bandwidth, with sharp boundaries and occasionally coincident with 2 fce auroral roar. These data also allow us to search for frequency-time structures embedded in MF-burst. One prominent feature appears to be a strong single frequency emission which broadens down to lower frequencies over time, spreading to approximately 500 kHz in bandwidth over ~10 ms. Among other features observed are a diffuse and unstructured emission, as well as what could potentially be several separate emission sources, with multiple emissions occurring simultaneously, appearing as weaker

  15. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Science.gov (United States)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  16. Controlled fabrication of the strong emission YVO{sub 4}:Eu{sup 3+} nanoparticles and nanowires by microwave assisted chemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Huong, Tran Thu, E-mail: tthuongims@gmail.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Vinh, Le Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Department of Chemistry, Hanoi University of Mining and Geology (Viet Nam); Phuong, Ha Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Department of Chemistry, Hanoi University of Medicine (Viet Nam); Khuyen, Hoang Thi [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Anh, Tran Kim [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Duy Tan University, 14/25 Quang Trung, Da Nang (Viet Nam); Tu, Vu Duc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Physics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 62102, Taiwan (China); Minh, Le Quoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam); Duy Tan University, 14/25 Quang Trung, Da Nang (Viet Nam)

    2016-05-15

    In this report, we are presenting the controlled fabrication results of the strong emission YVO{sub 4}: Eu{sup 3+} nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO{sub 4}: Eu{sup 3+} prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO{sub 4}: Eu{sup 3+} nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of {sup 5}D{sub 0}–{sup 7}F{sub j} (j=1, 2, 3, and 4) of Eu{sup 3+} ions with the highest luminescence intensity of {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. - Highlights: • The strong emission YVO{sub 4}:Eu{sup 3+} nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO{sub 4}:Eu{sup 3+} nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO{sub 4}:Eu{sup 3+} nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  17. X-ray spectral models of Galactic bulge sources - the emission-line factor

    International Nuclear Information System (INIS)

    Vrtilek, S.D.; Swank, J.H.; Kallman, T.R.

    1988-01-01

    Current difficulties in finding unique and physically meaningful models for the X-ray spectra of Galactic bulge sources are exacerbated by the presence of strong, variable emission and absorption features that are not resolved by the instruments observing them. Nine Einstein solid state spectrometer (SSS) observations of five Galactic bulge sources are presented for which relatively high resolution objective grating spectrometer (OGS) data have been published. It is found that in every case the goodness of fit of simple models to SSS data is greatly improved by adding line features identified in the OGS that cannot be resolved by the SSS but nevertheless strongly influence the spectra observed by SSS. 32 references

  18. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  19. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Wu, Kinwah [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Younsi, Ziri; Mizuno, Yosuke [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany); Asada, Keiichi; Nakamura, Masanori, E-mail: hpu@perimeterinstitute.ca, E-mail: asada@asiaa.sinica.edu.tw, E-mail: nakamura@asiaa.sinica.edu.tw, E-mail: kinwah.wu@ucl.ac.uk, E-mail: younsi@th.physik.uni-frankfurt.de, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China)

    2017-08-20

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.

  20. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  1. Numerical prediction of local transitional features of turbulent forced gas flows in circular tubes with strong heating

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Kunugi, Tomoaki; Shehata, A.M.; McEligot, D.M.

    1997-03-01

    Previous numerical simulation for the laminarization due to heating of the turbulent flow in pipe were assessed by comparison with only macroscopic characteristics such as heat transfer coefficient and pressure drop, since no experimental data on the local distributions of the velocity and temperature in such flow situation was available. Recently, Shehata and McEligot reported the first measurements of local distributions of velocity and temperature for turbulent forced air flow in a vertical circular tube with strongly heating. They carried out the experiments in three situations from turbulent flow to laminarizing flow according to the heating rate. In the present study, we analyzed numerically the local transitional features of turbulent flow evolving laminarizing due to strong heating in their experiments by using the advanced low-Re two-equation turbulence model. As the result, we successfully predicted the local distributions of velocity and temperature as well as macroscopic characteristics in three turbulent flow conditions. By the present study, a numerical procedure has been established to predict the local characteristics such as velocity distribution of the turbulent flow with large thermal-property variation and laminarizing flow due to strong heating with enough accuracy. (author). 60 refs

  2. A FEATURE MOVIE OF SiO EMISSION 20-100 AU FROM THE MASSIVE YOUNG STELLAR OBJECT ORION SOURCE I

    International Nuclear Information System (INIS)

    Matthews, L. D.; Greenhill, L. J.; Goddi, C.; Humphreys, E. M. L.; Chandler, C. J.; Kunz, M. W.

    2010-01-01

    We present multi-epoch Very Long Baseline Array imaging of the 28 SiO v = 1 and v = 2, J = 1-0 maser emission toward the massive young stellar object (YSO) Orion Source I. Both SiO transitions were observed simultaneously with an angular resolution of ∼0.5 mas (∼0.2 AU for d = 414 pc) and a spectral resolution of ∼0.2 km s -1 . Here we explore the global properties and kinematics of the emission through two 19-epoch animated movies spanning 21 months (from 2001 March 19 to 2002 December 10). These movies provide the most detailed view to date of the dynamics and temporal evolution of molecular material within ∼20-100 AU of a massive (∼>8 M sun ) YSO. As in previous studies, we find that the bulk of the SiO masers surrounding Source I lie in an X-shaped locus; the emission in the south and east arms is predominantly blueshifted, and emission in the north and west is predominantly redshifted. In addition, bridges of intermediate-velocity emission are observed connecting the red and blue sides of the emission distribution. We have measured proper motions of over 1000 individual maser features and found that these motions are characterized by a combination of radially outward migrations along the four main maser-emitting arms and motions tangent to the intermediate-velocity bridges. We interpret the SiO masers as arising from a wide-angle bipolar wind emanating from a rotating, edge-on disk. The detection of maser features along extended, curved filaments suggests that magnetic fields may play a role in launching and/or shaping the wind. Our observations appear to support a picture in which stars with masses as high as at least 8 M sun form via disk-mediated accretion. However, we cannot yet rule out that the Source I disk may have been formed or altered following a recent close encounter.

  3. Synchronization of spontaneous otoacoustic emissions in the tokay gecko

    Science.gov (United States)

    Roongthumskul, Yuttana; Hudspeth, A. J.

    2018-05-01

    Spontaneous otoacoustic emissions (SOAEs) are a universal feature of all classes of tetrapods. Although the generation mechanism of SOAEs are incompletely understood, these emissions are undoubtedly associated with the active process of the inner ear. In most lizards, unlike mammals and amphibians, robust SOAEs can ordinarily be detected from both ears. In this work, we investigated the interactions between emissions recorded simultaneously from the two ears of tokay geckos. We found that the frequency spectra of SOAEs from both ears of an individual animal are partially correlated: the peaks of several emissions occur at identical frequencies. To investigate the underlying mechanisms of these identical-frequency SOAEs, we perturbed the emissions from one or both ears by manipulating the pressure in the ear canals or by decreasing the local temperature in the vicinity of one inner ear. Suppression of SOAEs due to large positive pressures revealed that some identical-frequency emissions were generated unilaterally, whereas others were contributed by both ears at identical or slightly different frequencies. These bilaterally generated SOAEs became desynchronized as their frequency detuning grew sufficiently large, a phenomenon consistent with the synchronization of two active oscillators. Finally, we found that manipulations of the volume of the oral cavity or altering the impedance of the tympanum strongly affected the synchronization of SOAEs. These findings agreed with previous studies suggesting that the tokay gecko, like other lizards, exhibits strong acoustic coupling between its tympani through the oral cavity.

  4. Time-resolved spectral analysis of prompt emission from long gamma-ray bursts with GeV emission

    International Nuclear Information System (INIS)

    Rao Arikkala Raghurama; Basak Rupal; Bhattacharya Jishnu; Chandra Sarthak; Maheshwari Nikunj; Choudhury Manojendu; Misra Ranjeev

    2014-01-01

    We performed detailed time-resolved spectroscopy of bright long gamma-ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs. (research papers)

  5. Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4.

    Science.gov (United States)

    Chen, Min-Yi; Lin, Jin-Tai; Hsu, Chia-Shuo; Chang, Chung-Kai; Chiu, Ching-Wen; Chen, Hao Ming; Chou, Pi-Tai

    2018-05-01

    Colloidal perovskite quantum dots represent one of the most promising materials for applications in solar cells and photoluminescences. These devices require a low density of crystal defects and a high yield of photogenerated carriers, which are difficult to realize in tin-halide perovskite because of the intrinsic instability of tin during nucleation. Here, an enhancement in the luminescent property of tin-halide perovskite nanoplates (TPNPs) that are composed of strongly coupled layered structures with the chemical formula of PEA 2 SnX 4 (PEA = C 6 H 5 (CH 2 ) 2 NH 3 , X = Br, I) is reported. TPNPs (X = I) show an emission at a wavelength of 640 nm, with high quantum yield of 6.40 ± 0.14% and full width at half maximum (FWHM) as small as 36 nm. The presence of aliphatic carboxylic acid is found to play a key role in reducing the tin perovskite defect density, which significantly improves the emission intensity and stability of TPNPs. Upon mixing iodo- and bromo- precursors, the emission wavelength is successfully tuned from 640 nm (PEA 2 SnI 4 ) to 550 nm (PEA 2 SnBr 4 ), with a corresponding emission quantum yield and FWHM of 0.16-6.40% and 36-80 nm, respectively. The results demonstrate a major advance for the emission yield and tunability of tin-halide perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Deep Chandra ACIS Study of NGC 4151. II. The Innermost Emission Line Region and Strong Evidence for Radio Jet-NLR Cloud Collision

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Mundell, Carole G.; Karovska, Margarita; Zezas, Andreas

    2011-07-01

    We have studied the X-ray emission within the inner ~150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that >~ 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is <~ 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.

  7. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.; Fletcher, L.; Pak, A.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Galtier, E.; Gericke, D. O.; Gregori, G.; Hastings, J.; Landen, O. L.; Le Pape, S.; Lee, H. J.; Nagler, B.; Neumayer, P.; Turnbull, D.; Vorberger, J.; White, T. G.; Wünsch, K.; Zastrau, U.; Glenzer, S. H.; Döppner, T.

    2014-05-01

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4k=4Å-1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  8. An economic analysis of tradeable emission permits for sulphur dioxide emissions in Europe

    NARCIS (Netherlands)

    Kruitwagen, S.

    1996-01-01

    <strong>7.1 Introductionstrong>
    This study has examined the question of whether a system of tradeable emission permits can contribute to a cost-effective reduction of SO 2 emissions in Europe, taking into account

  9. EARLY EMISSION FROM TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Rabinak, Itay; Waxman, Eli; Livne, Eli

    2012-01-01

    A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a ∼10 3 s long UV/optical flash with a luminosity of ∼1 to ∼3 × 10 39 erg s –1 . Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t drop ∼ 1 hr due to the deviation from pure radiation domination.

  10. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  11. Diagnosis of dementia with single photon emission computed tomography

    International Nuclear Information System (INIS)

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-01-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease

  12. A DEEP CHANDRA ACIS STUDY OF NGC 4151. II. THE INNERMOST EMISSION LINE REGION AND STRONG EVIDENCE FOR RADIO JET-NLR CLOUD COLLISION

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.

    2011-01-01

    We have studied the X-ray emission within the inner ∼150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that ∼> 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is ∼< 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.

  13. Effect of density distribution of cathode emission on the flux character in a strong-current electron gun

    International Nuclear Information System (INIS)

    Matora, I.M.; Merkulov, L.A.

    1975-01-01

    The effect is considered of two kinds of a dependence of the emission density from the electric field voltage on the emitter surface of a strong-current electron gun (the Schottky law and the ''3/2'' law) upon the choice of a form for the meridional cross section of this emitter at the condition of electron flux laminarity. A calculation example is given for electron gun with close to laminar flow assuming the validity of the Schottky law. The results of calculation of varying the laminar flux character are given which appears when varying parameters of the gun at the voltage 500 kV and current 250 A

  14. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  15. Ion cyclotron emission by spontaneous emission

    International Nuclear Information System (INIS)

    Da Costa, O.; Gresillon, D.

    1994-01-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs

  16. Temperature profile retrieval in axisymmetric combustion plumes using multilayer perceptron modeling and spectral feature selection in the infrared CO2 emission band.

    Science.gov (United States)

    García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando

    2014-01-01

    In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way.

  17. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  18. Strongly emissive plasma-facing material under space-charge limited regime: Application to emissive probes

    Czech Academy of Sciences Publication Activity Database

    Cavalier, Jordan; Lemoine, N.; Bousselin, G.; Plihon, N.; Ledig, J.

    2017-01-01

    Roč. 24, č. 1 (2017), č. článku 013506. ISSN 1070-664X Institutional support: RVO:61389021 Keywords : plasma * tokamak * emissive probes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016 http://dx.doi.org/10.1063/1.4973557

  19. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    Science.gov (United States)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  20. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  1. SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies

    Science.gov (United States)

    Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.

    2018-06-01

    We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.

  2. Water vapor emission from H II regions and infrared stars

    International Nuclear Information System (INIS)

    Cato, B.T.; Ronnang, B.O.; Rydbeck, O.E.H.; Lewin, P.T.; Yngvesson, K.S.; Cardiasmenos, A.G.; Shanley, J.F.

    1976-01-01

    The spatial structure of water vapor microwave line emission has been investigated with moderate angular resolution in several well-known H II regions. New H 2 O sources have been with infrared (1R) sources. One of these sources, IRC: 20411, has been investigated at optical wavelengths. It is found to be of spectral class M3-M5 and by indirect evidence the luminosity class is preliminarily determined to Ib. The distance is estimated to be approx.2 kpc, and the star must be in front of the dust complex which obscures W28 A2. In NGC 7538 new high-velocity features have been discovered. Two new weak water vapor masers, G30.1: 0.7 and G32.8: 0.3, have been detected in a search among eight class II OH/IR sources. H 2 O emission coinciding with the low-velocity OH features of VY Canis Majoris has also been detected. A search for local thermodynamic equilibrium (LTE) water-vapor line emission in molecular clouds associated with H II regions is also reported. No line was detected with the utilized sensitivity. The physical implications of this are discussed and an upper limit of the H 2 O column density has been estimated. Gaussian analysis of the strong, narrow feature in the spectrum of ON 1 indicates a possible presence of two hyperfine components, viz., F→F'=7→6 and 6→5

  3. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  4. [CH4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China].

    Science.gov (United States)

    Yan, Xiao-Jun; Wang, Li-Li; Jiang, Yu; Deng, Ai-Xing; Tian, Yun-Lu; Zhang, Wei-Jian

    2013-09-01

    A pot experiment was conducted to study the CH4 emission features of fourteen leading super-rice varieties (six Japonica rice varieties and eight Indica hybrid rice varieties) and their relationships with the varieties growth characteristics in Yangtze Delta. Two distinct peaks of CH4 emission were detected during the entire growth period of the varieties, one peak occurred at full-tillering stage, and the other appeared at booting stage. The average total CH4 emission of Japonica rice varieties was 37.6% higher than that of the Indica hybrid rice varieties (Price types occurred at the post-anthesis phase. For all the varieties, there was a significant positive correlation between the total CH4 emission and the maximum leaf area, but the correlations between the CH4 emission and the other growth characteristics varied with variety type. The total CH4 emission of Japonica rice varieties had a significant positive correlation with plant height, while the correlations between the total CH4 emission of Indica hybrid rice varieties and their plant height were not significant. The total CH4 emission of Indica hybrid rice varieties had significant negative correlations with the total aboveground biomass, grain yield, and harvest index, but the correlations were not significant for Japonica rice varieties. The lower CH4 emission of Indica hybrid rice varieties was likely due to their significantly higher root biomass, as compared with Japonica rice varieties.

  5. M DWARF LUMINOSITY, RADIUS, AND α-ENRICHMENT FROM I-BAND SPECTRAL FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Robertson, Paul, E-mail: rct151@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2015-03-20

    Despite the ubiquity of M dwarfs and their growing importance to studies of exoplanets, Galactic evolution, and stellar structure, methods for precisely measuring their fundamental stellar properties remain elusive. Existing techniques for measuring M dwarf luminosity, mass, radius, or composition are calibrated over a limited range of stellar parameters or require expensive observations. We find a strong correlation between the K{sub S}-band luminosity (M{sub K}), the observed strength of the I-band sodium doublet absorption feature, and [Fe/H] in M dwarfs without strongemission. We show that the strength of this feature, coupled with [Fe/H] and spectral type, can be used to derive M dwarf M{sub K} and radius without requiring parallax. Additionally, we find promising evidence that the strengths of the I-band sodium doublet and the nearby I-band calcium triplet may jointly indicate α-element enrichment. The use of these I-band features requires only moderate-resolution near-infrared spectroscopy to provide valuable information about the potential habitability of exoplanets around M dwarfs, and surface gravity and distance for M dwarfs throughout the Galaxy. This technique has immediate applicability for both target selection and candidate planet–host system characterization for exoplanet missions such as TESS and K2.

  6. M DWARF LUMINOSITY, RADIUS, AND α-ENRICHMENT FROM I-BAND SPECTRAL FEATURES

    International Nuclear Information System (INIS)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Robertson, Paul

    2015-01-01

    Despite the ubiquity of M dwarfs and their growing importance to studies of exoplanets, Galactic evolution, and stellar structure, methods for precisely measuring their fundamental stellar properties remain elusive. Existing techniques for measuring M dwarf luminosity, mass, radius, or composition are calibrated over a limited range of stellar parameters or require expensive observations. We find a strong correlation between the K S -band luminosity (M K ), the observed strength of the I-band sodium doublet absorption feature, and [Fe/H] in M dwarfs without strongemission. We show that the strength of this feature, coupled with [Fe/H] and spectral type, can be used to derive M dwarf M K and radius without requiring parallax. Additionally, we find promising evidence that the strengths of the I-band sodium doublet and the nearby I-band calcium triplet may jointly indicate α-element enrichment. The use of these I-band features requires only moderate-resolution near-infrared spectroscopy to provide valuable information about the potential habitability of exoplanets around M dwarfs, and surface gravity and distance for M dwarfs throughout the Galaxy. This technique has immediate applicability for both target selection and candidate planet–host system characterization for exoplanet missions such as TESS and K2

  7. Tunable graphene antennas for selective enhancement of THz-emission

    KAUST Repository

    Filter, Robert; Farhat, Mohamed; Steglich, Mathias; Alaee, Rasoul; Rockstuhl, Carsten; Lederer, Falk L.

    2013-01-01

    In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices. © 2013 Optical Society of America.

  8. What is the physical origin of strong Lyα emission? I. Demographics of Lyα emitter structures

    International Nuclear Information System (INIS)

    Shibuya, Takatoshi; Ouchi, Masami; Yuma, Suraphong; Nakajima, Kimihiko; Hashimoto, Takuya; Shimasaku, Kazuhiro; Mori, Masao; Umemura, Masayuki

    2014-01-01

    We present the results of structure analyses for a large sample of 426 Lyα emitters (LAEs) at z ∼ 2.2 that are observed with the Hubble Space Telescope/Advanced Camera for Surveys and WFC3-IR during deep extra-galactic legacy surveys. We confirm that the merger fraction and the average ellipticity of LAE's stellar component are 10%-30% and 0.4-0.6, respectively, that are comparable with previous study results. We successfully identify that some LAEs have a spatial offset between Lyα and stellar-continuum emission peaks, δ Lyα , by ∼2.5-4 kpc beyond our statistical errors. To uncover the physical origin of strong Lyα emission found in LAEs, we investigate the Lyα equivalent width (EW) dependences of three structural parameters: merger fraction, δ Lyα , and ellipticity of stellar distribution in the range of EW(Lyα) = 20-250 Å. Contrary to expectations, we find that the merger fraction does not significantly increase with Lyα EW. We reveal an anti-correlation between δ Lyα and EW(Lyα) using a Kolmogorov-Smirnov (K-S) test. There is a trend that the LAEs with a large Lyα EW have a small ellipticity. This is consistent with the recent theoretical claims that Lyα photons can more easily escape from face-on disks having a small ellipticity, due to less inter-stellar gas along the line of sight, although our K-S test indicates that this trend is not statistically significant. Our results of Lyα-EW dependence generally support the idea that an H I column density is a key quantity determining Lyα emissivity.

  9. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  10. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  11. Rapid Fluctuations of Water Maser Emission in VY Canis Majoris

    Science.gov (United States)

    Zheng, Xing Wu; Scalise, Eugenio, Jr.; Han, Fu

    1998-11-01

    We report the observational results of short timescale monitoring of the 22 GHz water maser emission in VY CMa. A quasi-sinusoidal fluctuation has been detected with the relative flux intensity change of 20%-25% and a period of 10.3 day for two dominant features. This detected variability appears to be superimposed on the normal maser lines. We cannot easily explain the rapid fluctuation with the variation of the radiative input or the strong interstellar scintillation along the line of sight. The variation may be caused by the periodic shock.

  12. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  13. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  14. Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2011-08-01

    Full Text Available Due to its effects on the atmospheric lifetime of methane, the burdens of tropospheric ozone and growth of secondary organic aerosol, isoprene is central among the biogenic compounds that need to be taken into account for assessment of anthropogenic air pollution-climate change interactions. Lack of process-understanding regarding leaf isoprene production as well as of suitable observations to constrain and evaluate regional or global simulation results add large uncertainties to past, present and future emissions estimates. Focusing on contemporary climate conditions, we compare three global isoprene models that differ in their representation of vegetation and isoprene emission algorithm. We specifically aim to investigate the between- and within model variation that is introduced by varying some of the models' main features, and to determine which spatial and/or temporal features are robust between models and different experimental set-ups. In their individual standard configurations, the models broadly agree with respect to the chief isoprene sources and emission seasonality, with maximum monthly emission rates around 20–25 Tg C, when averaged by 30-degree latitudinal bands. They also indicate relatively small (approximately 5 to 10 % around the mean interannual variability of total global emissions. The models are sensitive to changes in one or more of their main model components and drivers (e.g., underlying vegetation fields, climate input which can yield increases or decreases in total annual emissions of cumulatively by more than 30 %. Varying drivers also strongly alters the seasonal emission pattern. The variable response needs to be interpreted in view of the vegetation emission capacities, as well as diverging absolute and regional distribution of light, radiation and temperature, but the direction of the simulated emission changes was not as uniform as anticipated. Our results highlight the need for modellers to evaluate their

  15. Tailoring the chirality of light emission with spherical Si-based antennas.

    Science.gov (United States)

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  16. Features and applications of positron emission tomography

    International Nuclear Information System (INIS)

    Fan Mingwu

    1997-01-01

    Positron emission tomography, the so-called world's smartest camera, is based on a NaI or BGO detector and imaging of positron-emitting radioisotopes which are introduced as a tracer into the regional tissue or organ of interest. With the aid of a computer visual images of a series of these distributions can be built into a picture of the functional status of the tissue or organ being imaged. This highly accurate imaging technique is already widely used for clinical diagnostics heart disease, brain disorder, tumors and so on

  17. A Strong Limit on the Very-high-energy Emission from GRB 150323A

    Science.gov (United States)

    Abeysekara, A. U.; Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Bugaev, V.; Connolly, M. P.; Cui, W.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Park, N.; Perkins, J. S.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Tyler, J.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Vurm, Indrek; Beloborodov, Andrei

    2018-04-01

    On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only ∼2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to ∼50% at 100–200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below ∼100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A ≳ 3 × 1011 g cm‑1, consistent with a standard Wolf–Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.

