WorldWideScience

Sample records for strong electronic correlation

  1. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  2. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  3. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  4. Strongly Correlated Electron Systems: An Operatorial Perspective

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.

  5. Strongly correlated electrons on two coupled chains

    International Nuclear Information System (INIS)

    Weihong, Z.; Oitmaa, J.; Hamer, C.J.

    2000-01-01

    Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation

  6. International Conference on Strongly Correlated Electron Systems 2017 (SCES2017)

    Science.gov (United States)

    2018-05-01

    The 2017 International Conference on Strongly Correlated Electron Systems, SCES 2017, took place at the Clarion Congress Hotel in Prague, Czech Republic from July 17 to 21, 2017. The meeting was held under the auspices of the Department of Condensed Matter Physics of the Faculty of Mathematics and Physics of the Charles University.

  7. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  8. Magnetic properties of metallic impurities with strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Ringel, Matouš

    2009-01-01

    Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html

  9. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  10. Superconductivity in strongly correlated electron systems: successes and open questions

    International Nuclear Information System (INIS)

    Shastry, B. Sriram

    2000-01-01

    Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems

  11. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  12. Oscillating molecular dipoles require strongly correlated electronic and nuclear motion

    International Nuclear Information System (INIS)

    Chang, Bo Y; Shin, Seokmin; Palacios, Alicia; Martín, Fernando; Sola, Ignacio R

    2015-01-01

    To create an oscillating electric dipole in an homonuclear diatomic cation without an oscillating driver one needs (i) to break the symmetry of the system and (ii) to sustain highly correlated electronic and nuclear motion. Based on numerical simulations in H 2 + we present results for two schemes. In the first one (i) is achieved by creating a superposition of symmetric and antisymmetric electronic states freely evolving, while (ii) fails. In a second scheme, by preparing the system in a dressed state of a strong static field, both conditions hold. We then analyze the robustness of this scheme with respect to features of the nuclear wave function and its intrinsic sources of decoherence. (tutorial)

  13. PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)

    Science.gov (United States)

    Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.

    2012-11-01

    The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion

  14. Excitonic condensation in systems of strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan

    2015-01-01

    Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  15. Non perturbative aspects of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Controzzi, D.

    2000-01-01

    In this thesis we report some selected works on Strongly Correlated Electron Systems. A common ingredient of these works is the use of non-perturbative techniques available in low dimensions. In the first part we use the Bethe Ansatz to study some properties of two families of integrable models introduced by Fateev. We calculate the Thermodynamics of the models and show how they can be interpreted as effective Landau-Ginzburg theories for coupled two-dimensional superconductors interacting with an insulating substrate. This allows us to study exactly the dependence of the critical temperature on the thickness of the insulating layer, and on the interaction between the order parameters of two different superconducting planes. In the second part of the thesis we study the optical conductivity of the sine-Gordon model using the Form Factor method and Conformal Perturbation Theory. This allows us to develop, for the first time, a complete theory of the optical conductivity of one-dimensional Mott insulators, in the Quantum Field Theory limit. (author)

  16. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  17. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  18. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  19. Signals of strong electronic correlation in ion scattering processes

    Science.gov (United States)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  20. Transverse transport in coupled strongly correlated electronic chains

    International Nuclear Information System (INIS)

    Capponi, S.; Poilblanc, D.

    1997-01-01

    One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)

  1. Density functional application to strongly correlated electron systems

    International Nuclear Information System (INIS)

    Eschrig, H.; Koepernik, K.; Chaplygin, I.

    2003-01-01

    The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn

  2. Observation of the two-electron cusp in atomic collisions. Evidence for strong electron-electron correlation

    International Nuclear Information System (INIS)

    Sarkadi, L.; Orban, A.

    2007-01-01

    Complete text of publication follows. In this report we present experimental data for a process when two electrons with velocity vectors equal to that of the projectile are emitted from collisions. By observing the two electron cusp the study of the threshold phenomenon for two-electron break-up is possible. It is a particularly interesting question whether the outgoing charged projectile can attract the two repulsing electrons so strongly that the two-electron cusp is formed. If it is so, a further question arises: Are the two electrons correlated in the final state as it is predicted by the Wannier theory? The experiments have been done at the 1 MeV VdG accelerator of ATOMKI using our TOF spectrometer. The first measurements clearly showed the formation of the two-electron cusp and signature of the electron correlation in 200 keV He 0 +He collisions. These promising results motivated us to carry out the experiment at 100 keV beam energy where the coincidence count rate is still reasonable but the energy resolution is better. For an acceptable data acquisition time we improved our data acquisition and data processing system for triple coincidence measurements. In Fig. 1a we present our measured relative fourfold differential cross section (FDCS) that shows strong electron correlation. For a comparison, in Fig. 1b we displayed the contour plot for uncorrelated electron pair emission. These latter data were synthesized artificially, generating the energies of the electron pairs from two independent double coincidence experiments. In both figures the distributions are characterized by two ridges. In Fig. 1b the ridges are perpendicular straight lines (E 1 = E 2 .13.6 eV). As a result of the correlation, the ridges in Fig. 1a are distorted in such a way that they have a joint straight-line section following the line E 1 + E 2 = 27.2 eV. This means that the electron pairs in the vicinity of the cusp maximum are emitted with a center of- mass velocity equal to that of

  3. Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    OpenAIRE

    Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.

    2013-01-01

    Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...

  4. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

    International Nuclear Information System (INIS)

    Neuscamman, Eric

    2013-01-01

    We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation

  5. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  6. Multiphonon contribution to the polaron formation in cuprates with strong electron correlations and strong electron-phonon interaction

    Science.gov (United States)

    Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.

    2017-03-01

    In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.

  7. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  8. Electron-muon correlation as a new probe of strongly interacting quark-gluon plasma

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-01-01

    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon that originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  9. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    International Nuclear Information System (INIS)

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  10. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  11. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition

    International Nuclear Information System (INIS)

    Bouis, F.

    1999-01-01

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  12. Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*

    Science.gov (United States)

    Maple, M. Brian

    1996-03-01

    Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f

  13. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    Science.gov (United States)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  14. Holstein-Primakoff representation and supercoherent states for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Azakov, S.

    1999-09-01

    First we show that the algebra of operators entering the Hamiltonian of the t-J model describing the strongly correlated electron system is graded spl(2.1) algebra. Then after a brief discussion of its atypical representations we construct the Holstein-Primakoff nonlinear realization of these operators which allows to carry out the systematic semiclassical approximation, similarly to the spin-wave theory of localized magnetism. The fact that the t-J model describes the itinerant magnetism is reflected in the presence of the spinless fermions. For the supersymmetric spl(2.1) algebra the supercoherent states are proposed and the partition function of the t-J model is represented as a path integral with the help of these states. (author)

  15. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  16. Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom

    Science.gov (United States)

    Ducatman, Samuel Charles

    The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are

  17. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  18. The thermodynamic spin magnetization of strongly correlated 2d electrons in a silicon inversion layer

    OpenAIRE

    Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.

    2002-01-01

    A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...

  19. Exact time-dependent exchange-correlation potentials for strong-field electron dynamics

    International Nuclear Information System (INIS)

    Lein, Manfred; Kuemmel, Stephan

    2005-01-01

    By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process

  20. PREFACE: International Conference on Strongly Correlated Electron Systems 2014 (SCES2014)

    Science.gov (United States)

    2015-03-01

    The 2014 International Conference on Strongly Correlated Electron Systems (SCES) was held in Grenoble from the 7th to 11th of July on the campus of the University of Grenoble. It was a great privilege to have the conference in Grenoble after the series of meetings in Sendai (1992), San Diego (1993), Amsterdam (1994), Goa (1995), Zürich (1996), Paris (1998), Nagano (1999), Ann Arbor (2001), Krakow (2002), Karlsruhe (2004), Vienna (2005), Houston (2007), Buzios (2008), Santa Fe (2010), Cambridge (2011) and Tokyo (2013). Every three years, SCES joins the triennial conference on magnetism ICM. In 2015, ICM will take place in Barcelona. The meeting gathered an audience of 875 participants who actively interacted inside and outside of conference rooms. A large number of posters (530) was balanced with four parallel oral sessions which included 86 invited speakers and 141 short oral contributions. A useful arrangement was the possibility to put poster presentations on the website so participants could see them all through the conference week. Each morning two plenary sessions were held, ending on Friday with experimental and theoretical summaries delivered by Philipp Gegenwart (Augsburg) and Andrew Millis (Columbia). The plenary sessions were given by Gabriel Kotliar (Rutgers), Masashi Kawasaki (Tokyo), Jennifer Hoffman (Harvard), Mathias Vojta (Dresden), Ashvin Vishwanath (Berkeley), Andrea Cavalleri (Hamburg), Marc-Henri Julien (Grenoble), Neil Mathur (Cambridge), Giniyat Khaliullin (Stuttgart), and Toshiro Sakakibara (Tokyo). The parallel oral sessions were prepared by 40 symposium organizers selected by the chairman (Antoine Georges) and co-chairman (Kamran Behnia) of the Program Committee with the supplementary rule that speakers had not delivered an invited talk at the previous SCES conference held in 2013 in Tokyo. Special attention was given to help young researchers via grants to 40 overseas students. Perhaps due to the additional possibility of cheap

  1. Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6

    International Nuclear Information System (INIS)

    Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.

    2008-01-01

    To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations

  2. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering; Electrons correles sous haute pression: une approche par diffusion inelastique des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, J.P

    2007-06-15

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  3. Strong-Field Modulated Diffraction Effects in the Correlated Electron-Nuclear Motion in Dissociating H2+

    International Nuclear Information System (INIS)

    He Feng; Becker, Andreas; Thumm, Uwe

    2008-01-01

    We show that the electronic dynamics in a molecule driven by a strong field is complex and potentially even counterintuitive. As a prototype example, we simulate the interaction of a dissociating H 2 + molecule with an intense infrared laser pulse. Depending on the laser intensity, the direction of the electron's motion between the two nuclei is found to follow or oppose the classical laser-electric force. We explain the sensitive dependence of the correlated electronic-nuclear motion in terms of the diffracting electronic momentum distribution of the dissociating two-center system. The distribution is dynamically modulated by the nuclear motion and periodically shifted in the oscillating infrared electric field

  4. Physics of heavy fermions heavy fermions and strongly correlated electrons systems

    CERN Document Server

    Onuki, Yoshichika

    2018-01-01

    A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challengin...

  5. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  6. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    International Nuclear Information System (INIS)

    Heilmann, D.B.

    2007-02-01

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  7. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  8. Quantum criticality around metal-insulator transitions of strongly correlated electron systems

    Science.gov (United States)

    Misawa, Takahiro; Imada, Masatoshi

    2007-03-01

    Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal

  9. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  10. Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors

    Directory of Open Access Journals (Sweden)

    C. Gadermaier

    2014-03-01

    Full Text Available We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate Γ_{1} of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ_{1} increases monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and Γ_{1} is consistent with the canonical assignment of Γ_{1} to the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting critical temperature T_{c} on the a-axis strain is also reflected in a systematic dependence T_{c} on Γ_{1}, with a distinct maximum at intermediate values (∼16  ps^{−1} at room temperature. The empirical nonmonotonic systematic variation of T_{c} with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-T_{c} superconductivity as a crossover phenomenon.

  11. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    Science.gov (United States)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  12. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T

    2009-01-01

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  13. Massively parallel simulations of strong electronic correlations: Realistic Coulomb vertex and multiplet effects

    Science.gov (United States)

    Baumgärtel, M.; Ghanem, K.; Kiani, A.; Koch, E.; Pavarini, E.; Sims, H.; Zhang, G.

    2017-07-01

    We discuss the efficient implementation of general impurity solvers for dynamical mean-field theory. We show that both Lanczos and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-time hybridization- and interaction-expansion) exhibit excellent scaling on massively parallel supercomputers. We apply these algorithms to simulate realistic model Hamiltonians including the full Coulomb vertex, crystal-field splitting, and spin-orbit interaction. We discuss how to remove the sign problem in the presence of non-diagonal crystal-field and hybridization matrices. We show how to extract the physically observable quantities from imaginary time data, in particular correlation functions and susceptibilities. Finally, we present benchmarks and applications for representative correlated systems.

  14. Reply to ``Comment on `Cluster methods for strongly correlated electron systems' ''

    Science.gov (United States)

    Biroli, G.; Kotliar, G.

    2005-01-01

    We reply to the Comment by Aryanpour, Maier, and Jarrell [Phys. Rev. B 71, 037101 (2005)] on our paper [Phys. Rev. B 65, 155112 (2002)]. We demonstrate, using general arguments and explicit examples, that whenever the correlation length is finite, local observables converge exponentially fast in the cluster size Lc within cellular dynamical mean field theory. This is a faster rate of convergence than the 1/ L2c behavior of the dynamical cluster approximation, thus refuting the central assertion of their Comment.

  15. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Correlated electron-ion collisions in a strong laser field; Korrelierte Elektron-Ion-Stoesse in starken Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Ristow, T.

    2007-12-17

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  17. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2016-04-28

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.

  18. Photoemission in strongly correlated crystalline f-electron systems: A need for a new approach

    International Nuclear Information System (INIS)

    Arko, A.J.; Joyce, J.J.; Sarrao, J.

    1998-01-01

    The unusual properties of heavy fermion (or heavy electron) materials have sparked an avalanche of research over the last two decades in order to understand the basic phenomena responsible for these properties. Photoelectron spectroscopy (often referred to as PES in the following sections), the most direct measurement of the electronic structure of a material, should in principle be able to shed considerable light on this matter. In general the distinction between a localized and a band-like state is trivially observed in band dispersion. Much of the past work was performed on poly-crystalline samples, scraped in-situ to expose a clean surface for PES. There have since been considerable advances both in the quality of specimens as well as experimental resolution, which raise questions regarding these conclusions. Much of the past work on poly-crystalline samples has been reported in several review articles, most notably Allen et al., and it is not necessary here to review those efforts again, with the exception of subsequent work performed at high resolution. The primary focus of the present review will be on new measurements obtained on single crystals, cleaved or prepared in situ and measured at high resolution, which seem to suggest that agreement with the GS and NCA approximations is less than perfect, and that perhaps the starting models need to be modified, or that even an entirely new approach is called for. Of the promising new models the Periodic Anderson Model is most closely related to the SIM. Indeed, at high temperatures it reverts to the SIM. However, the charge polaron model of Liu (1997) as well as the two-electron band model of Sheng and Cooper (1995) cannot yet be ruled out. Inasmuch as the bulk of the single crystal work was performed by the Los Alamos group, this review will draw heavily on those results. Moreover, since the GS and NCA approximations represent the most comprehensive and widely accepted treatment of heavy fermion PES, it is only

  19. Assessing the importance of frustration in a narrow-band strongly correlated electronic chain

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. In this limit, we find the one dimensional transverse field Ising model (TFIM) to be the effective Hamiltonian governing the dynamics of the charge degrees of freedom. We find two different charge-ordered (CO) ground states as the strength of the longer range interactions is varied. At lower energies, these CO states drive two different spin-ordered ground states. A variety of response functions computed here bear a remarkable resemblance to recent experimental observations for organic TMTSF systems, and so we propose that these systems are proximate to a QCP associated with T = 0 charge order. (author)

  20. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  1. Effects of strong electron correlations in Ti8C12 Met-Car

    International Nuclear Information System (INIS)

    Varganov, Sergey A.; Gordon, Mark S.

    2006-01-01

    The results of multireference configuration interaction (MRCI) with single and double excitations and single reference coupled cluster (CCSD(T)) calculations on Ti 8 C 12 metallocarbohedryne (Met-Car) are reported. The distortions of the T d structure to D 2d and C 3v structures due to the Jahn-Teller effect are studied. It is shown that the Ti 8 C 12 wave function has significant multireference character. The choice of the active space for multireference self-consistent field (MCSCF) calculations is discussed. The failure of multireference perturbation theory with a small active space is attributed to multiple intruder states. A new, novel type of MCSCF calculation, ORMAS (occupation restricted multiple active spaces) with a large active space are carried out for several electronic states of Ti 8 C 12 . The Jahn-Teller distorted D 2d 1 A 1 (nearly T d ) structure is predicted to be the Ti 8 C 12 ground state. Predictions of the Ti 8 C 12 ionization potential with different ab initio methods are presented

  2. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  3. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  4. STRONG CORRELATIONS AND ELECTRON-PHONON COUPLING IN HIGH-TEMPERATURE SUPERCONDUCTORS - A QUANTUM MONTE-CARLO STUDY

    NARCIS (Netherlands)

    MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W

    We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The

  5. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    Science.gov (United States)

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  6. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  7. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  8. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  9. Antidiabetic Theory of Superconducting State Transition: Phonons and Strong Electron Correlations the Old Physics and New Aspects

    International Nuclear Information System (INIS)

    Banacky, P.

    2010-01-01

    Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.

  10. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  11. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition; Deux systemes d'electrons fortement correles: le modele de reseau Kondo dans la limite du couplage fort et un modele bidimensionnel d'electrons au voisinage d'une transition topologique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bouis, F

    1999-10-14

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  12. Quantum Transport in Strongly Correlated Systems

    DEFF Research Database (Denmark)

    Bohr, Dan

    2007-01-01

    the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...

  13. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  14. Evolution of the Fermi surface of the strongly correlated f electron system under hydrostatic and uniaxial pressures

    CERN Document Server

    Aoki, H; Endo, M; Nakayama, M; Takei, H; Kimura, N; Kunii, S; Terashima, T; Uji, S; Matsumoto, T

    2002-01-01

    We report our recent developments of experimental systems for measuring the de Haas-van Alphen (dHvA) effect under hydrostatic and uniaxial pressures. The dHvA effect of CeB sub 6 has been studied under both hydrostatic and uniaxial pressures and the effects of the pressures on the electronic structure are discussed.

  15. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Stanford, CA 94305 (United States); Schmitt, F; Meevasana, W; Motoyama, E M [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Lu, D H [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kim, C [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Scalettar, R T [Physics Department, University of California-Davis, Davis, CA 95616 (United States)], E-mail: moritzb@slac.stanford.edu

    2009-09-15

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  16. Electronic structure of YBa2Cu3O/sub 7-//sub δ/ including strong correlation effects

    International Nuclear Information System (INIS)

    Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.

    1989-01-01

    The occupied and unoccupied valence-band density of states of YBa 2 Cu 3 O/sub 7-//sub δ/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies

  17. Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials

    DEFF Research Database (Denmark)

    Petit, Leon; Tyer, R.; Szotek, Z.

    2010-01-01

    calculated to within ~1.5% of the experimental values, and its ability to describe localization phenomena in solids, makes it a competitive atomistic simulation approach in the search for and design of new materials with specific physical properties and possible technological applications....... and exhibiting valency transitions brought about by a complex interplay between ligand chemistry and lanthanide contraction. The calculations exploit the combined effect of a first-principles methodology, which can adequately describe the dual character of electrons, itinerant versus localized, and high......-throughput computing made possible by the increasing available computational power. Our findings, including the predicted 'intermediate valent' compounds SmO and TmSe, are in excellent overall agreement with the available experimental data. The accuracy of the approach, proven e.g. through the lattice parameters...

  18. Electronic Correlation Strength of Pu

    DEFF Research Database (Denmark)

    Svane, A.; C. Albers, R.; E. Christensen, N.

    2013-01-01

    A new electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly...... found a "universal" scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only upon the local density approximation (LDA) bandwidth and is otherwise independent of crystal structure and lattice constant....