  18. Quantification of strong emissions of methane in the Arctic using spectral measurements from TANSO-FTS and IASI

    Science.gov (United States)

    Bourakkadi, Zakia; Payan, Sébastien; Bureau, Jérôme

    2015-04-01

    Methane is the second most important greenhouse gas after the carbon dioxide but it is 25 times more effective in contributing to the radiative forcing than the carbon dioxide(1). Since the pre-industrial times global methane concentration have more than doubled in the atmosphere. This increase is generally caused by anthropogenic activities like the massif use and extraction of fossil fuel, rice paddy agriculture, emissions from landfills... In recent years, several studies show that climate warming and thawing of permafrost act on the mobilization of old stored carbon in Arctic causing a sustained release of methane to the atmosphere(2),(3),(4). The methane emissions from thawing permafrost and methane hydrates in the northern circumpolar region will become potentially important in the end of the 21st centry because they could increase dramatically due to the rapid climate warming of the Artic and the large carbon pools stored there. The objective of this study is to evaluate and quantify methane strong emissions in this region of the globe using spectral measurements from the Thermal And Near Infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) and the Infrared Atmospheric Sounding Interferometer (IASI). We use also the LMDZ-PYVAR model to simulate methane fluxes and to estimate how they could be observed by Infrared Sounders from space. To select spectra with high values of methane we developed a statistical approach based on the singular value decomposition. Using this approach we can identify spectra over the important emission sources of methane and we can by this way reduce the number of spectra to retrieve by an line-by-line radiative transfer model in order to focus on those which contain high amount of methane. In order to estimate the capacity of TANSO-FTS and IASI to detect peaks of methane emission with short duration at quasi-real time, we used data from MACC (Monitoring Atmospheric Composition and Climate) simulations

  19. Mid-latitude Narrowband Stimulated Electromagnetic Emissions (NSEE): New Observations and Modeling

    Science.gov (United States)

    Nossa, E.; Mahmoudian, A.; Isham, B.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2017-12-01

    High power electromagnetic waves (EM) transmitted from the ground interact with the local plasma in the ionosphere and can produce Stimulated Electromagnetic Emissions (SEE) through the parametric decay instability (PDI). The classical SEE features known as wideband SEE (WSEE) with frequency offset of 1 kHz up to 100 kHz have been observed and studied in detail in the 1980s and 1990s. A new era of ionospheric remote sensing techniques was begun after the recent update of the HF transmitter at the HAARP. Sideband emissions of unprecedented strength have been reported during recent campaigns at HAARP, reaching up to 10 dB relative to the reflected pump wave which are by far the strongest spectral features of secondary radiation that have been reported. These emissions known as narrowband SEE (NSEE) are shifted by only up to a few tens of Hertz from radio-waves transmitted at several megahertz. One of these new NSEE features are emission lines within 100 Hz of the pump frequency and are produced through magnetized stimulated Brillouin scatter (MSBS) process. Stimulated Brillouin Scatter (SBS) is a strong SEE mode involving a direct parametric decay of the pump wave into an electrostatic wave (ES) and a secondary EM wave that sometimes could be stronger than the HF pump. SBS has been studied in laboratory plasma experiments by the interaction of high power lasers with plasmas. The SBS instability in magnetized ionospheric plasma was observed for the first time at HAARP in 2010. Our recent work at HAARP has shown that MSBS emission lines can be used to asses electron temperature in the heated region, ion mass spectrometry, determine minor ion species and their densities in the ionosphere, study the physics associated with electron acceleration and artificial airglow. Here, we present new observations of narrowband SEE (NSEE) features at the new mid-latitude heating facility at Arecibo. This includes the direct mode conversion of pump wave through MSBS process. Collected

  20. SUZAKU OBSERVATION OF STRONG FLUORESCENT IRON LINE EMISSION FROM THE YOUNG STELLAR OBJECT V1647 ORI DURING ITS NEW X-RAY OUTBURST

    International Nuclear Information System (INIS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Richmond, Michael; Weintraub, David A.

    2010-01-01

    The Suzaku X-ray satellite observed the young stellar object (YSO) V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in 2008 August. During the 87 ks observation with a net exposure of 40 ks, V1647 Ori showed a high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other YSOs. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT ∼ 5 keV). It also shows a fluorescent iron Kα line with a remarkably large equivalent width (EW) of ∼600 eV. Such a large EW suggests that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Kα line, so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  1. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  2. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  3. Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions

    Directory of Open Access Journals (Sweden)

    J. L. Palau

    2009-01-01

    Full Text Available By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null physical significance of the classical definition of horizontal standard deviation of the concentration distribution.

  4. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Science.gov (United States)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  5. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  6. ON THE 10 μm SILICATE FEATURE IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark

    2009-01-01

    The 10 μm silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 μm silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r -1.5 and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual ∼60-80. The source bolometric luminosity is ∼3 x 10 12 L sun . Our modeling suggests that ∼<35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 μm emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 μm silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the

  7. On the 10 μm Silicate Feature in Active Galactic Nuclei

    Science.gov (United States)

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark

    2009-12-01

    The 10 μm silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 μm silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r -1.5 and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual ~60-80. The source bolometric luminosity is ~3 × 1012 Lsun. Our modeling suggests that lsim35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 μm emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 μm silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature

  8. THE FEATURES OF LASER EMISSION ENERGY DISTRIBUTION AT MATHEMATIC MODELING OF WORKING PROCESS

    Directory of Open Access Journals (Sweden)

    A. M. Avsiyevich

    2013-01-01

    Full Text Available The space laser emission energy distribution of different continuous operation settings depends from many factors, first on the settings design. For more accurate describing of multimode laser emission energy distribution intensity the experimental and theoretic model, which based on experimental laser emission distribution shift presentation with given accuracy rating in superposition basic function form, is proposed. This model provides the approximation error only 2,2 percent as compared with 24,6 % and 61 % for uniform and Gauss approximation accordingly. The proposed model usage lets more accurate take into consideration the laser emission and working surface interaction peculiarity, increases temperature fields calculation accuracy for mathematic modeling of laser treatment processes. The method of experimental laser emission energy distribution studying for given source and mathematic apparatus for calculation of laser emission energy distribution intensity parameters depended from the distance in radial direction on surface heating zone are shown.

  9. Pattern recognition methods for acoustic emission analysis

    International Nuclear Information System (INIS)

    Doctor, P.G.; Harrington, T.P.; Hutton, P.H.

    1979-07-01

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  10. A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption

    Directory of Open Access Journals (Sweden)

    Da Liu

    2015-11-01

    Full Text Available Satellite observations can be used to detect the changes of CO2 concentration at global and regional scales. With the column-averaged CO2 dry-air mole fraction (Xco2 data derived from satellite observations, the issue is how to extract and assess these changes, which are related to anthropogenic emissions and biosphere absorptions. We propose a k-means cluster analysis to extract the temporally changing features of Xco2 in the Central-Eastern Asia using the data from 2009 to 2013 obtained by Greenhouse Gases Observing Satellite (GOSAT, and assess the effects of anthropogenic emissions and biosphere absorptions on CO2 changes combining with the data of emission and vegetation net primary production (NPP. As a result, 14 clusters, which are 14 types of Xco2 seasonal changing patterns, are obtained in the study area by using the optimal clustering parameters. These clusters are generally in agreement with the spatial pattern of underlying anthropogenic emissions and vegetation absorptions. According to correlation analysis with emission and NPP, these 14 clusters are divided into three groups: strong emission, strong absorption, and a tendency of balancing between emission and absorption. The proposed clustering approach in this study provides us with a potential way to better understand how the seasonal changes of CO2 concentration depend on underlying anthropogenic emissions and vegetation absorptions.

  11. Variable uptake feature of focal nodular hyperplasia in Tc-99m phytate hepatic scintigraphy/single-photon emission computed tomography-A parametric analysis.

    Science.gov (United States)

    Hsu, Yu-Ling; Chen, Yu-Wen; Lin, Chia-Yang; Lai, Yun-Chang; Chen, Shinn-Cherng; Lin, Zu-Yau

    2015-12-01

    Tc-99m phytate hepatic scintigraphy remains the standard method for evaluating the functional features of Kupffer cells. In this study, we demonstrate the variable uptake feature of focal nodular hyperplasia (FNH) in Tc-99m phytate scintigraphy. We reviewed all patients who underwent Tc-99m phytate hepatic scintigraphy between 2008 and 2012 in Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Cases with FNH were diagnosed on the basis of pathology or at least one or more prior imaging with a periodic clinical follow-up. All patients received a standard protocol of dynamic flow study and planar and Tc-99m phytate single-photon emission computed tomography (E. CAM; Siemens). The correlation of variable nodular radioactivity with parameters such as tumor size and localization was analyzed. In total, 15 lesions of 14 patients in the clinic were diagnosed as FNH. The tumor size was approximately 2.9-7.4 cm (mean size 4.6 cm). Four lesions were larger than 5 cm. The major anatomic distribution was in the right hepatic lobe (10 lesions), particularly in the superior segments (7 lesions). Tc-99m phytate single-photon emission computed tomography imaging for determining the functional features of Kupffer cells included cool/cold (8 lesions), isoradioactive/warm (6 lesions), and hot (1 lesion) patterns of uptake. We did not observe any statistically significant correlation between variable nodular radioactivity and tumor size (p=0.68) or localization (p=0.04). Herein, we demonstrate the variable uptake feature of FNH in Tc-99m phytate scintigraphy. In small FNH tumors (< 5 cm), increased or equal uptake still provided specificity for the differential diagnosis of hepatic solid tumors. Copyright © 2015. Published by Elsevier Taiwan.

  12. White-Light Emission from Layered Halide Perovskites.

    Science.gov (United States)

    Smith, Matthew D; Karunadasa, Hemamala I

    2018-03-20

    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the

  13. Frequency-time behavior of artificially stimulated vlf emissions

    International Nuclear Information System (INIS)

    Stiles, G.S.; Helliwell, R.A.

    1975-01-01

    Artificially stimulated VLF emissions (ASE's) are emissions triggered in the magnetosphere by the whistler mode signals from VLF transmitters. These emissions may be separated into two classes, rising and falling, depending on whether the final value of df/dt is positive or negative. Several hundred ASE's triggered by three transmitters have been analyzed using the fast Fourier transform with a filter spacing of 25 Hz and an effective filter width of about 45 Hz. The study was limited to the initial frequency-time behavior of ASE's. Averages taken over many events reveal that both rising and falling tones show the same initial behavior. The emissions begin at the frequency of the triggering signal. Both tones initially rise in frequency, falling tones reversing slope at a point 25--300 Hz above the triggering signal. The slope of rising tones, particularly those triggered by NAA, often abruptly levels off in this same frequency range; as a result, a short (approximately 40 ms) plateau is formed that precedes the final rising phase. The initial frequency offset commonly observed in individual events appears to result from the frequent coincidence with this plateau of a peak in amplitude. Emissions stimulated by all three transmitters show essentially the same features; this finding indicates that their frequency behavior does not depend strongly on transmitter power. The process appears to be asymmetric in frequency; no evidence of initial growth below the triggering frequency has been found. (U.S.)

  14. An unprecedented amplification of near-infrared emission in a Bodipy derived π-system by stress or gelation.

    Science.gov (United States)

    Cherumukkil, Sandeep; Ghosh, Samrat; Praveen, Vakayil K; Ajayaghosh, Ayyappanpillai

    2017-08-01

    We report an unprecedented strategy to generate and amplify near-infrared (NIR) emission in an organic chromophore by mechanical stress or gelation pathways. A greenish-yellow emitting film of π-extended Bodipy-1 , obtained from n -decane, became orange-red upon mechanical shearing, with a 15-fold enhancement in NIR emission at 738 nm. Alternatively, a DMSO gel of Bodipy-1 exhibited a 7-fold enhancement in NIR emission at 748 nm with a change in emission color from yellow to orange-red upon drying. The reason for the amplified NIR emission in both cases is established from the difference in chromophore packing, by single crystal analysis of a model compound ( Bodipy-2 ), which also exhibited a near identical emission spectrum with red to NIR emission (742 nm). Comparison of the emission features and WAXS and FT-IR data of the sheared n -decane film and the DMSO xerogel with the single crystal data supports a head-to-tail slipped arrangement driven by the N-H···F-B bonding in the sheared or xerogel states, which facilitates strong exciton coupling and the resultant NIR emission.

  15. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography.

    Science.gov (United States)

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-07-05

    The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  16. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    Science.gov (United States)

    Pelissier, B.; Sadeghi, N.

    1996-10-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar+*(2G9/2) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge.

  17. Studies of photonuclear neutron emission during the start-up phase of the Alcator C tokamak

    International Nuclear Information System (INIS)

    Pappas, D.S.; Furnstahl, R.; Kochanski, G.P.

    1981-05-01

    Alcator C operations commenced with discharge cleaning and tokamak operation using hydrogen filling gas. Prior to and during these experiments no deuterium gas was allowed into the device. The earliest operation resulted in dosimeter readings of a few Roentgen per shot in the vicinity of the limiter and a localized source of neutron emission of up to 10 9 neutrons/shot. A strong correlation of the neutron emissions with hard x-ray emissions from the limiter and nonthermal features on the synchrotron emissions was observed during these discharges. Gamma energy spectroscopy of the activated limiter after removal from Alcator allowed identification of 16 radioisotopes which were consistent with photonuclear processes (γ,n , γ,p , γ,α reactions) arising in the limiter. After seven months of hydrogen operation conditions were achieved that resulted in substantially less non-thermal activity. Typical neutron emission rates of equal to or less than 10 6 n/sec were observed, i.e., about four orders of magnitude less than the expected D-D thermonuclear neutron emission rates for the same type of discharge if D 2 was used as the filling gas

  18. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  19. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  20. Reference Projections Energy and Emissions 2005-2020

    International Nuclear Information System (INIS)

    Van Dril, A.W.N.; Elzenga, H.E.

    2005-10-01

    The Reference Projection 2005-2020 covers the future development of Dutch energy use, greenhouse gas emissions and air pollution up to 2020. The Reference projection is based on assumptions regarding economic, structural, technological and policy developments. Two scenarios have been used. The Strong Europe (SE) scenario is characterized by moderate economic growth and strong public responsibility. The Global Economy (GE) scenario assumes high economic growth and has a strong orientation towards private responsibility. Energy consumption continues to grow in both scenarios and energy intensity is declining in the GE-scenario. Gradual rise of temperature is now included in the estimates for space heating and air conditioning. Energy prices for end users will rise, due to increased imports of natural gas and rising costs of electricity generation. The share of renewables in electricity consumption increases considerably due to subsidies for wind at sea and biomass, up to the target of 9% in 2010. Emissions of non-CO2 greenhouse gases are reduced and stabilise after 2010. The Dutch Kyoto target is probably met in both scenarios, assuming considerable emission reduction ef-forts abroad. Acidifying emissions of NOx and SO2 stabilise after reductions, but at levels that exceed their national emission ceiling (NEC). Emissions of volatile organic compounds are projected to fall with approximately 25% between 2002 and 2010 below their NEC. Emissions of ammonia are projected to meet their NEC. The emission of particulate matter (PM10) will stabilise at present levels

  1. Interplay of coupling and superradiant emission in the optical response of a double quantum dot

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2009-09-01

    We study theoretically the optical response of a double quantum dot structure to an ultrafast optical excitation. We show that the interplay of a specific type of coupling between the dots and their collective interaction with the radiative environment leads to very characteristic features in the time-resolved luminescence as well as in the absorption spectrum of the system. For a sufficiently strong coupling, these effects survive even if the transition energy mismatch between the two dots exceeds by far the emission linewidth.

  2. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Science.gov (United States)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  3. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  4. Modeling of neutron emission spectroscopy in JET discharges with fast tritons from (T)D ion cyclotron heating

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Kaellne, J.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Johnson, T.; Lamalle, P. U.

    2006-01-01

    The measurement of fast ion populations is one of the diagnostic capabilities provided by neutron emission spectroscopy (NES). NES measurements were carried out during JET trace tritium campaign with the magnetic proton recoil neutron spectrometer. A favorable plasma scenario is (T)D where the resulting 14 MeV neutron yield is dominated by suprathermal emission from energetic tritons accelerated by radio frequency at their fundamental cyclotron frequency. Information on the triton distribution function has been derived from NES data with a simple model based on two components referred to as bulk (B) and high energy (HE). The HE component is based on strongly anisotropic tritium distribution that can be used for routine best-fit analysis to provide tail temperature values (T HE ). This article addresses to what extent the T HE values are model dependent by comparing the model above with a two-temperature (bi-) Maxwellian model featuring parallel and perpendicular temperatures. The bi-Maxwellian model is strongly anisotropic and frequently used for radio frequency theory

  5. Extract the Relational Information of Static Features and Motion Features for Human Activities Recognition in Videos

    Directory of Open Access Journals (Sweden)

    Li Yao

    2016-01-01

    Full Text Available Both static features and motion features have shown promising performance in human activities recognition task. However, the information included in these features is insufficient for complex human activities. In this paper, we propose extracting relational information of static features and motion features for human activities recognition. The videos are represented by a classical Bag-of-Word (BoW model which is useful in many works. To get a compact and discriminative codebook with small dimension, we employ the divisive algorithm based on KL-divergence to reconstruct the codebook. After that, to further capture strong relational information, we construct a bipartite graph to model the relationship between words of different feature set. Then we use a k-way partition to create a new codebook in which similar words are getting together. With this new codebook, videos can be represented by a new BoW vector with strong relational information. Moreover, we propose a method to compute new clusters from the divisive algorithm’s projective function. We test our work on the several datasets and obtain very promising results.

  6. Continuum emission from irradiated solid deuterium

    DEFF Research Database (Denmark)

    Forrest, J.A.; Brooks, R.L.; Hunt, J.L.

    1992-01-01

    A new emission feature from the spectrum of irradiated solid deuterium has been observed in the very near-infrared spectral region. Experiments from three laboratories, using different excitation conditions, have confirmed the observation. Comparison of the timing and temperature dependence...... of the spectral feature to the information previously available from electron spin resonance studies of solid deuterium, points to atomic association as the underlying cause. We shall show the connection of this emission to the occurrence of thermal spikes and optical flashes, previously observed in solid...

  7. Grassy Silica Nanoribbons and Strong Blue Luminescence

    Science.gov (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  8. Emission, Dispersion, Transformation, and Deposition of Asian Particulates Over the Western Pacific Ocean. Part II

    International Nuclear Information System (INIS)

    Turco, Richard P.

    2005-01-01

    In this project we developed and applied a coupled three-dimensional meteorology/chemistry/microphysics model to study the patterns of aerosol dispersion and deposition in the western Pacific area; carried out a series of detailed regional aerosol simulations to test the ability of models to treat emission, dispersion and removal processes prior to long-range transport; calculated and analyzed trajectories that originate in Asian dust source regions and reach the Pacific Basin; performed detailed simulations of regional and trans-Pacific transport, as well as the microphysical and chemical properties, of aerosols in the Asia-Pacific region to quantify processes that control the emission, dispersion and removal of particles; and assessed the contributions of regional-scale Asian particulate sources to the deposition of pollutants onto surface waters. The transport and deposition of aerosols and vapors were found to be strongly controlled by large and synoptic scale meteorology, convection, turbulence, and precipitation, as well as strong interactions between surface conditions and topographical features. The present analysis suggests that accurate representations of aerosol sources, transport and deposition can be obtained using a comprehensive modeling approach

  9. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  10. RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-01-01

    Full Text Available Studying locations of strong earthquakes (М≥8 in space and time in Central Asia has been among top prob-lems for many years and still remains challenging for international research teams. The authors propose a new ap-proach that requires changing the paradigm of earthquake focus – solid rock relations, while this paradigm is a basis for practically all known physical models of earthquake foci. This paper describes the first step towards developing a new concept of the seismic process, including generation of strong earthquakes, with reference to specific geodynamic features of the part of the study region wherein strong earthquakes were recorded in the past two centuries. Our analysis of the locations of М≥8 earthquakes shows that in the past two centuries such earthquakes took place in areas of the dynamic influence of large deep faults in the western regions of Central Asia. In the continental Asia, there is a clear submeridional structural boundary (95–105°E between the western and eastern regions, and this is a factor controlling localization of strong seismic events in the western regions. Obviously, the Indostan plate’s pressure from the south is an energy source for such events. The strong earthquakes are located in a relatively small part of the territory of Central Asia (i.e. the western regions, which is significantly different from its neighbouring areas at the north, east and west, as evidenced by its specific geodynamic parameters. (1 The crust is twice as thick in the western regions than in the eastern regions. (2 In the western regions, the block structures re-sulting from the crust destruction, which are mainly represented by lense-shaped forms elongated in the submeridio-nal direction, tend to dominate. (3 Active faults bordering large block structures are characterized by significant slip velocities that reach maximum values in the central part of the Tibetan plateau. Further northward, slip velocities decrease

  11. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    International Nuclear Information System (INIS)

    Pelissier, B.; Sadeghi, N.

    1996-01-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar + *( 2 G 9/2 ) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge. copyright 1996 American Institute of Physics

  12. Spontaneous electromagnetic emission from a strongly localized plasma flow.

    Science.gov (United States)

    Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E

    2011-05-06

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  13. Textural features of 18F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection.

    Science.gov (United States)

    Saleem, Ben R; Beukinga, Roelof J; Boellaard, Ronald; Glaudemans, Andor W J M; Reijnen, Michel M P J; Zeebregts, Clark J; Slart, Riemer H J A

    2017-05-01

    The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective of this retrospective study was to examine the feasibility and utility of 18 F-FDG uptake heterogeneity characterized by textural features to diagnose AGI. Thirty patients with a history of aortic graft reconstruction who underwent 18 F-FDG PET/CT scanning were included. Sixteen patients were suspected to have an AGI (group I). AGI was considered proven only in the case of a positive bacterial culture. Positive cultures were found in 10 of the 16 patients (group Ia), and in the other six patients, cultures remained negative (group Ib). A control group was formed of 14 patients undergoing 18 F-FDG PET for other reasons (group II). PET images were assessed using conventional maximal standardized uptake value (SUVmax), tissue-to-background ratio (TBR), and visual grading scale (VGS). Additionally, 64 different 18 F-FDG PET based textural features were applied to characterize 18 F-FDG uptake heterogeneity. To select candidate predictors, univariable logistic regression analysis was performed (α = 0.16). The accuracy was satisfactory in case of an AUC > 0.8. The feature selection process yielded the textural features named variance (AUC = 0.88), high grey level zone emphasis (AUC = 0.87), small zone low grey level emphasis (AUC = 0.80), and small zone high grey level emphasis (AUC = 0.81) most optimal for distinguishing between groups I and II. SUVmax, TBR, and VGS were also able to distinguish between these groups with AUCs of 0.87, 0.78, and 0.90, respectively. The textural feature named short run high grey level emphasis was able to distinguish group Ia from Ib (AUC = 0.83), while for the same task the TBR and VGS were not found to be predictive. SUVmax

  14. Particularities of surface plasmon-exciton strong coupling with large Rabi splitting

    International Nuclear Information System (INIS)

    Symonds, C; Bonnand, C; Plenet, J C; Brehier, A; Parashkov, R; Lauret, J S; Deleporte, E; Bellessa, J

    2008-01-01

    This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission

  15. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  16. Coplanarity of two-proton emissions in 400 MeV/nucleon Ne + NaF, Pb reactions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1984-10-01

    Two-proton coincidence spectra have been measured in a wide kinematical range for 20 Ne + NaF and 20 Ne + Pb collisions at 400 MeV/nucleon. Coplanar-type correlations show different feature between Ne + NaF and Ne + Pb target reactions. A strong in-plane correlation, which correspond to quasi-elastic scatterings (QES) of nucleons, was observed in wide angular range (15 to 90 0 ) in NaF target collisions. Angular distributions of QES were reproduced reasonably well by a single nucleon-nucleon scattering model. Enhancement of the QES at momentum transfer around t = 2 - 3m/sub π/, which is predicted as an indication of pionic instability, was not observed. In Ne + Pb collisions, an azimuthally asymmetric emission of particles with respect to the beam axis were implied by the anti-coplanar correlation. A new type of coplanar correlation between the emission angle and the momentum suggests a back-to-back emission of projectile and target nucleons. 8 references, 8 figures

  17. GaInN quantum well design and measurement conditions affecting the emission energy S-shape

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hatami, Soheil; Hoffmann, Veit; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Wernicke, Tim; Kneissl, Michael [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2011-07-15

    Polarization fields and charge carrier localization are the dominant factors defining the radiative recombination processes in the quantum wells of most AlGaInN-based optoelectronic devices. Both factors determine emission energy, emission line width, recombination times, and internal quantum efficiency. For a deeper understanding of the charge carrier recombination processes, we have performed temperature and excitation power dependent photoluminescence experiments on epitaxially grown GaInN structures to study the S-shape of the temperature dependent emission energy. The S-shape behaviour in GaInN quantum wells (QWs) is dominated by the temperature dependence of the charge carrier localization. However, in polar QWs it is strongly affected by the charge carrier density which screens the piezoelectric field. External applied fields change the observable S-shape characteristic significantly. Semi- and nonpolar GaInN QWs feature an S-shape behaviour which points to much stronger charge carrier localization compared to polar QWs. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. [18]Fluorodeoxyglucose positron emission tomography for the textural features of cervical cancer associated with lymph node metastasis and histological type

    International Nuclear Information System (INIS)

    Shen, Wei-Chih; Chen, Shang-Wen; Liang, Ji-An; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung

    2017-01-01

    In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on "1"8F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV_m_a_x), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV_m_a_x, the risk of pelvic LN metastasis can be scored accordingly. The TLG_m_e_a_n was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG_m_e_a_n_, respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology. (orig.)

  19. [18]Fluorodeoxyglucose Positron Emission Tomography for the Textural Features of Cervical Cancer Associated with Lymph Node Metastasis and Histological Type.

    Science.gov (United States)

    Shen, Wei-Chih; Chen, Shang-Wen; Liang, Ji-An; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung

    2017-09-01

    In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV max ), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV max , the risk of pelvic LN metastasis can be scored accordingly. The TLG mean was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG mean, respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology.

  20. [18]Fluorodeoxyglucose positron emission tomography for the textural features of cervical cancer associated with lymph node metastasis and histological type

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei-Chih [Asia University, Department of Computer Science and Information Engineering, Taichung (China); Chen, Shang-Wen [China Medical University Hospital, Department of Radiation Oncology, Taichung (China); China Medical University, School of Medicine, Taichung (China); Taipei Medical University, School of Medicine, Taipei (China); China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, Taichung (China); Liang, Ji-An [China Medical University Hospital, Department of Radiation Oncology, Taichung (China); China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, Taichung (China); Hsieh, Te-Chun; Yen, Kuo-Yang [China Medical University Hospital, Department of Nuclear Medicine and PET Center, Taichung (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Kao, Chia-Hung [China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, Taichung (China); China Medical University Hospital, Department of Nuclear Medicine and PET Center, Taichung (China); Asia University, Department of Bioinformatics and Medical Engineering, Taichung (China)

    2017-09-15

    In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV{sub max}), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV{sub max}, the risk of pelvic LN metastasis can be scored accordingly. The TLG{sub mean} was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG{sub mean,} respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology. (orig.)