  19. Atomic physics of strongly correlated systems

    International Nuclear Information System (INIS)

    Lin, C.D.

    1986-01-01

    This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles

  20. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  1. Correlated electrons and generalized statistics

    International Nuclear Information System (INIS)

    Wang, Q.A.

    2003-01-01

    Several important generalizations of Fermi-Dirac distribution are compared to numerical and experimental results for correlated electron systems. It is found that the quantum distributions based on incomplete information hypothesis can be useful for describing this kind of systems. We show that the additive incomplete fermion distribution gives very good description of weakly correlated electrons and that the non-additive one is suitable to very strong correlated cases. (author)

  2. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  3. Coupled cluster theory of strongly correlated spin- and electron-lattice systems: an illustration via a model exhibiting competition between magnetic order and dimerization

    International Nuclear Information System (INIS)

    Bishop, Raymond F; Krueger, Sven E

    2003-01-01

    The coupled cluster method (CCM) of microscopic quantum many-body theory has become an ab initio method of first choice in quantum chemistry and many fields of nuclear, subnuclear and condensed matter physics, when results of high accuracy are required. In recent years it has begun to be applied with equal success to strongly correlated systems of electrons or quantum spins defined on a regular spatial lattice. One regularly finds that the CCM is able to describe accurately the various zero-temperature phases and the quantum phase transitions between them, even when frustration is present and other methods such as quantum Monte Carlo often fail. We illustrate the use and powerfulness of the method here by applying it to a square-lattice spin-half Heisenberg model where frustration is introduced by competing nearest neighbour bonds. The model exhibits the physically interesting phenomenon of competition between magnetic order and dimerization. Results obtained for the model with the CCM are compared with those found from spin-wave theory and from extrapolating the results of exact diagonalizations of small lattices. We show that the CCM is essentially unique among available methods in being able both to describe accurately all phases of this complex model and to provide accurate predictions of the various phase boundaries and the order of the corresponding transitions

  4. Noise Spectroscopy in Strongly Correlated Oxides

    Science.gov (United States)

    Alsaqqa, Ali M.

    Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the

  5. Wavelet Correlation Coefficient of 'strongly correlated' financial time series

    OpenAIRE

    Razdan, Ashok

    2003-01-01

    In this paper we use wavelet concepts to show that correlation coefficient between two financial data's is not constant but varies with scale from high correlation value to strongly anti-correlation value This studies is important because correlation coefficient is used to quantify degree of independence between two variables. In econophysics correlation coefficient forms important input to evolve hierarchial tree and minimum spanning tree of financial data.

  6. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  7. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  8. Strong correlation effects on surfaces of topological insulators via holography

    Science.gov (United States)

    Seo, Yunseok; Song, Geunho; Sin, Sang-Jin

    2017-07-01

    We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.

  9. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  10. Correlated Electrons in Reduced Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bonesteel, Nicholas E [Florida State Univ., Tallahassee, FL (United States)

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  11. Excitonic condensation of strongly correlated electrons: the case of Pr.sub.0.5./sub. Ca.sub.0.5./sub. CoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 90, č. 23 (2014), "235112-1"-"235112-5" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * strongly correlated electrons * cobaltites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  12. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  13. Strong correlations in few-fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergschneider, Andrea

    2017-07-26

    In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.

  14. Towards TDDFT for Strongly Correlated Materials

    Directory of Open Access Journals (Sweden)

    Shree Ram Acharya

    2016-09-01

    Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.

  15. Detailed investigation of thermal and electron transport properties in strongly correlated compound Ce6Pd12In5 and its nonmagnetic analog La6Pd12In5

    Science.gov (United States)

    Falkowski, M.; Krychowski, D.; Strydom, A. M.

    2016-11-01

    An in-depth study of thermal and electron transport properties including thermal conductivity κ(T), thermoelectric power S(T), and electrical resistivity ρ(T) of the heavy fermion Kondo lattice Ce6Pd12In5 and its nonmagnetic reference compound La6Pd12In5 is presented. The absolute κ(T) value of Ce6Pd12In5 is smaller that than of La6Pd12In5, which indicates that conduction electron-4f electron scattering has a large impact on the reduction of thermal conductivity. The isolated 4f electron contributions to the electrical resistivity ρ 4 f (T), electronic thermal resistivity displayed in the form W e l , 4 f (T) .T, and thermoelectric power S 4 f (T) reveal a low- and high-temperature -lnT behaviour characteristic of Kondo systems with strong crystal-electric field (CEF) interactions. The analysis of phonon scattering processes of lattice thermal conductivity κph(T) in (Ce, La)6Pd12In5 was performed over the whole accessible temperature range according to the Callaway model. In the scope of a theoretical approach based on the perturbation type calculation, we were able to describe our experimental data of ρ 4 f (T) and W e l , 4 f (T) .T by using the model incorporating simultaneously the Kondo effect in the presence of the CEF splitting, as it is foreseen in the framework of the Cornut-Coqblin and Bhattacharjee-Coqblin theory. Considering the fact that there are not many cases of similar studies at all, we also show the numerical calculations of temperature-dependent behaviour of spin-disorder resistivity ρs(T), magnetic resistivity ρ 4 f (T), and occupation number ⟨ N i ⟩ due to the various types of degeneracy of the ground state multiplet of Ce 3 + (J = 5/2).

  16. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  17. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  18. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  19. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  20. Inhomogeneous spectral moment sum rules for the retarded Green function and self-energy of strongly correlated electrons or ultracold fermionic atoms in optical lattices

    International Nuclear Information System (INIS)

    Freericks, J. K.; Turkowski, V.

    2009-01-01

    Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.

  1. Correlated electrons in quantum matter

    CERN Document Server

    Fulde, Peter

    2012-01-01

    An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap. It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

  2. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  3. Describing a Strongly Correlated Model System with Density Functional Theory.

    Science.gov (United States)

    Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth

    2017-07-06

    The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.

  4. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....

  5. Phase transition transistors based on strongly-correlated materials

    Science.gov (United States)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  6. Electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Itzykson, C.

    1985-05-01

    We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited

  7. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  8. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  9. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  10. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

    International Nuclear Information System (INIS)

    Zhou, Yongxi; Ernzerhof, Matthias; Bahmann, Hilke

    2015-01-01

    Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials

  11. Non-equilibrium magnetic interactions in strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-06-15

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.

  12. Strong correlation effects in theoretical STM studies of magnetic adatoms

    Science.gov (United States)

    Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir

    2016-03-01

    We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.

  13. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  14. Doubly excited helium. From strong correlation to chaos

    International Nuclear Information System (INIS)

    Jiang, Yuhai

    2006-03-01

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  15. Nonperturbative stochastic dynamics driven by strongly correlated colored noise

    Science.gov (United States)

    Jing, Jun; Li, Rui; You, J. Q.; Yu, Ting

    2015-02-01

    We propose a quantum model consisting of two remote qubits interacting with two correlated colored noises and establish an exact stochastic Schrödinger equation for this open quantum system. It is shown that the quantum dynamics of the qubit system is profoundly modulated by the mutual correlation between baths and the bath memory capability through dissipation and fluctuation. We report a physical effect on generating inner correlation and entanglement of two distant qubits arising from the strong bath-bath correlation.

  16. Pair correlation of particles in strongly nonideal systems

    International Nuclear Information System (INIS)

    Vaulina, O. S.

    2012-01-01

    A new semiempirical model is proposed for describing the spatial correlation between interacting particles in nonideal systems. The developed model describes the main features in the behavior of the pair correlation function for crystalline structures and can also be used for qualitative and quantitative description of the spatial correlation of particles in strongly nonideal liquid systems. The proposed model is compared with the results of simulation of the pair correlation function.

  17. Electron wind in strong wave guide fields

    Science.gov (United States)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  18. Joint statistics of strongly correlated neurons via dimensionality reduction

    International Nuclear Information System (INIS)

    Deniz, Taşkın; Rotter, Stefan

    2017-01-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input. (paper)

  19. Strongly correlated quantum transport out-of-equilibrium

    Science.gov (United States)

    Dutt, Prasenjit

    The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally

  20. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  1. Electron-phonon interactions in correlated systems

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1996-01-01

    There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)

  2. Theory of L -edge spectroscopy of strongly correlated systems

    Science.gov (United States)

    Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.

    2017-12-01

    X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.

  3. Strong Correlation in Kohn-Sham Density Functional Theory

    NARCIS (Netherlands)

    Malet, F.; Gori Giorgi, P.

    2012-01-01

    We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to approximate the exchange-correlation energy of the restricted Kohn-Sham scheme. Our approximation corresponds to a highly nonlocal density functional whose functional derivative can be easily constructed,

  4. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.

  5. Mismeasurement and the resonance of strong confounders: correlated errors.

    Science.gov (United States)

    Marshall, J R; Hastrup, J L; Ross, J S

    1999-07-01

    Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.

  6. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The theory of the angular correlation between conversion electrons and gamma rays is briefly outlined. The experimental methods used for the study of the electron-gamma correlation are described. The effects of the formation of a hole and the hyperfine structure magnetic coupling dependent on time are then considered. The experimental results showed that the attenuations found for different metallic media plainly conform to a simple quadrupolar interaction mechanism. For a source surrounded by an insulator, however, the results show that a rapidly disappearing coupling occurs as a supplement to the quadrupolar interaction mechanism. This coupling attenuates the angular correlation by about 75% of the non-perturbed value. It was concluded that for an intermediate half life of the level of the order of the nanosecond, the attenuations produced by the secondary effects of the hole formation can not be completely neglected. The metallic media considered were Ag, Au, Al, and Ga. In the study of E2 conversion processes, the radical matrix elements governing the E2 conversion process in the 412-KeV transition of {sup 198}Hg were determined. The results exclude the presence of dynamic contributions within the limits of experimental error. The values b{sub 2} (E2) and {alpha}-k (E2) obtained indirectly from the experimentally determined b{sub 4} particle parameter are in complete agreement with the theoretical values obtained by applying the corrections due to the shielding effect and to the finite dimension of the nucleus and excluding the dynamic contributions. The value for the internal conversion coefficient was also in good agreement. Experimental results from the intensity ratios between the peak and the continuum, however, seem to show significant deviations with respect to other experimental and theoretical values. There is good agreement between experimental and theoretical results on the internal conversion of {sup 203}Tl, {sup 201}Tl, and {sup 181}Ta. The theory

  7. Rydberg-atom formation in strongly correlated ultracold plasmas

    International Nuclear Information System (INIS)

    Bannasch, G.; Pohl, T.

    2011-01-01

    In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.

  8. Interplay between strong correlation and adsorption distances: Co on Cu(001)

    Science.gov (United States)

    Bahlke, Marc Philipp; Karolak, Michael; Herrmann, Carmen

    2018-01-01

    Adsorbed transition metal atoms can have partially filled d or f shells due to strong on-site Coulomb interaction. Capturing all effects originating from electron correlation in such strongly correlated systems is a challenge for electronic structure methods. It requires a sufficiently accurate description of the atomistic structure (in particular bond distances and angles), which is usually obtained from first-principles Kohn-Sham density functional theory (DFT), which due to the approximate nature of the exchange-correlation functional may provide an unreliable description of strongly correlated systems. To elucidate the consequences of this popular procedure, we apply a combination of DFT with the Anderson impurity model (AIM), as well as DFT + U for a calculation of the potential energy surface along the Co/Cu(001) adsorption coordinate, and compare the results with those obtained from DFT. The adsorption minimum is shifted towards larger distances by applying DFT+AIM, or the much cheaper DFT +U method, compared to the corresponding spin-polarized DFT results, by a magnitude comparable to variations between different approximate exchange-correlation functionals (0.08 to 0.12 Å). This shift originates from an increasing correlation energy at larger adsorption distances, which can be traced back to the Co 3 dx y and 3 dz2 orbitals being more correlated as the adsorption distance is increased. We can show that such considerations are important, as they may strongly affect electronic properties such as the Kondo temperature.

  9. Strong phase correlations of solitons of nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Litvak, A.G.; Mironov, V.A.; Protogenov, A.P.

    1994-06-01

    We discuss the possibility to suppress the collapse in the nonlinear 2+1 D Schroedinger equation by using the gauge theory of strong phase correlations. It is shown that invariance relative to q-deformed Hopf algebra with deformation parameter q being the fourth root of unity makes the values of the Chern-Simons term coefficient, k=2, and of the coupling constant, g=1/2, fixed; no collapsing solutions are present at those values. (author). 21 refs

  10. Towards a large deviation theory for strongly correlated systems

    International Nuclear Information System (INIS)

    Ruiz, Guiomar; Tsallis, Constantino

    2012-01-01

    A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e −Nr , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e q −Nr q (∝1/N 1/(q−1) , q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.

  11. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.; Fletcher, L.; Pak, A.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Galtier, E.; Gericke, D. O.; Gregori, G.; Hastings, J.; Landen, O. L.; Le Pape, S.; Lee, H. J.; Nagler, B.; Neumayer, P.; Turnbull, D.; Vorberger, J.; White, T. G.; Wünsch, K.; Zastrau, U.; Glenzer, S. H.; Döppner, T.

    2014-05-01

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4k=4Å-1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  12. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  13. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  14. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  15. Robust mesoscopic superposition of strongly correlated ultracold atoms

    International Nuclear Information System (INIS)

    Hallwood, David W.; Ernst, Thomas; Brand, Joachim

    2010-01-01

    We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.

  16. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  17. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  18. Quantum simulation of strongly correlated condensed matter systems

    Science.gov (United States)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  19. Quantum phase transition in strongly correlated many-body system

    Science.gov (United States)

    You, Wenlong

    The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M

  20. Strongly-correlated ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Dao, Tung-Lam

    2008-01-01

    This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi

  1. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  2. Strong correlations and the search for high-Tc superconductivity in chromium pnictides and chalcogenides

    Science.gov (United States)

    Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.

    2017-02-01

    Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.

  3. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  4. Interaction between Electron Holes in a Strongly Magnetized Plasma

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Michelsen, Poul; Pécseli, Hans

    1980-01-01

    The interaction between electron holes in a strongly magnetized, plasma-filled waveguide is investigated by means of computer simulation. Two holes may or may not coalesce, depending on their amplitudes and velocities. The interaction between holes and Trivelpiece-Gould solitons is demonstrated...

  5. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  6. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs

    Science.gov (United States)

    Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo

    2017-09-01

    We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.

  7. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  8. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  9. Lattice disorder in strongly correlated lanthanide and actinide intermetallics

    International Nuclear Information System (INIS)

    Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.

    2001-01-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)

  10. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  11. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  12. Correlating substituent parameter values to electron transport properties of molecules

    International Nuclear Information System (INIS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-01-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values (σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared (R 2 ) of 0.863

  13. Electron correlations in solid state physics

    International Nuclear Information System (INIS)

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t'-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t'-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a ''magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the ''magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of ''hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies

  14. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  15. Electron-photon and electron-electron interactions in the presence of strong electromagnetic fields

    International Nuclear Information System (INIS)

    Surzhykov, A.; Fritzsche, S.; Stoehlker, Th.

    2010-01-01

    During the last decade, photon emission from highly-charged, heavy ions has been in the focus of intense studies at the GSI accelerator and storage ring facility in Darmstadt. These studies have revealed unique information about the electron-electron and electron-photon interactions in the presence of extremely strong nuclear fields. Apart from the radiative electron capture processes, characteristic photon emission following collisional excitation of projectile ions has also attracted much interest. In this contribution, we summarize the recent theoretical studies on the production of excited ionic states and their subsequent radiative decay. We will pay special attention to the angular and polarization properties of Kα emission from helium-like ions produced by means of dielectronic recombination. The results obtained for this (resonant) capture process will be compared with the theoretical predictions for the characteristic X-rays following Coulomb excitation and radiative recombination of few-electron, heavy ions. Work is supported by Helmholtz Association and GSl under the project VH-NG--421. (author)

  16. Correlations in the electron gas

    International Nuclear Information System (INIS)

    Dabrowski, B.M.

    1987-01-01

    A frequency- and wave-vector-dependent local-field factor (LFF) which enters expressions for the dielectric function and the spin-susceptibility response function of an electron liquid are studied. An exact expression, the in q → O limit for the symmetric and the antisymmetric LFF, are derived by the sue of equations of motion for the spin densities. The proof that these LFF satisfy compressibility and susceptibility sum rules is based on the novel virial theorems for the two-component system. The relation of exact LFF to earlier approximations and to other exactly derived LFF and to spin-density functional theory is examined. A simple parametrized form for the symmetric dynamical LFF is proposed. The parametrization is such that it satisfies both low- and high-frequency limits exactly. The relation of such LFF to time-dependent local-density approximation is examined. The dynamic structure factor, the plasmon damping, and the stopping power of a homogeneous electron liquid are calculated with use of a proposed complex dynamic LFF. A low-order calculation of the off-shell self-energy of an electron is performed and its effects are calculated both on the dynamic structure factor of an electron liquid and the quasi-particle properties

  17. Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach

    International Nuclear Information System (INIS)

    Kuleeva, N. A.; Kuchinskii, E. Z.

    2013-01-01

    The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears

  18. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  19. Strong plasma turbulence in the earth's electron foreshock

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.

  20. Strong plasma turbulence in the earth's electron foreshock

    International Nuclear Information System (INIS)

    Robinson, P.A.; Newman, D.L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the Earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V m -1 . The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted

  1. Spectral contents of electron waves under strong Langmuir turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia; Dallaqua, Renato Sergio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Prado, Fabio do [Centro Universitario UNIFEI, Itajuba, MG (Brazil); Karfidov, Dmitry Mikhailovich [General Physics Inst., Moscow (Russian Federation)

    2003-07-01

    Experimental results of electron plasma waves excited in a beam plasma system are presented. Based on our experimental results we determine the transition from the quasi-linear to non-linear regime. We present the space evolution of the electron beam distribution function for both regimes. The spectrum of the electron plasma wave in the non-linear regime shows a component with frequency larger than the plasma frequency besides the plasma frequency itself. We show that the higher frequency component is strongly affected by Landau damping, indicating a dissipation region. The measured experimental power spectrum of this wave shows a dependence on wave number k given by W{sub k} {proportional_to} k{sup -7/2} as theoretically predicted. (author)

  2. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  3. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  4. Theoretical development and first-principles analysis of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.

  5. Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations

    Science.gov (United States)

    Lee, Tsung-Han

    Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials. This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we

  6. Electronic behavior of highly correlated metals

    International Nuclear Information System (INIS)

    Reich, A.

    1988-10-01

    This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms, coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs

  7. Electronic Maxwell demon in the coherent strong-coupling regime

    Science.gov (United States)

    Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp

    2018-05-01

    We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.

  8. Aspects of Strongly Correlated Many-Body Fermi Systems

    Science.gov (United States)

    Porter, William J., III

    A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method

  9. Crossover in tunneling hops in systems of strongly localized electrons

    International Nuclear Information System (INIS)

    Lien Nguyen, V.; Gamietea, A.D.

    1995-11-01

    Accurate Monte-Carlo simulation data show a consistent crossover in different characters of tunneling hops in two-dimensional systems of strongly localized electrons in the presence of scattering and quantum interference of hopping paths. The results also suggest a negative answer to the question whether there is a two-dimensional sign phase transition. The fractal behaviour observed in the direction perpendicular to the hopping direction is found to be similar to that for eigenstates in one-dimensional localized systems. (author). 16 refs, 6 figs

  10. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  11. Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N

    International Nuclear Information System (INIS)

    Filippetti, A.; Spaldin, N.A.; Sanvito, S.

    2005-01-01

    The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data

  12. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  13. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.

    Science.gov (United States)

    Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N

    2017-11-22

    The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.

  14. Tree-level correlations in the strong field regime

    Science.gov (United States)

    Gelis, François

    2017-09-01

    We consider the correlation function of an arbitrary number of local observables in quantum field theory, in situations where the field amplitude is large. Using a quasi-classical approximation (valid for a highly occupied initial mixed state, or for a coherent initial state if the classical dynamics has instabilities), we show that at tree level these correlations are dominated by fluctuations at the initial time. We obtain a general expression of the correlation functions in terms of the classical solution of the field equation of motion and its derivatives with respect to its initial conditions, that can be arranged graphically as the sum of labeled trees where the nodes are the individual observables, and the links are pairs of derivatives acting on them. For 3-point (and higher) correlation functions, there are additional tree-level terms beyond the quasi-classical approximation, generated by fluctuations in the bulk.

  15. Comprehensive analysis of electron correlations in three-electron atoms

    International Nuclear Information System (INIS)

    Morishita, T.; Lin, C.D.

    1999-01-01

    We study the electron correlations in singly, doubly, and triply excited states of a three-electron atom. While electron correlation in general is weak for singly excited states, correlation plays major roles in determining the characteristics of doubly and triply excited states. Using the adiabatic approximation in hyperspherical coordinates, we show that the distinction between singly, doubly, and triply excited states is determined by the radial correlations, while finer distinctions within doubly or triply excited states lie in the angular correlations. Partial projections of the body-fixed frame wave functions are used to demonstrate the characteristic nodal surfaces which provide clues to the energy ordering of the states. We show that doubly excited states of a three-electron atom exhibit correlations that are similar to the doubly excited states of a two-electron atom. For the triply excited states, we show that the motion of the three electrons resemble approximately that of a symmetric top. copyright 1999 The American Physical Society

  16. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    International Nuclear Information System (INIS)

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-01

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  17. Correlations in a partially degenerate electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The density-functional theory proves that an ion-electron mixture can be treated as a one-component liquid interacting only via a pairwise interaction in the evaluation of the ion-ion radial distribution function (RDF), and provides a set of integral equations: one is an integral equation for the ion-ion RDF and another for an effective ion-ion interaction, which depends on the ion-ion RDF. This formulation gives a set of integral equation to calculate plasma structures with combined use of the electron-electron correlations in a partially degenerate electron plasma. Therefore, it is important for this purpose to determine the electron-electron correlations at a arbitrary temperature. Here, they are calculated by the quantal version of the hypernetted chain (HNC) equation. On the basis of the jellium-vacancy model, the ionic and electronic structures of rubidium are calculated for the range from liquid metal to plasma states by increasing the temperature at the fixed density using the electron-correlation results. (author)

  18. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    International Nuclear Information System (INIS)

    Backes, Steffen

    2017-04-01

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  19. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen

    2017-04-15

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  20. Electron correlation energy in confined two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)

    2010-09-27

    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.

  1. Ordering and low energy excitations in strongly correlated bronzes

    NARCIS (Netherlands)

    Sagara, Dodderi Manjunatha

    2006-01-01

    Summary In any solid system, whether it is superconducting, shows a charge-density-wave behavior, or any other kind of ground state, two aspects drag the attention of the scientific community. They are order and excitations in solids. The ordering may be due to electronic, lattice, spin or orbital

  2. Magnetic field correlations in random flow with strong steady shear

    International Nuclear Information System (INIS)

    Kolokolov, I. V.; Lebedev, V. V.; Sizov, G. A.

    2011-01-01

    We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a model where the velocity field is short-correlated in time.

  3. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  4. Strong-coupling behaviour of two t - J chains with interchain single-electron hopping

    International Nuclear Information System (INIS)

    Zhang Guangming; Feng Shiping; Yu Lu.

    1994-01-01

    Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs

  5. RAMAN LIGHT SCATTERING IN PSEUDOSPIN-ELECTRON MODEL AT STRONG PSEUDOSPIN-ELECTRON INTERACTION

    Directory of Open Access Journals (Sweden)

    T.S.Mysakovych

    2004-01-01

    Full Text Available Anharmonic phonon contributions to Raman scattering in locally anharmonic crystal systems in the framework of the pseudospin-electron model with tunneling splitting of levels are investigated. The case of strong pseudospin-electron coupling is considered. Pseudospin and electron contributions to scattering are taken into account. Frequency dependences of Raman scattering intensity for different values of model parameters and for different polarization of scattering and incident light are investigated.

  6. Strong Country Level Correlation between Syphilis and HSV-2 Prevalence

    Science.gov (United States)

    Kenyon, Chris Richard; Tsoumanis, Achilleas

    2016-01-01

    Background. Syphilis is curable but Herpes Simplex Virus-2 (HSV-2) is not. As a result, the prevalence of syphilis but not HSV-2 may be influenced by the efficacy of national STI screening and treatment capacity. If the prevalence of syphilis and HSV-2 is found to be correlated, then this makes it more likely that something other than differential STI treatment is responsible for variations in the prevalence of both HSV-2 and syphilis. Methods. Simple linear regression was used to evaluate the relationship between national antenatal syphilis prevalence and HSV-2 prevalence in women in two time periods: 1990–1999 and 2008. Adjustments were performed for the laboratory syphilis testing algorithm used and the prevalence of circumcision. Results. The prevalence of syphilis was positively correlated with that of HSV-2 for both time periods (adjusted correlations, 20–24-year-olds: 1990–99: R 2 = 0.54, P < 0.001; 2008: R 2 = 0.41, P < 0.001 and 40–44-year-olds: 1990–99: R 2 = 0.42, P < 0.001; 2008: R 2 = 0.49, P < 0.001). Conclusion. The prevalence of syphilis and HSV-2 is positively correlated. This could be due to a common set of risk factors underpinning both STIs. PMID:27069710

  7. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  8. Some Applications of Holography to Study Strongly Correlated Systems

    Directory of Open Access Journals (Sweden)

    Bhatnagar Neha

    2018-01-01

    Full Text Available In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography. We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.

  9. Can strong correlations be experimentally revealed for Ҡ -mesons?

    Directory of Open Access Journals (Sweden)

    Hiesmayr Beatrix C.

    2014-01-01

    Full Text Available In 1964 the physicists John St. Bell working at CERN took the 1935-idea of Einstein-Podolsky-Rosen seriously and found that all theories based on local realism have to satisfy a certain inequality, nowadays dubbed Bell’s inequality. Experiments with ordinary matter systems or light show violations of Bell’s inequality favouring the quantum theory though a loophole free experiment has not yet been performed. This contribution presents an experimentally feasible Bell inequality for systems at higher energy scales, i.e. entangled neutral Ҡ -meson pairs that are typically produced in Φ -mesons decays or proton-antiproton annihilation processes. Strong requirements have to be overcome in order to achieve a conclusive tests, such a proposal was recently published. Surprisingly, this new Bell inequality reveals new features for weakly decaying particles, in particular, a strong sensitivity to the combined charge-conjugation-parity (CP symmetry. Here-with, a puzzling relation between a symmetry breaking for mesons and Bell’s inequality—which is a necessary and sufficient condition for the security of quantum cryptography protocols— is established. This becomes the more important since CP symmetry is related to the cosmological question why the antimatter disappeared after the Big Bang.

  10. Role of electronic correlations in Ga

    KAUST Repository

    Zhu, Zhiyong

    2011-06-13

    An extended around mean field (AMF) functional for less localized pelectrons is developed to quantify the influence of electronic correlations in α-Ga. Both the local density approximation (LDA) and generalized gradient approximation are known to mispredict the Ga positional parameters. The extended AMF functional together with an onsite Coulomb interaction of Ueff=1.1 eV, as obtained from constraint LDA calculations, reduces the deviations by about 20%. The symmetry lowering coming along with the electronic correlations turns out to be in line with the Ga phase diagram.

  11. Vector neural net identifying many strongly distorted and correlated patterns

    Science.gov (United States)

    Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.

    2005-01-01

    We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.

  12. Spin dynamics of electrons in strong fields studied via bremsstrahlung from a polarized electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav [Royal Institute of Technology, Stockholm (Sweden); Stockholm University (Sweden); Physikalisches Institut, Universitaet Heidelberg (Germany); Baeck, Torbjoern; Cederwall, Bo; Khaplanov, Anton; Schaessburger, Kai-Uwe [Royal Institute of Technology, Stockholm (Sweden); Barday, Roman; Enders, Joachim; Poltoratska, Yuliya [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Surzhykov, Andrey [Physikalisches Institut, Universitaet Heidelberg (Germany); GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2011-07-01

    Linear polarization of the photons emitted in the process of the atomic field electron bremsstrahlung has been studied at the newly developed 100 keV polarized electron source of TU Darmstadt. A correlation between the initial orientation of the electron spin and the degree and the angle of photon linear polarization has been measured for the first time. For this purpose a hard x-ray Compton polarimeter consisting of a segmented high purity germanium detector and an external passive photon scattering target have been applied. Linear polarization sensitive Compton and Rayleigh photon scattering distributions have been sampled by the segmented detector. The observed polarization correlation reveals a precession of the electron spin as it moves in the field of the nucleus. The full-relativistic calculations for the case of radiative recombination into a Rydberg series limit have been corroborated by the measurement. The results of this experiment suggest a new method for electron beam polarimetry.

  13. Electron correlation and magnetism: a perspective

    International Nuclear Information System (INIS)

    Mishra, S.G.

    1995-01-01

    In this article, a panoramic view of the results on the correlation effects in metals is presented. In the first two sections the scope of the subject of magnetism and talk about the necessity of inclusion of correlation in the free electron theory of metals is given. Then introduce some minimal models of correlation and magnetism in solids is discussed. Finally a brief perspective of some old and recent results on the Hubbard model are presented. Among the system described includes helium 3 high temperature superconductors. (author). 21 refs

  14. Effective field theories for correlated electrons

    International Nuclear Information System (INIS)

    Wallington, J.P.

    1999-10-01

    In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)

  15. Electron Correlation Models for Optical Activity

    DEFF Research Database (Denmark)

    Höhn, E. G.; O. E. Weigang, Jr.

    1968-01-01

    A two-system no-overlap model for rotatory strength is developed for electric-dipole forbidden as well as allowed transitions. General equations which allow for full utilization of symmetry in the chromophore and in the environment are obtained. The electron correlation terms are developed in full...

  16. Thermal properties of UO2 from density functional theory: role of strong correlations

    International Nuclear Information System (INIS)

    Panigrahi, Puspamitra; Kaur Gurpreet; Valsakumar, M.C.

    2011-01-01

    We report a study of ground state magnetic structure of Uranium-dioxide (UO 2 ) using ab initio calculations employing PAW pseudopotentials and Dudarev's version of GGA+U formalism as implemented in VASP to take into account the strong on-site Coulomb correlation among the localized Uranium-5f electrons. By choosing the value of the Hubbard parameter U eff to be 4.0 eV, we have confirmed the experimental observation that the ground state of UO 2 is an insulator with an anti-ferromagnetic (AFM) ordering. We study systematically the ground state structural, electronic, and magnetic properties of UO 2 and focus on the structure sensitive thermal properties such as specific heat, thermal expansion and comment on the calculation of thermal conductivity. (author)

  17. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-07

    In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.

  18. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  19. Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom

    Science.gov (United States)

    Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.

    2017-01-01

    We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.

  20. First-principles study of strong correlation effects in pyrochlore iridates

    Energy Technology Data Exchange (ETDEWEB)

    Shinaoka, Hiroshi [Department of Physics, Saitama University (Japan); Hoshino, Shintaro [Department of Basic Science, The University of Tokyo (Japan); Troyer, Matthias [Theoretische Physik, ETH Zuerich (Switzerland); Werner, Philipp [Department of Physics, University of Fribourg (Switzerland)

    2016-07-01

    The pyrochlore iridates A{sub 2}Ir{sub 2}O{sub 7} (A=Pr, Nd, Y, etc.) are an ideal system to study fascinating phenomena induced by strong electron correlations and spin-orbit coupling. In this talk, we study strong correlation effects in the prototype compound Y{sub 2}Ir{sub 2}O{sub 7} using the local density approximation and dynamical mean-field theory (LDA+DMFT). We map out the phase diagram in the space of temperature, onsite Coulomb repulsion U, and filling. Consistent with experiments, we find that an all-in/all-out ordered insulating phase is stable for realistic values of U. We reveal the importance of the hybridization between j{sub eff} = 1/2 and j{sub eff} = 3/2 states under the Coulomb interaction and trigonal crystal field. We demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi liquid behavior in the electron/hole doped system originating from long-lived quasi-spin moments induced by nearly flat bands. We further compare our results with recent experimental results of Eu{sub 2}Ir{sub 2}O{sub 7} under hydrostatic pressure.

  1. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    Science.gov (United States)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  2. Correlation effects in electron-atom collisions

    International Nuclear Information System (INIS)

    Water, W. van de.

    1981-01-01

    This thesis deals with correlation effects occurring in the outer region of configuration space after an ionising collision. The motion of both escaping electrons in the external region is then fully determined by the long-range Coulomb forces. Firstly the threshold ionisation of hydrogen-like targets is studied. In that case two slow electrons attempt to escape from the Coulomb attraction of the residual ion. Secondly ionising collisions, with the formation of an autoionising state as an intermediate step, are considered. Such an autoionising state is in fact a quasi bound state of the neutral atom which lies imbedded in the ionisation continuum. The state decays after a certain lifetime by emission of an electron. Of all states to be formed in the reaction region only the autoionising state(s) under consideration is then relevant for this type of ionisation process. The energy positions of autoionising states usually are such that the electron to be ionised is ejected with a rather large velocity. The correlation in the outer region of configuration space then consists of the interaction of a fast ejected electron and, in case of threshold excitation of the autoionising state, a slow scattered electron. (Auth.)

  3. Aspects of electron correlations in the cuprate superconductors

    International Nuclear Information System (INIS)

    Brenig, W.

    1995-01-01

    We review concepts and effects of electron correlations in the copper-oxide superconductors. The purpose of this article is twofold. First, we provide an overview of results of various electron spectroscopies, Raman scattering and optical conductivity studies with a particular emphasis on experiments which identify the charge and spin correlations relevant to the cuprates. Second, we focus on microscopic theories of the single-particle excitations, and the charge and spin dynamics in the normal state of cuprates considering those models which incorporate strong electron correlations. The single-particle spectrum of the three-band Hubbard model is reviewed and related to results of electron spectroscopy. The carrier dynamics in the t-J model and the one-band Hubbard model at low doping is discussed in detail. We examine approaches which describe the single-particle excitations of correlated electron systems at finite doping. Theories of the static and dynamic magnetic correlations are considered and we speculate on the consequences of the spin dynamics for Raman scattering and the optical conductivity. Finally, selected phenomenological ideas are reviewed. ((orig.))

  4. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  5. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  6. Proceedings, strongly correlated electronic materials: The Los Alamos symposium 1993

    International Nuclear Information System (INIS)

    Bedell, K.S.

    1994-01-01

    The subject included such topics as high temperature superconductors, heavy-fermion insulators and superconductors, the metal-insulator transition, the superconductor-insulator transition and unusual (non-Fermi liquid) normal metallic states. The symposium was structured around 13 invited review talks; with each talk, there were several (about 30) related short presentations and discussion sections (90 pages). The review talks and short papers were processed separately for the data base

  7. [Realistic theories of heavy electron and other strongly correlated materials

    International Nuclear Information System (INIS)

    1993-01-01

    Research on the following topics is summarized: non-perturbative treatments of multi-channel Kondo models, non-perturbative treatments of multi-band models for the quadrupolar fluctuation model of the cuprates, extension of the two-channel Kondo model to other materials and treatment of the infinite-dimensional Hubbard model within the Non-crossing approximation. Data on the specific heat of Y 0.8 U 0.2 Pd 3 and the c-axis susceptibility and specific heat of U in ThRu 2 Si are shown. 5 figs., 84 refs

  8. Strong electron correlation in photoionization of spin-orbit doublets

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Manson, S.T.; Msezane, A.M.; Radojevic, V.

    2002-01-01

    A new and explicitly many-body aspect of the 'leveraging' of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, it is demonstrated via a modified version of the spin-polarized random phase approximation with exchange, that a recently observed unexplained structure in the Xe 3d 5/2 photoionization cross section [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2000)] is entirely due to this effect. Similar features are predicted for Cs 3d 5/2 and Ba 3d 5/2

  9. Modified perturbation theory for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Takagi, Osamu; Saso, Tetsuro

    1999-01-01

    We propose a modified scheme for calculating the single-particle excitation spectrum of the impurity Anderson model. It is based on the second order perturbation theory, but modifies the self-energy so as to reproduce the correct atomic limit and to fulfill the Friedel sum rule. Therefore, it offers a simple scheme valid over wide range of excitation energy and parameters, and would be useful also for potential application to the lattice problems. (author)

  10. Algorithmic implementation of particle-particle ladder diagram approximation to study strongly-correlated metals and semiconductors

    Science.gov (United States)

    Prayogi, A.; Majidi, M. A.

    2017-07-01

    In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.

  11. Electron correlation in molecules and condensed phases

    CERN Document Server

    March, N H

    1996-01-01

    This reference describes the latest research on correlation effects in the multicenter problems of atoms, molecules, and solids The author utilizes first- and second-order matrices, including the important observable electron density rho(r), and the Green function for discussing quantum computer simulations With its focus on concepts and theories, this volume will benefit experimental physicists, materials scientists, and physical and inorganic chemists as well as graduate students

  12. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  14. Electron-electron correlation in two-photon double ionization of He-like ions

    Science.gov (United States)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  15. Atomic physics of strongly correlated systems: Progress report, 1 February 1988--15 January 1989

    International Nuclear Information System (INIS)

    Lin Chii-Dong.

    1989-01-01

    This report presents the progress made in our continuing study of strongly correlated atomic systems for the last contract period. In the area of hyperspherical coordinates for Coulombic three-body systems of arbitrary masses a general computing code has been developed. Calculation of the adiabatic potential curves have been accomplished for the e/sup /minus//e + e/sup /minus// system of arbitrary L, S and parity π. It was found that these curves behave very similar to the potential curves of H/sup /minus// except for a mass scaling. We have also examined the mass dependence of the ground state potential curves for systems of three charged particles, AAB, and showed that the curves become more attractive as the mass m/sub A/ becomes larger than m/sub B/. For ion-atom collisions we have examined the transfer-excitation (TE) processes to establish the importance of electron correlations in these two-electron transitions. We have also examined the orientation parameters for excited states formed in collisions with positive and negative charged particles to establish the relation between the sign of the charge of the incident particles to the sign of

  16. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    A new type of scaling observed in heavy-electron metal β-YbAlB_4, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  17. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  18. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinji [Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu (Japan); Miyake, Kazumasa [Toyota Physical and Chemical Research Institute, Nagakute (Japan)

    2016-02-15

    A new type of scaling observed in heavy-electron metal β-YbAlB{sub 4}, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  19. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  20. Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.