  1. Reference outlook for energy and emissions 2005-2020

    International Nuclear Information System (INIS)

    Van Dril, A.W.N.; Elzenga, H.E.

    2005-05-01

    The Reference Projection 2005-2020 covers the future development of Dutch energy use, greenhouse gas emissions and air pollution up to 2020. The Reference projection is based on assumptions regarding economic, structural, technological and policy developments. Two scenarios have been used. The Strong Europe (SE) scenario is characterized by moderate economic growth and strong public responsibility. The Global Economy (GE) scenario assumes high economic growth and has a strong orientation towards private responsibility. Energy consumption continues to grow in both scenarios and energy intensity is declining in the GE-scenario. Gradual rise of temperature is now included in the estimates for space heating and air conditioning. Energy prices for end users will rise, due to increased imports of natural gas and rising costs of electricity generation. The share of renewables in electricity consumption increases considerably due to subsidies for wind at sea and biomass, up to the target of 9% in 2010. Emissions of non-CO2 greenhouse gases are reduced and stabilise after 2010. The Dutch Kyoto target is probably met in both scenarios, assuming considerable emission reduction efforts abroad. Acidifying emissions of NOx and SO2 stabilise after reductions, but at levels that exceed their national emission ceiling (NEC). Emissions of volatile organic compounds are projected to fall with approximately 25% between 2002 and 2010 below their NEC. Emissions of ammonia are projected to meet their NEC. The emission of fine particles (PM10) will stabilise at present levels [nl

  2. Electron cyclotron emission from the PLT tokamak

    International Nuclear Information System (INIS)

    Hosea, J.; Arunasalam, V.; Cano, R.

    1977-07-01

    Experimental measurements of electron cyclotron emission from the PLT tokamak plasma reveal that black-body emission occurs at the fundamental frequency. Such emission, not possible by direct thermal excitation of electromagnetic waves, is herein attributed to thermal excitation of electrostatic (Bernstein) waves which then mode convert into electromagnetic waves. The local feature of the electrostatic wave generation permits spatially and time resolved measurements of electron temperature as for the second harmonic emission

  3. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    Science.gov (United States)

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; Nilsson, Anders; Pettersson, Lars G. M.

    2018-04-01

    The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

  4. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water.

    Science.gov (United States)

    Zhovtobriukh, Iurii; Besley, Nicholas A; Fransson, Thomas; Nilsson, Anders; Pettersson, Lars G M

    2018-04-14

    The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1 ) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

  5. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    International Nuclear Information System (INIS)

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-01-01

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(φ in ) and T(φ in ) of the angle of beam emission φ in ; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  6. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  7. Comparison of the 3.36 micrometer feature to the ISM

    International Nuclear Information System (INIS)

    Tokunaga, A.T.; Brooke, T.Y.

    1988-01-01

    It has been noted that the 3.36 micrometer emission feature is not the same as that of any ISM band at 3.4 micrometer. This is documented herein. There is no convincing analog to the cometary 3.36 micrometer emission feature seen in the Interstellar Matter band. This fact suggests that if the carbonaceous material in comets came from the ISM, it was either further processed in the solar nebula or has a different appearance because of the different excitation environment of the sun and ISM

  8. Comparison of the 3.36 micrometer feature to the ISM

    Science.gov (United States)

    Tokunaga, Alan T.; Brooke, Timothy Y.

    1988-01-01

    It has been noted that the 3.36 micrometer emission feature is not the same as that of any ISM band at 3.4 micrometer. This is documented herein. There is no convincing analog to the cometary 3.36 micrometer emission feature seen in the Interstellar Matter band. This fact suggests that if the carbonaceous material in comets came from the ISM, it was either further processed in the solar nebula or has a different appearance because of the different excitation environment of the sun and ISM.

  9. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Potirakis, S. M. [Department of Electronics, Technological Education Institute (TEI) of Piraeus, 250 Thivon and P. Ralli, Aigaleo, Athens GR-12244 (Greece); Karadimitrakis, A. [Department of Physics, Section of Electronics, Computers, Telecommunications and Control, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece); Eftaxias, K. [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, Athens GR-15784 (Greece)

    2013-06-15

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  10. Natural time analysis of critical phenomena: the case of pre-fracture electromagnetic emissions.

    Science.gov (United States)

    Potirakis, S M; Karadimitrakis, A; Eftaxias, K

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  11. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    International Nuclear Information System (INIS)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-01-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  12. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  13. Review Existing and Proposed Emissions Trading Systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper reviews key design features of mandatory emissions trading systems that had been established or were under consideration in 2010, with a particular focus on implications for the energy sector. Putting a price on greenhouse gas emissions is a cornerstone policy in climate change mitigation. To this end, many countries have implemented or are developing domestic emissions trading systems.

  14. Defect studies in quartz: Composite nature of the blue and UV emissions

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Marco, E-mail: m.martini@unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 55, I-20125 Milano (Italy); INFN, Sezione di Milano Bicocca, Piazza della Scienza 1, I-20126 Milano (Italy); Fasoli, Mauro; Villa, Irene [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 55, I-20125 Milano (Italy)

    2014-05-01

    after annealing at 500 °C followed by a decrease at higher temperatures, the 3.7 eV intensity is strongly enhanced by annealing at temperature above 700 °C and reaches its highest value after annealing at around 1000 °C. In the light of these results a number of already known features of quartz emissions should be reconsidered.

  15. Defect studies in quartz: Composite nature of the blue and UV emissions

    International Nuclear Information System (INIS)

    Martini, Marco; Fasoli, Mauro; Villa, Irene

    2014-01-01

    annealing at 500 °C followed by a decrease at higher temperatures, the 3.7 eV intensity is strongly enhanced by annealing at temperature above 700 °C and reaches its highest value after annealing at around 1000 °C. In the light of these results a number of already known features of quartz emissions should be reconsidered

  16. C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, J. R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bayliss, M. B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Sharon, K.; Johnson, T. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, E. [Max Plank Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Peña-Guerrero, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-11-20

    We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ∼ 1.6–3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < −5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf–Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  17. Biogenic VOC Emissions from Tropical Landscapes

    Science.gov (United States)

    Guenther, A.; Greenberg, J.; Harley, P.; Otter, L.; Vanni Gatti, L.; Baker, B.

    2003-04-01

    Biogenic VOC have an important role in determining the chemical composition of atmosphere. As a result, these compounds are important for visibility, biogeochemical cycling, climate and radiative forcing, and the health of the biosphere. Tropical landscapes are estimated to release about 80% of total global biogenic VOC emissions but have been investigated to lesser extent than temperate regions. Tropical VOC emissions are particularly important due to the strong vertical transport and the rapid landuse change that is occurring there. This presentation will provide an overview of field measurements of biogenic VOC emissions from tropical landscapes in Amazonia (Large-scale Biosphere-atmosphere experiment in Amazonia, LBA) Central (EXPRESSO) and Southern (SAFARI 2000) Africa, Asia and Central America. Flux measurement methods include leaf-scale (enclosure measurements), canopy-scale (above canopy tower measurements), landscape-scale (tethered balloon), and regional-scale (aircraft measurements) observations. Typical midday isoprene emission rates for different landscapes vary by more than a factor of 20 with the lowest emissions observed from degraded forests. Emissions of alpha-pinene vary by a similar amount with the highest emissions associated with landscapes dominated by light dependent monoterpene emitting plants. Isoprene emissions tend to be higher for neotropical forests (Amazon and Costa Rica) in comparison to Africa and Asian tropical forests but considerable differences are observed within regions. Strong seasonal variations were observed in both the Congo and the Amazon rainforests with peak emissions during the dry seasons. Substantial emissions of light dependent monoterpenes, methanol and acetone are characteristic of at least some tropical landscapes.

  18. Planck 2013 results. XIV. Zodiacal emission

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    , three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains......The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere...

  19. Fraud risks in emissions trading

    International Nuclear Information System (INIS)

    2010-09-01

    The system of emission trading is a complex composed entity with on the one hand a strong environmental component and on the other hand a financial world that hooked on this instrument. In chapter 2 an introduction is provided to the emission trading system. The subsequent chapters elaborate Types of Fraud (Chapter 3), Powers (Chapter 4), and Instruments (Chapter 5). The report shows that various forms of fraud are occurring in emission trading, such as VAT fraud and identity theft. [nl

  20. Strong Mechanoluminescence from Oxynitridosilicate Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin; Xu Chaonan; Yamada, Hiroshi, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku, Tosu, Saga 841-0052 (Japan)

    2011-10-29

    We successfully developed a novel Mechanoluminescence (ML) material with water resistance, oxynitridosilicate; BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+}. The crystal structure, photoluminescence (PL) and ML properties were characterized. The ML of BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is so strong that the blue-green emission can be observed by the naked eyes clearly. In addition, it shows superior water resistance property. No changes were found in the ML intensities during the total water treatment test.

  1. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    more nitrogen atoms within the interior of the carbon skeleton of a PAH cation induces a significant blueshift in the position of the dominant CC stretching feature of these compounds that is suf6cient to account for the position of the interstellar bands. Subsequent studies of the effects of substitution by other heteroatoms (O and Si), metal ion complexation (Fe(+), Mg(+), and Mg(2+)), and molecular symmetry variation-all of which fail to reproduce the blueshift observed in the PANH cations-indicate that N appears to be unique in its ability to accommodate the position of the interstellar 6.2 micron bands while simultaneously satisfying the other constraints of the astrophysical problem. This result implies that the peak position of the interstellar feature near 6.2 micron traces the degree of nitrogen substitution in the population, that most of the PAHs responsible for the interstellar IR emission features incorporate nitrogen within their aromatic networks, and that a lower limit of 1%-2% of the cosmic nitrogen is sequestered within the interstellar PAH population. Finally, in view of the ubiquity and abundance of interstellar PAHs and the permanent dipoles and distinctive electronic structures of these nitrogen-substituted variants, this work impacts a wide range of observational phenomena outside of the infrared region of the spectrum including the forest of unidentified molecular rotational features and the anomalous Galactic foreground emission in the microwave, and the diffuse interstellar bands (DIBs) and other structure in the interstellar extinction curve in the ulhviolet/visible. These astrophysical ramifications are discussed, and the dipole moments and rotational constants are tabulated to facilitate further investigations of the astrophysical role of nitrogen-substituted aromatic compounds.

  2. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    Science.gov (United States)

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.

  3. Self-Reported Visual Perceptual Abnormalities Are Strongly Associated with Core Clinical Features in Psychotic Disorders

    Directory of Open Access Journals (Sweden)

    Brian P. Keane

    2018-03-01

    Full Text Available BackgroundPast studies using the Bonn Scale for the Assessment of Basic Symptoms (hereafter, Bonn Scale have shown that self-reported perceptual/cognitive disturbances reveal which persons have or will soon develop schizophrenia. Here, we focused specifically on the clinical value of self-reported visual perceptual abnormalities (VPAs since they are underexplored and have been associated with suicidal ideation, negative symptoms, and objective visual dysfunction.MethodUsing the 17 Bonn Scale vision items, we cross-sectionally investigated lifetime occurrence of VPAs in 21 first-episode psychosis and 22 chronic schizophrenia/schizoaffective disorder (SZ/SA patients. Relationships were probed between VPAs and illness duration, symptom severity, current functioning, premorbid functioning, diagnosis, and age of onset.ResultsIncreased VPAs were associated with: earlier age of onset; more delusions, hallucinations, bizarre behavior, and depressive symptoms; and worse premorbid social functioning, especially in the childhood and early adolescent phases. SZ/SA participants endorsed more VPAs as compared to those with schizophreniform or psychotic disorder-NOS, especially in the perception of color, bodies, faces, object movement, and double/reversed vision. The range of self-reported VPAs was strikingly similar between first-episode and chronic patients and did not depend on the type or amount of antipsychotic medication. As a comparative benchmark, lifetime occurrence of visual hallucinations did not depend on diagnosis and was linked only to poor premorbid social functioning.ConclusionA brief 17-item interview derived from the Bonn Scale is strongly associated with core clinical features in schizophrenia. VPAs hold promise for clarifying diagnosis, predicting outcome, and guiding neurocognitive investigations.

  4. General-relativistic pulsar magnetospheric emission

    Science.gov (United States)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  5. The liability rules under international GHG emissions trading

    International Nuclear Information System (INIS)

    Zhong Xiang Zhang

    2001-01-01

    Article 17 of the Kyoto Protocol authorizes emissions trading, but the rules governing emissions trading have been deferred to subsequent conferences. In designing and implementing an international greenhouse gas (GHG) emissions trading scheme, assigning liability rules has been considered to be one of the most challenging issues. In general, a seller-beware liability works well in a strong enforcement environment. In the Kyoto Protocol, however, it may not always work. By contrast, a buyer-beware liability could be an effective deterrent to non-compliance, but the costs of imposing it are expected to be very high. To strike a middle ground, we suggest a combination of preventive measures with strong but feasible end-of-period punishments to ensure compliance with the Kyoto emissions commitments. Such measures aim to maximize efficiency gains from emissions trading and at the same time, to minimize over-selling risks. (author)

  6. White top emitting OLED with angle independent emission characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Thomschke, Michael; Freitag, Patricia; Schwartz, Gregor; Nitsche, Robert; Walzer, Karsten; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, Georg-Baehr-Strasse 1, 01062 Dresden (Germany)

    2008-07-01

    The general device structure of a top emitting organic light emitting diode (OLED) consists of several organic layers sandwiched in between two metal contacts, with the top one being semitransparent for light outcoupling reasons. Due to the high reflectivity of the electrodes, strong microcavity effects occur which lead to a preferred emission of light of a certain wavelength with main outcoupling in forward direction. This creates rather narrow emission bands, accompanied by strong spectral shifts upon viewing angle variation. By using an organic capping layer on top of the semitransparent metal contact, this unwanted effect can be reduced. This is important especially for white light emission for the use of OLEDs in future lighting applications. Our optical simulations show that the strong angular dependence of the emission color almost vanishes. To verify the simulations we study white top emitting OLEDs based on an approach which are adapted to the top emitting case.

  7. Textural features of {sup 18}F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Ben R.; Zeebregts, Clark J. [University of Groningen, University Medical Center Groningen, Department of Surgery, Division of Vascular Surgery, P.O. Box 30 001, Groningen (Netherlands); Beukinga, Roelof J.; Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Department of Biomedical Photonic Imaging (BMPI), Enschede (Netherlands); Boellaard, Ronald; Glaudemans, Andor W.J.M. [University of Groningen, University Medical Center Groningen, Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Reijnen, Michel M.P.J. [Rijnstate Hospital, Department of Surgery, Arnhem (Netherlands)

    2017-05-15

    The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective of this retrospective study was to examine the feasibility and utility of {sup 18}F-FDG uptake heterogeneity characterized by textural features to diagnose AGI. Thirty patients with a history of aortic graft reconstruction who underwent {sup 18}F-FDG PET/CT scanning were included. Sixteen patients were suspected to have an AGI (group I). AGI was considered proven only in the case of a positive bacterial culture. Positive cultures were found in 10 of the 16 patients (group Ia), and in the other six patients, cultures remained negative (group Ib). A control group was formed of 14 patients undergoing {sup 18}F-FDG PET for other reasons (group II). PET images were assessed using conventional maximal standardized uptake value (SUVmax), tissue-to-background ratio (TBR), and visual grading scale (VGS). Additionally, 64 different {sup 18}F-FDG PET based textural features were applied to characterize {sup 18}F-FDG uptake heterogeneity. To select candidate predictors, univariable logistic regression analysis was performed (α = 0.16). The accuracy was satisfactory in case of an AUC > 0.8. The feature selection process yielded the textural features named variance (AUC = 0.88), high grey level zone emphasis (AUC = 0.87), small zone low grey level emphasis (AUC = 0.80), and small zone high grey level emphasis (AUC = 0.81) most optimal for distinguishing between groups I and II. SUVmax, TBR, and VGS were also able to distinguish between these groups with AUCs of 0.87, 0.78, and 0.90, respectively. The textural feature named short run high grey level emphasis was able to distinguish group Ia from Ib (AUC = 0.83), while for the same task the TBR and VGS were not found to be predictive

  8. Textural features of "1"8F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection

    International Nuclear Information System (INIS)

    Saleem, Ben R.; Zeebregts, Clark J.; Beukinga, Roelof J.; Slart, Riemer H.J.A.; Boellaard, Ronald; Glaudemans, Andor W.J.M.; Reijnen, Michel M.P.J.

    2017-01-01

    The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although "1"8F-fluorodeoxyglucose ("1"8F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective of this retrospective study was to examine the feasibility and utility of "1"8F-FDG uptake heterogeneity characterized by textural features to diagnose AGI. Thirty patients with a history of aortic graft reconstruction who underwent "1"8F-FDG PET/CT scanning were included. Sixteen patients were suspected to have an AGI (group I). AGI was considered proven only in the case of a positive bacterial culture. Positive cultures were found in 10 of the 16 patients (group Ia), and in the other six patients, cultures remained negative (group Ib). A control group was formed of 14 patients undergoing "1"8F-FDG PET for other reasons (group II). PET images were assessed using conventional maximal standardized uptake value (SUVmax), tissue-to-background ratio (TBR), and visual grading scale (VGS). Additionally, 64 different "1"8F-FDG PET based textural features were applied to characterize "1"8F-FDG uptake heterogeneity. To select candidate predictors, univariable logistic regression analysis was performed (α = 0.16). The accuracy was satisfactory in case of an AUC > 0.8. The feature selection process yielded the textural features named variance (AUC = 0.88), high grey level zone emphasis (AUC = 0.87), small zone low grey level emphasis (AUC = 0.80), and small zone high grey level emphasis (AUC = 0.81) most optimal for distinguishing between groups I and II. SUVmax, TBR, and VGS were also able to distinguish between these groups with AUCs of 0.87, 0.78, and 0.90, respectively. The textural feature named short run high grey level emphasis was able to distinguish group Ia from Ib (AUC = 0.83), while for the same task the TBR and VGS were not found to be predictive. SUVmax was found predictive

  9. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  10. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  11. Pre-equilibrium complex particle emission

    International Nuclear Information System (INIS)

    Bĕták, E.

    2002-01-01

    Semi-classical (phenomenological) pre-equilibrium emission of clusters of nucleons (complex particles) such as deuterons, tritons, helions and α particles from reactions induced by light projectiles (nucleons to α’s) is addressed. The main attention is given to the hard components in the emission energetic spectra, which play an increasing role at incident energies above 20 MeV, and are currently attributed to a presence of some kind of pre-equilibrium processes. In addition, the mechanisms of cluster reactions show special features such as the competition between pickup and knockout processes and the contributions of several successive steps in the reaction. The main frame used here to illustrate the processes and interplays of the competing mechanisms of pre-equilibrium cluster formation and emission, namely the coalescence, pick-up and knock-out, is the pre-equilibrium exciton model. It obviously contains the process of clusterization itself as its organic part. The most important case of complex particles with the largest amount of experimental data is that of alpha emission, which therefore naturally attracts most of the attention and where the widest range of possible mechanisms is available on the market. The loosely bound ejectiles, on the other side, are usually not able to demonstrate all features of the whole spectrum of contributing mechanisms, but they are nevertheless an important link between the nucleon emission and the cluster one.

  12. Discovery of γ-ray Emission from the Strongly Lobe-dominated Quasar 3C 275.1

    Science.gov (United States)

    Liao, Neng-Hui; Xin, Yu-Liang; Li, Shang; Jiang, Wei; Liang, Yun-Feng; Li, Xiang; Zhang, Peng-Fei; Chen, Liang; Bai, Jin-Ming; Fan, Yi-Zhong

    2015-07-01

    We systematically analyze the 6 year Fermi/Large Area Telescope (LAT) data on lobe-dominated quasars (LDQs) in the complete LDQ sample from the Revised third Cambridge Catalogue of Radio Sources (3CRR) survey and report the discovery of high-energy γ-ray emission from 3C 275.1. The γ-ray emission of 3C 207 is confirmed and significant variability of the light curve is identified. We do not find statistically significant γ-ray emission from other LDQs. 3C 275.1 is the known γ-ray quasar with the lowest core dominance parameter (i.e., R = 0.11). We also show that both the northern radio hotspot and parsec jet models can reasonably reproduce the γ-ray data. The parsec jet model, however, is favored by the potential γ-ray variability on a timescale of months. We suggest that some dimmer γ-ray LDQs will be detected in the future and LDQs could contribute non-ignorably to the extragalactic γ-ray background.

  13. BP's emissions trading system

    International Nuclear Information System (INIS)

    Victor, David G.; House, Joshua C.

    2006-01-01

    Between 1998 and 2001, BP reduced its emissions of greenhouse gases by more than 10%. BP's success in cutting emissions is often equated with its use of an apparently market-based emissions trading program. However no independent study has ever examined the rules and operation of BP's system and the incentives acting on managers to reduce emissions. We use interviews with key managers and with traders in several critical business units to explore the bound of BP's success with emissions trading. No money actually changed hands when permits were traded, and the main effect of the program was to create awareness of money-saving emission controls rather than strong price incentives. We show that the trading system did not operate like a 'textbook' cap and trade scheme. Rather, the BP system operated much like a 'safety valve' trading system, where managers let the market function until the cost of doing so surpassed what the company was willing to tolerate

  14. CO LINE EMISSION FROM COMPACT NUCLEAR STARBURST DISKS AROUND ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J. N.; Ballantyne, D. R., E-mail: jarmour3@gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2012-06-20

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale ({approx}< 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J{sub Upper} {approx}> 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z {approx}< 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  15. Spatially extended K Iλ7699 emission in the nebula of VY CMa: kinematics and geometry

    Science.gov (United States)

    Smith, Nathan

    2004-04-01

    Long-slit echelle spectra reveal bright extended emission from the K Iλ7699 resonance line in the reflection nebula surrounding the extreme red supergiant VY Canis Majoris. The central star has long been known for its unusually bright K I emission lines, but this is the first report of intrinsic emission from K I in the nebula. The extended emission is not just a reflected spectrum of the star, but is due to resonant scattering by K atoms in the outer nebula itself, and is therefore a valuable probe of the kinematics and geometry of the circumstellar environment of VY CMa. Dramatic velocity structure is seen in the long-slit spectra, and most lines of sight through the nebula intersect multiple distinct velocity components. A faint `halo' at large distances from the star does appear to show a reflected spectrum, however, and suggests a systemic velocity of +40 km s-1 with respect to the Sun. The most striking feature is blueshifted emission from the filled interior of a large shell seen in images; the kinematic structure is reminiscent of a Hubble flow, and provides strong evidence for asymmetric and episodic mass loss due to localized eruptions on the stellar surface.

  16. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA is proposed. PCA allowed to identify a smaller number of features (k = 2 features, the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax was achieved, with predicted values very close to the measured tool wear values.

  17. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    Science.gov (United States)

    2018-01-01

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443

  18. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.

    Science.gov (United States)

    Caggiano, Alessandra

    2018-03-09

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.

  19. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system

    International Nuclear Information System (INIS)

    Cardenas, Paulo C; RodrIguez, Boris A; Quesada, Nicolas; Vinck-Posada, Herbert

    2011-01-01

    We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.

  20. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    Science.gov (United States)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  1. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  2. [C II] and {sup 12}CO(1-0) emission maps in HLSJ091828.6+514223: A strongly lensed interacting system at z = 5.24

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Altieri, B. [ESAC, ESA, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Egami, E.; Rex, M.; Clement, B. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Bussmann, R. S.; Gurwell, M.; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Boone, F. [Université de Toulouse, UPS-OMP, CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Danielson, A. L. R.; Smail, I.; Swinbank, A. M.; Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Richard, J. [CRAL, Université Lyon-1, 9 Av. Charles Andr, F-69561 St Genis Laval (France); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Dessauges-Zavadsky, M. [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290, Sauverny (Switzerland); Jones, T. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Kneib, J.-P., E-mail: tim.rawle@sciops.esa.int [Laboratoire d' Astrophysique EPFL, Observatoire de Sauverny, Versoix 1290 (Switzerland); and others

    2014-03-01

    We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array {sup 12}CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple {sup 12}CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L {sub FIR(8–1000} {sub μm)} = (1.6 ± 0.1) × 10{sup 14} L {sub ☉} μ{sup –1}, where the total magnification μ{sub total} = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L {sub FIR,} {sub component} = (1.1 ± 0.2) × 10{sup 13} L {sub ☉}) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ∼ 500 km s{sup –1}) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.

  3. Projecting U.S. climate forcing and criteria pollutant emissions through 2050

    Science.gov (United States)

    Presentation highlighting a method for translating emission scenarios to model-ready emission inventories. The presentation highlights new features for spatially allocating emissions to counties and grid cells and identifies areas of potential improvement, such as updating tempor...

  4. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling

    Directory of Open Access Journals (Sweden)

    S. Henne

    2016-03-01

    EDGARv4.2 inventory for this sector. Increased CH4 emissions (up to 30 % compared to the prior were deduced for the north-eastern parts of Switzerland. This feature was common to most sensitivity inversions, which is a strong indicator that it is a real feature and not an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements.