    Science.gov (United States)

    Ou, Qingdong; Zhang, Yupeng; Wang, Ziyu; Yuwono, Jodie A; Wang, Rongbin; Dai, Zhigao; Li, Wei; Zheng, Changxi; Xu, Zai-Quan; Qi, Xiang; Duhm, Steffen; Medhekar, Nikhil V; Zhang, Han; Bao, Qiaoliang

    2018-04-01

    A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH 3 NH 3 PbI 3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO 3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electron spectroscopic evidence of electron correlation in Ni-Pt alloys: comparison with specific heat measurement

    CERN Document Server

    Nahm, T U; Kim, J Y; Oh, S J

    2003-01-01

    We have performed photoemission spectroscopy of Ni-Pt alloys to understand the origin of the discrepancy between the experimental linear coefficient of specific heat gamma and that predicted by band theory. We found that the quasiparticle density of states at the Fermi level deduced from photoemission measurement is in agreement with the experimental value of gamma, if we include the electron correlation effect. It was also found that the Ni 2p core level satellite intensity increases as Ni content is reduced, indicating a strong electron correlation effect which can enhance the quasiparticle effective mass considerably. This supports our conclusion that electron correlation is the most probable reason of disagreement of gamma between experiment and band theory.

  2. Electron-positron correlations in an electron liquid

    International Nuclear Information System (INIS)

    Stachowiak, H.

    1980-01-01

    The importance of studying electron-positron interaction for the interpretation of angular correlation data obtained for metallic systems is emphasized. The most successful approaches to electron-positron correlations in jellium are presented. Those include the Bethe-Goldstone two-body equation proposed by Kahana, the charge-density-dielectric function approach connected with the names of Singwi, Sjolander, Stott and Bhattacharyya and the Sawada boson-generalized Tamm-Dancoff approach elaborated recently by Arponen and Pajanne. In conclusion, it is reported that one can consider that the behaviour of a positron at rest in jellium is relatively well understood, though the problem of the optimal choice of a two-body electron-positron phenomenological equation is still open. Also, the behaviour of a positron in a real metal is not well understood and so far, serious calculations in this field have been performed only on very simple models while realistic calculations of the ACPAQ curves tend to minimize the importance of the problems which remain to be solved. (K.B.)

  3. Three-qutrit correlations violate local realism more strongly than those of three qubits

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Gosal, Darwin; Ling, E.J.; Oh, C.H.; Kwek, L.C.; Zukowski, Marek

    2002-01-01

    We present numerical data showing that three-qutrit correlations for a pure state, which is not maximally entangled, violate local realism more strongly than three-qubit correlations. The strength of violation is measured by the minimal amount of noise that must be admixed to the system so that the noisy correlations have a local and realistic model

  4. Effect of strong coupling on interfacial electron transfer dynamics in ...

    Indian Academy of Sciences (India)

    Unknown

    regarded as the best sensitizing dyes for solar energy conversion for their strong visible absorption bands, long-lived ... solar cells based on dye-sensitized nanocrystalline. TiO2. High affinity for the TiO2 surface, which is ... pump pulses at 400 nm, one part of 800 nm with. 200 µJ/pulse, is frequency doubled in BBO crystals.

  5. Electron dynamics in metals and semiconductors in strong THz fields

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2017-01-01

    Semiconductors and metals respond to strong electric fields in a highly nonlinear fashion. Using single-cycle THz field transients it is possible to investigate this response in regimes not accessible by transport-based measurements. Extremely high fields can be applied without material damage...

  6. Correlation properties of surface and percolation transfer of electrons

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    2002-01-01

    In this work was received equation, connecting correlatively properties of surface with electrons distribution function. Usually for equilibrium is necessary a large number of collisions. Collisions are 'destroying' correlations. In case rare collisions large importance have correlations and 'memory' effects. Non-Markov's character of emitting particles by surface lead to strongly nonequilibrium condition of 'gas'. Here kinetic equation of diffusive form does not apply. Classical kinetic equation are described only conditions near to equilibrium. This work offers to use ideas anomal diffusion in phase-space. The correlation properties of surface describe by correlations of velocities of emitting electrons: B(t). We offer to use functional equation for probability collision instead of kinetic equation: ∫ 0 ν 0 W noncoll F(ν) dv = 1 - B(t). This functional allow to consider 'memory' effects. It is important for consideration of electrons and clusters near surfaces. Distribution function become direct connected with correlations. In classical Kubo-Mory theory of transfer is necessary to get nondivergences integral: D ∝ ∫ 0 ∞ B(t). In considering case we can use even 'power function'. It was used 'slow' correlation function as Kohlraush in calculations. The information about kinetics and correlations properties are containing in one functional equation. It was received solution of this equation in form Levy function: F(ν) ∝ 1/ν α exp(-1/ν). The solution of this form can not be get with help asymptotic methods of kinetic theory. Asymptotics of solution have scale-invariant character F(V) ∝ 1/V α . This indicate on fractal properties phase-space. (author)

  7. Electron correlation explored through electron spectrometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G.

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs

  8. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    Science.gov (United States)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  9. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    Science.gov (United States)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  10. Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements

    Science.gov (United States)

    Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.

    2018-03-01

    We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.

  11. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  12. Electronic correlations in hole- and electron-doped Fe-based superconductors

    Science.gov (United States)

    Hardy, Frederic; Boehmer, Anna; Schweiss, Peter; Wolf, Thomas; Heid, Rolf; Eder, Robert; Fisher, Robert A.; Meingast, Christoph

    2015-03-01

    High-temperature superconductivity in the cuprates occurs at the crossover from a highly-correlated Mott insulating state to a weaker correlated Fermi liquid as a function of hole doping. The iron pnictides were initially thought to be fairly weakly correlated. However, we have recently shown using transport and thermodynamic measurements that KFe2As2 is strongly correlated. Both the Sommerfeld coefficient and the Pauli susceptibility are strongly enhanced with respect to their bare DFT values. These correlations are even further enhanced in RbFe2As2andCsFe2As2. The temperature dependence of both the susceptibility and the thermal expansion provides strong experimental evidence for the existence of a coherence-incoherence crossover; similar to what is found in heavy-fermion compounds. Whereas the correlations in the cuprates result from a large value of the Hubbard U, recent works have stressed the particular relevance of Hund's coupling in the pnictides. Our data may be interpreted in terms of a close proximity of KFe2As2 to an orbital-selective Mott transition. We now have good thermodynamic data covering both the hole and electron sides of the BaFe2As2 system and we will discuss how these correlations are modified by doping.

  13. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites

    OpenAIRE

    Lee, J. H.; Choi, Woo Seok; Jeen, H.; Lee, H.-J.; Seo, J. H.; Nam, J.; Yeom, M. S.; Lee, H. N.

    2017-01-01

    The topotactic phase transition in SrCoO x (x = 2.5–3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured t...

  14. Ferromagnetic instabilities in disordered systems in the limit of strong correlations

    International Nuclear Information System (INIS)

    Magalhaes, A.N.; Troper, A.; Gomes, A.A.

    1976-05-01

    One derives the criterion for ferromagnetic instabilities in hybridized disordered systems, e.g. transition metal like systems and actinides, within the Coherent Potential Approximation (CPA), the electron-electron correlations being described by Hubbard' approximation. In the case of actinides, one treats approximately the motion of d electrons while the diagonal disorder within the f band is fully taken into account. In the case of a trnsition metal like system, except for Hubbard's approximation in dealing with d-d electron correlations, our procedure is exact within the spirit of CPA

  15. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  16. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    Science.gov (United States)

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  17. Strongly nonlinear electronic transport in Cr-Si composite films

    International Nuclear Information System (INIS)

    Burkov, A.T.; Vinzelberg, H.; Schumann, J.; Nakama, T.; Yagasaki, K.

    2004-01-01

    The phase formation, the resistivity and the thermopower of amorphous Cr 0.15 Si 0.85 , and nanocrystalline CrSi 2 -Si thin film composites have been studied. The films were produced by a magnetron sputtering of a composite target onto unheated substrates with subsequent crystallization of the film at high temperatures. As the film composite develops under the heat treatment from the initial amorphous state into the final polycrystalline material, two percolation thresholds were found. At first, the percolating cluster of nanocrystalline CrSi 2 is formed. However, this cluster is destroyed with further annealing due to crystallization and redistribution of Si. The composite films which are close to this insulating threshold reveal a strongly nonlinear conductivity. The conductivity increases with the current by two orders of magnitude

  18. Inelastic electron scattering influence on the strong coupling oxide superconductors

    International Nuclear Information System (INIS)

    Gabovich, A.M.; Voitenko, A.I.

    1995-01-01

    The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering

  19. Electronically Strongly Coupled Divinylheterocyclic-Bridged Diruthenium Complexes.

    Science.gov (United States)

    Pfaff, Ulrike; Hildebrandt, Alexander; Korb, Marcus; Oßwald, Steffen; Linseis, Michael; Schreiter, Katja; Spange, Stefan; Winter, Rainer F; Lang, Heinrich

    2016-01-11

    Complexes [{Ru(CO)Cl(PiPr3 )2 }2 (μ-2,5-(CH-CH)2 -(c) C4 H2 E] (E=NR; R=C6 H4 -4-NMe2 (10 a), C6 H4 -4-OMe (10 b), C6 H4 -4-Me (10 c), C6 H5 (10 d), C6 H4 -4-CO2 Et (10 e), C6 H4 -4-NO2 (10 f), C6 H3 -3,5-(CF3 )2 (10 g), CH3 (11); E=O (12), S (13)) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron-donating or -withdrawing substituents R in 10 a-g on the electrochemical and spectroscopic properties. The CVs display two consecutive one-electron redox events with ΔE°'=350-495 mV. A linear relationship between ΔE°' and the σp Hammett constant for 10 a-f was found. IR, UV/Vis/NIR and EPR studies for 10(+) -13(+) confirm full charge delocalization over the {Ru}CH-CH-heterocycle-CH-CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT-optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems

    NARCIS (Netherlands)

    Sprik, R.; Tourin, A.; de Rosny, J.; Fink, M.

    2008-01-01

    We experimentally study the effects of correlations in the propagation of ultrasonic waves in water from a multielement source to a multielement detector through a strongly scattering system of randomly placed vertical rods. Due to the strong scattering, the wave transport in the sample is in the

  1. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs

  2. Residual correlation in two-proton interferometry from Λ-proton strong interactions

    International Nuclear Information System (INIS)

    Wang, Fuqiang

    1999-01-01

    We investigate the residual effect of Λp strong interactions in pp correlations with one proton from Λ decays. It is found that the residual correlation is about 10% of the Λp correlation strength, and has a broad distribution centered around q≅40 MeV/c. The residual correlation cannot explain the observed structure on the tail of the recently measured pp correlation function in central Pb+Pb collisions by NA49 at the Super Proton Synchrotron. (c) 1999 The American Physical Society

  3. Dynamics of total electron content distribution during strong geomagnetic storms

    Science.gov (United States)

    Astafyeva, E. I.; Afraimovich, E. L.; Kosogorov, E. A.

    We worked out a new method of mapping of total electron content TEC equal lines displacement velocity The method is based on the technique of global absolute vertical TEC value mapping Global Ionospheric Maps technique GIM GIM with 2-hours time resolution are available from Internet underline ftp cddisa gsfc nasa gov in standard IONEX-files format We determine the displacement velocity absolute value as well as its wave vector orientation from increments of TEC x y derivatives and TEC time derivative for each standard GIM cell 5 in longitude to 2 5 in latitude Thus we observe global traveling of TEC equal lines but we also can estimate the velocity of these line traveling Using the new method we observed anomalous rapid accumulation of the ionosphere plasma at some confined area due to the depletion of the ionization at the other spacious territories During the main phase of the geomagnetic storm on 29-30 October 2003 very large TEC enhancements appeared in the southwest of North America TEC value in that area reached up to 200 TECU 1 TECU 10 16 m -2 It was found that maximal velocity of TEC equal lines motion exceeded 1500 m s and the mean value of the velocity was about 400 m s Azimuth of wave vectors of TEC equal lines were orientated toward the center of region with anomaly high values of TEC the southwest of North America It should be noted that maximal TEC values during geomagnetically quiet conditions is about 60-80 TECU the value of TEC equal lines

  4. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  5. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  6. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  7. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  8. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality

    OpenAIRE

    Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.

    2012-01-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...

  9. Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.

    Science.gov (United States)

    Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K

    2017-10-20

    Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.

  10. Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data

    Science.gov (United States)

    Delignières, Didier; Marmelat, Vivien

    2014-01-01

    In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.

  11. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  12. Electronic zero-point oscillations in the strong-interaction limit of density functional theory

    NARCIS (Netherlands)

    Gori Giorgi, P.; Vignale, G.; Seidl, M.

    2009-01-01

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0

  13. Role of electron correlation effects in δ-Pu and "115"-Pu-based unconventional superconductors

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Kolorenč, Jindřich

    2014-01-01

    Roč. 15, č. 7 (2014), 640-647 ISSN 1631-0705 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : electronic structure * strong electron correlations * photoemission * unconventional superconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.035, year: 2014

  14. Angular correlation in the two-electron continuum

    International Nuclear Information System (INIS)

    Kheifets, A. S.; Bray, I.

    2006-01-01

    Following absorption of a single photon, angles of simultaneous emission of two electrons from a He(n 1 S) atom become more correlated with increasing n. We find that the strength of this correlation is due to the two-electron continuum of the electron-impact ionization of the He + (ns) ion. The strength is determined by the width of the momentum profile of the ionic ns state but not the strength of the electron correlation in the He initial state. This can explain the increasing (over He) angular correlation strength found in double photoionization of targets such as Be, Ne, and H 2

  15. The Role of screening in the strongly correlated 2D systems

    CERN Document Server

    Hwang, E H

    2003-01-01

    We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.

  16. Quantum group random walks in strongly correlated 2+1 D spin systems

    International Nuclear Information System (INIS)

    Protogenov, A.P.; Rostovtsev, Yu.V.; Verbus, V.A.

    1994-06-01

    We consider the temporal evolution of strong correlated degrees of freedom in 2+1 D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k. (author). 20 refs, 1 tab

  17. Communication: Thermodynamics of condensed matter with strong pressure-energy correlations

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Bøhling, Lasse; Schrøder, Thomas

    2012-01-01

    We show that for any liquid or solid with strong correlation between its NVT virial and potential-energy equilibrium fluctuations, the temperature is a product of a function of excess entropy per particle and a function of density, T = f(s)h(ρ). This implies that (1) the system's isomorphs (curve...

  18. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    Science.gov (United States)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2012-04-01

    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.

  19. Selected results on strong and coulomb-induced correlations from the STAR experiment

    International Nuclear Information System (INIS)

    Sumbera, M.

    2007-01-01

    Using recent high-statistics STAR data from Au + Au and Cu + Cu collisions at full RHIC energy I discuss strong and Coulomb-induced final state interaction effects on identical (pi-pi) and non-identical (pi-XI) particle correlations. Analysis of pi-XI correlations reveals the strong and Coulomb-induced FSI effects, allowing for the first time to estimate spatial extension of pi and XI sources and the average shift between them. Source imaging techniques provide clean separation of details of the source function and are applied to the one-dimensional relative momentum correlation function of identical pions. For low momentum pions, and/or non-central collisions, a large departure from a single-Gaussian shape is observed. (author)

  20. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  1. The strength of electron electron correlation in Cs3C60

    Science.gov (United States)

    Baldassarre, L.; Perucchi, A.; Mitrano, M.; Nicoletti, D.; Marini, C.; Pontiroli, D.; Mazzani, M.; Aramini, M.; Riccó, M.; Giovannetti, G.; Capone, M.; Lupi, S.

    2015-10-01

    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below Tc = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations.

  2. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    Science.gov (United States)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched

  3. Electronic correlations in insulators, metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael Andreas

    2010-12-03

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  4. Electronic correlations in insulators, metals and superconductors

    International Nuclear Information System (INIS)

    Sentef, Michael Andreas

    2010-01-01

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  5. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  6. Baryon femtoscopy considering residual correlations as a tool to extract strong interaction potentials

    Directory of Open Access Journals (Sweden)

    Szymański Maciej

    2015-01-01

    Full Text Available In this article, the analysis of baryon-antibaryon femtoscopic correlations is presented. In particular, it is shown that taking into account residual correlations is crucial for the description of pΛ¯$\\bar \\Lambda $ and p̄Λ correlation functions measured by the STAR experiment in Au–Au collisions at the centre-of-mass energy per nucleon pair √sNN = 200 GeV. This approach enables to obtain pΛ¯$\\bar \\Lambda $ (p̄Λ source size consistent with the sizes extracted from correlations in pΛ (p̄Λ¯$\\bar \\Lambda $ and lighter pair systems as well as with model predictions. Moreover, with this analysis it is possible to derive the unknown parameters of the strong interaction potential for baryon-antibaryon pairs under several assumptions.

  7. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  8. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic to a...

  9. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  10. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    International Nuclear Information System (INIS)

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-01-01

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  11. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  12. Correlated electron pseudopotentials for 3d-transition metals

    International Nuclear Information System (INIS)

    Trail, J. R.; Needs, R. J.

    2015-01-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature

  13. Towards a formal definition of static and dynamic electronic correlations.

    Science.gov (United States)

    Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L

    2017-05-24

    Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

  14. Quantum correlations responsible for remote state creation: strong and weak control parameters

    Science.gov (United States)

    Doronin, S. I.; Zenchuk, A. I.

    2017-03-01

    We study the quantum correlations between the two remote qubits (sender and receiver) connected by the transmission line (homogeneous spin-1/2 chain) depending on the parameters of the sender's and receiver's initial states (control parameters). We consider two different measures of quantum correlations: the entanglement (a traditional measure) and the informational correlation (based on the parameter exchange between the sender and receiver). We find the domain in the control parameter space yielding (i) zero entanglement between the sender and receiver during the whole evolution period and (ii) non-vanishing informational correlation between the sender and receiver, thus showing that the informational correlation is responsible for the remote state creation. Among the control parameters, there are the strong parameters (which strongly effect the values of studied measures) and the weak ones (whose effect is negligible), therewith the eigenvalues of the initial state are given a privileged role. We also show that the problem of small entanglement (concurrence) in quantum information processing is similar (in certain sense) to the problem of small determinants in linear algebra. A particular model of 40-node spin-1/2 communication line is presented.

  15. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  16. Strong coupling of a single electron in silicon to a microwave photon

    Science.gov (United States)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  17. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  18. Small Fermi surfaces and strong correlation effects in Dirac materials with holography

    Science.gov (United States)

    Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin

    2017-10-01

    Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.

  19. Peculiarities of the momentum distribution functions of strongly correlated charged fermions

    Science.gov (United States)

    Larkin, A. S.; Filinov, V. S.; Fortov, V. E.

    2018-01-01

    New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.

  20. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    Science.gov (United States)

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  1. Attractive electron correlation in wide band gap semiconductors by electron-photon interaction

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; Yoshino, Katsumi

    2004-01-01

    We theoretically demonstrate attractive electron correlation in wide band gap semiconductors by electron-photon interaction. At low temperature, wavevectors of electromagnetic waves absorbed in wide band gap semiconductors cannot be neglected for wavevectors of electron waves; that is, electromagnetic waves affect the movements of electrons. In particular, attractive interaction occurs between two electrons when one electron changes from a valence band to a conduction band and the other electron changes from a conduction band to a valence band

  2. Correlated electronic structure of CeN

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.K., E-mail: swarup.panda@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Di Marco, I. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Delin, A. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); KTH Royal Institute of Technology, School of Information and Communication Technology, Department of Materials and Nano Physics, Electrum 229, SE-164 40 Kista (Sweden); KTH Royal Institute of Technology, Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm (Sweden); Eriksson, O., E-mail: olle.eriksson@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden)

    2016-04-15

    Highlights: • The electronic structure of CeN is studied within the GGA+DMFT approach using SPTF and Hubbard I approximation. • 4f spectral functions from SPTF and Hubbard I are coupled to explain the various spectroscopic manifestations of CeN. • The calculated XPS and BIS spectra show good agreement with the corresponding experimental spectra. • The contribution of the various l-states and the importance of cross-sections for the photoemission process are analyzed. - Abstract: We have studied in detail the electronic structure of CeN including spin orbit coupling (SOC) and electron–electron interaction, within the dynamical mean-field theory combined with density-functional theory in generalized gradient approximation (GGA+DMFT). The effective impurity problem has been solved through the spin-polarized T-matrix fluctuation-exchange (SPTF) solver and the Hubbard I approximation (HIA). The calculated l-projected atomic partial densities of states and the converged potential were used to obtain the X-ray-photoemission-spectra (XPS) and Bremstrahlung Isochromat spectra (BIS). Following the spirit of Gunnarsson–Schonhammer model, we have coupled the SPTF and HIA 4f spectral functions to explain the various spectroscopic manifestations of CeN. Our computed spectra in such a coupled scheme explain the experimental data remarkably well, establishing the validity of our theoretical model in analyzing the electronic structure of CeN. The contribution of the various l-states in the total spectra and the importance of cross sections are also analyzed in detail.

  3. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.

    Science.gov (United States)

    Li, Zhendong; Chan, Garnet Kin-Lic

    2017-06-13

    , which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.

  4. Strong electron bidirectional anisotropies in the distant tail: ISEE 3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1986-01-01

    A detailed observational treatment of bidirectional electrons (--50 to 50 eV)in the distant magnetotail (rapprox. >100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE 3 data provide extensive sampling of both the north and south lobes in rapid succession. These data demonstrate directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward interplanetary magnetic field in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Thus we demonstrate the open nature of the distant magnetopause and show that the source of the higher-energy, bidirectional lobe electrons is the tailward directed electron heat flux population in the distant magnetosheath. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is composed largely of open magnetic field lines in contradistinction to some recently advanced models

  5. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E

    2015-01-01

    OBJECTIVE: It is well known that reproductive capacity is lower in obese individuals, but what mediators and signals are involved is unclear. Kisspeptin is a potent stimulator of GnRH release, and it has been suggested that kisspeptin neurons located in the arcuate nucleus transmit metabolic...... signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats...... with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0.004). CONCLUSION: We...

  6. Effects of Structural Correlations on Electronic Properties

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1984-01-01

    A one dimensional alloy model is treated in the nearest neighbour tight binding approximation in which the correlation of the atoms can be adjusted. The correlation can be changed from a situation in which there is a tendency for atoms to alternate to a situation in which the atoms are randomly located, consistent with a fixed concentration c for A c B 1-c . The results show that when there is short range order, at certain energies there is a tendency for localized states and formation of structure induced minimum in the density of states. The results for the ordered case are similar to those of Charge Density Wave (CDW). A smooth transition is carried out between this case and the randomly disordered case which behaves like the Anderson model for uncorrelated disorder. (M.W.O.) [pt

  7. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  8. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    Science.gov (United States)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  9. Interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields

    International Nuclear Information System (INIS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-01-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and excitonic quantum Hall droplets at a filling factor υ = 2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons. (author)

  10. Electron correlation in highly-charged-ion collisions

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.

    1992-01-01

    We have used the coupled-channel method to study the significance of electron correlation in the reaction mechanism for two-electron capture in C 5+ -He collisions. Two different sets of calculations were performed. While the static correlation energy was generally included in the calculations, further correlation effects were ignored in the first set of calculations. In the second set of calculations the so-called doubly excited symmetry basis (DESB) states were used to model the spatial electron correlation. The difference between the two sets of results is so profound that we can conclude that electron correlation plays an essential role in the reaction mechanism. The results of the DESB-based calculations are in good agreement with experimental data [Holt et al., Phys. Rev. A 43, 607 (1991)

  11. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  12. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.; Reddy, S.; Pons, J.A.

    1999-01-01

    An extensive study of the effects of correlations on both charged and neutral current weak interaction rates in dense matter is performed. Both strong and electromagnetic correlations are considered. The propagation of particle-hole interactions in the medium plays an important role in determining the neutrino mean free paths. The effects due to Pauli blocking and density, spin, and isospin correlations in the medium significantly reduce the neutrino cross sections. As a result of the lack of experimental information at high density, these correlations are necessarily model dependent. For example, spin correlations in nonrelativistic models are found to lead to larger suppressions of neutrino cross sections compared to those of relativistic models. This is due to the tendency of the nonrelativistic models to develop spin instabilities. Notwithstanding the above caveats, and the differences between nonrelativistic and relativistic approaches such as the spin- and isospin-dependent interactions and the nucleon effective masses, suppressions of order 2 - 3, relative to the case in which correlations are ignored, are obtained. Neutrino interactions in dense matter are especially important for supernova and early neutron star evolution calculations. The effects of correlations for protoneutron star evolution are calculated. Large effects on the internal thermodynamic properties of protoneutron stars, such as the temperature, are found. These translate into significant early enhancements in the emitted neutrino energies and fluxes, especially after a few seconds. At late times, beyond about 10 s, the emitted neutrino fluxes decrease more rapidly compared to simulations without the effects of correlations, due to the more rapid onset of neutrino transparency in the protoneutron star. copyright 1999 The American Physical Society

  13. Advanced cluster methods for correlated-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andre

    2015-04-27

    In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear. Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects. Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom. For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult

  14. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    Science.gov (United States)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  15. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    International Nuclear Information System (INIS)

    Shaginyan, V. R.

    2011-01-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  16. Correlation potential of a test ion near a strongly charged plate.

    Science.gov (United States)

    Lu, Bing-Sui; Xing, Xiangjun

    2014-03-01

    We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.

  17. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    Science.gov (United States)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  18. Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems

    International Nuclear Information System (INIS)

    Protogenov, A.P.; Ryndyk, D.A.

    1992-08-01

    We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs

  19. Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas

    International Nuclear Information System (INIS)

    Kuhnle, E. D.; Hu, H.; Liu, X.-J.; Dyke, P.; Mark, M.; Drummond, P. D.; Hannaford, P.; Vale, C. J.

    2010-01-01

    We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tan's relations. This is achieved through measurements of the static structure factor which displays a universal scaling proportional to the ratio of Tan's contact to the momentum C/q. Bragg spectroscopy of ultracold 6 Li atoms from a periodic optical potential is used to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We calibrate our Bragg spectra using the f-sum rule, which is found to improve the accuracy of the structure factor measurement.

  20. On strong-coupling correlation functions of circular Wilson loops and local operators

    International Nuclear Information System (INIS)

    Alday, Luis F; Tseytlin, Arkady A

    2011-01-01

    Motivated by the problem of understanding 3-point correlation functions of gauge-invariant operators in N=4 super Yang-Mills theory we consider correlators involving Wilson loops and a 'light' operator with fixed quantum numbers. At leading order in the strong-coupling expansion such correlators are given by the 'light' vertex operator evaluated on a semiclassical string world surface ending on the corresponding loops at the boundary of AdS 5 x S 5 . We study in detail the example of a correlator of two concentric circular Wilson loops and a dilaton vertex operator. The resulting expression is given by an integral of combinations of elliptic functions and can be computed analytically in some special limits. We also consider a generalization of the minimal surface ending on two circles to the case of non-zero angular momentum J in S 5 and discuss a special limit when one of the Wilson loops is effectively replaced by a 'heavy' operator with charge J. (paper)

  1. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  2. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  3. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... 2Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany ... involving a highly correlated electronic transition state. ... laser is low, the recolliding electron can have a maximum energy of about 15 eV which.

  5. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  6. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  7. The ALPS project release 2.0: open source software for strongly correlated systems

    International Nuclear Information System (INIS)

    Bauer, B; Gamper, L; Gukelberger, J; Hehn, A; Isakov, S V; Ma, P N; Mates, P; Carr, L D; Evertz, H G; Feiguin, A; Freire, J; Koop, D; Fuchs, S; Gull, E; Guertler, S; Igarashi, R; Matsuo, H; Parcollet, O; Pawłowski, G; Picon, J D

    2011-01-01

    We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/

  8. [Theoretical studies of dynamics and correlations in heavy electron materials:]: Progress report, August 15, 1987-August 15, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This paper discusses progress in heavy electron research and high temperature superconductivity research. Particular topics discussed are: quadrupolar Kondo effect; coherence in the Anderson Lattice; Hall effect in heavy electron systems, suppression of supeconductivity by disorder in strongly correlated electronic materials; and charge transfer mechanisms for high temperature superconductivity

  9. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    Science.gov (United States)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  10. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  11. Small Fermi energy, strong electron-phonon effects and anharmonicity in MgB2

    International Nuclear Information System (INIS)

    Cappelluti, E.; Pietronero, L.

    2007-01-01

    The investigation of the electron-phonon properties in MgB 2 has attracted a huge interest after the discovery of superconductivity with T c 39 K in this compound. Although superconductivity is often described in terms of the conventional Eliashberg theory, properly generalized in the multiband/multigap scenario, important features distinguish MgB 2 from other conventional strong-coupling superconductors. Most important it is the fact that a large part of the total electron-phonon strength seems to be concentrated here in only one phonon mode, the boron-boron E 2g stretching mode. Another interesting property is the small Fermi energy of the σ bands, which are strongly coupled with the E 2g mode. In this contribution, we discuss how the coexistence of both these features give rise to an unconventional phenomenology of the electron-phonon properties

  12. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  13. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  14. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  15. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  16. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence

    Directory of Open Access Journals (Sweden)

    G. Baskaran

    2006-01-01

    Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.

  17. Spin-orbit coupling and transport in strongly correlated two-dimensional systems

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2017-05-01

    Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p 40 , in contrast to the common belief that a magnet field enhances Wigner crystallization, the negative MR is likely linked to enhanced interaction.

  18. Respiratory insufficiency correlated strongly with mortality of rodents infected with West Nile virus.

    Directory of Open Access Journals (Sweden)

    John D Morrey

    Full Text Available West Nile virus (WNV disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory

  19. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    International Nuclear Information System (INIS)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime

  20. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  1. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Science.gov (United States)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  2. Theory of a four-electron 2-D system in a strong magnetic field

    International Nuclear Information System (INIS)

    Yuandong Dai; Bingjian Ni; Fusui Liu.

    1985-10-01

    An orthogonal and complete set for relative motion of four-electron 2-D system in strong magnetic field is given, the energy of ground state of relative motion is calculated. This paper also calculates the energy of ground state whose maximum of single electron angular momentum is limited by the degeneracy under a given magnetic field, obtains the energy minimums corresponding to a fractional quantized Hall effect of 2/5, 2/7, and from it the physical meaning of 'magic number' is interpreted. (author)

  3. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    International Nuclear Information System (INIS)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J.; Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R.; Fischer, D.; Weber, T.; Zouros, T. J. M.; Duesterer, S.

    2007-01-01

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne 2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I 12 W/cm 2 and significant contributions of three-photon ionization as I increases. Ne 2+ recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies

  4. High energy x-ray scattering studies of strongly correlated oxides

    International Nuclear Information System (INIS)

    Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T

    2003-01-01

    Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering

  5. Record statistics of a strongly correlated time series: random walks and Lévy flights

    Science.gov (United States)

    Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory

    2017-08-01

    We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.

  6. Structural study of liquids with strong short-range correlation in the atomic distribution

    International Nuclear Information System (INIS)

    Uzuki, Kenji

    1976-01-01

    Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de

  7. Self-limited kinetics of electron doping in correlated oxides

    International Nuclear Information System (INIS)

    Chen, Jikun; Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-01-01

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni 3+ are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem

  8. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  9. Strong quadrupole interaction in electron paramagnetic resonance. Study of the indium hexacyanide (III) in KCl irradiated with electrons

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1973-08-01

    The radiation effects in ]Ir III (CN) 6 ] 3- diamagnetic complexe inserted in the KCl lattice and irradiated with electrons of 2MeV by electron spin resonance (ESR) are analysed. Formulas for g and A tensors in the ligand field approximation, are derivated to calculate non coupling electron density in the metal. The X polarization field of inner shells is positive, indicating a 6s function mixture in the non coupling electron molecular orbital. The observed hyperfine structure is assigned to 4 equivalent nitrogen and one non equivalent nitrogen. This hypothesis is verified by experience of isotope substitution with 15 N. The s and p spin density in ligands are calculated and discussed in terms of molecular obitals. The effects of strong quadrupole interaction into the EPR spectra of ]Ir II (CN) 5 ] 3- complex are analysed by MAGNSPEC computer program to diagonalize the Spin Hamiltonian of the system. Empiric rules for EPR espectrum interpretation with strong quadrupole interaction. A review of EPR technique and a review of main concepts of crystal-field and ligand field theories, are also presented. (M.C.K.) [pt

  10. First results of correlation electron cyclotron emission on Tore Supra

    OpenAIRE

    Udintsev, V. S.; Goniche, M.; Ségul, J.L.; Giruzzi, G.; Molina, D.; Turco, F.; Huysmans, G. T. A.; Maget, P.; Krämer-Flecken, A.

    2006-01-01

    Measurements of electron temperature fluctuations by means of correlation electron cyclotron emission (ECE) diagnostics aid in understanding the nature of the turbulent transport infusion plasmas. On Tore Supra tokamak, a 32-channel heterodyne ECE radiometer has been upgraded to include two channels for temperature fluctuation measurements. The central frequency of the yttrium iron garnet filter on each channel is remotely monitored by a driver, allowing one to shift the observation volume in...

  11. Electron scattering and correlation structure of light nuclei

    International Nuclear Information System (INIS)

    Lodhi, M.A.K.

    1976-01-01

    It has been known for some time that the short-range correlations due to the repulsive part of the nuclear interaction is exhibited in the nuclear form factors as obtained from high energy electron scattering. In this work the harmonic oscillator basis functions are used. The nuclear form factors as obtained from elastic electron scattering are calculated, with Jastrow's technique by means of the cluster expansion of Iwamoto Yamada, in the Born approximation. The correlated wave function is given. The results for nuclear form factors calculated with the wave function are presented for some light nuclei. (Auth.)

  12. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  13. Truncated exponential-rigid-rotor model for strong electron and ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.

    1979-01-01

    A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)

  14. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  15. Contributed Review: Review of integrated correlative light and electron microscopy

    International Nuclear Information System (INIS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy

  16. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  17. Electron correlation effects in XUV photoabsorption spectroscopy of atoms

    International Nuclear Information System (INIS)

    Codling, K.

    1976-01-01

    Reference is made to sophisticated experiments involving the measurement of the angular distribution of photo-ejected electrons, coincidence electrons and ion spectroscopy, which can only be interpreted in terms of electron correlation effects. After an introductory review of previous work, the lectures fall under the following headings: experimental procedures (light sources, monochromators, absorption cells, limitations on the simple photoasbsorption experiment, and complementary techniques); experimental results (discrete states in the continuum, gross features in the photoionisation continuum (rare gases, alkalis, alkaline earths, rare earths, transition elements)). (U.K.)

  18. Strong field QED in lepton colliders and electron/laser interactions

    Science.gov (United States)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the

  19. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  20. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2012-12-15

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau

  1. Intersite electron correlations in a Hubbard model on inhomogeneous lattices

    International Nuclear Information System (INIS)

    Takemori, Nayuta; Koga, Akihisa; Hafermann, Hartmut

    2016-01-01

    We study intersite electron correlations in the half-filled Hubbard model on square lattices with periodic and open boundary conditions by means of a real-space dual fermion approach. By calculating renormalization factors, we clarify that nearest-neighbor intersite correlations already significantly reduce the critical interaction. The Mott transition occurs at U/t ∼ 6.4, where U is the interaction strength and t is the hopping integral. This value is consistent with quantum Monte Carlo results. It shows the importance of short-range intersite correlations, which are taken into account in the framework of the real-space dual fermion approach. (paper)

  2. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.

    Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  3. Some new features of electron density irregularities over SHAR during strong spread F

    Directory of Open Access Journals (Sweden)

    S. Raizada

    2000-02-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics

  4. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  5. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  6. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  7. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  9. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Science.gov (United States)

    Li, Zheng; Vendrell, Oriol

    2016-01-01

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842

  10. Carbon buildup monitoring using RBS: Correlation with secondary electrons

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Rosales, P.; Martinez-Quiroz, E.; Murillo, G.; Fernandez, M.C.

    2006-01-01

    The RBS technique is applied to solve the problem of on-line monitoring of the carbon deposited on a thin backed foil under ion bombardment. An iterative method is used to reliably extract quantities such as number of projectiles and target thickness in spite of beam energy changes and detector unstabilities. Experimental values for secondary electron yields are also deduced. Results are reported for the thickness variation of thin carbon foils bombarded with carbon ions of energies between 8.95 and 13 MeV. A linear correlation of this variation is found with both, the ion fluence at target and the number of secondary electrons emitted. The correlation exists even though a wide range of beam currents, beam energies and bombarding times was used during the experiment. The measured electron yields show evidence for a change in the emission process between the original foils and the deposited layer, possibly due to a texture change

  11. Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates.

    Science.gov (United States)

    Pärschke, Ekaterina M; Wohlfeld, Krzysztof; Foyevtsova, Kateryna; van den Brink, Jeroen

    2017-09-25

    The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba 2 IrO 4 and Sr 2 IrO 4 to La 2 CuO 4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr 2 IrO 4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.

  12. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    Science.gov (United States)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  13. Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model

    Science.gov (United States)

    Mohan, Minette M.

    1992-08-01

    I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.

  14. Strong Tracking Filter for Nonlinear Systems with Randomly Delayed Measurements and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Hongtao Yang

    2018-01-01

    Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.

  15. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  16. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  17. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  18. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  19. Charging dynamics and strong localization of a two-dimensional electron cloud

    International Nuclear Information System (INIS)

    Dianoux, R; Smilde, H J H; Marchi, F; Buffet, N; Mur, P; Comin, F; Chevrier, J

    2007-01-01

    The dynamics of charge injection in silicon nanocrystals embedded in a silicon dioxide matrix is studied using electrostatic force microscopy. We show that the presence of silicon nanocrystals with a density of 10 11 cm -2 is essential for strong localization of charges, and results in exceptional charge retention properties compared to nanocrystal-free SiO 2 samples. In both systems, a logarithmic dependence of the diameter of the charged area on the injection time is experimentally observed on a timescale between 0.1 and 10 s (voltage≤10 V). A field-emission injection, limited by Coulomb blockade and a lateral charge spreading due to a repulsive radial electric field are used to model the sample charging. Once the tip is retracted, the electron cloud is strongly confined in the nanocrystals and remains static

  20. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.

  1. Semiclassical magnetotransport in strongly spin–orbit coupled Rashba two-dimensional electron systems

    International Nuclear Information System (INIS)

    Xiao, Cong; Li, Dingping

    2016-01-01

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin–orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e . While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. (paper)

  2. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    Science.gov (United States)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  3. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  4. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  5. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  6. Hemodynamic Correlates of Abnormal Aortic Root Dimension in an Adult Population: The Strong Heart Study.