  5. Strong Neutron Pairing in core+4n Nuclei.

    Science.gov (United States)

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  6. The Cornwall-Norton model in the strong coupling regime

    International Nuclear Information System (INIS)

    Natale, A.A.

    1991-01-01

    The Cornwall-Norton model is studied in the strong coupling regime. It is shown that the fermionic self-energy at large momenta behaves as Σ(p) ∼ (m 2 /p) ln (p/m). We verify that in the strong coupling phase the dynamically generated masses of gauge and scalar bosons are of the same order, and the essential features of the model remain intact. (author)

  7. THE REST-FRAME OPTICAL SPECTROSCOPIC PROPERTIES OF LY α -EMITTERS AT z  ∼ 2.5: THE PHYSICAL ORIGINS OF STRONG LY α EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Trainor, Ryan F. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720 (United States); Strom, Allison L.; Steidel, Charles C. [Cahill Center for Astrophysics, MC 249-17, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Rudie, Gwen C., E-mail: trainor@berkeley.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2016-12-01

    We present the rest-frame optical spectroscopic properties of 60 faint ( R {sub AB} ∼ 27; L ∼ 0.1 L {sub *}) Ly α -selected galaxies (LAEs) at z  ≈ 2.56. These LAEs also have rest-UV spectra of their Ly α emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Ly α photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z  ≈ 2–3. In particular, the LAEs have extremely high [O iii] λ 5008/H β ratios (log([O iii]/H β ) ∼ 0.8) and low [N ii] λ 6585/H α ratios (log([N ii]/H α ) < 1.15). Coupled with a detection of the [O iii] λ 4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T{sub e} ≈ 1.8 × 10{sup 4} K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z{sub neb} ≈ 0.22 Z {sub ⊙}), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9–7.4 (Z {sub neb} ≈ 0.02–0.05 Z{sub ⊙}). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Ly α emission across the largest current sample of combined Ly α and rest-optical galaxy spectroscopy, including both the 60 KBSS-Ly α LAEs and 368 more luminous galaxies at similar redshifts. We

  8. Carbon emissions in China

    International Nuclear Information System (INIS)

    Liu, Zhu

    2016-01-01

    This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.

  9. An X-ray survey of the central molecular zone: Variability of the Fe Kα emission line

    Science.gov (United States)

    Terrier, R.; Clavel, M.; Soldi, S.; Goldwurm, A.; Ponti, G.; Morris, M. R.; Chuard, D.

    2018-05-01

    There is now abundant evidence that the luminosity of the Galactic super-massive black hole (SMBH) has not always been as low as it is nowadays. The observation of varying non-thermal diffuse X-ray emission in molecular complexes in the central 300 pc has been interpreted as delayed reflection of a past illumination by bright outbursts of the SMBH. The observation of different variability timescales of the reflected emission in the Sgr A molecular complex can be well explained if the X-ray emission of at least two distinct and relatively short events (i.e. about 10 yr or less) is currently propagating through the region. The number of such events or the presence of a long-duration illumination are open questions. Variability of the reflected emission all over of the central 300 pc, in particular in the 6.4 keV Fe Kα line, can bring strong constraints. To do so we performed a deep scan of the inner 300 pc with XMM-Newton in 2012. Together with all the archive data taken over the course of the mission, and in particular a similar albeit more shallow scan performed in 2000-2001, this allows for a detailed study of variability of the 6.4 keV line emission in the region, which we present here. We show that the overall 6.4 keV emission does not strongly vary on average, but variations are very pronounced on smaller scales. In particular, most regions showing bright reflection emission in 2000-2001 significantly decrease by 2012. We discuss those regions and present newly illuminated features. The absence of bright steady emission argues against the presence of an echo from an event of multi-centennial duration and most, if not all, of the emission can likely be explained by a limited number of relatively short (i.e. up to 10 yr) events. Images of the Fe Kα emission as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A102

  10. Soft-x-ray emission and the local p-type partial density of electronic states in Y2O3: Experiment and theory

    International Nuclear Information System (INIS)

    Mueller, D.R.; Ederer, D.L.; van Ek, J.; OBrien, W.L.; Dong, Q.Y.; Jia, J.; Callcott, T.A.

    1996-01-01

    Photon-excited yttrium M IV,V , and electron-excited oxygen K x-ray emission spectra for yttrium oxide are presented. It is shown that, as in the case of yttrium metal, the decay of M IV vacancies does not contribute substantially to the oxide M IV,V emission. The valence emission is interpreted in a one-electron picture as a measure of the local p-type partial density of states. The yttrium and oxygen valence emission bands are very similar and strongly resemble published photoelectron spectra. Using local-density approximation electronic structure calculations, we show that the broadening of the Y-4p signal in yttrium oxide relative to Y metal are due to two inequivalent yttrium sites in Y 2 O 3 . Features present in the oxide, but not the metal spectrum, are the result of overlap (hybridization) between the Y-4p wave function and states in the oxygen 2s subband. copyright 1996 The American Physical Society

  11. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1993-01-01

    The study of intermediate-energy heavy-ion nuclear reactions is reported. This work has two foci: the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities and the study of the relevant reaction mechanisms. Nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has the following objectives: to study energy, mass, and angular momentum deposition by studying incomplete fusion reactions; to gain confidence in the understanding of how highly excited systems decompose by studying all emissions from the highly excited systems; to push these kinds of studies into the intermediate energy domain (where intermediate mass fragment emission is not improbable) with excitation function studies; and to learn about the dynamics of the decays using particle-particle correlations. The last effort focuses on simple systems, where definitive statements are possible. These avenues of research share a common theme, large complex fragment production. It is this feature, more than any other, which distinguishes the intermediate energy domain

  12. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Ramos Almeida, C. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Levenson, N. A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Nemmen, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Alonso-Herrero, A., E-mail: rmason@gemini.edu [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander (Spain)

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  13. Spectroscopy of the 3.3 ad 3.4 micron dust emission features

    International Nuclear Information System (INIS)

    Geballe, T.R.

    1984-01-01

    Various unidentified infrared features which have been observed in the interstellar grain medium are thought to be emitted or absorbed by molecules within dust grains. In order to correctly identify these molecules accurate high spectral resolution measurements of the features must be obtained. In order to obtain more accurate profiles, the 3.3 and 3.4 micron features have been observed in the planetary nebula NGC 7027 and in the HII region S106, during June and July 1983, using UKIRT and its 7-channel cooled grating spectrometer. (author)

  14. Stokes polarimetry of main-line OH emission from stellar masers

    International Nuclear Information System (INIS)

    Claussen, M.J.; Fix, J.D.

    1982-01-01

    Main-line OH emission has been measured in all four Stokes parameters from seven late-type variable stars and the F8 supergiant IRC+10420. Linearly polarized features were detected in UX Cyg, U Ori, and IRC+10420 at 1665 MHz. The linearly polarized features in UX Cyg and IRC +10420, when combined with adjacent circularly polarized features suggest Zeeman patterns. A polarization pattern in IRC+10420 is probably the best example of a complete Zeeman pattern yet observed in stellar masers, although it appears to lack the shifted linear (sigma) components. This study, combined with other recent work, shows that linearly polarized features in stellar sources are uncommon. Only about 10% of the stellar OH sources show linearly polarized features. As an aid in accounting for the observed polarization properties of stellar OH masers, model mass flows were calculated using magnetic field structures similar to that of the solar wind. Conclusions drawn from this model were: (1) unpolarized or weakly circularly polarized emission from sources can arise from the entire circumstellar shell; (2) circular polarization without linear polarization can be produced either by emission from the entire shell or by enhanced OH densities in small regions of the shell provided there are sufficient free electrons present to depolarize the linear components; and (3) Zeeman patterns which include both circular and linear polarizations can be produced in OH density enhancements if electron densities are low. The electron densities required for effective Faraday depolarization yield emission measures of the order of 10 9 pc cm -6 . Given the large distances of stellar OH masers, the thermal continuum emission from such depolarizing electrons would probably be undetectable

  15. Marshmallowing of nanopillar arrays by field emission

    International Nuclear Information System (INIS)

    Park, J; Qin, H; Kim, H-S; Blick, R H

    2009-01-01

    We have fabricated mechanically flexible field electron emitters formed by highly-doped silicon nanopillars on a silicon membrane. Electron beam induced deposition of carbon-based contaminants is employed to probe the spatial activity of electron emission from the nanopillars. The experimental configuration provides a powerful tool to investigate the physics of the field electron emission (FEE). In contrast to the general assumption that field emission only occurs at the tips of nanoscale emitters, we found that the emission from the nanopillars' sidewalls is as strong as from their tips.

  16. 8-13 μm spectrophotometry of V1016 Cyg and the shape of the 'silicate' feature

    International Nuclear Information System (INIS)

    Aitken, D.K.; Roche, P.F.; Spenser, P.M.

    1980-01-01

    8 to 13μm spectrophotometry of V1016 Cyg shows a broad emission feature attributed to radiation from silicate grains. This emission feature more closely resembles that of the circumstellar shells of oxygen-rich supergiants than the more dilute feature, typical of the interstellar medium, which is observed from the Trapezium source in the Orion nebula. It appears to be possible to distinguish the evolutionary status of an object from the form of its silicate excess. (author)

  17. Constraint solving for direct manipulation of features

    NARCIS (Netherlands)

    Lourenco, D.; Oliveira, P.; Noort, A.; Bidarra, R.

    2006-01-01

    In current commercial feature modeling systems, support for direct manipulation of features is not commonly available. This is partly due to the strong reliance of such systems on constraints, but also to the lack of speed of current constraint solvers. In this paper, an approach to the optimization

  18. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  19. Synthesis and characterization of semi-crystalline polyarylene ether nitrile with AIEE feature

    Science.gov (United States)

    Wang, Pan; Li, Kui; Jia, Kun; Liu, Xiaobo

    2017-12-01

    An AIEgen 1, 2-di (4-hydroxyphenyl)-1, 2-diphenylethene (TPE-2OH) was introduced into the back bone of semi-crystalline poly arylene ether nitriles (PEN). The fluorescence spectra results indicated that the derived polymer displayed a typical aggregation-induced emission enhancement (AIEE) active with an emitting peak at ∼470 nm. Then the AIEE active PEN was prepared into films through casting method and realised strong fluorescence emission and excellent mechanics properties. Besides, the crystal AIEE active polymer shows sphere micro-morphology along with a strong blue emission. These findings will open a door for further research on the high performance semi-crystalline PEN at flexible display technology and optical sensors.

  20. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma.

    Science.gov (United States)

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A; Glas, Martin

    2017-01-31

    Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression.

  1. Inflation and WMAP three year data. Features have a feature.

    Energy Technology Data Exchange (ETDEWEB)

    Covi, L.; Hamann, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Melchiorri, A. [INFN, Roma (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Slosar, A. [Ljubljana Univ. (Slovenia). Faculty of Mathematics and Physics; Sorbera, I. [Rome-3 Univ. (Italy). Dipt. di Fisica

    2006-06-15

    The new three year WMAP data seem to confirm the presence of non-standard large scale features in the Cosmic Microwave Anisotropies power spectrum. While these features may hint at uncorrected experimental systematics, it is also possible to generate, in a cosmological way, oscillations on large angular scales by introducing a sharp step in the inflaton potential. Using current cosmological data, we derive constraints on the position, magnitude and gradient of a possible step in the inflaton potential. We show that a step in the potential, while strongly constrained by current data, is still allowed and may provide an interesting explanation to the currently measured deviations from the standard featureless spectrum. (Orig.)

  2. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  3. Spontaneous light emission in complex nanostructures

    Science.gov (United States)

    Blanco, L. A.; García de Abajo, F. J.

    2004-05-01

    The spontaneous emission of an excited atom surrounded by different materials is studied in the framework of a semiclassical approach, where the transition dipole moment acts as the source of the emission field. The emission in the presence of semiinfinite media, metallic nanorings, spheres, gratings, and other complex geometries is investigated. Strong emission enhancement effects are obtained in some of these geometries associated to the excitation of plasmons (e.g., in nanorings or spheres). Furthermore, the emission is shown to take place only along narrow angular distributions when the atom is located inside a low-index dielectric and near its planar surface, or when metallic nanogratings are employed at certain resonant wave lengths. In particular, axially symmetric gratings made of real silver metal are considered, and both emission rate enhancement and focused far-field emission are achieved simultaneously when the grating is decorated with further nanostructures.

  4. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  5. Features of space-charge-limited emission in foil-less diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ping; Yuan, Keliang; Liu, Guozhi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sun, Jun [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2014-12-15

    Space-charge-limited (SCL) current can always be obtained from the blade surface of annular cathodes in foil-less diodes which are widely used in O-type relativistic high power microwave generators. However, there is little theoretical analysis regarding it due to the mathematical complexity, and almost all formulas about the SCL current in foil-less diodes are based on numerical simulation results. This paper performs an initial trial in calculation of the SCL current from annular cathodes theoretically under the ultra-relativistic assumption and the condition of infinitely large guiding magnetic field. The numerical calculation based on the theoretical research is coherent with the particle-in-cell (PIC) simulation result to some extent under a diode voltage of 850 kV. Despite that the theoretical research gives a much larger current than the PIC simulation (41.3 kA for the former and 9.7 kA for the latter), which is induced by the ultra-relativistic assumption in the theoretical research, they both show the basic characteristic of emission from annular cathodes in foil-less diodes, i.e., the emission enhancement at the cathode blade edges, especially at the outer edge. This characteristic is confirmed to some extent in our experimental research of cathode plasma photographing under the same diode voltage and a guiding magnetic field of 4 T.

  6. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... than three particles. The states can be probed using the same techniques that have recently been used for fermionic few-body systems in quasi-1D.......We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... extended regions of coordinate space. This is demonstrated in an analytically solvable model for three equal mass particles, two of which are identical bosons, which is exact in the strongly-interacting limit. We numerically verify our results by presenting the first application of the stochastic...

  7. Planck 2013 results. XIV. Zodiacal emission

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colley, J.-M.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; O'Sullivan, C.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Smoot, G. F.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through different columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model -- a diffuse cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are different from those in the diffuse cloud. We fit the small amount of Galactic emission seen t...

  8. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells

    Science.gov (United States)

    Akkerman, Quinten A.; Gandini, Marina; di Stasio, Francesco; Rastogi, Prachi; Palazon, Francisco; Bertoni, Giovanni; Ball, James M.; Prato, Mirko; Petrozza, Annamaria; Manna, Liberato

    2016-12-01

    Lead halide perovskite semiconductors have recently gained wide interest following their successful embodiment in solid-state photovoltaic devices with impressive power-conversion efficiencies, while offering a relatively simple and low-cost processability. Although the primary optoelectronic properties of these materials have already met the requirement for high-efficiency optoelectronic technologies, industrial scale-up requires more robust processing methods, as well as solvents that are less toxic than the ones that have been commonly used so successfully on the lab-scale. Here we report a fast, room-temperature synthesis of inks based on CsPbBr3 perovskite nanocrystals using short, low-boiling-point ligands and environmentally friendly solvents. Requiring no lengthy post-synthesis treatments, the inks are directly used to fabricate films of high optoelectronic quality, exhibiting photoluminescence quantum yields higher than 30% and an amplified spontaneous emission threshold as low as 1.5 μJ cm-2. Finally, we demonstrate the fabrication of perovskite nanocrystal-based solar cells, with open-circuit voltages as high as 1.5 V.

  9. Developing a strong safety culture - a safety management challenge

    International Nuclear Information System (INIS)

    Low, M.; Gipson, G. P.; Williams, M.

    1995-01-01

    The approach is presented adapted by Nuclear Electric to build a strong safety culture through the development of its safety management system. Two features regarded as critical to a strong safety culture are: provision of effective communications to promote an awareness and ownership of safety among craft, and commitment to continuous improvement with a genuine willingness to learn from own experiences and those from others. (N.T.) 5 refs., 4 figs., 1 tab

  10. Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation

    Directory of Open Access Journals (Sweden)

    T. Krings

    2011-12-01

    Full Text Available Carbon dioxide (CO2 is the most important man-made greenhouse gas (GHG that cause global warming. With electricity generation through fossil-fuel power plants now being the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010, random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP. CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO with an 828-km orbit height, local time ascending node (LTAN of 13:30 (01:30 p.m. LT and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat has the potential to verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1 with a systematic error of less than ~4.9% and a random error of less than ~6.7% for 50% of all the power plants. For 90% of all the power plants, the systematic error was less than ~12.4% and the random error was less than ~13%. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other

  11. Carbon emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhu [Harvard Univ., Cambridge, MA (United States). Sustainability Science Program

    2016-07-01

    This study analyzes the spatial-temporal pattern and processes of China's energy-related carbon emissions. Based on extensive quantitative analysis, it outlines the character and trajectory of China's energy-related carbon emissions during the period 1995-2010, examining the distribution pattern of China's carbon emissions from regional and sectoral perspectives and revealing the driving factors of China's soaring emission increase. Further, the book investigates the supply chain carbon emissions (the carbon footprints) of China's industrial sectors. Anthropogenic climate change is one of the most serious challenges currently facing humankind. China is the world's largest developing country, top primary energy consumer and carbon emitter. Achieving both economic growth and environmental conservation is the country's twofold challenge. Understanding the status, features and driving forces of China's energy-related carbon emissions is a critical aspect of attaining global sustainability. This work, for the first time, presents both key findings on and a systematic evaluation of China's carbon emissions from energy consumption. The results have important implications for global carbon budgets and burden-sharing with regard to climate change mitigation. The book will be of great interest to readers around the world, as it addresses a topic of truly global significance.

  12. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement.

    Science.gov (United States)

    Zheng, Xuan; Wu, Ye; Jiang, Jingkun; Zhang, Shaojun; Liu, Huan; Song, Shaojie; Li, Zhenhua; Fan, Xiaoxiao; Fu, Lixin; Hao, Jiming

    2015-11-17

    Black carbon (BC) emissions from heavy-duty diesel vehicles (HDDVs) are rarely continuously measured using portable emission measurement systems (PEMSs). In this study, we utilize a PEMS to obtain real-world BC emission profiles for 25 HDDVs in China. The average fuel-based BC emissions of HDDVs certified according to Euro II, III, IV, and V standards are 2224 ± 251, 612 ± 740, 453 ± 584, and 152 ± 3 mg kg(-1), respectively. Notably, HDDVs adopting mechanical pump engines had significantly higher BC emissions than those equipped with electronic injection engines. Applying the useful features of PEMSs, we can relate instantaneous BC emissions to driving conditions using an operating mode binning methodology, and the average emission rates for Euro II to Euro IV diesel trucks can be constructed. From a macroscopic perspective, we observe that average speed is a significant factor affecting BC emissions and is well correlated with distance-based emissions (R(2) = 0.71). Therefore, the average fuel-based and distance-based BC emissions on congested roads are 40 and 125% higher than those on freeways. These results should be taken into consideration in future emission inventory studies.

  13. Eu emission trading scheme and its implications on energy sector of Lithuania

    International Nuclear Information System (INIS)

    Streimikiene, D.; Mikalauskiene, A.

    2004-01-01

    The main objectives of the article are to analyse the theoretical principles of emission trading and to emphasize the main features and requirements of EU emission trading scheme. The goal of the article to assess the impact of GHG emission trading on economy and GHG emission reduction in EU and Lithuania

  14. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    Science.gov (United States)

    Papovich, Casey

    they re-emit a large fraction of the ionization radiation from ongoing star formation. Preliminary work using archival spectra from Spitzer show that the PAH luminosity scales linearly with the SFR with smaller scatter than "gold standard" SFR tracers, such as the (dust corrected) hydrogen emission. The PAH emission becomes important because they are destroyed by the hard UV radiation in the vicinity of accreting supermassive blackholes. Therefore, this makes the PAH emission extremely powerful: it has the unique ability to measure SFRs in galaxies with active supermassive black holes, where every other SFR indicator is contaminated by emission from the supermassive black hole. This objectives for this proposal are to (1) provide a robust recalibration of the SFR from the mid-IR PAH emission features using a large sample of star-forming galaxies in the Spitzer archive; (2) demonstrate the utility of the PAHs to derive valid SFRs from JWST observations, using archival Spitzer spectroscopy for distant galaxies strongly lensed gravitationally; finally, using a large sample of galaxies with Spitzer spectroscopy spanning a large range of total luminosity and AGN activity (from pure starbursts to quasars) to (3) measure the distribution function of the luminosity of star-formation, AGN, and test how these vary with total luminosity and redshift. Theoretical models make strong predictions for this distribution function. Comparing the data to these predictions allows us to test these models directly.

  15. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs

  16. Neutrino emission, equation of state and the role of strong gravity

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, O. L., E-mail: ocaballe@uoguelph.ca [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2016-07-07

    Neutron-star mergers are interesting for several reasons: they are proposed as the progenitors of short gamma-ray bursts, they have been speculated to be a site for the synthesis of heavy elements, and they emit gravitational waves possibly detectable at terrestrial facilities. The understanding of the merger process, from the pre-merger stage to the final compact object-accreting system involves detailed knowledge of numerical relativity and nuclear physics. In particular, key ingredients for the evolution of the merger are neutrino physics and the matter equation of state. We present some aspects of neutrino emission from binary neutron star mergers showing the impact that the equation of state has on neutrinos and discuss some spectral quantities relevant to their detection such as energies and luminosities far from the source.

  17. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Energy economics. CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yiming [Beijing Institute of Technology (China). Center for Energy and Environmental Policy Research; Liu, Lancui [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Center for Climate and Environmental Policy; Wu, Gang; Zou, Lele [Chinese Academy of Sciences, Beijing (China). Inst. of Policy and Management

    2011-07-01

    ''Energy Economics: CO{sub 2} Emissions in China'' presents a collection of the researches on China's CO{sub 2} emissions as studied by the Center for Energy and Environmental Policy Research (CEEP). Based on the analysis of factors related to global climate change and CO{sub 2} emissions, it discusses China's CO{sub 2} emissions originating from various sectors, diverse impact factors, as well as proposed policies for reducing carbon emissions. Featuring empirical research and policy analysis on focused and critical issues involving different stages of CO{sub 2} emissions in China, the book provides scientific supports for researchers and policy makers in dealing with global climate change. (orig.)

  19. CO2 emissions: a peak level in 2010

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    After a reduction of CO 2 emissions in 2009 due to the financial crisis, these emissions have again reached a peak in 2010: 30.6 Gt, it means an increase by 5% compared to the previous peak. According to IEA (International Energy Agency): 44% of the emissions come from coal, 36% from oil and 20% from natural gas, and OECD countries are responsible of 40% of the CO 2 global emissions but only of 25% of their increase since 2009. For China and India the emissions of CO 2 have increased sharply due to their strong economic growth. (A.C.)

  20. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  1. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  2. Marshmallowing of nanopillar arrays by field emission

    International Nuclear Information System (INIS)

    Qin Hua; Kim, Hyun-Seok; Blick, Robert H.

    2010-01-01

    We fabricated nanoscale field electron emitters formed by highly-doped silicon nanopillars on a silicon membrane. Electron-beam induced deposition of carbon-based contaminants is employed as a probe of the spatial activity of electron emission from the nanopillars. In stark contrast to the general assumption that field emission only occurs at the tips of nanoscale emitters, we found strong emission from the sidewalls of the nanopillars. This is revealed by the deposition of carbon contaminants on these sidewalls, so that the nanopillars finally resemble marshmallows. We conclude that field emission from nanostructured surfaces is more intricate than previously expected.

  3. Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.

    Science.gov (United States)

    Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang

    2017-07-01

    Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A comparative study of carbon plasma emission in methane and argon atmospheres

    Science.gov (United States)

    Yousfi, H.; Abdelli-Messaci, S.; Ouamerali, O.; Dekhira, A.

    2018-04-01

    The interaction between laser produced plasma (LPP) and an ambient gas is largely investigated by Optical Emission Spectroscopy (OES). The analysis of carbon plasma produced by an excimer KrF laser was performed under controlled atmospheres of methane and argon. For each ambient gas, the features of produced species have been highlighted. Using the time of flight (TOF) analysis, we have observed that the C and C2 exhibit a triple and a double peaks respectively in argon atmosphere in contrast to the methane atmosphere. The evolution of the first peaks of C and C2 follows the plasma expansion, whereas the second peaks move backward, undergoing reflected shocks. It was found that the translational temperature, obtained by Shifted Maxwell Boltzmann distribution function is strongly affected by the nature of ambient gas. The dissociation of CH4 by electronic impact presents the principal approach for explaining the emission of CH radical in reactive plasma. Some chemical reactions have been proposed in order to explain the formation process of molecular species.

  5. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    Science.gov (United States)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  6. Health effects of soy-biodiesel emissions: mutagenicity-emission factors.

    Science.gov (United States)

    Mutlu, Esra; Warren, Sarah H; Matthews, Peggy P; King, Charly; Walsh, Leon; Kligerman, Andrew D; Schmid, Judith E; Janek, Daniel; Kooter, Ingeborg M; Linak, William P; Gilmour, M Ian; DeMarini, David M

    2015-01-01

    Soy biodiesel is the predominant biodiesel fuel used in the USA, but only a few, frequently conflicting studies have examined the potential health effects of its emissions. We combusted petroleum diesel (B0) and fuels with increasing percentages of soy methyl esters (B20, B50 and B100) and determined the mutagenicity-emission factors expressed as revertants/megajoule of thermal energy consumed (rev/MJ(th)). We combusted each fuel in replicate in a small (4.3-kW) diesel engine without emission controls at a constant load, extracted organics from the particles with dichloromethane, determined the percentage of extractable organic material (EOM), and evaluated these extracts for mutagenicity in 16 strains/S9 combinations of Salmonella. Mutagenic potencies of the EOM did not differ significantly between replicate experiments for B0 and B100 but did for B20 and B50. B0 had the highest rev/MJ(th), and those of B20 and B100 were 50% and ∼85% lower, respectively, in strains that detect mutagenicity due to polycyclic aromatic hydrocarbons (PAHs), nitroarenes, aromatic amines or oxidative mutagens. For all strains, the rev/MJ(th) decreased with increasing biodiesel in the fuel. The emission factor for the 16 EPA Priority PAHs correlated strongly (r(2 )= 0.69) with the mutagenicity-emission factor in strain TA100 + S9, which detects PAHs. Under a constant load, soy-biodiesel emissions were 50-85% less mutagenic than those of petroleum diesel. Without additional emission controls, petroleum and biodiesel fuels had mutagenicity-emission factors between those of large utility-scale combustors (e.g. natural gas, coal, or oil) and inefficient open-burning (e.g. residential wood fireplaces).

  7. The discovery of an O VII emission line in the ASCA spectrum of the Seyfert galaxy NGC 3783

    Science.gov (United States)

    George, I. M.; Turner, T. J.; Netzer, H.

    1995-01-01

    We report the first observation of an O VII 0.57 keV emission line in a Seyfert 1 galaxy. NGC 3783 was observed by ASCA twice over a period of 4 days in 1993 December. The source exhibited a approximately 30% change in intensity between the two observations, with most of the variability taking place as a result of steepening of the continuum less than or approximately equal to 1 keV. Spectra from both observations show intense absorption features in the 0.5-1.5 keV band, which can be well fitted by an ionized absorber model of solar composition, column density of 10(exp 22.2)/sq cm and ionization parameter of approximately 7-8; the strongest absorption features being due to O VII and O VIII. Two emission features are also seen in the spectra which we identify as O VII 0.57 keV (equivalent width approximately equals 36 eV) and O VIII 0.65 keV (equivalent width approximately equals 11 eV). We also show that the 3-6 keV continuum of the source is well fitted by a Gamma = 1.3-1.4 power-law continuum, a narrow neutral iron K-shell fluorescence line and a strong iron K-shell absorption edge, possibly corresponding to highly ionized iron.

  8. TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION. X. ON THE PRECURSOR AND POSTCURSOR EMISSION

    International Nuclear Information System (INIS)

    Basu, Rahul; Mitra, Dipanjan; Rankin, Joanna M.

    2015-01-01

    Precursors and postcursors (PPCs) are rare emission components, which appear beyond the main pulse emission, in some cases far away from it, and are detected in a handful of pulsar. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our analysis we find that PPC components have properties very different from that of outer conal emission. The separation of the PPC components from the main pulse center remains constant with frequency. In addition the beam opening angles corresponding to the separation of PPC components from the pulsar center are much larger than the largest encountered in conal emission. Pulsar radio emission is believed to originate within the magnetic polar flux tubes due to the growth of instabilities in the outflowing relativistic plasma. Observationally, there is strong evidence that the main pulse emission originates at altitudes of about 50 neutron star radii for a canonical pulsar. Currently, the most plausible radio emission model that can explain main pulse emission is the coherent curvature radiation mechanism, wherein relativistic charged solitons are formed in a non-stationary electron-positron-pair plasma. The wider beam opening angles of PPC require the emission to emanate from larger altitudes as compared to the main pulse, if both these components originate by the same emission mechanism. We explore this possibility and find that this emission mechanism is probably inapplicable at the height of the PPC emission. We propose that the PPC emission represents a new type of radiation from pulsars with a mechanism different from that of the main pulse

  9. Constraint on the polarization of electric dipole emission from spinning dust

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem; Martin, P. G. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Lazarian, A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53705 (United States)

    2013-12-20

    Planck results have revealed that the electric dipole emission from polycyclic aromatic hydrocarbons (PAHs) is the most reliable explanation for the anomalous microwave emission that interferes with cosmic microwave background (CMB) radiation experiments. The emerging question is to what extent this emission component contaminates the polarized CMB radiation. We present constraints on polarized dust emission for the model of grain-size distribution and grain alignment that best fits the observed extinction and polarization curves. Two stars with a prominent polarization feature at λ = 2175 Å—HD 197770 and HD 147933-4—are chosen for our study. For HD 197770, we find that the model with aligned silicate grains plus weakly aligned PAHs can successfully reproduce the 2175 Å polarization feature; in contrast, for HD 147933-4, we find that the alignment of only silicate grains can account for that feature. The alignment function of PAHs for the best-fit model to the HD 197770 data is used to constrain polarized spinning dust emission. We find that the degree of polarization of spinning dust emission is about 1.6% at frequency ν ≈ 3 GHz and declines to below 0.9% for ν > 20 GHz. We also predict the degree of polarization of thermal dust emission at 353 GHz to be P {sub em} ≈ 11% and 14% for the lines of sight to the HD 197770 and HD 147933-4 stars, respectively.

  10. Features of tuned mass damper behavior under strong earthquakes

    Science.gov (United States)

    Nesterova, Olga; Uzdin, Alexander; Fedorova, Maria

    2018-05-01

    Plastic deformations, cracks and destruction of structure members appear in the constructions under strong earthquakes. Therefore constructions are characterized by a nonlinear deformation diagram. Two types of construction non-linearity are considered in the paper. The first type of nonlinearity is elastoplastic one. In this case, plastic deformations occur in the structural elements, and when the element is unloaded, its properties restores. Among such diagrams are the Prandtl diagram, the Prandtl diagram with hardening, the Ramberg-Osgood diagram and others. For systems with such nonlinearity there is an amplitude-frequency characteristic and resonance oscillation frequencies. In this case one can pick up the most dangerous accelerograms for the construction. The second type of nonlinearity is nonlinearity with degrading rigidity and dependence of behavior on the general loading history. The Kirikov-Amankulov model is one of such ones. Its behavior depends on the maximum displacement in the stress history. Such systems do not have gain frequency characteristic and resonance frequency. The period of oscillation of such system is increasing during the system loading, and the system eigen frequency decreases to zero at the time of collapse. In the cases under consideration, when investigating the system with MD behavior, the authors proposed new efficiency criteria. These include the work of plastic deformation forces for the first type of nonlinearity, which determines the possibility of progressive collapse or low cycle fatigue of the structure members. The period of system oscillations and the time to collapse of the structural support members are the criterion for systems with degrading rigidity. In the case of non-linear system behavior, the efficiency of MD application decreases, because the fundamental structure period is reduced because of structure damages and the MD will be rebound from the blanking regime. However, the MD using can significantly reduce

  11. Feature-Based Retinal Image Registration Using D-Saddle Feature

    Directory of Open Access Journals (Sweden)

    Roziana Ramli

    2017-01-01

    Full Text Available Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%, Harris-PIIFD (4%, H-M (16%, and Saddle (16%. Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.

  12. CO2 emissions, energy consumption and economic growth in BRIC countries

    International Nuclear Information System (INIS)

    Pao, H.-T.; Tsai, C.-M.

    2010-01-01

    This paper examines dynamic causal relationships between pollutant emissions, energy consumption and output for a panel of BRIC countries over the period 1971-2005, except for Russia (1990-2005). In long-run equilibrium energy consumption has a positive and statistically significant impact on emissions, while real output exhibits the inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) hypothesis with the threshold income of 5.393 (in logarithms). In the short term, changes in emissions are driven mostly by the error correction term and short term energy consumption shocks, as opposed to short term output shocks for each country. Short-term deviations from the long term equilibrium take from 0.770 years (Russia) to 5.848 years (Brazil) to correct. The panel causality results indicate there are energy consumption-emissions bidirectional strong causality and energy consumption-output bidirectional long-run causality, along with unidirectional both strong and short-run causalities from emissions and energy consumption, respectively, to output. Overall, in order to reduce emissions and not to adversely affect economic growth, increasing both energy supply investment and energy efficiency, and stepping up energy conservation policies to reduce unnecessary wastage of energy can be initiated for energy-dependent BRIC countries. - Research highlights: →Energy has a positive impact on emissions, while output supports EKC hypothesis. →Changes in emissions are driven mostly by the ECT and short term energy shocks. →Short-term deviations from the long-term equilibrium take 0.77-5.85 years to correct. →There are energy-emissions and energy-output bidirectional long-run causalities. →There are unidirectional strong causalities from emissions and energy to output.

  13. X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92903 (United States); Hall, Patrick B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Shemmer, Ohad, E-mail: jfwu@astro.psu.edu [Department of Physics, University of North Texas, Denton, TX 76203 (United States)

    2012-03-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of {approx}> 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization 'shielding gas' covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our

  14. X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Anderson, Scott F.; Diamond-Stanic, Aleksandar M.; Hall, Patrick B.; Plotkin, Richard M.; Shemmer, Ohad

    2012-01-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of ∼> 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization 'shielding gas' covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our X

  15. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  16. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  17. Quark nugget dark matter: no contradiction with 511 keV line emission from dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Kyle; Zhitnitsky, Ariel, E-mail: klawson@phas.ubc.ca, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-02-01

    The observed galactic 511 keV line has been interpreted in a number of papers as a possible signal of dark matter annihilation within the galactic bulge. If this is the case then it is possible that a similar spectral feature may be observed in association with nearby dwarf galaxies. These objects are believed to be strongly dark matter dominated and present a relatively clean observational target. Recently INTEGRAL observations have provided new constraints on the 511 keV flux from nearby dwarf galaxies [1] motivating further investigation into the mechanism by which this radiation may arise. In the model presented here dark matter in the form of heavy quark nuggets produces the galactic 511 keV emission line through interactions with the visible matter. It is argued that this type of interaction is not strongly constrained by the flux limits reported in [2].

  18. Understanding strong-field coherent control: Measuring single-atom versus collective dynamics

    International Nuclear Information System (INIS)

    Trallero-Herrero, Carlos; Weinacht, Thomas; Spanner, Michael

    2006-01-01

    We compare the results of two strong field coherent control experiments: one which optimizes multi-photon population transfer in atomic sodium (from the 3s to the 4s state, measured by spontaneous emission from the 3p-3s transition) with one that optimizes stimulated emission on the 3p-3s transition in an ensemble of sodium atoms. Both experiments make use of intense, shaped ultrafast laser pulses discovered by a Genetic Algorithm inside a learning control loop. Optimization leads to improvements in the spontaneous and stimulated emission yields of about 4 and 10 4 , respectively, over an unshaped pulse. We interpret these results by modeling both the single atom dynamics as well as the stimulated emission buildup through numerical integration of Schroedinger's and Maxwell's equations. Our interpretation leads to the conclusion that modest yields for controlling single quantum systems can lead to dramatic effects whenever an ensemble of such systems acts collectively following controlled impulsive excitation

  19. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  20. Physical model for the 2175 A interstellar extinction feature

    International Nuclear Information System (INIS)

    Hecht, J.H.

    1986-01-01

    Recent IUE observations have shown that the 2175 A interstellar extinction feature is constant in wavelength but varies in width. A model has been constructed to explain these results. It is proposed that the 2175 A feature will only be seen when there is extinction due to carbon grains which have lost their hydrogen. In particular, the feature is caused by a separate population of small (less than 50 A radius), hydrogen-free carbon grains. The variations in width would be due to differences in either their temperature, size distribution, or impurity content. All other carbon grains retain hydrogen, which causes the feature to be suppressed. If this model is correct, then it implies that the grains responsible for the unidentified IR emission features would not generally cause the 2175 A feature. 53 references

  1. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    Acoustic emission 'signatures' contain information about the fine structure of metallurgical source events and their interpretation may provide a means of assessing the severity of internal flaws as well as surface flaws. The ultimate aim of this research on signature analysis is to develop a real time non-destructive testing technique having the capability of flaw recognition as well as flaw location in nuclear reactor components and structures under stress. Thus the requisite, unlike that in most acoustic emission work to date, is for a technique which affords discrimination between acoustic emission from different types of flaws propagating simultaneously. The approach described here requires detailed analysis of the emission signatures in terms of a specific statistical parameter, energy spectral density. In order to realise the full inspection potential of acoustic emission monitoring data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. (Auth.)

  2. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    Science.gov (United States)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  3. Rocket-borne EUV-visible emission measurements

    International Nuclear Information System (INIS)

    Schmidtke, G.; Baker, K.D.; Stasek, G.

    1982-01-01

    Two rocket-borne experiments for measuring EUV atmospheric emissions have been conducted. The first measured emissions at 391.4 nm and 557.7 nm, and the second measured emissions in the range from 50 to 650 nm. Height profiles of selected auroral emissions from atomic oxygen at 130.4 nm (exhibiting resonant radiation diffusion) and from atomic oxygen at 557.7 nm, and from neutral and ionized molecular nitrogen are shown. Some details of the recorded spectra are given. In the shorter wavelength regions, emissions from atomic oxygen and nitrogen dominate. Over 140 nm, Lyman-Birge-Hopfield bands, second positive bands and Vegard-Kaplan bands of molecular nitrogen contribute most strongly except for some atomic lines. The Lyman-Birge-Hopfield bands of molecular nitrogen are relatively weak during the auroral arc as compared to the diffuse aurora

  4. Ontario emissions trading code : emission reduction credit creation, recording and transfer rules, rules for renewable energy projects and conservation projects, and rules for the operation of the Ontario Emissions Trading Registry

    International Nuclear Information System (INIS)

    2001-12-01

    Emissions trading has been an integral part of Ontario's air quality strategy since December 31, 2001. Ontario has adopted the 'cap, credit and trade' type of emissions trading system, a hybrid that takes the best features of pure 'cap-and-trade' and 'baseline-and-credit' type systems. It covers nitric oxide and sulphur dioxide. The Ontario Emissions Trading Code supplements Ontario Regulation 397/01 and sets out rules for renewable energy projects and conservation projects for which applications for emission allowances can be made. This Code describes the rules for the creation and transfer of emission reduction credits (ERCs). It also explains the rules for the operation of the registry that has been established to provide information to the public about the emissions trading program and records decisions about credit creation and credit and allowance retirement. 3 tabs

  5. Sharing a quota on cumulative carbon emissions

    International Nuclear Information System (INIS)

    Raupach, Michael R.; Davis, Steven J.; Peters, Glen P.; Andrew, Robbie M.; Canadell, Josep G.; Ciais, Philippe

    2014-01-01

    Any limit on future global warming is associated with a quota on cumulative global CO 2 emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to an equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2 C warming limit (relative to pre-industrial levels), the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions. (authors)

  6. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  7. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  8. Crowding with conjunctions of simple features.

    Science.gov (United States)

    Põder, Endel; Wagemans, Johan

    2007-11-20

    Several recent studies have related crowding with the feature integration stage in visual processing. In order to understand the mechanisms involved in this stage, it is important to use stimuli that have several features to integrate, and these features should be clearly defined and measurable. In this study, Gabor patches were used as target and distractor stimuli. The stimuli differed in three dimensions: spatial frequency, orientation, and color. A group of 3, 5, or 7 objects was presented briefly at 4 deg eccentricity of the visual field. The observers' task was to identify the object located in the center of the group. A strong effect of the number of distractors was observed, consistent with various spatial pooling models. The analysis of incorrect responses revealed that these were a mix of feature errors and mislocalizations of the target object. Feature errors were not purely random, but biased by the features of distractors. We propose a simple feature integration model that predicts most of the observed regularities.

  9. Complex Molecules in the Laboratory - a Comparison of Chriped Pulse and Emission Spectroscopy

    Science.gov (United States)

    Hermanns, Marius; Wehres, Nadine; Maßen, Jakob; Schlemmer, Stephan

    2017-06-01

    Detecting molecules of astrophysical interest in the interstellar medium strongly relies on precise spectroscopic data from the laboratory. In recent years, the advancement of the chirped-pulse technique has added many more options available to choose from. The Cologne emission spectrometer is an additional path to molecular spectroscopy. It allows to record instantaneously broad band spectra with calibrated intensities. Here we present a comparison of both methods: The Cologne chirped-pulse spectrometer as well as the Cologne emission spectrometer both cover the frequency range of 75-110 GHz, consistent with the ALMA Band 3 receivers. High sensitive heterodyne receivers with very low noise temperature amplifiers are used with a typical bandwidth of 2.5 GHz in a single sideband. Additionally the chirped-pulse spectrometer contains a high power amplifier of 200 mW for the excitation of molecules. Room temperature spectra of methyl cyanide and comparison of key features, such as measurement time, sensitivity, limitations and commonalities are shown in respect to identification of complex molecules of astrophysical importance. In addition, future developments for both setups will be discussed.

  10. Diffusion and Evaporation-Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus

    and sources. This work provides an investigation based on fundamental fluid dynamics and mass transfer theory to obtain a general understanding of the mechanisms involved in the emission from building materials in ventilated rooms. In addition, a generally applicable model for prediction of surface emission...... is proposed. The interest has been focused on the emission of vapours and gases as no particulate emissions have been considered. The methods used are numerical calculations by computational fluid dynamics (CFD) and full-scale laboratory experiments. It was found that the emission is a strong function of air......In emission studies reported in literature little effort has been made to investigate the emission from building materials in ventilated enclosures from a fluid dynamics point of view. Furthermore, most of the existing emission models are empirical relations that are based on specific pollutants...

  11. Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

    Science.gov (United States)

    Torretti, F.; Schupp, R.; Kurilovich, D.; Bayerle, A.; Scheers, J.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-02-01

    We present the results of spectroscopic measurements in the extreme ultraviolet regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn{}8+-Sn{}15+ ions. The dominant transitions for all ions but Sn{}8+ are found to be electric-dipole transitions towards the n = 4 ground state from the core-excited configuration in which a 4p electron is promoted to the 5s subshell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn LPP, which could be employed as a useful tool for diagnostic purposes.

  12. PHOTOMETRIC VARIABILITY OF THE DISK-INTEGRATED THERMAL EMISSION OF THE EARTH

    International Nuclear Information System (INIS)

    Gómez-Leal, I.; Selsis, F.; Pallé, E.

    2012-01-01

    Here we present an analysis of the global-integrated mid-infrared emission flux of the Earth based on data derived from satellite measurements. We have studied the photometric annual, seasonal, and rotational variability of the thermal emission of the Earth to determine which properties can be inferred from the point-like signal. We find that the analysis of the time series allows us to determine the 24 hr rotational period of the planet for most observing geometries, due to large warm and cold areas, identified with geographic features, which appear consecutively in the observer's planetary view. However, the effects of global-scale meteorology can effectively mask the rotation for several days at a time. We also find that orbital time series exhibit a seasonal modulation, whose amplitude depends strongly on the latitude of the observer but weakly on its ecliptic longitude. As no systematic difference of brightness temperature is found between the dayside and the nightside, the phase variations of the Earth in the infrared range are negligible. Finally, we also conclude that the phase variation of a spatially unresolved Earth-Moon system is dominated by the lunar signal.

  13. Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber.

    Science.gov (United States)

    Das, Manoj; Shirasaki, A; Nayak, K P; Morinaga, M; Le Kien, Fam; Hakuta, K

    2010-08-02

    We show that the fluorescence emission spectrum of few atoms can be measured by using an optical nanofiber combined with the optical heterodyne and photon correlation spectroscopy. The observed fluorescence spectrum of the atoms near the nanofiber shows negligible effects of the atom-surface interaction and agrees well with the Mollow triplet spectrum of free-space atoms at high excitation intensity.

  14. Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT

    International Nuclear Information System (INIS)

    von Goeler, S.; Stevens, J.; Bernabei, S.

    1985-06-01

    The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves

  15. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  16. Particle swarm optimization based feature enhancement and feature selection for improved emotion recognition in speech and glottal signals.

    Science.gov (United States)

    Muthusamy, Hariharan; Polat, Kemal; Yaacob, Sazali

    2015-01-01

    In the recent years, many research works have been published using speech related features for speech emotion recognition, however, recent studies show that there is a strong correlation between emotional states and glottal features. In this work, Mel-frequency cepstralcoefficients (MFCCs), linear predictive cepstral coefficients (LPCCs), perceptual linear predictive (PLP) features, gammatone filter outputs, timbral texture features, stationary wavelet transform based timbral texture features and relative wavelet packet energy and entropy features were extracted from the emotional speech (ES) signals and its glottal waveforms(GW). Particle swarm optimization based clustering (PSOC) and wrapper based particle swarm optimization (WPSO) were proposed to enhance the discerning ability of the features and to select the discriminating features respectively. Three different emotional speech databases were utilized to gauge the proposed method. Extreme learning machine (ELM) was employed to classify the different types of emotions. Different experiments were conducted and the results show that the proposed method significantly improves the speech emotion recognition performance compared to previous works published in the literature.

  17. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  18. Improved Emission Spectrographic Facility

    International Nuclear Information System (INIS)

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  19. Assessment of real driving emissions via portable emission measurement system

    Science.gov (United States)

    Clenci, A.; Sălan, V.; Niculescu, R.; Iorga-Simăn, V.; Zaharia, C.

    2017-10-01

    The European Commission approved a so-called Real Driving Emission (RDE) test in response to the criticisms to the current driving cycle used at chassis dyno for homologation purpose (NEDC): it is considered outdated and misleading since air pollutants in real driving conditions are considerably higher than the certification thresholds. So, what’s at stake is the air quality which degraded continuously despite the ever-increasing severity of the regulations during the last almost three decades. Thus, from September 2017, the RDE test will become part of the type approval process for all cars sold in Europe. As its name points out, it will include “real world driving” using a portable emissions measurement system (PEMS). The paper presents the RDE features (PEMS mounting, testing environment, boundary conditions, driving dynamics) and presents a case study on the influence of the driving style upon the tail-pipe emissions under the RDE testing. The results presented in the paper issued from the existing cooperation on this topic between University of Pitesti and Renault Technologie Roumanie

  20. 150 Years of Italian CO2 Emissions and Economic Growth

    DEFF Research Database (Denmark)

    Annicchiarico, Barbara; Bennato, Anna Rita; Chini, Emilio Zanetti

    This paper examines the relationship between economic growth and carbon dioxide emissions in Italy considering the developments in a 150-year time span. Using several statistical techniques, we find that GDP growth and carbon dioxide emissions are strongly interrelated, with a dramatic change...

  1. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  2. The value relevance of environmental emissions

    Directory of Open Access Journals (Sweden)

    Melinda Lydia Nelwan

    2016-07-01

    Full Text Available This study examines whether environmental performance has value relevance by investigating the relations between environmental emissions and stock prices for the U.S. public companies. The previous studies argued that the conjectured relations between accounting performance measures and environmental performance do not have a strong theoretical basis, and the modeling of relations between market per-formance measures and environmental performance do not adequately consider the relevance of accounting performance to market value. Therefore, this study examines whether publicly reported environmental emissions provide incremental information to accounting earnings in pricing companies stocks. It is done among the complete set of industries covered by Toxics Release Inventory (TRI reporting for the period 2007 to 2010. Using Ohlson model but modified to include different types of emis-sions, it is found that ground emissions (underground injection and land emissions are value relevant but other emission types (air and water and transferred-out emis-sions appear to not provide incremental information in the valuation model. The result in this study raise concerns that different types of emissions are assessed differently by the market, confirming that studies should not aggregate such measures.

  3. Vertical visual features have a strong influence on cuttlefish camouflage.

    Science.gov (United States)

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  4. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony

    2014-01-01

    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  5. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  6. Balancing regional industrial development: analysis on regional disparity of China's industrial emissions and policy implications

    DEFF Research Database (Denmark)

    Liang, Hanwei; Dong, Liang; Luo, Xiao

    2016-01-01

    Efficient industrial emissions mitigation strategy is critical for China's national action on climate change and sustainable development, considering its rapid industrialization. Regional disparity brings difficulties and uncertainties to policy implementation in China. Therefore, an investigation...... development, and highlight not only disparity, but also inequity exists. It is concluded that, there is a larger unequal distribution of GDP per unit of air pollutants and CO2 emission between eastern and western regions, reveals that less developed western and central regions suffer from the emission leakage...... on the regional features of industrial emissions is critical to better decision makings. While to date, related studies have been rather few. This paper applies a spatial analysis on regional features of China's industrial emissions (SO2, NOx and PM2.5 and CO2 emission) in 31 provinces. Spatial autocorrelation...