    Science.gov (United States)

    de Simone, Giovanni; Roman, Mary J; De Marco, Marina; Bella, Jonathan N; Izzo, Raffaele; Lee, Elisa T; Devereux, Richard B

    2015-09-28

    We evaluated the relationship of aortic root dimension (ARD) with flow output and both peripheral and central blood pressure, using multivariable equations predicting ideal sex-specific ARD at a given age and body height. We measured echocardiographic diastolic ARD at the sinuses of Valsalva in 3160 adults (aged 42±16 years, 61% women) from the fourth examination of the Strong Heart Study who were free of prevalent coronary heart disease, and we compared measured data with the theoretical predicted value to calculate a z score. Central blood pressure was estimated by applanation tonometry of the radial artery in 2319 participants. ARD z scores were divided into tertiles representing small, normal, and large ARD. Participants with large ARD exhibited greater prevalence of central obesity and higher levels of inflammatory markers and lipids (0.05correlated to higher waist circumference and percentages of neutrophils and plasminogen activator inhibitor-1 (all P<0.01). Aortic root dilatation is associated with high diastolic blood pressure, high stroke volume, central fat distribution, and inflammatory status. In contrast, at a given diastolic blood pressure and stroke volume, aortic root dilatation is associated with lower pulse pressure and systolic blood pressure. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. New developments in the theoretical treatment of low dimensional strongly correlated systems.

    Science.gov (United States)

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil; Tsvelik, Alexei M

    2017-10-09

    We review two important non-perturbative approaches for extracting the physics of low- dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of confor- mal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme- tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro- modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics. © 2017 IOP Publishing Ltd.

  8. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  9. Subfemtosecond electron dynamics of H{sub 2} in strong fields or the quest for the molecular clock

    Energy Technology Data Exchange (ETDEWEB)

    Staudte, A.

    2005-07-01

    In this work we have studied experimentally and theoretically hydrogen and deuterium molecules in strong laser fields. We wanted to demonstrate that control of dynamical processes on the time scale below a single laser cycle (2.7 fs) can be achieved even without using attosecond pulses just by employing the advanced experimental technique COLTRIMS. In order to do this, we have pursued two goals: 1. To examine, whether laser steered electron wavepackets can be used for laser induced electron diffraction (LIED) on molecules. 2. To demonstrate, that the double ionization of H{sub 2} can be followed with sub laser cycle temporal resolution (the molecular clock). Laser induced electron diffraction needs linearly polarized light since its mechanism relies on rescattering of the ionized electron in the molecular potential. With rescattering occurring within a few hundred attoseconds, LIED is really a process of attosecond physics. In principle, two extreme scattering geometries are possible for a homonuclear diatomic molecule like H{sub 2}: the perpendicular geometry, which corresponds to the classical double slit experiment where the electron microbunch is steered transversely to the molecular axis, and the tangential geometry with the electron moving parallel to the molecular axis. Experimental restrictions prevented us to investigate the perpendicular geometry. The molecular clock, on the other hand, employs circularly polarized light to map the absolute phase of the laser electric field onto the spatial direction of the electron momentum. Thereby, a full laser cycle is mapped onto 360 in momentum space. Thus, different electron ejection angles in the laboratory frame correspond to different ejection times. Together with the correlated kinetic energy release of the Coulomb exploding molecules an unambiguous clock running from 0-8 fs with a few 100 as resolution can be envisioned. In direct relation to this experiment, we studied the influence of the long range

  10. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  11. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  12. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  13. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  14. Electron gas interacting in a metal, submitted to a strong magnetic field

    International Nuclear Information System (INIS)

    Alcaraz, Francisco Castilho

    1977-01-01

    Using the propagator's technique in the grand ensemble developed by Montroll and Ward we investigate the magnetic properties of an interacting electron gas in a strong magnetic field. The free propagator properly constructed shows that the spin paramagnetism does not have a term with strong temperature dependence, contrary to the result of Isihara. Considering the electron density to be constant, the dHVA oscillations in the magnetic susceptibility and sound velocity, considering the effects of first exchange interactions, show only one phase in agreement with experimental result, while Ichimura and Isihara obtained two phases differing by π/2. The effects of first order exchange interactions in the dHVA oscillations of the magnetic susceptibility and sound velocity give rise to an exponential factor in the amplitudes of oscillator (Dingle factor), being the Dingle temperature linearly dependent of the Fermi velocity. The calculations of the ring diagram contribution to the grand partition function, show that the approximation used by Isihara for this calculations is not good and the dHVA oscillations of the contributions from the ring diagrams for the grand partition function have a phase differing by π/2 from that obtained by Isihara. (author)

  15. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  16. Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas and Holographic Duality

    Science.gov (United States)

    2012-11-19

    we mean that we cannot describe a system by working perturbatively from non-interacting particles or quasiparticles. In the case of electrons in...typically about 100µm in size, and is deformed by harmonic trapping fields into prolate or oblate forms, commonly called a cigar or a pancake. In the...metals, the electron outside the closed shell. For instance, 6Li has a nuclear spin of 1 and one unpaired electron . The two lowest hyperfine 11

  17. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  18. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  19. 2012 CORRELATED ELECTRON SYSTEMS GRC AND GRS, JUNE 23-29, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, Steven

    2012-06-29

    The 2012 Gordon Conference on Correlated Electron Systems will present cutting-edge research on emergent properties arising from strong electronic correlations. While we expect the discussion at the meeting to be wide-ranging, given the breadth of the title subject matter, we have chosen several topics to be the particular focus of the talks. These are New Developments in Single and Bilayer Graphene, Topological States of Matter, including Topological Insulators and Spin Liquids, the Interplay Between Magnetism and Unconventional Superconductivity, and Quantum Critical Phenomena in Metallic Systems. We also plan to have shorter sessions on Systems Far From Equilibrium, Low Dimensional Electron Fluids, and New Directions (which will primarily focus on new experimental methodologies and their interpretation).

  20. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  1. Matrix-product states for strongly correlated systems and quantum information processing

    International Nuclear Information System (INIS)

    Saberi, Hamed

    2008-01-01

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give

  2. Matrix-product states for strongly correlated systems and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Hamed

    2008-12-12

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any

  3. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  4. A many-particle adiabatic invariant of strongly magnetized pure electron plasmas

    International Nuclear Information System (INIS)

    Hjorth, P.G.

    1988-01-01

    A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation

  5. Evidence for correlated double-electron capture in slow collisions of multicharged ions with He and H2

    International Nuclear Information System (INIS)

    Meyer, F.W.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Stolterfoht, N.

    1986-01-01

    High resolution measurements of the production of L 1 L 23 M Coster-Kronig and LMM-Auger electrons in slow collisions of C 4+ , N 5+ , O 6+ , and 0 7+ with He and H 2 have been performed, using the method of 0 0 Auger spectroscopy. For the latter three projectiles, strong Coster Kronig lines are observed, which are attributed to the configurations (core)2pnl, produced by double-electron capture. It is argued that production of these nonequivalent electron configurations must involve electron-electron correlation. From a comparison of the production cross sections for these Coster-Kronig electrons and the LMM-Auger electrons, it is further argued the correlation plays a significant role in two-electron transfer processes. 7 refs., 5 figs

  6. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  7. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  8. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  9. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  10. Strong Adhesion of Silver/Polypyrrole Composite onto Plastic Substrates toward Flexible Electronics

    Science.gov (United States)

    Kawakita, Jin; Hashimoto, Yasuo; Chikyow, Toyohiro

    2013-06-01

    Flexible electronics require sufficient adhesion to substrates, such as a plastic or a polymer, of the electric wiring for devices. A composite of a conducting metal and a polymer is a candidate alternative to pure metals in terms of wire flexibility. The purpose of this study was to evaluate the adhesiveness of a silver/polypyrrole composite to plastic substrates and to clarify the mechanism of adhesion. The composite was prepared on various plastic substrates by dropping its fluid dispersion. Its adhesiveness was evaluated by the peel-off test and its interfacial structure was characterized by microscopy measurements. Some polymers including Teflon with generally weak adhesion to different materials showed a high adhesiveness of more than 90%. The strong adhesion was related to the anchoring effect of the composite penetrating into the pores near the surface of the substrate.

  11. Strong-coupling electron-phonon superconductivity in H{sub 3}S

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, Warren E. [University of California, Davis, CA (United States); Quan, Yundi [Beijing Normal University, Beijing (China)

    2016-07-01

    The superconducting phase of hydrogen sulfide at T{sub c} = 200 K observed by Eremets' group at pressures around 200 GPa is simple bcc Im-3m H{sub 3}S. Remarkably, this record high temperature superconductor was predicted beforehand by Duan et al., so the theory would seem to be in place. Here we will discuss why this is not true. Several extremes are involved: extreme pressure, meaning reduction of volume;extremely high H phonon energy scale around 1400 K; unusually narrow peak in the density of states at the Fermi level; extremely high temperature for a superconductor. Analysis of the H3S electronic structure and two important van Hove singularities (vHs) reveal the effect of sulfur. The implications for the strong coupling Migdal-Eliashberg theory will be discussed. Followed by comments on ways of increasing T{sub c} in H{sub 3}S-like materials.

  12. Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit

    Science.gov (United States)

    Santillán, Moisés

    We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.

  13. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  14. The effects of local correlations on the electronic structure of FeSe

    Science.gov (United States)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  15. Method of correlation operators in the theory of a system of particles with strong interactions

    International Nuclear Information System (INIS)

    Kuz'min, Y.M.

    1985-01-01

    A similarity transformation of the density matrix is performed with the help of the correlation operator. This does not change the value of the partition function. A method of calculating the transformed partition function with the help of a finite translation operator is given. A general system of coupled equations is obtained from which the matrix elements of correlation operators of increasing order can be found

  16. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  17. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis.

    Science.gov (United States)

    Kulasekararaj, Austin G; Smith, Alexander E; Mian, Syed A; Mohamedali, Azim M; Krishnamurthy, Pramila; Lea, Nicholas C; Gäken, Joop; Pennaneach, Coralie; Ireland, Robin; Czepulkowski, Barbara; Pomplun, Sabine; Marsh, Judith C; Mufti, Ghulam J

    2013-03-01

    This study aimed to determine the incidence/prognostic impact of TP53 mutation in 318 myelodysplastic syndrome (MDS) patients, and to correlate the changes to cytogenetics, single nucleotide polymorphism array karyotyping and clinical outcome. The median age was 65 years (17-89 years) and median follow-up was 45 months [95% confidence interval (CI) 27-62 months]. TP53 mutations occurred in 30 (9.4%) patients, exclusively in isolated del5q (19%) and complex karyotype (CK) with -5/5q-(72%), correlated with International Prognostic Scoring System intermediate-2/high, TP53 protein expression, higher blast count and leukaemic progression. Patients with mutant TP53 had a paucity of mutations in other genes implicated in myeloid malignancies. Median overall survival of patients with TP53 mutation was shorter than wild-type (9 versus 66 months, P disappearance of the mutant clone or emergence of new clones, suggesting an early occurrence of TP53 mutations. A reduction in mutant clone correlated with response to 5-azacitidine, however clones increased in non-responders and persisted at relapse. The adverse impact of TP53 persists after adjustment for cytogenetic risk and is of practical importance in evaluating prognosis. The relatively common occurrence of these mutations in two different prognostic spectrums of MDS, i.e. isolated 5q- and CK with -5/5q-, possibly implies two different mechanistic roles for TP53 protein. © 2013 Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  18. Evidence for strong electron-lattice coupling in La2-xSrxNiO4

    International Nuclear Information System (INIS)

    McQueeney, R.J.; Sarrao, J.L.

    1999-01-01

    The inelastic neutron scattering spectra were measured for several Sr concentrations of polycrystalline La 2-x Sr x NiO 4 . The authors find that the generalized phonon density-of-states is identical for x = 0 and x = 1/8. For x = 1/3 and x = 1/2, the band of phonons corresponding to the in-plane oxygen vibrations (> 65 meV) splits into two subbands centered at 75 meV and 85 meV. The lower frequency band increases in amplitude for the x = 1/2 sample, indicating that it is directly related to the hole concentration. These changes are associated with the coupling of oxygen vibrations to doped holes which reside in the NiO 2 planes and are a signature of strong electron-lattice coupling. Comparison of La 1.9 Sr 0.1 CuO 4 and La 1.875 Sr 0.125 NiO 4 demonstrates that much stronger electron-lattice coupling occurs for particular modes in the cuprate for modest doping and is likely related to the metallic nature of the cuprate

  19. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    Science.gov (United States)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  20. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  1. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  2. Covariance and correlation estimation in electron-density maps.

    Science.gov (United States)

    Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna

    2012-03-01

    Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

  3. Electron correlation effects on the N2--N2 interaction

    International Nuclear Information System (INIS)

    Hay, P.J.; Pack, R.T.; Martin, R.L.

    1984-01-01

    Ab initio self-consistent field, configuration interaction, and many-body perturbation theory methods are used to calculate the intermolecular potential between two nitrogen molecules. The emphasis is placed on the repulsive region important at the temperatures and pressures encountered in detonations. In addition, electron gas calculations are employed to fit and extend the ab initio data. We also generate effective spherical potentials which fit dilute gas virial, viscosity, and differential scattering data while being constrained by Hugoniot or ab initio data in the repulsive region. Finally, we discuss the roles of electron correlation and of many-body effects on the N 2 --N 2 interaction. Comparisons are also made to the Ar 2 potential where similar ab initio calculations are compared to an accurate empirical potential

  4. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    Science.gov (United States)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  5. Strongly reduced band gap in a correlated insulator in close proximity to a metal

    NARCIS (Netherlands)

    Hesper, R.; Tjeng, L.H; Sawatzky, G.A

    1997-01-01

    Using a combination of photoelectron and inverse photoelectron spectroscopy, we show that the band gap in a monolayer of C-60 on a Ag surface is strongly reduced from the solid C-60 surface value. We argue that this is a result of the reduction of the on-site molecular Coulomb interaction due to the

  6. Electron correlation influenced magnetic phase transitions in f-electron systems

    International Nuclear Information System (INIS)

    Frauenheim, T.; Ropke, G.

    1980-01-01

    The temperature-induced phase transition (on lowering the temperature) antiferromagnet-ferromagnet in the heavy rare earth and some of actinide compounds is qualitatively explained in the scope of a two-band Hubbard model and the more complex RKKY model as the result of electron correlation effects in the conduction bands. (orig.)

  7. Electron correlation in single-electron capture from helium by fast protons

    International Nuclear Information System (INIS)

    Purkait, M

    2012-01-01

    The differential and total cross sections for single charge exchange in p-He collisions have been calculated within the framework of four-body boundary corrected continuum intermediate state (BCCIS-4B) approximation. The effect of dynamic electron correlations is explicitly taken into account through the complete perturbation potentials.

  8. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...

  9. Electron correlations in single-electron capture from helium by fast protons and α particles

    International Nuclear Information System (INIS)

    Mancev, Ivan; Milojevic, Nenad

    2010-01-01

    Single-electron capture from heliumlike atomic systems by bare projectiles is investigated by means of the four-body boundary-corrected first Born approximation (CB1-4B). The effect of the dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The quantum-mechanical post and prior transition amplitudes for single charge exchange encompassing symmetric and/or asymmetric collisions are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. An illustrative computation is performed for single-electron capture from helium by protons and α particles at intermediate and high impact energies. The role of dynamic correlations is examined as a function of increased projectile energy. The validity and utility of the proposed CB1-4B method is critically assessed in comparison with the existing experimental data for total cross sections, and excellent agreement is obtained.

  10. Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-01-01

    This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.

  11. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Tlustý, David

    2009-01-01

    Roč. 103, č. 25 (2009), 251601/1-251601/7 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * local parity violation * strong interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009

  12. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  13. Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    OpenAIRE

    Prats, J. M.; Lopez-Aguilar, F.

    1996-01-01

    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...

  14. Drastic effect of the Mn-substitution in the strongly correlated semiconductor FeSb2.

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-06-01

    We report the effects of Mn substitution, corresponding to hole doping, on the electronic properties of the narrow gap semiconductor, FeSb2, using single crystals of Fe1- x Mn x Sb2 grown by the Sb flux method. The orthorhombic Pnnm structure was confirmed by powder X-ray diffraction (XRD) for the pure and Mn-substituted samples. Their crystal structure parameters were refined using the Rietveld method. The chemical composition was investigated by wavelength-dispersive X-ray spectroscopy (WDX). The solubility limit of Mn in FeSb2 is x max ˜ 0.05 and the lattice constants change monotonically with increasing the actual Mn concentration. A drastic change from semiconducting to metallic electronic transports was found at very low Mn concentration at x ˜ 0.01. Our experimental results and analysis indicate that the substitution of a small amount of Mn changes drastically the electronic state in FeSb2 as well as the Co-substitution does: closing of the narrow gap and emergence of the density of states (DOS) at the Fermi level.

  15. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    Science.gov (United States)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  16. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  17. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  18. Solution of the Eliashberg equations for a very strong electron-phonon coupling with a low-energy cutoff

    International Nuclear Information System (INIS)

    Weger, M.; Barbiellini, B.; Jarlborg, T.; Peter, M.; Santi, G.

    1995-01-01

    We solve the Eliashberg equations for the case of an explicit vector k dependence of the interactions, and of the resulting self-energies Σ 1 ( vector k,ω), Σ 2 ( vector k,ω). We consider a strong energy-dependence of the electron-electron scattering-rate τ ee -1 , which is associated with a strong energy-dependence of the electron-phonon matrix element g(k,k'). We characterize this energy-dependence by a cutoff ξ 1 , which is of the order of the phonon frequency ω ph . We find that we can account for a large number of unexpected features of the superconductivity of the cuprates by the BCS electron-phonon theory, if we consider very large values of the McMillan coupling constant λ ph , and small values of the cutoff ξ 1 . Specifically, the Coulomb interaction is found not to depress T c ; the isotope effect is strongly reduced when ξ 1 ph . We find solutions in which the gap function Δ( vector k,ω) has extended s-wave symmetry but is very anisotropic. We suggest that the underlying cause of the strong energy-dependence is a very small electronic screening parameter at the Fermi surface; the electron-phonon matrix element g is abnormally large, and this accounts for the high transition temperatures of the cuprates. An order of magnitude estimate suggests that the electron-phonon mechanism can account for transition temperatures up to about 200 K. We thus propose a very-strong-coupling theory, in which the renormalization functions, in particular the energy-renormalization X, depend very strongly on the superconducting gap Δ, and thus display a very strong temperature-dependence between T c and T=0. An experimental manifestation of the very strong coupling with a small cutoff is a zero bias anomaly sometimes observed in tunneling experiments. (orig.)

  19. Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device

    KAUST Repository

    Sun, Jian

    2012-02-21

    A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.

  20. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Science.gov (United States)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  1. Coherent electron-correlation compatible with random atom stacking in amorphous Ce-Ru alloys

    International Nuclear Information System (INIS)

    Homma, Yoshiya; Sumiyama, Kenji; Yamauchi, Hiroshi; Suzuki, Kenji

    1997-01-01

    The amorphous Ce-Ru alloys produced by the sputtering technique show the following distinct behaviors at low temperatures. The electronic specific heat coefficient rapidly increases below 5 K for Ce-19 and 42 at.%Ru alloys with decreasing temperature, T, (a heavy fermion behavior). The electrical resistivity displays -logT dependence at T > 40 K (an incoherent or impurity Kondo effect). Is slightly decreases at T < 30 K for Ce-19 and 42 at.%Ru alloys (a coherent Kondo effect), while it abruptly decreases at 2.5 K for 82 at.%Ru (a superconducting phenomenon). These coherent states may originate from the strong mixing and correlation of 4f-electrons and conduction-electrons even in the random alloy system. (author)

  2. Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors

    International Nuclear Information System (INIS)

    Classen, Laura

    2016-01-01

    In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.

  3. Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Laura

    2016-11-04

    In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.

  4. Magnetoconductance fluctuations in a strongly correlated disordered ring system at low temperatures

    International Nuclear Information System (INIS)

    Chen, H.; Ishihara, M.; Li, Z.; Kawazoe, Y.

    1996-01-01

    Using a recursive real-space Green close-quote s-function technique in the tight-binding model, we study the influence of the electron-electron Hubbard interaction on the magnetoconductance fluctuations in a disordered ring at low temperatures. Our numerical results improve the previous theoretical predictions for the magnetoconductance fluctuations as a function of magnetic flux compared with experiments. Meanwhile, we find several anomalous phenomena at low temperatures, which do not survive at high temperatures. For the Fermi level E f =0.1t (t is the hopping integral) the envelope of magnetoconductance fluctuations drops to a lower value at some magnetic flux, while the Hubbard interaction causes the drop to occur at larger flux. The magnetoconductance fluctuations vary with the Hubbard interaction for magnetic flux around 20Φ 0 (Φ 0 =hc/e) mainly in the range of small U. The Hubbard interaction narrows the widths of the main peaks in the Fourier spectrum, but it does not change their positions. copyright 1996 The American Physical Society

  5. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  6. Energy diffusion in strongly driven quantum chaotic systems: the role of correlations of the matrix elements

    International Nuclear Information System (INIS)

    Elyutin, P V; Rubtsov, A N

    2008-01-01

    The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence

  7. Quantum glassiness in clean strongly correlated systems: an example of topological overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-03-01

    Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.

  8. Earnings and Financial Compensation from Social Security Systems Correlate Strongly with Disability for Multiple Sclerosis Patients.

    Science.gov (United States)

    Kavaliunas, Andrius; Wiberg, Michael; Tinghög, Petter; Glaser, Anna; Gyllensten, Hanna; Alexanderson, Kristina; Hillert, Jan

    2015-01-01

    Multiple sclerosis (MS) patients earn lower incomes and receive higher benefits. However, there is limited knowledge of how this is correlated with their disability. To elucidate sources and levels of income among MS patients with different disability, assessed with the Expanded Disability Status Scale. A total of 7929 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic and truncated linear regression models were used to estimate differences between MS patients regarding earnings, disability pension, sickness absence, disability allowance, unemployment compensation, and social assistance. The average level of earnings was ten times lower and the average level of health- related benefits was four times higher when comparing MS patients with severe and mild disability. MS patients with severe disability had on average SEK 166,931 less annual income from earnings and SEK 54,534 more income from benefits compared to those with mild disability. The combined average income for MS patients was 35% lower when comparing patients in the same groups. The adjusted risk ratio for having earnings among MS patients with severe disability compared to the patients with mild disability was 0.33 (95% CI 0.29-0.39), while the risk ratio for having benefits was 1.93 (95% CI 1.90-1.94). Disease progression affects the financial situation of MS patients considerably. Correlations between higher disability and patient income were observed, suggesting that earnings and benefits could be used as measures of MS progression and proxies of disability.

  9. Numerical methods for strongly correlated many-body systems with bosonic degrees of freedom

    International Nuclear Information System (INIS)

    Dorfner, Florian Guenter

    2017-01-01

    Recent experimental advances allow the observation of electronic relaxation processes in solid-state systems in real time. After an initial excitation with an optical pulse, the relaxation depends on the microscopic interactions present in the system. The interaction of electrons with lattice degrees of freedom - the phonons - is ubiquitous in solids and, thus, it represents one of the most important relaxation channels. An analytic description of relaxation dynamics is hard to come by and very few exact solutions exist even for the equilibrium situation. Numerical methods are, in principle, able to solve the problem in both, equilibrium and out-of-equilibrium situations. However, wavefunction-based methods like exact diagonalization or the density matrix renormalization group method scale unfavorably in the number of local basis states. For electron-phonon coupled systems, the situation is especially severe because the local basis dimension can get very large depending on model parameters or in far-from-equilibrium situations. For groundstate problems, two independent strategies exist for density matrix renormalization group methods: the strictly single-site density matrix renormalization group method that scales linearly in the local dimension and the use of a local basis optimization scheme which truncates the local basis to a subset of the eigenstates of the local reduced density matrix with the largest eigenvalues - the optimal mode basis. In this thesis, we combine these two strategies in an improved algorithm which reduces the scaling from linear in the local dimension of the phonon occupation number basis to linear in the dimension of a smaller optimal mode basis. We demonstrate the improved scaling of this method on the example of the Holstein polaron and the half-filled Hubbard-Holstein model. We further describe an algorithm that combines the time-evolving block decimation method with a local basis optimization to lower the scaling with the local

  10. Numerical methods for strongly correlated many-body systems with bosonic degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Dorfner, Florian Guenter

    2017-02-23

    Recent experimental advances allow the observation of electronic relaxation processes in solid-state systems in real time. After an initial excitation with an optical pulse, the relaxation depends on the microscopic interactions present in the system. The interaction of electrons with lattice degrees of freedom - the phonons - is ubiquitous in solids and, thus, it represents one of the most important relaxation channels. An analytic description of relaxation dynamics is hard to come by and very few exact solutions exist even for the equilibrium situation. Numerical methods are, in principle, able to solve the problem in both, equilibrium and out-of-equilibrium situations. However, wavefunction-based methods like exact diagonalization or the density matrix renormalization group method scale unfavorably in the number of local basis states. For electron-phonon coupled systems, the situation is especially severe because the local basis dimension can get very large depending on model parameters or in far-from-equilibrium situations. For groundstate problems, two independent strategies exist for density matrix renormalization group methods: the strictly single-site density matrix renormalization group method that scales linearly in the local dimension and the use of a local basis optimization scheme which truncates the local basis to a subset of the eigenstates of the local reduced density matrix with the largest eigenvalues - the optimal mode basis. In this thesis, we combine these two strategies in an improved algorithm which reduces the scaling from linear in the local dimension of the phonon occupation number basis to linear in the dimension of a smaller optimal mode basis. We demonstrate the improved scaling of this method on the example of the Holstein polaron and the half-filled Hubbard-Holstein model. We further describe an algorithm that combines the time-evolving block decimation method with a local basis optimization to lower the scaling with the local

  11. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  12. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    Science.gov (United States)

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  13. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women.

    Science.gov (United States)

    Menni, Cristina; Zhai, Guangju; Macgregor, Alexander; Prehn, Cornelia; Römisch-Margl, Werner; Suhre, Karsten; Adamski, Jerzy; Cassidy, Aedin; Illig, Thomas; Spector, Tim D; Valdes, Ana M

    2013-04-01

    Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targeted metabolomic analyses of serum samples using the Biocrates Absolute-IDQ™ Kit p150 (163 metabolites). We analyzed seven nutritional parameters: coffee intake, garlic intake and nutritional scores derived from the FFQs summarizing fruit and vegetable intake, alcohol intake, meat intake, hypo-caloric dieting and a "traditional English" diet. We studied the correlation between metabolite levels and dietary intake patterns in the larger population and identified for each trait between 14 and 20 independent monozygotic twins pairs discordant for nutritional intake and replicated results in this set. Results from both analyses were then meta-analyzed. For the metabolites associated with nutritional patterns, we calculated heritability using structural equation modelling. 42 metabolite nutrient intake associations were statistically significant in the discovery samples (Bonferroni P  hypo-caloric dieting. Using the twin study design we find that two thirds the metabolites associated with nutritional patterns have a significant genetic contribution, and the remaining third are solely environmentally determined. Our data confirm the value of metabolomic studies for nutritional epidemiologic research.

  14. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  15. A partitioned correlation function interaction approach for describing electron correlation in atoms

    International Nuclear Information System (INIS)

    Verdebout, S; Godefroid, M; Rynkun, P; Jönsson, P; Gaigalas, G; Fischer, C Froese

    2013-01-01

    The traditional multiconfiguration Hartree–Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core–valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the

  16. A partitioned correlation function interaction approach for describing electron correlation in atoms

    Science.gov (United States)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR

  17. Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection.

    Science.gov (United States)

    Nuovo, Gerard J; Wu, Xin; Volinia, Stefano; Yan, Fengting; di Leva, Gianpiero; Chin, Nena; Nicol, Alcina F; Jiang, Jinmai; Otterson, Gregory; Schmittgen, Thomas D; Croce, Carlo

    2010-09-01

    Infection by the human papillomavirus (HPV) is a cause of cervical intraepithelial neoplasia (CIN) and cancer. microRNA (miRNA) in situ analysis of the transformation zone epithelia, the site of initial cervical HPV infection, showed that miRNAs let-7c, -99a, 26a, and 125b were the most abundantly expressed. In situ testing of CIN 1 showed a dramatic reduction in miR-125b expression in the koilocytes, the cytologic marker of productive HPV infection. A marked reduction in miR-125b was likewise observed in the HPV-infected cells of the condyloma acuminatum, verruca vulgaris, and epidermodysplasia verruciformis. Reverse transcriptase in situ polymerase chain reaction (PCR) showed that the pre-miRNA 125b was present in the koilocyte, suggesting direct inactivation of the mature miRNA. HEK cells transfected with only the antimiR-125b showed perinuclear halos equivalent to HPV-infected koilocytes. NIH 3T3 cells transfected with the HPV 16 full-length genome and mimetic miR-125b showed a marked reduction in viral DNA and protein synthesis by quantitative PCR and in situ-based analyses, respectively (P=0.002). Alternatively, cotransfection with anti-miR-125b and HPV 16 markedly increased HPV DNA (P=0.002). Sequence analyses showed strong homology between L2 of different HPV genotypes and miR-125b. Transfection with HPV 16 L2 resulted in a marked reduction in miR-125b levels in the NIH 3T3 cells. HPV L2-induced inactivation of miR-125b is associated with the classic cytologic changes of the koilocyte, and the exogenous application of mimetic miR-125b markedly inhibits HPV DNA synthesis.

  18. Self-consistent random phase approximation - application to systems of strongly correlated fermions

    International Nuclear Information System (INIS)

    Jemai, M.

    2004-07-01

    In the present thesis we have applied the self consistent random phase approximation (SCRPA) to the Hubbard model with a small number of sites (a chain of 2, 4, 6,... sites). Earlier SCRPA had produced very good results in other models like the pairing model of Richardson. It was therefore interesting to see what kind of results the method is able to produce in the case of a more complex model like the Hubbard model. To our great satisfaction the case of two sites with two electrons (half-filling) is solved exactly by the SCRPA. This may seem a little trivial but the fact is that other respectable approximations like 'GW' or the approach with the Gutzwiller wave function yield results still far from exact. With this promising starting point, the case of 6 sites at half filling was considered next. For that case, evidently, SCRPA does not any longer give exact results. However, they are still excellent for a wide range of values of the coupling constant U, covering for instance the phase transition region towards a state with non zero magnetisation. We consider this as a good success of the theory. Non the less the case of 4 sites (a plaquette), as indeed all cases with 4n sites at half filling, turned out to have a problem because of degeneracies at the Hartree Fock level. A generalisation of the present method, including in addition to the pairs, quadruples of Fermions operators (called second RPA) is proposed to also include exactly the plaquette case in our approach. This is therefore a very interesting perspective of the present work. (author)

  19. Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO_2 and Ce_2O_3

    International Nuclear Information System (INIS)

    Weck, Philippe F.; Kim, Eunja

    2016-01-01

    The structure–property relationships of bulk CeO_2 and Ce_2O_3 have been investigated using AM05 and PBEsol exchange–correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO_2 and Ce_2O_3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. Lastly, the present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.

  20. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    Science.gov (United States)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  1. Studies of electron correlation in the photoionization process

    International Nuclear Information System (INIS)

    Rosenberg, R.A.

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying CI. The types of CI involved in the photoionization process can be divided into three categories: initial-state configuration interaction (ISCI), final-ionic-state configuration interaction (FISCI), and continuum-state configuration interaction (CSCI). The photoelecton spectroscopy of Ba, Sm, Eu, and Yb was studied using both HeI (22.22 eV) and NeI (16.85 eV) radiation. Satellite structure observed in these spectra using NeI (and for Yb, HeI also) radiation could be satisfactorily explained by ISCI alone. The HeI spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by autoionization, a special form of CSCI. The detailed nature of this mechanism was explored in Ba with synchrotron radiation. It was found that the autoionizing level decays preferentially via an Auger-type mechanism. Further insight into autoionization was gained in the electron impact/ejected electron spectra of Ba (5p 6 6s 2 ) and Yb (5p 6 4f 14 6s 2 ). Autoionizing levels excited above the first (5p) -1 threshold decayed primarily in a two-step Auger process, leading to a relatively large number of doubly charged ions. For autoionizing states below the (5p) -1 limit, decay appears to go to ground and excited states of the singly charged ion. The first experimental determination of the lifetime of the XeII 5s5p 6 2 S/sub 1/2/ state yielded a value of 34.4(6) ns. Reasonable agreement with theory could only be reached by including both FISCI and relativistic effects in calculating the lifetime. 173 references, 43 figures, 10 tables

  2. Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach

    Science.gov (United States)

    Haule, Kristjan

    2018-04-01

    The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.

  3. Electronic correlation studies. III. Self-correlated field method. Application to 2S ground state and 2P excited state of three-electron atomic systems

    International Nuclear Information System (INIS)

    Lissillour, R.; Guerillot, C.R.

    1975-01-01

    The self-correlated field method is based on the insertion in the group product wave function of pair functions built upon a set of correlated ''local'' functions and of ''nonlocal'' functions. This work is an application to three-electron systems. The effects of the outer electron on the inner pair are studied. The total electronic energy and some intermediary results such as pair energies, Coulomb and exchange ''correlated'' integrals, are given. The results are always better than those given by conventional SCF computations and reach the same level of accuracy as those given by more laborious methods used in correlation studies. (auth)

  4. Fifty years old, and still going strong: Transmission electron optical studies of materials

    International Nuclear Information System (INIS)

    Brown, L.M.

    2008-01-01

    Highlights in the history of transmission electron microscopy and scanning transmission electron microscopy include the introduction of diffraction contrast, resolution of periodic lattices by phase contrast and incoherent imaging via the high-angle annular dark-field detector. Convergent-beam electron diffraction and analytical electron microscopy, especially the application of energy-dispersive X-ray and electron energy-loss spectrometry, have provided structural and chemical information in addition to strain contrast from lattice defects. From the outset, novel specimen stages and improvements to aid the operator enhanced the electron-optical engineering provided by the instrument makers. The spatial resolution achieved was mainly determined by the way the instrument was used, and not by the basic resolution limit set by the electron optics. However, the application of computer controlled correction of spherical (and higher order) aberration has resulted in a new generation of instruments capable of sub-Angstrom point-to-point resolution. This improved performance, combined with electron energy-loss spectrometry, promises genuine three-dimensional determination of atomic and electronic structure: an indispensable weapon in the battle to fabricate and control useful nanostructures. The uncertainty principle now fundamentally restricts some of the observations one can make, but much more technical development over the next decades must occur before one can say that the techniques of electron-optical imaging of material structure have reached their fundamental limitations. One can expect remarkable progress over the next few years

  5. Studies of electron correlation in the photoionization process

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard Allen [Univ. of California, Berkeley, CA (United States)

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying configuration interaction. The types of CI involved in the photoionization process can be divided into three categories: initial state configuration interaction (ISCI), final ionic state configuration interaction (FISCI), and continuum state configuration interaction (CSCI). This thesis deals with experimental studies which reveal how the various types of CI may become manifested in photoionization. The experimental methods utilized in this work are photoelectron spectroscopy (PES), electron impact spectroscopy (EIS), and time-resolved fluorescence spectroscopy. The EIS was carried out following the discovery that the UV lamp on a Perkin-Elmer photoelectron spectrometer could be utilized as a source of low energy electrons. The time-resolved fluorescence work utilized both the tunability and the time structure of the radiation available at the Stanford Synchrotron Radiation Laboratory (SSRL). A commercial photoelectron spectrometer equipped with a conventional UV lamp (Hei, Nei) was employed for some of the PES studies, and a novel time-of-flight photoelectron spectrometer was developed for the PES work performed using synchrotron radiation. The PES of Ba, Sm, Eu, and Yb was studied using both Hei (22.22 eV) and Nei (16.85 eV) radiation. Satellite structure observed in these spectra using Nei (and for Yb, Hei also) radiation could be satisfactorily explained by ISCI alone. The Hei spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by a new mechanism, autoionization, which is a special form of CSCI. The detailed nature of this mechanism was explored in Ba using synchrotron radiation. It was found that the autoionizing level decays

  6. Correlation effects in two-dimensional electron systems realized in quantum well structures and on the surface of liquid helium

    International Nuclear Information System (INIS)

    Vilk, Y.M.

    1992-01-01

    This thesis is concerned with theoretical studies of various manybody correlation effects in two-dimensional electron systems, with application to electrons in quantum well structures (QW) and electrons on the surface of liquid helium. The author investigates the influence of correlation effects on escape rates of electrons from the 2D electron liquid and crystal on the helium surface. Within the framework of a harmonic lattice model the effective potential for the escaping electron as a function of the electron density and the external pressing or pulling electric field is found. This approach takes into account the deformation effects in the electron system. It is shown that under realistic experimental conditions the correlation correction can completely dominate the physics of the escaping electrons. The calculated concentration dependence of the escape rate of surface electrons is in excellent agreement with experiments in both thermal-activated and tunneling regimes. The thesis describes studies of the optical luminescence spectra of two types of magnetoplasma realized in QW: a charged electron plasma and a neutral electron-hole plasma, in the context of a mean field approximation. It is shown that strong enhancements in oscillator strengths are associated with excitons between different Landau levels. The strongest effect is found near the chemical potential and is analogous to the x-ray singularities well known in metals. The theory also predicts the existence of plateaus in the concentration dependence of transition energies in the sufficiently strong magnetic field. These plateaus are associated with the change in the filling factor: at the strongest field, while the filling of the level is varied, the transition energy between Landau levels i e - i h (i e = i h = i) remains constant. With decreasing magnetic fields, the plateau disappears and the transition energy increases with the filling of the Landau level

  7. Dynamical instability, strong anharmonicity and electron-phonon coupling in KOs2O6: First-principles calculations

    Science.gov (United States)

    Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi

    2017-09-01

    First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.

  8. Momentum distributions for two-electron systems: electron correlation and the Coulomb hole

    International Nuclear Information System (INIS)

    Banyard, K.E.; Reed, C.E.

    1978-01-01

    By evaluating the distribution function f(p 12 ), where p 12 ) in momentum space can be investigated. difference[p 1 - p 2 ] the concept of a Coulomb hole Δf(p 12 ) in momentum space can be investigated. Results are presented for the isoelectronic systems H - , He and Li + . The electron correlation within each CI wavefunction was analysed into its radial and angular components so that the structure and composition of Δf(p 12 ) could be assessed. The two-particle momentum radial density distribution and several two-particle expectation quantities are also examined. The present findings indicate, that in momentum space, the radial components of correlation produce effects characteristic of total correlation in position space whereas, by contrast, angular correlation creates an opposite effect. Thus the shape and formation of Δf(p 12 ) proves to be considerably more complex than that found for its counterpart in position space. The results also reveal a noticeable change in the relative importance of the components of correlation as the momentum increases. (author)

  9. On the acceleration of charged particles by strong longitudinal plasma wake fields excited by electron bunches

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Elbakyan, S.S.; Sekhpossyan, E.V.