  7. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  8. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    International Nuclear Information System (INIS)

    Burton, M.G.; Moorhouse, A.; Brand, P.W.J.L.; Roche, P.F.; Geballe, T.R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

  9. Extreme Ultraviolet Emission Spectrum of CO_2 Induced by Electron Impact at 200 eV

    Science.gov (United States)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1993-01-01

    We present the extreme ultraviolet (EUV) emission spectrum of CO_2 induced by electronimpact at 200 eV. There are 36 spectral features which are identified with a resolution of 0.5 nmover the wavelength range of 40 to 125 nm. Absolute emission cross sections were obtained for eachof these features. The EUV emission spectrum induced by electron impact consist of atomicmultiplets of CI,II and OI,II,III as well as CO and CO^+ molecular band systems produced bydissociative excitation. The CI (119.4 nm) multiplet is the strongest feature of CI with a peak crosssection of 3.61 x 10^(-19) cm^2 at 200 eV. The strongest feature of OI in the EUV spectrum is theOI (99.0 nm) multiplet with a peak cross section of 3.59 x 10^(-19) cm^2 at 200 eV.

  10. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    Science.gov (United States)

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  12. Laser induced broad band anti-Stokes white emission from LiYbF4 nanocrystals

    Institute of Scientific and Technical Information of China (English)

    L. Marciniak; R. Tomala; M. Stefanski; D. Hreniak; W. Strek

    2016-01-01

    Spectroscopic properties of tetragonal LiYbF4 nanocrystals under high dense NIR excitation at vacuum condition were in-vestigated. White, broad band emission covering whole visible part of the spectrum from LiYbF4 nanocrystals was observed. Its in-tensity strongly depended on the excitation power, excitation wavelength and ambient pressure. Temperature of the nanocrystals un-der 975 nm excitation was determined as a function of excitation power. Strong photo-induced current was observed from LiYbF4 pallet. The emission kinetic was analyzed. The mechanism of the anti-Stokes white emission was discussed in terms of the la-ser-induced charge transfer emission from Yb2+ states.

  13. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    International Nuclear Information System (INIS)

    Rankin, Joanna M.; Mitra, Dipanjan; Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van; Ransom, Scott; Stairs, Ingrid; Straten, Willem van; Weisberg, Joel M.

    2017-01-01

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  14. Toward an Empirical Theory of Pulsar Emission. XII. Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, Joanna M.; Mitra, Dipanjan [Physics Department, University of Vermont, Burlington, VT 05405 (United States); Archibald, Anne; Hessels, Jason; Leeuwen, Joeri van [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ransom, Scott [National Radio Astronomy Observatory, Charlottesville, VA 29201 (United States); Stairs, Ingrid [Physics Department, University of British Columbia, V6T 1Z4, BC (Canada); Straten, Willem van [Institute for Radio Astronomy and Space Research, Auckland University of Technology, Auckland 1142 (New Zealand); Weisberg, Joel M., E-mail: Joanna.Rankin@uvm.edu [Physics and Astronomy Department, Carleton College, Northfield, MN 55057 (United States)

    2017-08-10

    The five-component profile of the 2.7 ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the binary pulsars B1913+16, B1953+29, and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars, radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.

  15. Infrared absorption and emission characteristics of interstellar PAHs [Polycyclic Aromatic Hydrocarbon

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm -1 (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs

  16. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  17. Electroplex emission of the blend film of PVK and DPVBi

    Science.gov (United States)

    Li, Junming; Xu, Zheng; Zhang, Fujun; Zhao, Suling; Song, Dandan; Zhu, Haina; Song, Jinglu; Wang, Yongsheng; Xu, Xurong

    2010-04-01

    Influences of electric fields on the emission from organic light-emitting diodes (OLEDs) based on poly(N-vinylcarbazole) (PVK) and 4‧-bis(2-2diphenylvinyl)-1,1‧-biphenyl (DPVBi) as the active emission layer are studied. Electroluminescence (EL) spectra of PVK:DPVBi (1:1 w/w) films show one new emission peak locating at 640 nm compared with its photoluminescence (PL) spectra. There may be exists an electroplex emission between the PVK and DPVBi under high electric field strength. The emission intensity of peaking at 640 nm strongly depends on the driving voltage, and the ratio of electroplex emission intensity to exciton emission intensity (Ielectroplex/Iexciton) increases with the increase of driving voltage.

  18. All-optical signatures of strong-field QED in the vacuum emission picture

    Science.gov (United States)

    Gies, Holger; Karbstein, Felix; Kohlfürst, Christian

    2018-02-01

    We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3 +1 -dimensional spacetime and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.

  19. Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An emission inventory containing emissions from traffic and other sources was complied. Based on the analysis, Carbon Monoxide (CO) emissions from traffic play a very important role in CO levels in Chiang Mai area. Analysis showed that CO emissions from traffic during rush hours contributed approximately 90% of total CO emissions. Regional Atmospheric Modeling System (RAMS) was applied to simulate wind fields and temperatures in the Chiang Mai area, and eight cases were selected to study annual variations in wind fields and temperatures. Model results can reflect major features of wind fields and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction and temperature, which were monitored at a meteorological tower. Comparison showed that model results are in good agreement with observations, and the model captured many of the observed features. HYbrid Particle And Concentration Transport model (HYPACT) was used to simulate CO concentration in the Chiang Mai area. Model results generally agree well with observed CO concentrations at the air quality monitoring stations, and can explain observed CO diurnal variations.

  20. An emission inventory of sulfur from anthropogenic sources in Antarctica

    Directory of Open Access Journals (Sweden)

    S. V. Shirsat

    2009-05-01

    Full Text Available This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft in Antarctica, covering the 2004–2005 period.

    The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica.

    Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  1. Field-theoretic methods in strongly-coupled models of general gauge mediation

    International Nuclear Information System (INIS)

    Fortin, Jean-François; Stergiou, Andreas

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split

  2. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  3. Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Yitao Liang

    2014-01-01

    Full Text Available The photon emission signal in visible range (380 nm–630 nm was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1 Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernels’ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar.

  4. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    Institute of Scientific and Technical Information of China (English)

    Hua-Guang Zheng; Rong Zhang; Xin Li; Fang-Fei Li; Ya-Chen Wang; Xue-Mei Wang; Ling-Long Lu

    2015-01-01

    Background:The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial.In this study,we aimed to assess the function ofpresynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis.Methods:Thirty-three consecutive patients with mRT were enrolled prospectively.The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET.Striatal asymmetry index (SAI) was calculated,and a normal DAT-PET was defined as a SAI of <15%.Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging.Results:Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD,while the remained 5 with a normal DAT-PET scan were SWEDDs.As for UPRDS,the dressing and hygiene score,walking in motor experiences of daily living (Part Ⅱ) and motor examination (Part Ⅲ) were significant different between two groups (P < 0.05 andP< 0.01,respectively).Bilateral tremor was more frequent in the SWEDDs group (P < 0.05).The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P =0.08 and P =0.05,respectively).Conclusions:mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration,which can be determined by DAT-PET brain imaging.Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  5. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  6. Pulsar kicks from majoron emission

    International Nuclear Information System (INIS)

    Farzan, Yasaman; Gelmini, Graciela; Kusenko, Alexander

    2005-01-01

    We show that majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars

  7. Microlensing of quasar ultraviolet iron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna 38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Muñoz, J. A. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V.; Rojas, K. [Departamento de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile)

    2013-12-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r{sub s}∼4√(M/M{sub ⊙}) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  8. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea......, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results....

  9. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  10. EXTREMELY STRONG CARBON-MONOXIDE EMISSION FROM THE CLOVERLEAF QUASAR AT A REDSHIFT OF 2.5

    NARCIS (Netherlands)

    BARVAINIS, R; TACCONI, L; ANTONUCCI, R; ALLOIN, D; COLEMAN, P

    1994-01-01

    GALAXIES at high redshift are very faint and difficult to study at optical and near-infrared wavelengths, but detection of far-infrared emission(1) and molecular gas(2,3) in a galaxy at redshift z approximate to 2.3 has suggested that their early evolution may be investigated by these means instead.

  11. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection...

  12. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  13. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  14. Anomalous optical emission in hot dense oxygen

    Science.gov (United States)

    Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.

    2007-11-01

    We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.

  15. The Of emission lines near 4650 A

    International Nuclear Information System (INIS)

    Underhill, A.B.; Gilroy, K.K.; Hill, G.M.

    1989-01-01

    Rectified, normalized, high S/N intensity tracings of nine Of stars were obtained from Reticon spectra in the 4550-4800-A region. The well-known relatively sharp Of emission lines are seen to stand on pedestals of broad weak emission somewhat like the broad emission lines from WR stars. It is suggested that cascades following dielectronic recombination may be an important process driving some lines of N III, C III, and C IV into the emission of Of stars, and that the sharp Of lines come from plasma that is stationary with respect to the star. The broad emission features show an extensive low-density wind from each star. The results imply that the detection of two, more or less equal, broad jumps in the rest spectra of galaxies at about 4640 and 4686 A is more indicative of Of stars than of WR stars. 32 refs

  16. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  17. Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; van Driel, A. Floris

    2007-01-01

    We observe experimentally that ensembles of quantum dots in three-dimensional 3D photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays...... parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals....

  18. Photon and neutrino emission from active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Becker, Julia K. [Inst. for Phys., Univ. Bochum, Bochum (Germany); Caramete, Laurentiu I. [MPI for Radioastronomy, Bonn (Germany); Fraschetti, Federico [Inst. for Phys., Univ. Bochum, Bochum (Germany); Kneiske, Tanja [Inst. fuer Exp.Physik, Univ. Hamburg, Hamburg (Germany); Meli, Athina [Erlangen Center for Astroparticle Physics, University Erlangen-Nuremberg (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States)

    2011-08-15

    Supermassive black holes in the centers of galaxies are very common. They are known to rotate, accrete, spin down and eject highly relativistic jets; those jets pointed at us all seem to show a spectrum with two strong bumps, one in the TeV photon range, and one in X-rays - ordered by the emission frequency of the first bump this constitutes the blazar sequence. Here we wish to explain this sequence as primary synchrotron emission of energetic electrons and protons, and secondary emission from interactions at the first strong shockwave pattern in the relativistic jet. With two key assumptions on particle scattering, this concept predicts that the two basic maximum peak frequencies {nu}{sub syn,e,p} scale with the mass of the central black hole as {nu}{sub e,p{approx}}M{sub BH}{sup -1/2}, of {nu}{sub syn,p}/{nu}{sub syn,e}=(m{sub p}/m{sub e}){sup 3}, and the luminosities with the mass itself L{sub e,p{approx}}M{sub BH}. Due to strong losses of the leptons, the peak luminosities are generally the same, but with large variations around equality. This model predicts large fluxes in ultra high energy cosmic rays, and also large neutrino luminosities.

  19. Strongly Agree or Strongly Disagree?

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Nogales-Gómez, Amaya; Morales, Dolores Romero

    2016-01-01

    In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a ...

  20. Application of Haralick texture features in brain [18F]-florbetapir positron emission tomography without reference region normalization

    Directory of Open Access Journals (Sweden)

    Campbell DL

    2017-12-01

    Full Text Available Desmond L Campbell,1 Hakmook Kang,2 Sepideh Shokouhi1 On behalf of The Alzheimer’s Disease Neuroimaging Initiative 1Department of Radiology and Radiological Sciences, 2Department of Biostatistics, Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN, USA Objectives: Semi-quantitative image analysis methods in Alzheimer’s Disease (AD require normalization of positron emission tomography (PET images. However, recent studies have found variabilities associated with reference region selection of amyloid PET images. Haralick features (HFs generated from the Gray Level Co-occurrence Matrix (GLCM quantify spatial characteristics of amyloid PET radiotracer uptake without the need for intensity normalization. The objective of this study is to calculate several HFs in different diagnostic groups and determine the group differences.Methods: All image and metadata were acquired through the Alzheimer’s Disease Neuroimaging Initiative database. Subjects were grouped in three ways: by clinical diagnosis, by APOE e4 allele, and by Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog score. Several GLCM matrices were calculated for different direction and distances (1–4 mm from multiple regions on PET images. The HFs, contrast, correlation, dissimilarity, energy, entropy, and homogeneity, were calculated from these GLCMs. Wilcoxon tests and Student t-tests were performed on Haralick features and standardized uptake value ratio (SUVR values, respectively, to determine group differences. In addition to statistical testing, receiver operating characteristic (ROC curves were generated to determine the discrimination performance of the selected regional HFs and the SUVR values.Results: Preliminary results from statistical testing indicate that HFs were capable of distinguishing groups at baseline and follow-up (false discovery rate corrected p<0.05 in particular regions at much higher

  1. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  2. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew

    2015-01-01

    Electron microscopy and electron diffraction techniques rely on electron sources. Those sources require strong electric fields to extract electrons from metals, either by the photoelectric effect, driven by multiphoton absorption of strong laser fields, or in the static field emission regime....... Terahertz (THz) radiation, commonly understood to be nonionizing due to its low photon energy, is here shown to produce electron field emission. We demonstrate that a carrier-envelope phase-stable single-cycle optical field at THz frequencies interacting with a metallic microantenna can generate...... and accelerate ultrashort and ultrabright electron bunches into free space, and we use these electrons to excite and ionize ambient nitrogen molecules near the antenna. The associated UV emission from the gas forms a novel THz wave detector, which, in contrast with conventional photon-counting or heat...

  3. EVIDENCE FOR NON-STELLAR REST-FRAME NEAR-IR EMISSION ASSOCIATED WITH INCREASED STAR FORMATION IN GALAXIES AT z ∼ 1

    International Nuclear Information System (INIS)

    Lange, Johannes U.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Leja, Joel; Brammer, Gabriel; Whitaker, Katherine E.; Franx, Marijn

    2016-01-01

    We explore the presence of non-stellar rest-frame near-IR (2–5 μm) emission in galaxies at z ∼ 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emission are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα profiles, shows that AGNs are unlikely to be the dominant source of excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope

  4. Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, Tokuo; Yona, Hiroaki; Ando, Hironori; Nosei, Daiki; Harada, Yoshiyuki

    2002-01-01

    We observed strong band edge luminescence at 8.5-200 K from 200-880 nm thick InN films grown on 10 nm thick InN buffer layers on Si(001) and Si(111) substrates by electron cyclotron resonance-assisted molecular beam epitaxy. The InN film on the Si(001) substrate exhibited strong band edge photoluminescence (PL) emission at 1.814 eV at 8.5 K, tentatively assigned as donor to acceptor pair [DAP (α-InN)] emission from wurtzite-InN (α-InN) crystal grains, while those on Si(111) showed other stronger band edge PL emissions at 1.880, 2.081 and 2.156 eV, tentatively assigned as donor bound exciton [D 0 X(α-InN)] from α-InN grains, DAP (β-InN) and D 0 X (β-InN) emissions from zinc blende-InN (β-InN) grains, respectively

  5. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  6. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  7. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  8. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  9. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  10. MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Anderson, Scott F.; MacLeod, Chelsea L.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Shemmer, Ohad

    2010-01-01

    We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z < 2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are active galactic nuclei (AGNs) with abnormally weak emission features; 10 of those 13 are definitively radio quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGNs lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGNs appear to have intrinsically weak or absent broad emission line regions (BELRs), and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z < 2.2 radio-quiet BL Lac candidates already identified in the SDSS, but not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN BELRs.

  11. Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Tsai, Chung-Ming

    2011-01-01

    This paper examines the dynamic relationships between pollutant emissions, energy consumption, and the output for Brazil during 1980-2007. The Grey prediction model (GM) is applied to predict three variables during 2008-2013. In the long-run equilibrium emissions appear to be both energy consumption and output inelastic, but energy is a more important determinant of emissions than output. This may be because Brazilian unsustainable land use and forestry contribute most to the country's greenhouse gas emissions. The findings of the inverted U-shaped relationships of both emissions-income and energy consumption-income imply that both environmental damage and energy consumption firstly increase with income, then stabilize, and eventually decline. The causality results indicate that there is a bidirectional strong causality running between income, energy consumption and emissions. In order to reduce emissions and to avoid a negative effect on the economic growth, Brazil should adopt the dual strategy of increasing investment in energy infrastructure and stepping up energy conservation policies to increase energy efficiency and reduce wastage of energy. The forecasting ability of GM is compared with the autoregressive integrated moving average (ARIMA) model over the out-of-sample period between 2002 and 2007. All of the optimal GMs and ARIMAs have a strong forecasting performance with MAPEs of less than 3%. -- Highlights: → Emissions are energy consumption and output inelastic, but energy is a more important determinant of emissions than output. → The relationship between emissions and income is an inverted U-shaped curve. → The relationship between consumption and income is an inverted U-shaped curve. → The causality results indicate that there is a bidirectional strong causality running between income, energy consumption and emissions. → The Grey prediction model is applied to predict emissions, energy consumption and output during 2008-2013.

  12. Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence

    Science.gov (United States)

    Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang

    2008-07-01

    Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.

  13. Mapping the spectral phase of isolated attosecond pulses by extreme-ultraviolet emission spectrum.

    Science.gov (United States)

    Liu, Candong; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan; Nisoli, Mauro

    2015-04-20

    An all-optical method is proposed for the measurement of the spectral phase of isolated attosecond pulses. The technique is based on the generation of extreme-ultraviolet (XUV) radiation in a gas by the combination of an attosecond pulse and a strong infrared (IR) pulse with controlled electric field. By using a full quantum simulation, we demonstrate that, for particular temporal delays between the two pulses, the IR field can drive back to the parent ions the photoelectrons generated by the attosecond pulse, thus leading to the generation of XUV photons. It is found that the generated XUV spectrum is notably sensitive to the chirp of the attosecond pulse, which can then be reliably retrieved. A classical quantum-path analysis is further used to quantitatively explain the main features exhibited in the XUV emission.

  14. Does uncertainty justify intensity emission caps?

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2005-01-01

    Environmental policies often set 'relative' or 'intensity' emission caps, i.e. emission limits proportional to the polluting firm's output. One of the arguments put forth in favour of relative caps is based on the uncertainty on business-as-usual output: if the firm's production level is higher than expected, so will be business-as-usual emissions, hence reaching a given level of emissions will be more costly than expected. As a consequence, it is argued, a higher emission level should be allowed if the production level is more important than expected. We assess this argument with a stochastic analytical model featuring two random variables: the business-as-usual emission level, proportional to output, and the slope of the marginal abatement cost curve. We compare the relative cap to an absolute cap and to a price instrument, in terms of welfare impact. It turns out that in most plausible cases, either a price instrument or an absolute cap yields a higher expected welfare than a relative cap. Quantitatively, the difference in expected welfare is typically very small between the absolute and the relative cap but may be significant between the relative cap and the price instrument. (author)

  15. MCNP4A: Features and philosophy

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1993-01-01

    This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ''Quality, Value and New Features.'' Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, new photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs

  16. Acoustic emission localization on ship hull structures using a deep learning approach

    DEFF Research Database (Denmark)

    Georgoulas, George; Kappatos, Vassilios; Nikolakopoulos, George

    2016-01-01

    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimension......In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high...

  17. A TALE OF THREE GALAXIES: ANOMALOUS DUST PROPERTIES IN IRAS F10398+1455, IRAS F21013–0739, AND SDSS J0808+3948

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yanxia; Hao, Lei [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Aigen, E-mail: haol@shao.ac.cn [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2014-10-20

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ∼5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  18. Synthesis and Features of Luminescent Bromo- and Iodohectorite Nanoclay Materials

    Directory of Open Access Journals (Sweden)

    Hellen Silva Santos

    2017-11-01

    Full Text Available The smectites represent a versatile class of clay minerals with broad usage in industrial applications, e.g., cosmetics, drug delivery, bioimaging, etc. Synthetic hectorite Na0.7(Mg5.5Li0.3[Si8O20](OH4 is a distinct material from this class due to its low-cost production method that allows to design its structure to match better the applications. In the current work, we have synthesized for the first time ever nanoclay materials based on the hectorite structure but with the hydroxyl groups (OH− replaced by Br− or I−, yielding bromohectorite (Br-Hec and iodohectorite (I-Hec. It was aimed that these materials would be used as phosphors. Thus, OH− replacement was done to avoid luminescence quenching by multiphonon de-excitation. The crystal structure is similar to nanocrystalline fluorohectorite, having the d001 spacing of 14.30 Å and 3 nm crystallite size along the 00l direction. The synthetic materials studied here show strong potential to act as host lattices for optically active species, possessing mesoporous structure with high specific surface area (385 and 363 m2 g−1 for Br-Hec and I-Hec, respectively and good thermal stability up to 800 °C. Both materials also present strong blue-green emission under UV radiation and short persistent luminescence (ca. 5 s. The luminescence features are attributed to Ti3+/TiIV impurities acting as the emitting center in these materials.

  19. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  20. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  1. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  2. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  3. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436

  4. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  5. The Universe Going Green: Extraordinarily Strong [OIII]5007 in Typical Dwarf Galaxies at z~3

    Science.gov (United States)

    Malkan, Matthew Arnold; Cohen, Daniel

    2017-01-01

    We constructed the average SEDs of U-dropout galaxies in the Subaru Deep Field. This sample contains more than 5000 Lyman-break galaxies at z~3. Their average near- and mid-IR colors were obtained by stacking JHK and IRAC imaging, in bins of stellar mass. At the lowest mass bins an increasingly strong excess flux is seen in the K filter. This excess can reach 1 magnitude in the broadband filter, and we attribute it to strong \\OIII $\\lambda{5007}$ line emission. The equivalent width is extraordinarily high, reaching almost 1000\\Ang\\ for the average z=3 galaxy at an i magnitude of 27. Such extreme [OIII] emission is very rare in the current epoch, only seen in a handful of metal-deficient dwarf starbursts sometimes referred to as ''Green Peas". In contrast, extreme [OIII]--strong enough to dominate the entire broad-band SED--was evidently the norm for faint galaxies at high redshift. We present evidence that these small but numerous galaxies were primarily responsible for the reionization of the Universe.

  6. New security features and their impact on low-cost note readers

    Science.gov (United States)

    Bernardini, Ronald R.

    2004-06-01

    Banknote security features are evolving and changing. New features are constantly being developed and slowly being incorporated into banknotes. The assumption is that these features make the notes more secure for everyone; but do they? This paper looks at some of the features incorporated in today's banknotes and how (or if) they add security to banknotes processed by low cost banknote readers. The sensing technology used in low cost note readers has changed somewhat in the last few years but the industry is still faced by the cost constraints of a very competitive market. Some of the new note features require high-resolution image capture, complex optical measurements or expensive emission/detection devices. Paper watermarks, digital watermarks, OVI, Holograms, Stokes conversion, IR and magnetic features are examined, as well as the technologies used and the relative cost/benefit developed for these note features.

  7. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  8. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    Science.gov (United States)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  9. Two-dimensional QCD as a model for strong interaction

    International Nuclear Information System (INIS)

    Ellis, J.

    1977-01-01

    After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)

  10. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    Science.gov (United States)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  11. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  12. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  13. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  14. Regge meets collinear in strongly-coupled N=4 super Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2017-01-10

    We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in https://www.doi.org/10.1007/JHEP01(2015)027, which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.

  15. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    Science.gov (United States)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  16. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    Science.gov (United States)

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  17. Pair correlation of particles in strongly nonideal systems

    International Nuclear Information System (INIS)

    Vaulina, O. S.

    2012-01-01

    A new semiempirical model is proposed for describing the spatial correlation between interacting particles in nonideal systems. The developed model describes the main features in the behavior of the pair correlation function for crystalline structures and can also be used for qualitative and quantitative description of the spatial correlation of particles in strongly nonideal liquid systems. The proposed model is compared with the results of simulation of the pair correlation function.

  18. Analysis of Passenger Car Emission Factors in RDE Tests

    Directory of Open Access Journals (Sweden)

    Pielecha Jacek

    2016-01-01

    Full Text Available The article presents a study on emission measurements in passenger cars in tests conducted under real traffic conditions – Real Driving Emissions using a Portable Emission Measurement System type of equipment. A special feature of the outlined RDE tests is that they were performed in Polish road conditions, and thus their parameters may differ from their counterparts adopted in most European Union countries. Based on the findings vehicle emission conformity factors were developed, characterized as the fractional increase (or decrease of traffic emissions during the homologation test or under normal operation conditions in relation to the emission limit standards (for chosen emission class of the vehicle. Conducted research and the calculated conformity factors allowed for the environmental impact assessment of the vehicles of various emission classes, while also allowing early actions to restrict the emissions of selected components in passenger vehicles. The methods and measures used can also be applied to other types of vehicles (e.g. heavy duty or off-road vehicles or vehicles powered by other fuels.

  19. Anisotropic emission of the X-ray K-emission band of nitrogen in hexagonal boron nitride

    International Nuclear Information System (INIS)

    Tegeler, E.; Kosuch, N.; Wiech, G.; Faessler, A.

    1977-05-01

    The intensity distribution of the N K-emission band of hexagonal boron nitride samples with partially orientated crystallites was found to be strongly dependent upon the take-off angle of the emitted radiation. The observed emission bands can be separated unambiguously into a sigma- and a π-subband. On the basis of the directional characteristic of radiating dipoles within the layers (sigma-bondings) and perpendicular to the layers (π-bonding) the angular dependence of the intensity of the subbands is quantitatively explained. In addition the degree of orientation of the crystallites on the sample can be determined. The intensity distributions of the emission bands to be expected for single crystals and for samples without any texture are determined; in the latter case the results are found to be in good agreement with experimental results. (orig.) [de

  20. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    Science.gov (United States)

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  1. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  2. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  3. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    Science.gov (United States)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  4. Classification spectra of Sanduleak and Stephenson emission-line stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1978-01-01

    Low dispersion slit spectra of 89 emission-line stars are described; these stars were originally located and classified by Sanduleak and Stephenson in an objective-prism survey. The new data broadly confirm the classification scheme adopted by Sanduleak and Stephenson. In particular most of the large number of symbiotic stars they classified have been confirmed and others found. Many of these contain strong, broad emission bands in their red spectra. Two new Wolf-Rayet stars, one new planetary nebula and two new bipolar reflection nebulae involving hidden emission-line stars have been found. (author)

  5. Classification spectra of Sanduleak and Stephenson emission-line stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1978-09-01

    Low dispersion slit spectra of 89 emission-line stars are described; these stars were originally located and classified by Sanduleak and Stephenson in an objective-prism survey. The new data broadly confirm the classification scheme adopted by Sanduleak and Stephenson. In particular most of the large number of symbiotic stars they classified have been confirmed and others found. Many of these contain strong, broad emission bands in their red spectra. Two new Wolf-Rayet stars, one new planetary nebula and two new bipolar reflection nebulae involving hidden emission-line stars have been found.

  6. Emission Line Correlations as Diagnostics of Quasar Winds

    Science.gov (United States)

    Sheldon, Keziah; Richards, Gordon

    2018-01-01

    We investigate correlations between UV and optical emission line properties for a sample of z~0.5 SDSS (Sloan Digital Sky Survey) quasars that have recently been observed by HST. The sample is designed to be comparable in luminosity to the existing reverberation mapping (RM) sample, but less biased in terms of their "eigenvector 1" properties. We seek to understand the conditions under which high-ionization emission lines become dominated by a wind. Our analysis takes advantage of spectral decomposition through Independent Component Analysis (ICA) and archival UV HST spectroscopy of SDSS quasars. With these data we will clarify the needs for RM analysis of quasars with wind-dominated emission features.

  7. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    OpenAIRE

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photo...

  8. Dynamical effects in heavy ion collisions: neck emission in the Pb + Au system at 29 A.MeV

    International Nuclear Information System (INIS)

    Aboufirassi, M; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    In the study of the Pb + Au system with the assembly NAUTILUS a special class of events were made evident. Three body complete events have allowed observing a dynamical behavior in the fragment emission. A plot of the correlation between the emission angle and the charges Z 1 and Z 2 of the two fragments associated to the event shows a contribution of an intermediate mass third fragment reflecting a dynamical emission subsequent to the interaction phase between the two partners of the deep inelastic scattering (a phenomenon featuring the neck emission). Such a process has been observed in the Kr + Au at 60 MeV/nucleon and Xe + Cu at 50 MeV/nucleon. The on-going analysis of the Xe + Sn at 50 MeV/nucleon reveals the existence of a similar mechanism. A complete kinematical analysis of this class of events has permitted making evident the impact parameter window, here implied; it is situated for the associated collisions to an reduced impact parameter around 0.8 b max , corresponding to an excitation energy for the bi-nucleus system of the order of 2 MeV/nucleon. This phenomenon may allow to constrain more strongly the models describing the dynamics of the heavy ion collisions, particularly the kinetic models of Landau-Vlasov type. Then, the different mean field potential prescriptions my be tested by comparison with the experimental data

  9. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    Science.gov (United States)

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Microscopic modeling of photoluminescence of strongly disordered semiconductors

    International Nuclear Information System (INIS)

    Bozsoki, P.; Kira, M.; Hoyer, W.; Meier, T.; Varga, I.; Thomas, P.; Koch, S.W.

    2007-01-01

    A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution

  11. Solitary pulmonary nodule: radiologic features and diagnostic approach

    International Nuclear Information System (INIS)

    Rodriguez Cambronero, Luis Enrique

    2012-01-01

    A literature review is conducted on the solitary pulmonary nodule, to determine the diagnostic methods and specific characteristics. The diagnostic methods used have been: chest radiography, computed tomography, positron emission tomography and magnetic resonance imaging. The radiological features are defined: location, size, definition of contours or edges (margins), densitometric and attenuation characteristics, cavitation, air bronchogram, growth, doubling time, satellite nodules, nutrient vessels [es

  12. SEMS operating as a proven system for screening real-world NOx and NH3 emissions

    NARCIS (Netherlands)

    Vermeulen, R.J.; Goethem, S. van; Baarbe, H.L.; Zuidgeest, L.W.M.; Spreen, J.S.; Vonk, W.A.

    2014-01-01

    NOx emissions of heavy-duty and light-duty diesel vehicles depend strongly on the driving conditions. The introduction of combined emission reduction technologies in Euro VI vehicles have demonstrated that NOx emissions become less predictable when the data is based on relatively short test cycles.

  13. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    Science.gov (United States)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  14. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    Science.gov (United States)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  15. Victimization and psychopathic features in a population-based sample of Finnish adolescents.

    Science.gov (United States)

    Saukkonen, Suvi; Aronen, Eeva T; Laajasalo, Taina; Salmi, Venla; Kivivuori, Janne; Jokela, Markus

    2016-10-01

    We examined different forms of victimization experiences in relation to psychopathic features and whether these associations differed in boys and girls among 4855 Finnish school adolescents aged 15-16 years. Psychopathic features were measured with the Antisocial Process Screening Device- Self Report (APSD-SR). Victimization was assessed with questions about violent and abusive experiences across lifetime and within the last 12 months. Results from linear regression analysis showed that victimization was significantly associated with higher APSD-SR total scores, more strongly in girls than boys. Recent (12-month) victimization showed significance in the relationship between victimization and psychopathic features; especially recent sexual abuse and parental corporal punishment were strong determinants of higher APSD-SR total scores. The present study demonstrates novel findings on how severe victimization experiences relate to psychopathic features in community youth, especially in girls. The findings underscore the need for comprehensive evaluation of victimization experiences when psychopathic features are present in youth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  17. Nature of the emission band of Dergaon meteorite in the region ...

    Indian Academy of Sciences (India)

    available colour film is used to photograph the spectrum. 3. Results and discussion. Figure 1 demonstrates the general feature of the emission band system in the region. 5700–6700 Å along with the Ar+ lasing line at 5145 Å. The emission band system and its densitometer tracing as shown in figure 2 indicate the diffuse ...

  18. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    In order to realise the full inspection potential of acoustic emission monitoring, data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. During experiments, signals were tape recorded and the surface of each testpiece was recorded on movie film or videotape so that acoustic and visual information could be correlated. Large numbers of tape-recorded bursts have been analysed with a real time spectrum analyser, and statistical parameters (such as mean energy density, mean frequency and variance) derived from the spectra were calculated by an IBM 360/50 computer and selectively displayed on a line plotter. In the case of zirconium, observed differences in these parameters were an indication that the emission signals were generated by three different metallurgical mechanisms. A movie film of testpiece surface deformation revealed the occurrence of twin initiation, twin broadening and slip. Fracture events either in the zirconium matrix or in second phase particles are also possible although not observed directly. A direct correlation was confirmed between twin initiations and emission signals. Work is proceeding on establishing a different correlation between emission signals and stress corrosion cracks

  19. PRISM, Processing and Review Interface for Strong Motion Data Software

    Science.gov (United States)

    Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.

    2016-12-01

    A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been

  20. Near stabilisation of CO2 emissions in the world in 2014

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2016-03-01

    This publication proposes discussions and comments of tables and graphs of statistics regarding evolutions of CO 2 emissions during the last decades. It is noticed that CO 2 emissions only had a 0.5 per cent increase in 2014, i.e. nearly stagnation. These variations and data are analysed with respect to countries and geographical regions. Thus, it is outlined that CO 2 emissions per inhabitant in China are higher than in Europe, that the intensity of CO 2 emission with respect to GDP is strongly decreasing (-4.4 per cent), that the decrease of energy intensity slowed down the growth of world emission since 1990

  1. IUE observations of circumstellar emission from the late-type variable R AQR (M6 + pec)

    Science.gov (United States)

    Hobbs, R. W.; Michalitsianos, A. G.; Kafatos, M.

    1981-01-01

    The IUE observations of R Aqr (M7 + pec) obtained in low dispersion are discussed with particular reference to circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are seen, superimposed on a bright ultraviolet continuum. It is deduced that the strong emission line spectrum that involves C III, C IV, Si III, (0 II) and (0 III) probably arises from a dense compact nebula the size of which is comparable to the orbital radius of the binary system of which R Aqr is the primary star. The low excitation emission lines of Fe II, Mg II, 0 I, and Si II probably a white dwarf, comparable to or somewhat brighter than the Sun, since such a star can produce enough ionizing photons to excite the continuum and emission line spectrum and yet be sufficiently faint as to escape detection by direct observation. The UV continuum is attributed to Balmer recombination from the dense nebula and not to blackbody emission from the hot companion.

  2. A model for extremely powerful extragalactic water masers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ying-Cheng; Alcock, C.

    1988-08-01

    The reasons for the differences between extremely powerful extragalatic water masers (EPEWMs) and strong Galactic H/sub 2/O masers are discussed. This model quite successfully explains many important characteristics of EPEWMs; the rapid time variations, the broad range and random velocity distribution, the extremely high luminosities, the various heights or widths of features in spectra, the strong infrared radiation from the galaxies, how an active nucleus contributes to an EPEWM, how some parts of EPEWMs producing strong features are pumped, why this pump mechanism can work, and why EPEWMs are different from strong Galactic H/sub 2/O masers. Recent observations of extragalactic water masers which have extremely high luminosities raise the possibility that the stimulated emission rate in the maser emission line in these regions is much higher than in Galactic masers. It is possible that the local stimulated emission rate exceeds the local bandwidth for the radiation. In this case the standard expression relating the photon emission rate to the profile averaged mean intensity does not apply. A new expression for the photon emission rate is derived.

  3. A model for extremely powerful extragalactic water masers

    International Nuclear Information System (INIS)

    Wu, Ying-Cheng; Alcock, C.

    1988-08-01

    The reasons for the differences between extremely powerful extragalatic water masers (EPEWMs) and strong Galactic H 2 O masers are discussed. This model quite successfully explains many important characteristics of EPEWMs; the rapid time variations, the broad range and random velocity distribution, the extremely high luminosities, the various heights or widths of features in spectra, the strong infrared radiation from the galaxies, how an active nucleus contributes to an EPEWM, how some parts of EPEWMs producing strong features are pumped, why this pump mechanism can work, and why EPEWMs are different from strong Galactic H 2 O masers. Recent observations of extragalactic water masers which have extremely high luminosities raise the possibility that the stimulated emission rate in the maser emission line in these regions is much higher than in Galactic masers. It is possible that the local stimulated emission rate exceeds the local bandwidth for the radiation. In this case the standard expression relating the photon emission rate to the profile averaged mean intensity does not apply. A new expression for the photon emission rate is derived

  4. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.; Hauke, N.

    2009-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning...... switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components....

  5. Strong drifts effects on neoclassical transport

    International Nuclear Information System (INIS)

    Tessarotto, M.; Gregoratto, D.; White, R.B.

    1996-01-01

    It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature

  6. Optical Spectroscopy of SDSS J004054.65-0915268: Three Possible Scenarios for the Classification. A z ˜ 5 BL Lacertae, a Blue FSRQ, or a Weak Emission Line Quasar

    Science.gov (United States)

    Landoni, M.; Zanutta, A.; Bianco, A.; Tavecchio, F.; Bonnoli, G.; Ghisellini, G.

    2016-02-01

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ˜ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C IV broad emission line. Therefore, the nature of the object is then discussed, building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk.

  7. The emission-line regions in the nucleus of NGC 1313 probed with GMOS-IFU: a supergiant/hypergiant candidate and a kinematically cold nucleus

    Science.gov (United States)

    Menezes, R. B.; Steiner, J. E.

    2017-04-01

    NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strongemission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.

  8. Writing Feature Articles with Intermediate Students

    Science.gov (United States)

    Morgan, Denise N.

    2010-01-01

    Students need regular opportunities to write expository text. However, focusing on report writing often leaves students without strong examples to study or analyze to guide and grow their own writing. Writing and studying feature articles, meant to inform and explain, can become an alternative to report writing, as they can easily be located in…

  9. Radio Emissions from Magnetopause Reconnection Events

    Science.gov (United States)

    Fung, S. F.; Kunze, J.

    2017-12-01

    A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.

  10. RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Stroman, Wendy; Pohl, Martin

    2009-01-01

    We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.

  11. Electromagnetic radiation from strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Akimoto, K.; Rowland, H.L.; Papadopoulos, K.

    1988-01-01

    A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons

  12. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils

    OpenAIRE

    DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.

    2012-01-01

    Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function...

  13. DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    De, Kishalay; Sharma, Prateek [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Gupta, Yashwant, E-mail: kde@caltech.edu [National Centre for Radio Astrophysics, TIFR, Pune University Campus, Post Bag 3, Pune 411007 (India)

    2016-12-10

    Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profiles and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.

  14. Extracting Information from Conventional AE Features for Fatigue Onset Damage Detection in Carbon Fiber Composites

    DEFF Research Database (Denmark)

    Unnthorsson, Runar; Pontoppidan, Niels Henrik Bohl; Jonsson, Magnus Thor

    2005-01-01

    We have analyzed simple data fusion and preprocessing methods on Acoustic Emission measurements of prosthetic feet made of carbon fiber reinforced composites. This paper presents the initial research steps; aiming at reducing the time spent on the fatigue test. With a simple single feature...... approaches can readily be investigated using the improved features, possibly improving the performance using multiple feature classifiers, e.g., Voting systems; Support Vector Machines and Gaussian Mixtures....

  15. STUDY ON SHADOW EFFECTS OF VARIOUS FEATURES ON CLOSE RANGE THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    C. L. Liao

    2012-07-01

    Full Text Available Thermal infrared data become more popular in remote sensing investigation, for it could be acquired both in day and night. The change of temperature has special characteristic in natural environment, so the thermal infrared images could be used in monitoring volcanic landform, the urban development, and disaster prevention. Heat shadow is formed by reflecting radiating capacity which followed the objects. Because of poor spatial resolution of thermal infrared images in satellite sensor, shadow effects were usually ignored. This research focus on discussing the shadow effects of various features, which include metals and nonmetallic materials. An area-based thermal sensor, FLIR-T360 was selected to acquire thermal images. Various features with different emissivity were chosen as reflective surface to obtain thermal shadow in normal atmospheric temperature. Experiments found that the shadow effects depend on the distance between sensors and features, depression angle, object temperature and emissivity of reflective surface. The causes of shadow effects have been altered in the experiment for analyzing the variance in thermal infrared images. The result shows that there were quite different impacts by shadow effects between metals and nonmetallic materials. The further research would be produced a math model to describe the shadow effects of different features in the future work.

  16. UNTANGLING THE NEAR-IR SPECTRAL FEATURES IN THE PROTOPLANETARY ENVIRONMENT OF KH 15D

    Energy Technology Data Exchange (ETDEWEB)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.; Cauley, P. Wilson [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Leggett, S. K., E-mail: nicole.arulanantham@colorado.edu [Gemini Observatory (North), Hilo, HI 96720 (United States)

    2017-01-10

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H{sub 2} emission features associated with the inner part of the jet show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μ m size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 M {sub J}, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.

  17. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Maddumage, Prasad [Research Computing Center, Department of Scientific Computing, Florida State University, Tallahassee, FL 32306 (United States); Kantowski, Ronald; Dai, Xinyu; Baron, Eddie, E-mail: bchen3@fsu.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  18. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  19. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  20. UV time-dependent emission in SY Muscae

    International Nuclear Information System (INIS)

    Michalitsianos, A.G.; Kafatos, M.

    1982-01-01

    Ultraviolet spectra acquired with the International Ultraviolet Explorer (IUE) of SY Mus = HD 10036 on 20 September 1980 and 11 June 1981 indicate a substantial enhancement of UV emission over a nine month period. The general UV flux level appears to have increased by approximately one order of magnitude between the first and second observing epochs. The strong ultraviolet continuum evident throughout the entire IUE spectral range lambdalambda1200-3200 A on 11 June 1981 is closely approximated by a star with Tsub(eff) = 40,000 K, where previously on 20 September 1980 the continuum distribution presented a more complex structure that is possibly explained by a combination of thermal emission from an early type main sequence star, and nebular recombination emission (Michalitsianos et al. 1981). (Auth.)

  1. Amplified emission and modified spectral features in an opal hetero-structure mediated by passive defect mode localization

    Science.gov (United States)

    Rout, Dipak; Kumar, Govind; Vijaya, R.

    2018-01-01

    A photonic crystal hetero-structure consisting of a passive planar defect of SiO2 thin film sandwiched between two identical opals grown by inward growing self-assembly method using Rhodamine-B dye-doped polystyrene microspheres is studied for the characteristics of dye emission. The optical properties and the defect mode characteristics of the hetero-structure are studied from the reflection and transmission measurements. Laser-induced fluorescence from the hetero-structure showed amplified and spectrally narrowed emission compared to the photonic crystal emphasizing the role of the defect mode and distributed feedback. The enhanced emission is also complemented by the reduction in fluorescence decay time in the case of the hetero-structure in comparison to the 3D photonic crystals.

  2. Hierarchical feature selection for erythema severity estimation

    Science.gov (United States)

    Wang, Li; Shi, Chenbo; Shu, Chang

    2014-10-01

    At present PASI system of scoring is used for evaluating erythema severity, which can help doctors to diagnose psoriasis [1-3]. The system relies on the subjective judge of doctors, where the accuracy and stability cannot be guaranteed [4]. This paper proposes a stable and precise algorithm for erythema severity estimation. Our contributions are twofold. On one hand, in order to extract the multi-scale redness of erythema, we design the hierarchical feature. Different from traditional methods, we not only utilize the color statistical features, but also divide the detect window into small window and extract hierarchical features. Further, a feature re-ranking step is introduced, which can guarantee that extracted features are irrelevant to each other. On the other hand, an adaptive boosting classifier is applied for further feature selection. During the step of training, the classifier will seek out the most valuable feature for evaluating erythema severity, due to its strong learning ability. Experimental results demonstrate the high precision and robustness of our algorithm. The accuracy is 80.1% on the dataset which comprise 116 patients' images with various kinds of erythema. Now our system has been applied for erythema medical efficacy evaluation in Union Hosp, China.

  3. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  4. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  5. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    International Nuclear Information System (INIS)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-01-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z ∼ 0.2. Located ∼20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z ∼ 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 ± 0.4) x 10 13 M sun within 37 h -1 kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  6. Caviton dynamics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    DuBois, D.; Rose, H.A.; Russell, D.

    1989-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs

  7. Caviton dynamics in strong Langmuir turbulence

    Science.gov (United States)

    DuBois, Don; Rose, Harvey A.; Russell, David

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  8. Caviton dynamics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    DuBois, D.; Rose, H.A.; Russell, D.

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. (orig.)

  9. Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates

    International Nuclear Information System (INIS)

    Tain, J. L.; Guadilla, V.; Valencia, E.; Algora, A.

    2017-01-01

    Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γ emission from neutron-unbound states populated in the β-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission one can deduce information on the (n,γ) cross section for unstable neutron-rich nuclei of interest in r process abundance calculations. A surprisingly large γ branching was observed for a number of isotopes. Here, the results are compared with Hauser-Feshbach calculations and discussed.

  10. Neural Architecture for Feature Binding in Visual Working Memory.

    Science.gov (United States)

    Schneegans, Sebastian; Bays, Paul M

    2017-04-05

    Binding refers to the operation that groups different features together into objects. We propose a neural architecture for feature binding in visual working memory that employs populations of neurons with conjunction responses. We tested this model using cued recall tasks, in which subjects had to memorize object arrays composed of simple visual features (color, orientation, and location). After a brief delay, one feature of one item was given as a cue, and the observer had to report, on a continuous scale, one or two other features of the cued item. Binding failure in this task is associated with swap errors, in which observers report an item other than the one indicated by the cue. We observed that the probability of swapping two items strongly correlated with the items' similarity in the cue feature dimension, and found a strong correlation between swap errors occurring in spatial and nonspatial report. The neural model explains both swap errors and response variability as results of decoding noisy neural activity, and can account for the behavioral results in quantitative detail. We then used the model to compare alternative mechanisms for binding nonspatial features. We found the behavioral results fully consistent with a model in which nonspatial features are bound exclusively via their shared location, with no indication of direct binding between color and orientation. These results provide evidence for a special role of location in feature binding, and the model explains how this special role could be realized in the neural system. SIGNIFICANCE STATEMENT The problem of feature binding is of central importance in understanding the mechanisms of working memory. How do we remember not only that we saw a red and a round object, but that these features belong together to a single object rather than to different objects in our environment? Here we present evidence for a neural mechanism for feature binding in working memory, based on encoding of visual

  11. Linking Spectral Features with Composition, Crystallinity, and Roughness Properties of Silica and Implications for Candidate Hydrothermal Systems on Mars

    Science.gov (United States)

    Hamilton, V. E.; McDowell, M. L.; Berger, J. A.; Cady, S. L.; Knauth, L. P.

    2011-12-01

    laboratory data typically are recognizable in hyperspectral remote sensing data. These features are more difficult to distinguish (or are not included) at multispectral resolutions, but in nearly all uncontaminated samples, the positions of Si-O emissivity minima shift towards longer wavelengths with decreasing crystallinity. Contaminating phases with strong VNIR spectral features are observed in some of the TIR spectra but have a negligible effect in others, suggesting that TIR spectroscopy helps constrain the abundances of these phases. In addition to compositional and crystallinity information, our laboratory data demonstrate that TIR spectra can be used to deduce important information on silica phases' texture and orientation. If used in combination, VNIR and TIR spectroscopy can detect and characterize silica phases, allowing us to estimate conditions of silica formation, e.g., high- or low-temperature aqueous systems.

  12. The activity-based methodology to assess ship emissions - A review

    International Nuclear Information System (INIS)

    Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2017-01-01

    Several studies tried to estimate atmospheric emissions with origin in the maritime sector, concluding that it contributed to the global anthropogenic emissions through the emission of pollutants that have a strong impact on hu' health and also on climate change. Thus, this paper aimed to review published studies since 2010 that used activity-based methodology to estimate ship emissions, to provide a summary of the available input data. After exclusions, 26 articles were analysed and the main information were scanned and registered, namely technical information about ships, ships activity and movement information, engines, fuels, load and emission factors. The larger part of studies calculating in-port ship emissions concluded that the majority was emitted during hotelling and most of the authors allocating emissions by ship type concluded that containerships were the main pollutant emitters. To obtain technical information about ships the combined use of data from Lloyd's Register of Shipping database with other sources such as port authority's databases, engine manufactures and ship-owners seemed the best approach. The use of AIS data has been growing in recent years and seems to be the best method to report activities and movements of ships. To predict ship powers the Hollenbach (1998) method which estimates propelling power as a function of instantaneous speed based on total resistance and use of load balancing schemes for multi-engine installations seemed to be the best practices for more accurate ship emission estimations. For emission factors improvement, new on-board measurement campaigns or studies should be undertaken. Regardless of the effort that has been performed in the last years to obtain more accurate shipping emission inventories, more precise input data (technical information about ships, engines, load and emission factors) should be obtained to improve the methodology to develop global and universally accepted emission inventories

  13. The behavior of the 3.28 μm dust feature in NGC 2024

    International Nuclear Information System (INIS)

    Brand, P.W.J.L.; Meadows, P.J.; Wolstencroft, R.D.

    1984-01-01

    Observations of the 3.28 μm unidentified dust emission feature and the hydrogen Brackett alpha line have been made at several spatial positions across the ionization front in the HII region NGC 2024. The hydrogen observations delineate the edge of the ionised region while the 3.3 μm feature is seen to be continuous across the front. The 3.4 μm feature is observed with a constant strength relative to the 3.28 μm feature of 0.3 +- 0.1. Since the 3.28 μm feature is seen outside the ionized region the dust has to be excited by non-ionizing ultra-violet photons from the exciting star in the HII region. (author)

  14. Spectral characterization of surface emissivities in the thermal infrared

    Science.gov (United States)

    Niclòs, Raquel; Mira, Maria; Valor, Enric; Caselles, Diego; García-Santos, Vicente; Caselles, Vicente; Sánchez, Juan M.

    2015-04-01

    Thermal infrared (TIR) remote sensing trends to hyperspectral sensors on board satellites in the last decades, e.g., the current EOS-MODIS and EOS-ASTER and future missions like HyspIRI, ECOSTRESS, THIRSTY and MISTIGRI. This study aims to characterize spectrally the emissive properties of several surfaces, mostly soils. A spectrometer ranging from 2 to 16 μm, D&P Model 102, has been used to measure samples with singular spectral features, e.g. a sandy soil rich in gypsum sampled in White Sands (New Mexico, USA), salt samples, powdered quartz, and powdered calcite. These samples were chosen for their role in the assessment of thermal emissivity of soils, e.g., the calcite and quartz contents are key variables for modeling TIR emissivities of bare soils, along with soil moisture and organic matter. Additionally, the existence of large areas in the world with abundance of these materials, some of them used for calibration/validation activities of satellite sensors and products, makes the chosen samples interesting. White Sands is the world's largest gypsum dune field encompassing 400 km^2; the salt samples characterize the Salar of Uyuni (Bolivia), the largest salt flat in the world (up to 10,000 km^2), as well as the Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea, or the evaporation lagoons in Aigües-Mortes (France); and quartz is omnipresent in most of the arid regions of the world such as the Algodones Dunes or Kelso Dunes (California, USA), with areas around 700 km2 and 120 km^2, respectively. Measurements of target leaving radiance, hemispherical radiance reflected by a diffuse reflectance panel, and the radiance from a black body at different temperatures were taken to obtain thermal spectra with the D&P spectrometer. The good consistency observed between our measurements and laboratory spectra of similar samples (ASTER and MODIS spectral libraries) indicated the validity of the measurement protocol. Further, our study showed the

  15. Blockchain Enhanced Emission Trading Framework in Fashion Apparel Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Bailu Fu

    2018-04-01

    Full Text Available Motivated by the recent blockchain technology originally built for bitcoin transactions, various industries are exploring the opportunities to redefine their existing operational systems. In this study, an innovative environmentally sustainable solution is proposed for the fashion apparel manufacturing industry (FAMI, which is energized by blockchain. Incorporating the Emission Trading Scheme (ETS, and a novel “emission link” system, the proposed framework exposes carbon emission to the public and establishes a feature to reduce the emissions for all key steps of clothing making. Fully compatible with Industry 4.0, blockchain provides decentralization, transparency, automation, and immutability characteristics to the proposed framework. Specifically, the blockchain supported ETS framework, the carbon emissions of clothing manufacturing life cycle, and the emission link powered procedures are introduced in detail. A case study is provided to demonstrate the carbon emission evaluation procedure. Finally, a multi-criteria evaluation is performed to demonstrate the benefits and drawbacks of the proposed system.

  16. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  17. CO{sub 2} emissions, energy consumption and economic growth in BRIC countries

    Energy Technology Data Exchange (ETDEWEB)

    Pao, Hsiao-Tien; Tsai, Chung-Ming [Department of Management Science, National Chiao Tung University (China)

    2010-12-15

    This paper examines dynamic causal relationships between pollutant emissions, energy consumption and output for a panel of BRIC countries over the period 1971-2005, except for Russia (1990-2005). In long-run equilibrium energy consumption has a positive and statistically significant impact on emissions, while real output exhibits the inverted U-shape pattern associated with the Environmental Kuznets Curve (EKC) hypothesis with the threshold income of 5.393 (in logarithms). In the short term, changes in emissions are driven mostly by the error correction term and short term energy consumption shocks, as opposed to short term output shocks for each country. Short-term deviations from the long term equilibrium take from 0.770 years (Russia) to 5.848 years (Brazil) to correct. The panel causality results indicate there are energy consumption-emissions bidirectional strong causality and energy consumption-output bidirectional long-run causality, along with unidirectional both strong and short-run causalities from emissions and energy consumption, respectively, to output. Overall, in order to reduce emissions and not to adversely affect economic growth, increasing both energy supply investment and energy efficiency, and stepping up energy conservation policies to reduce unnecessary wastage of energy can be initiated for energy-dependent BRIC countries. (author)

  18. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  19. A two component model for thermal emission from organic grains in Comet Halley

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1988-01-01

    Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.

  20. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2009-04-01

    Full Text Available Observations of strongly enhanced optical transition radiation (OTR following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE free-electron laser (FEL data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  1. High yield growth of uniform ZnS nanospheres with strong photoluminescence properties

    International Nuclear Information System (INIS)

    Li, Yuan; Li, Qing; Wu, Huijie; Zhang, Jin; Lin, Hua; Nie, Ming; Zhang, Yu

    2013-01-01

    Graphical abstract: High-yield ZnS nanospheres with an average diameter of 80 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant PVP. It was found that PVP plays a crucial role in the formation of uniform ZnS nanospheres. A possible self-assembling growth mechanism was proposed. The UV–vis spectrum indicates that the as-prepared ZnS nanospheres exhibit a dramatic blue-shift. PL spectrum reveals that the ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. Highlights: ► High-yield ZnS nanospheres were generated conveniently in aqueous solution. ► The amount of surfactant PVP plays a crucial role on the morphology and size of the products. ► A tentative explanation for the growth mechanism of ZnS nanospheres was proposed. ► The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. ► PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. - Abstract: High yield ZnS nanospheres were generated conveniently in aqueous solution with the assistance of surfactant polyvinyl pyrrolidone (PVP). The products were characterized by XRD, EDX, XPS, FESEM, TEM and HRTEM. The as-prepared ZnS nanospheres were uniform with an average diameter of 80 nm. The role of PVP in the forming of ZnS nanospheres was investigated. The results indicated that surfactant PVP plays a crucial role on the morphology and size of the products. Moreover, a tentative explanation for the growth mechanism of ZnS nanospheres was proposed. UV–vis and PL absorption spectrum were used to investigate the optical properties of ZnS nanospheres. The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm.

  2. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  3. Subsurface structures of buried features in the lunar Procellarum region

    Science.gov (United States)

    Wang, Wenrui; Heki, Kosuke

    2017-07-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.

  4. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana

    2015-01-01

    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  5. Bright emission lines in new Seyfert galaxies

    International Nuclear Information System (INIS)

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references

  6. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-01-01

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 Vir = 7.84 x 10 14 M sun h -1 0.7 , which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  7. Boosting Discriminant Learners for Gait Recognition Using MPCA Features

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2009-01-01

    Full Text Available This paper proposes a boosted linear discriminant analysis (LDA solution on features extracted by the multilinear principal component analysis (MPCA to enhance gait recognition performance. Three-dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature selection. These feature vectors are then fed into an LDA-style booster, where several regularized and weakened LDA learners work together to produce a strong learner through a novel feature weighting and sampling process. The LDA learner employs a simple nearest-neighbor classifier with a weighted angle distance measure for classification. The experimental results on the NIST/USF “Gait Challenge” data-sets show that the proposed solution has successfully improved the gait recognition performance and outperformed several state-of-the-art gait recognition algorithms.

  8. The strongly coupled quark-gluon plasma created at RHIC

    CERN Document Server

    Heinz, Ulrich W

    2009-01-01

    The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...

  9. Decoupling economic growth from CO2 emissions: A decomposition analysis of China's household energy consumption

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2016-09-01

    Full Text Available This paper analyzes Chinese household CO2 emissions in 1994–2012 based on the Logarithmic Mean Divisia Index (LMDI structure decomposition model, and discusses the relationship between household CO2 emissions and economic growth based on a decoupling indicator. The results show that in 1994–2012, household CO2 emissions grew in general and displayed an accelerated growth trend during the early 21st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO2 emission growth (an increase of 1.078 Gt CO2 with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO2 emission growth inhibition (0.723 Gt CO2 emission reduction with cumulative contribution rate of 38.27%. Meanwhile, household CO2 emissions are in a weak state of decoupling in general. The change in CO2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure fluctuates between a weak and a strong decoupling state.

  10. Emissions trading and green power : profitability for buyers and sellers

    International Nuclear Information System (INIS)

    Haites, E.

    1998-01-01

    Proposed features of the competitive electricity market in Ontario were reviewed. The speaker predicted that demand for renewable energy in Ontario's competitive electricity market will be affected by green power, emissions trading, labelling, and renewables portfolio standard. Under current regulations retailers can charge customers a premium for purchasing electricity generated by 'green' sources. The existing limits on emissions of sulphur dioxide, nitrogen oxides and carbon dioxides will remain in place, but an emissions cap and trading program for all Ontario-based generation is an option to consider. Ontario's Market Design Committee (MDC) has recommended the implementation of emissions trading for electricity-related air pollutants for all generators located in Ontario. The complex mechanics of emission trading are explained. The MDC recommendation of the use of standard labels to disclose the mix of energy sources used by sellers of electricity and their associated pollution emissions are also summarized

  11. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  12. Act locally, trade globally. Emissions trading for climate policy

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Climate policy raises a number of challenges for the energy sector, the most significant being the transition from a high to a low-CO2 energy path in a few decades. Emissions trading has become the instrument of choice to help manage the cost of this transition, whether used at international or at domestic level. Act Locally, Trade Globally, offers an overview of existing trading systems, their mechanisms, and looks into the future of the instrument for limiting greenhouse gas emissions. Are current markets likely to be as efficient as the theory predicts? What is, if any, the role of governments in these markets? Can domestic emissions trading systems be broadened to activities other than large stationary energy uses? Can international emissions trading accommodate potentially diverse types of emissions targets and widely different energy realities across countries? Are there hurdles to linking emissions trading systems based on various design features? Can emissions trading carry the entire burden of climate policy, or will other policy instruments remain necessary? In answering these questions, Act Locally, Trade Globally seeks to provide a complete picture of the future role of emissions trading in climate policy and the energy sector.

  13. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.

    Science.gov (United States)

    Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J

    2017-11-03

    Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

  14. Acoustic Features Influence Musical Choices Across Multiple Genres.

    Science.gov (United States)

    Barone, Michael D; Bansal, Jotthi; Woolhouse, Matthew H

    2017-01-01

    Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning.

  15. Study of the high energy emission of accreting compact objects with SPI/INTEGRAL

    International Nuclear Information System (INIS)

    Droulans, R.

    2011-01-01

    observed spectral variability in the framework of a new Comptonization model which accounts self-consistently for the presence of a magnetic field and introduce a purely non-thermal scenario as an alternative interpretation of the luminous hard state of accreting black hole binaries. Finally, I present a long term study of the high energy emission of the X-ray burster GS 1826-24. The accretion flow being extraordinarily stable, I integrated over 8 Msec of data allowing to measure the average source spectrum up to 500 keV. Once again, there is strong evidence for a hard spectral tail above 150 keV, establishing that this feature is not exclusively associated to black hole systems. I compare the results obtained for the three sources and discuss the possible physical origins of the high energy emission of stellar-size compact objects, emphasizing that all observed spectral shapes can be explained by a non-thermal magnetized corona model. (author)

  16. RADIO EMISSION FROM ACCELERATION SITES OF SOLAR FLARES

    International Nuclear Information System (INIS)

    Li Yixuan; Fleishman, Gregory D.

    2009-01-01

    This Letter takes up the question of what radio emission is produced by electrons at the very acceleration site of a solar flare. Specifically, we calculate incoherent radio emission produced within two competing acceleration models-stochastic acceleration by cascading MHD turbulence and regular acceleration in collapsing magnetic traps. Our analysis clearly demonstrates that radio emission from acceleration sites (1) has sufficiently strong intensity to be observed by currently available radio instruments, and (2) has spectra and light curves that are distinctly different in these two competing models, which makes them observationally distinguishable. In particular, we suggest that some of the narrowband microwave and decimeter continuum bursts may be a signature of the stochastic acceleration in solar flares.

  17. OPTICAL SPECTROSCOPY OF SDSS J004054.65-0915268: THREE POSSIBLE SCENARIOS FOR THE CLASSIFICATION. A z ∼ 5 BL LACERTAE, A BLUE FSRQ, OR A WEAK EMISSION LINE QUASAR

    International Nuclear Information System (INIS)

    Landoni, M.; Zanutta, A.; Bianco, A.; Tavecchio, F.; Bonnoli, G.; Ghisellini, G.

    2016-01-01

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ∼ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C iv broad emission line. Therefore, the nature of the object is then discussed, building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk

  18. THE 15–20 μm EMISSION IN THE REFLECTION NEBULA NGC 2023

    International Nuclear Information System (INIS)

    Peeters, Els; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Wolfire, Mark G.

    2012-01-01

    We present 15-20 μm spectral maps toward the reflection nebula NGC 2023 obtained with the Infrared Spectrograph in short-wavelength, high-resolution mode on board the Spitzer Space Telescope. These spectra reveal emission from polycyclic aromatic hydrocarbons (PAHs), C 60 , and H 2 superposed on a dust continuum. These emission components exhibit distinct spatial distributions: with increasing distance from the illuminating star, we observe the PAH emission followed by the dust continuum emission and the H 2 emission. The C 60 emission is located closest to the illuminating star in the south, while in the north it seems to be associated with the H/H 2 transition. Emission from PAHs and PAH-related species produces features at 15.8, 16.4, 17.4, and 17.8 μm and the 15-18 μm plateau. These different PAH features show distinct spatial distributions. The 15.8 μm band and 15-18 μm plateau correlate with the 11.2 μm PAH band and with each other, and are attributed to large, neutral PAHs. Conversely, the 16.4 μm feature correlates with the 12.7 μm PAH band, suggesting that both arise from species that are favored by the same conditions that favor PAH cations. The PAH contribution to the 17.4 μm band is displaced toward the illuminating star with respect to the 11.2 and 12.7 μm emission and is assigned to doubly ionized PAHs and/or a subset of cationic PAHs. The spatial distribution of the 17.8 μm band suggests that it arises from both neutral and cationic PAHs. In contrast to their intensities, the profiles of the PAH bands and the 15-18 μm plateau do not vary spatially. Consequently, we conclude that the carrier of the 15-18 μm plateau is distinct from that of the PAH bands.

  19. The future of emissions trading in light of the acid rain experience

    International Nuclear Information System (INIS)

    McLean, B.J.; Rico, R.

    1995-01-01

    The idea of emissions trading was developed more than two decades ago by environmental economists eager to provide new ideas for how to improve the efficiency of environmental protection. However, early emissions trading efforts were built on the historical open-quotes command and controlclose quotes infrastructure which has dominated U.S. environmental protection until today. The open-quotes command and controlclose quotes model initially had advantages that were of a very pragmatic character: it assured large pollution reductions in a time when large, cheap reductions were available and necessary; and it did not require a sophisticated government infrastructure. Within the last five years, large-scale emission trading programs have been successfully designed and started that are fundamentally different from the earlier efforts, creating a new paradigm for environmental control just when our understanding of environmental problems is changing as well. The purpose of this paper is to focus on the largest national-scale program--the Acid Rain Program--and from that experience, forecast when emission trading programs may be headed based on our understanding of the factors currently influencing environmental management. The first section of this paper will briefly review the history of emissions trading programs, followed by a summary of the features of the Acid Rain Program, highlighting those features that distinguish it from previous efforts. The last section addresses the opportunities for emissions trading (and its probable future directions)

  20. Analysis of Spectral Features of Seawaterbiooptical Components Fluorescence from the Excitation-emission Matrix

    Science.gov (United States)

    Salyuk, P. A.; Nagorny, I. G.

    The paper presents the method for processing of excitation-emission matrix of sea water and the allocation of the spectral characteristics of different types of colored dissolved organic matter (CDOM) and phytoplankton cells in seawater. The method consists of identification of regularly observed fluorescence peaks of CDOM in marine waters of different type and definition of the spectral ranges, where the predominant influence of these peaks are observed.

  1. Origin of the visible emission of black silicon microstructures

    International Nuclear Information System (INIS)

    Fabbri, Filippo; Lin, Yu-Ting; Bertoni, Giovanni; Rossi, Francesca; Salviati, Giancarlo; Smith, Matthew J.; Gradečak, Silvija; Mazur, Eric

    2015-01-01

    Silicon, the mainstay semiconductor in microelectronics, is considered unsuitable for optoelectronic applications due to its indirect electronic band gap that limits its efficiency as light emitter. Here, we univocally determine at the nanoscale the origin of visible emission in microstructured black silicon by cathodoluminescence spectroscopy and imaging. We demonstrate the formation of amorphous silicon oxide microstructures with a white emission. The white emission is composed by four features peaking at 1.98 eV, 2.24 eV, 2.77 eV, and 3.05 eV. The origin of such emissions is related to SiO x intrinsic point defects and to the sulfur doping due to the laser processing. Similar results go in the direction of developing optoelectronic devices suitable for silicon-based circuitry

  2. Proceedings of the MASHA 2009 mobile equipment symposium : diesel emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This symposium addressed concerns regarding the health and safety of underground miners and provided a forum to share ideas, problems and best practices. As mines in Ontario head deeper underground, ventilation costs and emission concerns increase. The presentations provided information to mine operators to help determine if their existing ventilation, emissions measurement, and engine management meet current industry practice and regulations. Among the topics of discussion were mine ventilation, diesel exhaust emissions, biodiesel, worker protection and health hazards associated with mining occupations. The symposium featured 8 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs.

  3. Proceedings of the MASHA 2009 mobile equipment symposium : diesel emissions

    International Nuclear Information System (INIS)

    2009-01-01

    This symposium addressed concerns regarding the health and safety of underground miners and provided a forum to share ideas, problems and best practices. As mines in Ontario head deeper underground, ventilation costs and emission concerns increase. The presentations provided information to mine operators to help determine if their existing ventilation, emissions measurement, and engine management meet current industry practice and regulations. Among the topics of discussion were mine ventilation, diesel exhaust emissions, biodiesel, worker protection and health hazards associated with mining occupations. The symposium featured 8 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs.

  4. Observations of gamma-ray emission in solar flares

    International Nuclear Information System (INIS)

    Forrest, D.J.; Chupp, E.L.; Suri, A.N.; Reppin, C.

    1973-01-01

    This paper reviews the observations of gamma-ray emission made from the OSO-7 satellite in connection with two solar flares in early August 1972. The details of the measurements and a preliminary interpretation of some of the observed features are given. (U.S.)

  5. Cue combination in a combined feature contrast detection and figure identification task.

    Science.gov (United States)

    Meinhardt, Günter; Persike, Malte; Mesenholl, Björn; Hagemann, Cordula

    2006-11-01

    Target figures defined by feature contrast in spatial frequency, orientation or both cues had to be detected in Gabor random fields and their shape had to be identified in a dual task paradigm. Performance improved with increasing feature contrast and was strongly correlated among both tasks. Subjects performed significantly better with combined cues than with single cues. The improvement due to cue summation was stronger than predicted by the assumption of independent feature specific mechanisms, and increased with the performance level achieved with single cues until it was limited by ceiling effects. Further, cue summation was also strongly correlated among tasks: when there was benefit due to the additional cue in feature contrast detection, there was also benefit in figure identification. For the same performance level achieved with single cues, cue summation was generally larger in figure identification than in feature contrast detection, indicating more benefit when processes of shape and surface formation are involved. Our results suggest that cue combination improves spatial form completion and figure-ground segregation in noisy environments, and therefore leads to more stable object vision.

  6. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    Science.gov (United States)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  7. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  8. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer

    Science.gov (United States)

    Ma, Yan; Diao, Yiwei; Zhang, Bingjie; Wang, Weiwei; Ren, Xinrong; Yang, Dongsen; Wang, Ming; Shi, Xiaowen; Zheng, Jun

    2016-12-01

    A proton transfer reaction ion-drift chemical ionization mass spectrometer (PTR-ID-CIMS) equipped with a hydronium (H3+O) ion source was developed and deployed near an industrial zone in the Yangtze River Delta (YRD) region of China in spring 2015 to investigate industry-related emissions of volatile organic compounds (VOCs). Air pollutants including formaldehyde (HCHO), aromatics, and other trace gases (O3 and CO) were simultaneously measured. Humidity effects on the sensitivity of the PTR-ID-CIMS for HCHO detection were investigated and quantified. The performances of the PTR-ID-CIMS were also validated by intercomparing with offline HCHO measurement technique using 2,4-dinitrophenylhydrazone (DNPH) cartridges and the results showed fairly good agreement (slope = 0.81, R2 = 0.80). The PTR-ID-CIMS detection limit of HCHO (10 s, three-duty-cycle averages) was determined to be 0.9-2.4 (RH = 1-81.5 %) parts per billion by volume (ppbv) based on 3 times the standard deviations of the background signals. During the field study, observed HCHO concentrations ranged between 1.8 and 12.8 ppbv with a campaign average of 4.1 ± 1.6 ppbv, which was comparable with previous HCHO observations in other similar locations of China. However, HCHO diurnal profiles showed few features of secondary formation. In addition, time series of both HCHO and aromatic VOCs indicated strong influence from local emissions. Using a multiple linear regression fit model, on average the observed HCHO can be attributed to secondary formation (13.8 %), background level (27.0 %), and industry-related emissions, i.e., combustion sources (43.2 %) and chemical productions (16.0 %). Moreover, within the plumes the industry-related emissions can account for up to 69.2 % of the observed HCHO. This work has provided direct evidence of strong primary emissions of HCHO from industry-related activities. These primary HCHO sources can potentially have a strong impact on local and regional air pollution formation

  9. Coherent effects on two-photon correlation and directional emission of two two-level atoms

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong

    2007-01-01

    Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2

  10. Modeling the CO2 emissions, energy use, and economic growth in Russia

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Yu, Hsiao-Cheng; Yang, Yeou-Herng

    2011-01-01

    This paper applies the co-integration technique and causality test to examine the dynamic relationships between pollutant emissions, energy use, and real output during the period between 1990 and 2007 for Russia. The empirical results show that in the long-run equilibrium, emissions appear to be energy use elastic and output inelastic. This elasticity suggests high energy use responsiveness to changes in emissions. The output exhibits a negative significant impact on emissions and does not support EKC hypothesis. These indicate that both economic growth and energy conservation policies can reduce emissions and no negative impact on economic development. The causality results indicate that there is a bidirectional strong Granger-causality running between output, energy use and emissions, and whenever a shock occurs in the system, each variable makes a short-run adjustment to restore the long-run equilibrium. The average speed of adjustment is as low as just over 0.26 years. Hence, in order to reduce emissions, the best environmental policy is to increase infrastructure investment to improve energy efficiency, and to step up energy conservation policies to reduce any unnecessary waste of energy. That is, energy conservation is expected to improve energy efficiency, thereby promoting economic growth. -- Highlights: → In Russia, emissions are energy use elastic and real output inelastic, but energy is a more important determinant of emissions than output. → In Russia, the real output exhibits a negative significant impact on emissions and does not support EKC hypothesis. → In Russia, there is a bidirectional strong causality relationship between emissions, energy use and output. → In Russia, the average speed of a short-run adjustment to restore long-run equilibrium is about 0.26 years. → In Russia, the energy conservation is expected to improve energy efficiency, thereby promoting economic growth.

  11. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    Directory of Open Access Journals (Sweden)

    S. Capozziello

    2015-11-01

    Full Text Available The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesic motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events. Possible applications to cosmology are discussed.

  12. Radiation emission as a virtually exact realization of Heisenbergs microscope

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K.K., E-mail: kka@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark); Brock, S. [Department of Culture and Society, Aarhus University, Jens Chr. Skous Vej 5, 8000 Aarhus C (Denmark); Esberg, J.; Thomsen, H.D.; Uggerhøj, U.I. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)

    2013-11-15

    Through the concept of ‘formation length’, recently observed directly in the radiation emission from ultrarelativistic electrons and an essential component in the interpretation of strong field radiation from electrons penetrating single crystals, we discuss the indeterminacy in the location of radiation emission. The analogy with the indeterminacy in the Heisenberg microscope Gedanken experiment is demonstrated from a number of viewpoints to be almost exact. The positive attitude regarding photon emission as a process that is somehow located in space and time is emphasized. We therefore interpret the measurements of formation lengths in radiation emission as a practically realizable version – using virtual incident photons instead of real – of the Heisenberg microscope Gedanken experiment.

  13. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Pulsar Emission Geometry and Accelerating Field Strength

    Science.gov (United States)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  15. The strongly coupled quark-gluon plasma created at RHIC

    International Nuclear Information System (INIS)

    Heinz, Ulrich

    2009-01-01

    The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory

  16. Strong gravity effects in accreting black-hole systems

    International Nuclear Information System (INIS)

    Niedzwiecki, A.

    2006-01-01

    I briefly review current status of studying effects of strong gravity in X-ray astronomy. Matter accreting onto a black hole probes the relativistic region of space-time and the high-energy radiation it produces should contain signatures of strong gravity effects. Current X-ray observations provide the evidence that the observed emission originates, in some cases, at a distance of a few gravitational radii from a black hole. Moreover, certain observations invoke interpretations favouring rapid rotation of the black hole. Some observational properties of black hole systems are supposed to result from the lack of a material surface in these objects. I consider further effects, specific for the black hole environment, which can be studied in X-ray data. Bulk motion Comptonization, which would directly reveal converging flow of matter plunging into a black hole, is unlikely to be important in formation of X-ray spectra. Similarly, Penrose processes are unlikely to give observational effects, although this issue has not been thoroughly studied so far for all plausible radiative mechanisms. (author)

  17. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    Science.gov (United States)

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  18. A very small and super strong zebra pattern burst at the beginning of a solar flare

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China); Mészárosová, Hana; Karlický, Marian, E-mail: bltan@nao.cas.cn [Astronomical Institute of the Academy of Sciences of the Czech Republic, Ondřejov 15165 (Czech Republic)

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.

  19. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  20. High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, M.-N. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Gabrielle, B., E-mail: Benoit.Gabrielle@agroparistech.f [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Laville, P.; Cellier, P. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Beekmann, M. [Laboratoire Inter-universitaire des Systemes Atmospheriques - CNRS, Universites Paris-Est and Paris 7, F-94 010 Creteil (France); Gilliot, J.-M.; Michelin, J.; Hadjar, D. [INRA, AgroParisTech, UMR 1091 Environnement et Grandes Cultures, F-78850 Grignon (France); Curci, G. [Dipartimento di Fisica - CETEMPS, Universita' degli Studi dell' Aquila, 67010 Coppito, L' Aquila (Italy)

    2010-03-15

    Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km{sup 2} administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N-NO ha{sup -1} yr{sup -1} to 11.1 kg N-NO ha{sup -1} yr{sup -1}. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. - The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.