    1985-01-01

    The possibility of the use of longitudinal field excited in a plasma by electron bunches to accelerate charged particles is investigated. It is shown that the highets value of accelerating fields proportional to the square root of factor of electrons in the bunch is achieved in the case when bunch particle density approaches a limit equal to the half of the the plasma electron equilibrium density

  10. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  11. Correlation between auroral kilometric radiation and inverted v electron precipitation

    International Nuclear Information System (INIS)

    Green, J.L.; Gurnfti, D.A.; Hoffmans, R.A.

    1979-01-01

    Simultaneous observations of energetic electron precipitations and auroral kilometric radiation (AKR) were obtained from the polar orbiting satellites AE-D and Hawkeye. The Hawkeye observations were restricted to periods when the satellite was in the AKR emission cone in the northern hemisphere an at radial distances > or approx. =7 R/sub E/ to avoid local propagation cutoff effects. In addition, the AE-D measurements were restricted to complete passes across the auroral oval in the evening to midnight local time sector (from 20 to 01 hours magnetic local time). This is the local time region where the most intense bursts of AKR are believed to originate. A qualitative survey of AKR and electron precipitation than with plasma sheet precipitation. Quantitatively, a good correlation is found between the AKR intensity and the peak energy of inverted V events. In addition, in the tail of the most field-aligned portion (approx.O 0 pitch angle) of the distribution functions of the inverted V events,systematic changes are indicated as the associated AKR intensity increases. When the AKR power flux is weak ( -17 W/(m 2 Hz)). From a determination of the simultaneous power in the inverted V events and the AKR bursts, the efficiency of converting the charge particle energy into EM radiation increases to a maximum of about 1% for the most intense AKR bursts. However, conversion efficiencies as low as 10 -5 % are also found. There is some evidence which suggests that the tail temperature, T in F (V) of the inverted V events, may play an important role in the efficient generation or amplification of auroral kilometric radiation

  12. Novel strongly correlated electron states in filled skutterudite lanthanide osmium antimonides

    International Nuclear Information System (INIS)

    Maple, M.B.; Frederick, N.A.; Ho, P.-C.; Yuhasz, W.M.; Sayles, T.A.; Butch, N.P.; Jeffries, J.R.; Taylor, B.J.

    2005-01-01

    Recent measurements on the filled skutterudite compounds Pr(Os 1-x Ru x ) 4 Sb 12 , NdOs 4 Sb 12 , and SmOs 4 Sb 12 are discussed. Pr(Os 1-x Ru x ) 4 Sb 12 displays superconductivity for all values of x with a minimum at x=0.6, and only the compounds with x 4 Sb 12 and the BCS superconductivity of PrRu 4 Sb 12 . NdOs 4 Sb 12 is a heavy fermion ferromagnet, with a sharp transition observed at 1.0K. SmOs 4 Sb 12 is also a heavy fermion material, and it may display weak ferromagnetic behavior below 2.6K

  13. Functional integral and effective Hamiltonian t-J-V model of strongly correlated electron system

    International Nuclear Information System (INIS)

    Belinicher, V.I.; Chertkov, M.V.

    1990-09-01

    The functional integral representation for the generating functional of t-J-V model is obtained. In the case close to half filling this functional integral representation reduces the conventional Hamiltonian of t-J-V model to the Hamiltonian of the system containing holes and spins 1/2 at each lattice size. This effective Hamiltonian coincides with that one obtained one of the authors by different method. This Hamiltonian and its dynamical variables can be used for description of different magnetic phases of t-J-V model. (author). 16 refs

  14. Effects of target plasma electron-electron collisions on correlated motion of fragmented H2+ protons

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.

    2006-01-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H 2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature T e =10 eV and density n=10 23 cm -3 , and proton velocities are v p =v th , v p =2v th , and v p =3v th , where v th is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H 2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (v p =v th ) and misaligns for faster ones (v p =2v th , v p =3v th ). They also contribute to a great extend to increase the energy loss of the fragmented H 2 + ion. This later effect is more significant in reducing projectile velocity

  15. Effect of density distribution of cathode emission on the flux character in a strong-current electron gun

    International Nuclear Information System (INIS)

    Matora, I.M.; Merkulov, L.A.

    1975-01-01

    The effect is considered of two kinds of a dependence of the emission density from the electric field voltage on the emitter surface of a strong-current electron gun (the Schottky law and the ''3/2'' law) upon the choice of a form for the meridional cross section of this emitter at the condition of electron flux laminarity. A calculation example is given for electron gun with close to laminar flow assuming the validity of the Schottky law. The results of calculation of varying the laminar flux character are given which appears when varying parameters of the gun at the voltage 500 kV and current 250 A

  16. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Science.gov (United States)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  17. Electron scattering in dense atomic and molecular gases: An empirical correlation of polarizability and electron scattering length

    International Nuclear Information System (INIS)

    Rupnik, K.; Asaf, U.; McGlynn, S.P.

    1990-01-01

    A linear correlation exists between the electron scattering length, as measured by a pressure shift method, and the polarizabilities for He, Ne, Ar, Kr, and Xe gases. The correlative algorithm has excellent predictive capability for the electron scattering lengths of mixtures of rare gases, simple molecular gases such as H 2 and N 2 and even complex molecular entities such as methane, CH 4

  18. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    Science.gov (United States)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  19. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    Directory of Open Access Journals (Sweden)

    Edoardo Baldini

    2016-11-01

    Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.

  20. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  1. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  2. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  3. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  4. Nuclear excitation via the motion of electrons in a strong laser field

    International Nuclear Information System (INIS)

    Berger, J.F.; Gogny, D.; Weiss, M.S.

    1987-12-01

    A method of switching from a nuclear isomeric state to a lasing state is examined. A semi-classical model of laser-electron-nuclear coupling is developed. In it the electrons are treated as free in the external field of the laser, but with initial conditions corresponding to their atomic orbits. Application is made to testing this model in 235 U and to the design criteria of a gamma-ray laser. 14 refs., 2 tabs

  5. Effect of electron correlations on the electronic structure and phase stability of FeSe upon lattice expansion

    Science.gov (United States)

    Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.

    2017-07-01

    We present results of a detailed theoretical study of the electronic, magnetic, and structural properties of the chalcogenide parent system FeSe using a fully charge-self-consistent implementation of the density functional theory plus dynamical mean-field theory (DFT+DMFT) method. In particular, we predict a remarkable change of the electronic structure of FeSe which is accompanied by a complete reconstruction of the Fermi surface topology (Lifshitz transition) upon a moderate expansion of the lattice volume. The phase transition results in a change of the in-plane magnetic nesting wave vector from (π ,π ) to (π ,0 ) and is associated with a transition from itinerant to orbital-selective localized magnetic moments. We attribute this behavior to a correlation-induced shift of the Van Hove singularity of the Fe t2 bands at the M point across the Fermi level. Our results reveal a strong orbital-selective renormalization of the effective mass m*/m of the Fe 3 d electrons upon expansion. The largest effect occurs in the Fe x y orbital, which gives rise to a non-Fermi-liquid-like behavior above the transition. The behavior of the momentum-resolved magnetic susceptibility χ (q ) demonstrates that magnetic correlations are also characterized by a pronounced orbital selectivity, suggesting a spin-fluctuation origin of the nematic phase of paramagnetic FeSe. We conjecture that the anomalous behavior of FeSe upon expansion is associated with the proximity of the Fe t2 Van Hove singularity to the Fermi level and the sensitive dependence of its position on external conditions.

  6. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    Science.gov (United States)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  7. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  8. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  9. Analytic expressions for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities

    International Nuclear Information System (INIS)

    Ishimaru, S.; Utsumi, K.

    1981-01-01

    We propose a fitting formula for the dielectric screening function of the degenerate electron liquids at metallic and lower densities which accurately reproduces the recent Monte Carlo results as well as those of the microscopic calculations, and which satisfies the self-consistency conditions in the compressibility sum rule and the short-range correlation

  10. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  11. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  12. Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems

    Science.gov (United States)

    Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2007-04-01

    One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.

  13. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  14. Inducing Strong Density Modulation with Small Energy Dispersion in Particle Beams and the Harmonic Amplifier Free Electron Laser

    CERN Document Server

    McNeil, Brian W J; Robb, Gordon

    2005-01-01

    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative ele...

  15. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  16. Macroscopic quantum phenomena in strongly correlated fermionic systems; Phenomenes quantiques macroscopiques dans les systemes d'electrons fortement correles

    Energy Technology Data Exchange (ETDEWEB)

    Rech, J

    2006-06-15

    It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)

  17. Spatial and temporal correlation in dynamic, multi-electron quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L.; McGuire, J.H.; Shakov, Kh.Kh. [Department of Physics, Tulane University, New Orleans, LA (United States); Ivanov, P.B.; Shipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H.; Bruch, R.; Hanni, J. [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2001-12-28

    Cross sections for ionization with excitation and for double excitation in helium are evaluated in a full second Born calculation. These full second Born calculations are compared to calculations in the independent electron approximation, where spatial correlation between the electrons is removed. Comparison is also made to calculations in the independent time approximation, where time correlation between the electrons is removed. The two-electron transitions considered here are caused by interactions with incident protons and electrons with velocities ranging between 2 and 10 au. Good agreement is found between our full calculations and experiment, except for the lowest velocities, where higher Born terms are expected to be significant. Spatial electron correlation, arising from internal electron-electron interactions, and time correlation, arising from time ordering of the external interactions, can both give rise to observable effects. Our method may be used for photon impact. (author)

  18. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons

    International Nuclear Information System (INIS)

    Eidelman, E D; Vul', A Ya

    2007-01-01

    The thermoelectric power and thermoelectric figure of merit for carbon nanostructure consisting of graphite-like (sp 2 ) and diamond-like (sp 3 ) regions have been investigated. The probability of electron collisions with quasi-ballistic phonons in sp 2 regions has been analysed for the first time. We have shown that the probability is not small. We have analysed the influence of various factors on the process of the electron-ballistic phonon drag (the phonon drag effect). The thermoelectric power and thermoelectric figure of merit under conditions of ballistic transport were found to be substantially higher than those in the cases of drag by thermalized phonons and of electron diffusion. The thermoelectric figure of merit (ZT) in the case of a ballistic phonon contribution to the phonon drag of electrons should be 50 times that for chaotic phonons and 500 times that in the case of the diffusion process. In that case ZT should be a record (ZT≥2-3)

  19. Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Ram, A.K.

    1996-01-01

    The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics

  20. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-01-01

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field

  1. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  2. Strong electron-phonon interaction in the high-Tc superconductors: Evidence from the infrared

    International Nuclear Information System (INIS)

    Timusk, T.; Porter, C.D.; Tanner, D.B.

    1991-01-01

    We show that low-frequency structure in the infrared reflectance of the high-temperature superconductor YBa 2 Cu 3 O 7 results from the electron-phonon interaction. Characteristic antiresonant line shapes are seen in the phonon region of the spectrum and the frequency-dependent scattering rate of the mid-infrared electronic continuum has peaks at 150 cm -1 (19 meV) and at 360 cm -1 (45 meV) in good agreement with phonon density-of-states peaks in neutron time-of-flight spectra that develop in superconducting samples. The interaction between the phonons and the charge carriers can be understood in terms of a charged-phonon model

  3. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

    Science.gov (United States)

    Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.

    2018-05-01

    Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

  4. Magnetoresistance calculations for a two-dimensional electron gas with unilateral short-period strong modulation

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Smrčka, Ludvík

    2002-01-01

    Roč. 66, č. 20 (2002), s. 205318-1 - 205318-8 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * short-period superlattices * two-dimensional electron gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  5. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  6. Theoretical analysis of the multiple resonances for many-level spin systems. The four-level spin system of s electron ions subjected to strong microwave fields

    International Nuclear Information System (INIS)

    Popescu, F.F.; Marica, F.

    1994-01-01

    The analytic steady state solutions of master equation for the density matrix of a multilevel spin system in dilute paramagnetic crystals at high temperature, subjected to strong microwave fields, are discussed. These solutions enable to obtain the populations of the levels, and the microwave powers absorbed or emitted by the crystal, in the presence of one, two or more microwave fields. A detailed theoretical study of the maser effects for s electron ions with nuclear spin one-half is carried out. In the case of three frequency correlated strong fields, when 'the spectroscopic' bridge conditions are fulfilled, sensitive detections, or high efficient generations of microwaves of frequency higher than those of the pumping fields are predicted. (author) 16 figs., 16 refs

  7. Electron-electron correlation, resonant photoemission and X-ray emission spectra

    International Nuclear Information System (INIS)

    Parlebas, J.C.; Kotani, Akio; Tanaka, Satoshi.

    1991-01-01

    In this short review paper we essentially focus on the high energy spectroscopies which involve second order quantum processes, i.e., resonance photoemission, Auger and X-ray emission spectroscopies, denoted respectively by RXPS, AES and XES. First, we summarize the main 3p-RXPS and AES results obtained in Cu and Ni metals; especially we recall that the satellite near the 3p-threshold in the spectra, which arises from a d-hole pair bound state, needs a careful treatment of the electron-electron correlation. Then we analyze the RXPS spectra in a few Ce compounds (CeO 2 , Ce 2 O 3 and CeF 3 ) involving 3d or 4d core levels and we interpret the spectra consistently with the other spectroscopies, such as core XPS and XAS which are first order quantum processes. Finally within the same one-impurity model and basically with the same sets of parameters, we review a theory for the Ce 5p→3d XES, as well as for the corresponding RXES, where (1) the incident X-ray is tuned to resonate with the 3d→4f transition and (2) the X-ray emission due to the 5p→3d transition is actually observed. The paper ends with a general discussion. (author) 77 refs

  8. Correlated double electron capture in slow, highly charged ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L/sub 1/L/sub 23/X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs.

  9. Correlated double electron capture in slow, highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L 1 L 23 X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs

  10. Systematics of strong nuclear amplification of gluon saturation from exclusive vector meson production in high energy electron-nucleus collisions

    Science.gov (United States)

    Mäntysaari, Heikki; Venugopalan, Raju

    2018-06-01

    We show that gluon saturation gives rise to a strong modification of the scaling in both the nuclear mass number A and the virtuality Q2 of the vector meson production cross-section in exclusive deep-inelastic scattering off nuclei. We present qualitative analytic expressions for how the scaling exponents are modified as well as quantitative predictions that can be tested at an Electron-Ion Collider.

  11. Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.; ); Rodionov, V.N.

    2003-01-01

    The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru

  12. Strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2013-01-01

    . With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought...... and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current...

  13. Investigations of electronic structure of Bi and Sb by the method of the angular correlation of annihilation quanta

    International Nuclear Information System (INIS)

    Szuszkiewicz, M.

    1977-01-01

    The work is devoted to the investigations of electronic structure of solid bismuth and antymony using the method of the angular correlation of annihilation quanta, originated from the two-photons annihilation of positrons with the electrons of a sample. The measurements of the angular correlation were performed for monocrystallic samples of Bi and Sb for three crystallographic directions: /011/,/011/, /111/. The analysis of the obtained results is based upon the Brillouin zones theory extended by Jones for the crystalline structure of those semimetals. For Bi for the direction /111/, a distinct discrepancy has been found between the experimental and expected distribution, calculated on the base of the completely occupied Jones zone. This diveragence is assumed to be due to the conductivity electrons occupying the electronic states outside the Jones zone. The angular distributions for all directions of Sb turned out to be inconsistent with the model of Jones zone, containing 10 quasi-free electrons per unit cell. It is possible to give a satisfactory interpretation of the experimental data for Sb under the assumption that the first Brillouin zone in Jones zone is occupied by the electrons, behaving as being strongly localized, (about 2 electrons per unit cell) and the remaining part of Jones zone is occupied by quasi-free electrons, similarly to Bi. (author)

  14. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  15. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records

    Directory of Open Access Journals (Sweden)

    Z. T. Guo

    2009-02-01

    Full Text Available We correlate the China loess and Antarctica ice records to address the inter-hemispheric climate link over the past 800 ka. The results show a broad coupling between Asian and Antarctic climates at the glacial-interglacial scale. However, a number of decoupled aspects are revealed, among which marine isotope stage (MIS 13 exhibits a strong anomaly compared with the other interglacials. It is characterized by unusually positive benthic oxygen (δ18O and carbon isotope (δ13C values in the world oceans, cooler Antarctic temperature, lower summer sea surface temperature in the South Atlantic, lower CO2 and CH4 concentrations, but by extremely strong Asian, Indian and African summer monsoons, weakest Asian winter monsoon, and lowest Asian dust and iron fluxes. Pervasive warm conditions were also evidenced by the records from northern high-latitude regions. These consistently indicate a warmer Northern Hemisphere and a cooler Southern Hemisphere, and hence a strong asymmetry of hemispheric climates during MIS-13. Similar anomalies of lesser extents also occurred during MIS-11 and MIS-5e. Thus, MIS-13 provides a case that the Northern Hemisphere experienced a substantial warming under relatively low concentrations of greenhouse gases. It suggests that the global climate system possesses a natural variability that is not predictable from the simple response of northern summer insolation and atmospheric CO2 changes. During MIS-13, both hemispheres responded in different ways leading to anomalous continental, marine and atmospheric conditions at the global scale. The correlations also suggest that the marine δ18O record is not always a reliable indicator of the northern ice-volume changes, and that the asymmetry of hemispheric climates is one of the prominent factors controlling the strength of Asian, Indian and African monsoon circulations, most likely through modulating the position of

  16. Correlated electron capture and inner-shell excitation measurements in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Clark, M.W.

    1985-01-01

    In an ion-atom collision projectile excitation and charge transfer (electron capture) may occur together in a single encounter. If the excitation and capture are correlated, then the process is called resonant transfer and excitation (RTE); if they are uncorrelated, then the process is termed nonresonant transfer and excitation (NTE). Experimental work to date has shown the existence of RTE and provided strong evidence for NTE. Results presented here provide information on the relative magnitudes of RTE and NTE, the charge state dependence of RTE, the effect of the target momentum distribution on RTE, the magnitude of L-shell RTE compared to K-shell RTE, and the target Z dependences of RTE and NTE. 15 refs., 5 figs

  17. NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems

    CERN Document Server

    Scharnberg, Kurt

    2007-01-01

    The articles collected in this book cover a wide range of materials with extraordinary superconducting and magnetic properties. For many of the materials studied, strong electronic correlations provide a link between these two phenomena which were long thought to be highly antagonistic. Both the progress in our understanding of fundamental physical processes and the advances made towards the development of devices are reported here. The materials studied come in a variety of forms and shapes from bulk to epitaxial films, nano- and heterostructures down to those involving single molecules and double quantum dots. In some cases the structuring serves the study of bulk properties. More often it is the change of these properties with nanostructuring and the properties of different materials in close proximity with each other that are of key interest because of possible application of these materials or heterostructures to quantum computing and spintronics.

  18. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  19. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Wilke, M; Al-Obaidi, R; Moguilevski, A; Kothe, A; Engel, N; Metje, J; Kiyan, I Yu; Aziz, E F

    2014-01-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  20. Electronic structure of disordered binary alloys with short range correlation in Bethe lattice

    International Nuclear Information System (INIS)

    Moreno, I.F.

    1987-01-01

    The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt