WorldWideScience

Sample records for strong electromagnetic interference

  1. Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field

    International Nuclear Information System (INIS)

    Movsesyan, A.M.; Fedorov, M.V.

    1989-01-01

    The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration

  2. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  3. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  4. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  5. Substation electromagnetic interference

    International Nuclear Information System (INIS)

    Felic, G.; Shihab, S.

    1997-01-01

    The electric and magnetic transients in high voltage substations were studied. The electric field measurements were carried out in a 66 kV switchyard of a 500/220/66 kV substation in Melbourne, Australia. The measured waveforms make up a database to be used for reference in the testing of substation control and protection equipment. The objective of this study was to characterize the radiated interference caused by the operation of disconnect switches and circuit breakers. Disconnect switch transients can be a serious hazard for substations because the slow moving contacts during opening and closing can result in arcing events of several seconds duration. Circuit breaker transients were considered to be less hazardous. Transient magnetic fields of at least several tens of A/m can occur during the energization of the capacitor bank. Substation electronic equipment should be tested and protected against the coupling of these transients in order to avoid breakdowns. 5 refs., 4 figs

  6. Carbon nanostructure composite for electromagnetic interference

    Indian Academy of Sciences (India)

    2015-05-30

    based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference.

  7. Conducted Electromagnetic Interference (EMI) in Smart Grids

    CERN Document Server

    Smolenski, Robert

    2012-01-01

    As power systems develop to incorporate renewable energy sources, the delivery systems may be disrupted by the changes involved. The grid’s technology and management must be developed to form Smart Grids between consumers, suppliers and producers. Conducted Electromagnetic Interference (EMI) in Smart Grids considers the specific side effects related to electromagnetic interference (EMI) generated by the application of these Smart Grids. Conducted Electromagnetic Interference (EMI) in Smart Grids presents specific EMI conducted phenomena as well as effective methods to filter and handle them once identified. After introduction to Smart Grids, the following sections cover dedicated methods for EMI reduction and potential avenues for future development including chapters dedicated to: •potential system services, •descriptions of the EMI spectra shaping methods, •methods of interference voltage compensation, and theoretical analysis of experimental results.  By focusing on these key aspects, Conducted El...

  8. Electromagnetic Interference in Smart Grids

    NARCIS (Netherlands)

    Leferink, Frank; Keyer, Cees

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. If equipped with a communication link they are called smart meter. Because the smart meter is a key device in smart grids, any deviation has huge impact on

  9. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  10. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  11. Development of a strong electromagnet wiggler

    International Nuclear Information System (INIS)

    Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.

    1987-01-01

    The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs

  12. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  13. Role of dressed-state interference in electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Khan, Sumanta; Bharti, Vineet; Natarajan, Vasant

    2016-01-01

    Highlights: • Role of dressed-state interference is investigated on lambda, ladder and vee type EIT systems. • The effect of interference decreases with increasing Rabi frequency of the control laser. • Dressed-state interference plays an important role in lambda system and a negligible role in ladder and vee systems. - Abstract: Electromagnetically induced transparency (EIT) in three-level systems uses a strong control laser on one transition to modify the absorption of a weak probe laser on a second transition. The control laser creates dressed states whose decay pathways show interference. We study the role of dressed-state interference in causing EIT in the three types of three-level systems—lambda (Λ), ladder (Ξ), and vee (V). In order to get realistic values for the linewidths of the energy levels involved, we consider appropriate hyperfine levels of "8"7Rb. For such realistic systems, we find that dressed-state interference causes probe absorption—given by the imaginary part of the susceptibility—to go to zero in a Λ system, but plays a negligible role in Ξ and V systems.

  14. Role of dressed-state interference in electromagnetically induced transparency

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sumanta; Bharti, Vineet; Natarajan, Vasant

    2016-12-16

    Highlights: • Role of dressed-state interference is investigated on lambda, ladder and vee type EIT systems. • The effect of interference decreases with increasing Rabi frequency of the control laser. • Dressed-state interference plays an important role in lambda system and a negligible role in ladder and vee systems. - Abstract: Electromagnetically induced transparency (EIT) in three-level systems uses a strong control laser on one transition to modify the absorption of a weak probe laser on a second transition. The control laser creates dressed states whose decay pathways show interference. We study the role of dressed-state interference in causing EIT in the three types of three-level systems—lambda (Λ), ladder (Ξ), and vee (V). In order to get realistic values for the linewidths of the energy levels involved, we consider appropriate hyperfine levels of {sup 87}Rb. For such realistic systems, we find that dressed-state interference causes probe absorption—given by the imaginary part of the susceptibility—to go to zero in a Λ system, but plays a negligible role in Ξ and V systems.

  15. Electromagnetic interference in electrical systems of motor vehicles

    Science.gov (United States)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  16. Electromagnetic radiation from strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Akimoto, K.; Rowland, H.L.; Papadopoulos, K.

    1988-01-01

    A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons

  17. Electromagnetically induced interference in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Du lingjie; Yu Yang; Lan Dong

    2013-01-01

    Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.

  18. Interference and protection of electromagnetic pulse to digital signal processor

    International Nuclear Information System (INIS)

    Wang Yan; Jiao Hongling; He Shanhong; Pan Chao; Feng Deren; Che Wenquan; Xiong Ying

    2013-01-01

    The effective electromagnetic pulse protection is studied in this paper, first the interference of electromagnetic pulse simulator path is analyzed, including the digital signal processor (DSP) and the discharge circuit of coupling interference and net electricity coupling interference. Using the structure optimization design, the hardware block reinforcement measurement and the setting of open software trap, and the watchdog anti-jamming measures, the interference test is completed such as the central processor core voltage of DSP, input/output (I/O) ports of DSP and the display screen. The experimental results show that the combination of hardware and software protection reinforcement technology is effective, and the interference pulse amplitude of DSP board I/O port and the kernel work voltage are reduced, and the interference duration is reduced from 2 μs to 400 ns. The interference pulse is effectively restrained. (authors)

  19. Manager's Role in Electromagnetic Interference (EMI) Control

    Science.gov (United States)

    Sargent, Noel B.; Lewis, Catherine C.

    2013-01-01

    This presentation captures the essence of electromagnetic compatibility (EMC) engineering from a project manager's perspective. It explains the basics of EMC and the benefits to the project of early incorporation of EMC best practices. The EMC requirement products during a project life cycle are identified, along with the requirement verification methods that should be utilized. The goal of the presentation is to raise awareness and simplify the mystique surrounding electromagnetic compatibility for managers that have little or no electromagnetics background

  20. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  1. Unification of electromagnetic, strong and weak interaction

    International Nuclear Information System (INIS)

    Duong Van Phi; Duong Anh Duc

    1993-09-01

    The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs

  2. Strong and Electromagnetic Interactions at SPS Energies

    CERN Document Server

    Ribicki, Andrzej

    2009-01-01

    Particle production in peripheral Pb+Pb collisions has been measured at a beam energy of 158 GeV per nucleon, corresponding to psNN 17.3 GeV. The measurements provide full double differential coverage in a wide range of longitudinal and transverse momenta, including the central (“mid-rapidity”) area and extending far into the projectile fragmentation region. The resulting analysis shows the heavy ion reaction as a mixture of different processes. In particular, surprising phenomena, like the presence of large and strongly varying structures in the shape of the double differential cross section d2s /dxFd pT , are induced by the final state electromagnetic interaction between produced particles and the charged spectator system. This effect is largest at low transverse momenta, where it results in a deep valley in the xF -dependence of the produced p+/p− ratio. The basic characteristics of the electromagnetic phenomenon described above agree with the results of a theoretical analysis, performed by means of ...

  3. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  4. Vulnerability analysis of the wireless infrastructures to intentional electromagnetic interference

    NARCIS (Netherlands)

    van de Beek, G.S.

    2016-01-01

    Contemporary society is greatly dependent upon a set of critical infrastructures (CIs) providing security and quality of life. Electronic systems control the safety-critical functioning of most CIs, and these electronic systems are susceptible to electromagnetic interference (EMI). A threat to the

  5. Electromagnetic Interference in Implantable Rhythm Devices - The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2002-07-01

    Full Text Available Implantable rhythm device (IRD is the generic name for the group of implantable devices used for diagnosis and treatment of cardiac arrhythmias. Devices in this category include cardiac pacemakers, implantable cardioverter defibrillators and implantable loop recorders. Since these devices have complex microelectronic circuitry and use electromagnetic waves for communication, they are susceptible to interference from extraneous sources of electromagnetic radiation and magnetic energy. Electromagnetic interference (EMI is generally not a major problem outside of the hospital environment. The most important interactions occur when a patient is subjected to medical procedures such as magnetic resonance imaging (MRI, electrocautery and radiation therapy. Two articles in this issue of the journal discusses various aspects of EMI on IRD1,2 . Together these articles provide a good review of the various sources of EMI and their interaction with IRD for the treating physician.

  6. Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference

    Science.gov (United States)

    Smith, Wade A.; Fan, Zhiqi; Peng, Zhongxiao; Li, Huaizhong; Randall, Robert B.

    2016-06-01

    The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.

  7. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  8. Relativistic rapprochement of electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs

  9. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  10. Embedding electromagnetic band gap structures in printed circuit boards for electromagnetic interference reduction

    NARCIS (Netherlands)

    Tereshchenko, O.V.

    2015-01-01

    Due to the tendency of faster data rates and lower power supply voltage in the integrated circuit (IC) design, Simultaneously Switching Noise (SSN) and ground bounce become serious concerns for designers and testers. This noise can be a source of electromagnetic interference (EMI). It propagates

  11. Addressing the susceptibility of digital systems to electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V ampersand V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance criteria to ensure that the circuit or system under test meets the recommended guidelines. V ampersand V should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced

  12. Addressing the susceptibility of digital systems to electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V ampersand V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced

  13. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    International Nuclear Information System (INIS)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui

    2015-01-01

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities

  14. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui [Korea Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities.

  15. Interaction of strong electromagnetic fields with atoms

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-06-01

    Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt

  16. Study of electromagnetic interference on quench detecting system of HTS current leads for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Ji, Zhenshan; Zhu, C.M.; Zhen, L.G.; Xiao, Y.Z.

    2013-01-01

    Highlights: • EAST HTS superconducting magnet system shall be operating in a very noisy environment. • Voltage taps will have a lot of inductive voltage induced on them which makes quench detection very difficult. • The noise comes from the coupling between rapid pulsed poloidal coils, and radiation coupling interference associated with EAST heating systems;. • A series of related electromagnetic compatibility simulation tests have been carried out. • Electromagnetic noises are well restrained by choosing proper anti-interference means. -- Abstract: High temperature superconducting (HTS) material B-2223/Ag-Au has been used for EAST poloidal field (PF) coil current leads for reducing construction and operation cost of cryogenic system. The quench propagation velocity of HTS superconducting material is several orders of magnitude lower than that of normal low temperature current leads. It is difficult to detect weak signal of quench which is easily influenced by strong electromagnetic interference (EMI). In this paper, the sources of EMI from quench detecting system of high temperature current leads have been introduced. And we have chosen reasonable methods for good transformation and protection on the basis of electromagnetic compatibility simulation diagnosis experiments. Recent experimental results showed that the restraint of EMI has been achieved and has met the requirements of experiment

  17. The Approximate Capacity Region of the Symmetric $K$-user Gaussian Interference Channel with Strong Interference

    KAUST Repository

    Chaaban, Anas; Sezgin, Aydin

    2016-01-01

    The symmetric K-user interference channel is studied with the goal of characterizing its capacity region in the strong interference regime within a constant gap. The achievable rate region of a scheme combining rate-splitting at the transmitters and interference alignment and successive decoding/computation at the receivers is derived. Next it is shown that this scheme achieves the so-called greedy-max corner points of the capacity region within a constant gap. By combining this result with previous results by Ordentlich et al. on the sum-capacity of the symmetric interference channel, a constant gap characterization of the capacity region for the strong interference regime is obtained. This leads to the first approximate characterization of the capacity region of the symmetric K-user IC. Furthermore, a new scheme that achieves the sum-capacity of the channel in the strong interference regime within a constant gap is also proposed, and the corresponding gap is calculated. The advantage of the new scheme is that it leads to a characterization within a constant gap without leaving an outage set contrary to the scheme by Ordentlich et al..

  18. The Approximate Capacity Region of the Symmetric $K$-user Gaussian Interference Channel with Strong Interference

    KAUST Repository

    Chaaban, Anas

    2016-03-01

    The symmetric K-user interference channel is studied with the goal of characterizing its capacity region in the strong interference regime within a constant gap. The achievable rate region of a scheme combining rate-splitting at the transmitters and interference alignment and successive decoding/computation at the receivers is derived. Next it is shown that this scheme achieves the so-called greedy-max corner points of the capacity region within a constant gap. By combining this result with previous results by Ordentlich et al. on the sum-capacity of the symmetric interference channel, a constant gap characterization of the capacity region for the strong interference regime is obtained. This leads to the first approximate characterization of the capacity region of the symmetric K-user IC. Furthermore, a new scheme that achieves the sum-capacity of the channel in the strong interference regime within a constant gap is also proposed, and the corresponding gap is calculated. The advantage of the new scheme is that it leads to a characterization within a constant gap without leaving an outage set contrary to the scheme by Ordentlich et al..

  19. Strong and electromagnetic interactions in hadron systems

    International Nuclear Information System (INIS)

    Aissat, N.; Amghar, A.; Cano, F.; Gonzalez, F.; Noguera, S.; Carbonell, J.; Desplanques, B.; Silvestre-Brac, B.; Karmanov, V.; Mathiot, J.F.

    1997-01-01

    The pionic strong decay amplitudes of baryon resonances are studied in a constituent quark model. Particular attention is given to the operator describing the transition. The nucleon form factors are calculated in a non-relativistic approach, with emphasis on the highest momentum transfers. The aim is to determine the ingredients that are essential in getting correct results and are likely to be required for a more realistic estimate in a fully relativistic approach. The deuteron form factors have been calculated in the light-front approach using wave functions determined in a perturbative way. The derivation of the neutron charge form factor from the deuteron structure function, A(q 2 ), is reanalyzed including further mesonic exchange contributions. (authors)

  20. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    International Nuclear Information System (INIS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-01-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  1. Electromagnetic interference of mobile phones with electronic implants

    International Nuclear Information System (INIS)

    Kainz, W.

    2000-03-01

    Chapter 1:Interference matrix: The objective of Chapter 1 was to give an overview of the implants used at present and their electromagnetic compatibility (EMC). The evaluation of the available literature provides an estimate of the probability of electronic implants being influenced by various interference sources. A literature search at the AKH (Allgemeines Krankenhaus) in Vienna and at the Technical University of Vienna in the FIZ (Fach-Informations-Zentrum) -Biomedizinische Technik, Medline, Pascal Biomed, CC Search und Embase databases yielded 236 relevant publications. At present 12 different implants are used: pacemaker, defibrillator, cochlear and brain-stem implants, neurostimulators, spinal-cord stimulators, spinal-fusion stimulators, telemetry systems, artificial hearts, drug-delivery systems, neurological pulse generators, visual prosthetics and implantable patient chips. The frequency with which they are used and the EMC on exposure to the various interference sources was summarized. Publications on EMC were found only for the first six implant types and only for 30% of the possible combinations of implant type and interference source. Based on the number of the implants examined, the probability of interference was calculated and summarized in the interference matrix. Chapter 2:Measurements on the phantom: No publication on the electromagnetic compatibility of neurological pulse generators (NPG) could be found. This implant has been used increasingly in the last few years to treat Parkinson's disease. A phantom was built to examine this implant at 900 MHz. The electromagnetic compatibility was measured by exposing the NPG to the fields of ten different 900 MHz GSM mobile phones. Every mobile phone was tested in three different positions relative to the phantom, with four electrode configurations and four stimulation parameters. No interference was found even at a maximum transmit power of 2 watts. Further tests with half-wave dipoles and increased

  2. Tough graphene-polymer microcellular foams for electromagnetic interference shielding.

    Science.gov (United States)

    Zhang, Hao-Bin; Yan, Qing; Zheng, Wen-Ge; He, Zhixian; Yu, Zhong-Zhen

    2011-03-01

    Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

  3. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    Science.gov (United States)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  4. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  5. Propagation of strong electromagnetic beams in inhomogeneous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1980-09-01

    We study some simple aspects of nonlinear propagation of relativistically strong electromagnetic beams in inhomogeneous plasmas, especially in connection with effects of beam self-trapping in extended extragalactic radio sources. The two effects of (i) long scale longitudinal and radial inhomogeneities inherent to the plasma and (ii) radial inhomogeneities produced by the ponderomotive force of the beam itself are investigated.

  6. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  7. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    Science.gov (United States)

    Swanson, David J.

    1990-08-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  8. Spontaneous electromagnetic emission from a strongly localized plasma flow.

    Science.gov (United States)

    Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E

    2011-05-06

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  9. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  10. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  11. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    Science.gov (United States)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  12. Beta decay and other processes in strong electromagnetic fields

    International Nuclear Information System (INIS)

    Akhmedov, E. Kh.

    2011-01-01

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.

  13. Electromagnetic Interference from Swimming Pool Generator Current Causing Inappropriate ICD Discharges

    Directory of Open Access Journals (Sweden)

    Edward Samuel Roberto

    2017-01-01

    Full Text Available Electromagnetic interference (EMI includes any electromagnetic field signal that can be detected by device circuitry, with potentially serious consequences: incorrect sensing, pacing, device mode switching, and defibrillation. This is a unique case of extracardiac EMI by alternating current leakage from a submerged motor used to recycle chlorinated water, resulting in false rhythm detection and inappropriate ICD discharge. A 31-year-old female with arrhythmogenic right ventricular cardiomyopathy and Medtronic dual-chamber ICD placement presented after several inappropriate ICD shocks at the public swimming pool. Patient had never received prior shocks and device was appropriate at all regular follow-ups. Intracardiac electrograms revealed unique, high-frequency signals at exactly 120 msec suggestive of EMI from a strong external source of alternating current. Electrical artifact was incorrectly sensed as a ventricular arrhythmia which resulted in discharge. ICD parameters including sensing, pacing thresholds, and impedance were all normal suggesting against device malfunction. With device failure and intracardiac sources excluded, EMI was therefore strongly suspected. Avoidance of EMI source brought complete resolution with no further inappropriate shocks. After exclusion of intracardiac interference, device malfunction, and abnormal settings, extracardiac etiologies such as EMI must be thoughtfully considered and excluded. Elimination of inappropriate shocks is to “first, do no harm.”

  14. Experimental research for γ-ray interference threshold effect of high electromagnetic pulse sensor

    International Nuclear Information System (INIS)

    Meng Cui; Chen Xiangyue; Nie Xin; Xiang Hui; Guo Xiaoqiang; Mao Congguang; Cheng Jianping; Ni Jianping

    2007-01-01

    The high electromagnetic pulse (EMP) sensor using optical-fiber to transmit signal can restrain electromagnetic interference. The Compton electrons scattered by γ-ray irradiated from nuclear explosion or nuclear explosion simulator can generate high EMP, γ-ray can penetrate the shielding box and irradiate the integrated circuit directly. The γ-ray irradiation effect includes interference, latch up and burn out, these will make the measurement result unbelievable. In this paper, the experimental method researching the γ-ray irradiation effect of high electromagnetic pulse sensor on Qiangguang-I accelerator is introduced. The γ-ray dose rate interference threshold is 2 x 10 6 Gy/s. (authors)

  15. Strong interactions and electromagnetism in low-energy hadron physics

    International Nuclear Information System (INIS)

    Kubis, B.

    2002-10-01

    In the present work, we study various aspects of the entanglement of the strong and electromagnetic interactions as it is manifest in low-energy hadron physics. In the framework of chiral perturbation theory, two aspects are investigated: the test of the structure of baryons as probed by external electromagnetic currents, and the modification of reactions mediated by the strong interactions in the presence of internal (virtual) photons. In the first part of this work, we study the electromagnetic form factors of nucleons and the ground state baryon octet, as well as strangeness form factors of the nucleon. Emphasis is put on the comparison of a new relativistic scheme for the calculation of loop diagrams to the heavy-baryon formalism, and on the convergence of higher-order corrections in both schemes. The new scheme is shown to yield both a phenomenologically more successful description of the data and better convergence behaviour. In the second part, we study isospin violation in pion-kaon scattering as mediated by virtual photon effects and the light quark mass difference. This investigation is of particular importance for the extraction of scattering lengths from measurements of lifetime and energy levels in pion-kaon atoms. The isospin breaking corrections are shown to be small and sufficiently well under control. (orig.)

  16. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never

  17. Vulnerability of terrestrial-trunked radio to intelligent intentional electromagnetic interference

    NARCIS (Netherlands)

    Tanuhardja, Ray R.; van de Beek, G.S.; Bentum, Marinus Jan; Leferink, Frank Bernardus Johannes

    2015-01-01

    The terrestrial-trunked radio (TETRA) specification is produced by the European Telecommunication Standards Institute for private mobile radio systems. We investigated the resilience of TETRA against intelligent intentional electromagnetic interference (IEMI) with low amplitude. Low power signals

  18. Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter

    Science.gov (United States)

    2016-09-01

    With the growing demand for a reliable electrical grid, backup power supplies and energy management systems are a necessity. Systems such as server...ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER

  19. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  20. Study on Electromagnetic Interference of high-speed railway EMU

    OpenAIRE

    CHENG Qiang; LIU Jin-jiang; CHENG Ning

    2013-01-01

    Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in th...

  1. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    Science.gov (United States)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  2. Interference Effects in Strong-Field Dissociative Ionization

    DEFF Research Database (Denmark)

    Yue, Lun; Madsen, Lars Bojer

    2015-01-01

    with simple energy conservation arguments. We explain the structures as interferences between wave packets released during different optical cycles, and during the same optical cycle, respectively. Both inter- and intracycle interference structures are clearly visible in the joint energy spectra. The shapes...

  3. The electromagnetic interferent antennae for gravitational waves detection

    International Nuclear Information System (INIS)

    Kulak, A.

    1984-01-01

    An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)

  4. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chubin [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China); Pan, Fusheng; Chen, Xianhua [Chongqing University, College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloy, Chongqing (China); Luo, Ning [Gannan Normal University, Jiangxi Provincial Engineering Research Center for Magnesium Alloy, Ganzhou (China)

    2017-06-15

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement. (orig.)

  5. Electromagnetic Interference in Patients with Implanted Cardioverter-Defibrillators and Implantable Loop Recorders

    Directory of Open Access Journals (Sweden)

    Marcos de Sousa

    2002-07-01

    Full Text Available Modern life exposes us all to an ever-increasing number of potential sources of electromagnetic interference (EMI and patients with Implantable rhythm devices (IRD like pacemakers, implantable cardioverter defibrillators or implantable loop recorders often ask about the use of microwave ovens, walking through airport metal detectors and the use of cellular phones. Electromagnetic interference occurs when electromagnetic waves emitted by one device impede the normal function of another electronic device. The potential for interaction between implanted pacing systems and cardioverter-defibrillators (electromagnetic interference, EMI has been recognized for years.1,2,3,4. It has been shown that EMI can produce clinically significant effects on patients with implanted pacemakers and ICDs. For these reasons the following text discusses the influence of several EMI generating devices on IRD .

  6. Electromagnetic interference-induced instability in CPP-GMR read heads

    International Nuclear Information System (INIS)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A.; Mewes, T.; Mewes, C.K.A.; Kruesubthaworn, A.

    2016-01-01

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  7. Electromagnetic interference-induced instability in CPP-GMR read heads

    Energy Technology Data Exchange (ETDEWEB)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Mewes, T.; Mewes, C.K.A. [Department of Physics and Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Kruesubthaworn, A., E-mail: anankr@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-08-15

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  8. Evaluation of electromagnetic interference between electromagnet and permanent magnet of reed switch of SMART control rod driver mechanism

    International Nuclear Information System (INIS)

    Hur, H.; Kim, J. H.; Park, J. S.; Yoo, J. Y.; Kim, J. I.

    2002-01-01

    Integral reactors require a fine reactivity control CEDM since the nuclear heating is used during the startup. Although a linear pulse motor type had been chosen for the SMART CEDM, a ball screw type is being considered as an alternative. A ball screw type CEDM driven by a rotary step motor has an emergency insertion system using electromagnet and also has a permanent magnet for RSPT in the upper pressure housing above the electromagnet. So it is necessary to evaluate an electromagnetic interference for reed switches in the vicinity of the electromagnet. This paper describes the design parameters for effective operation and the optimum design point was determined by analyzing the trend of the EMI characteristics

  9. Weak-electromagnetic interference in polarized eD scattering

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1992-09-01

    Observation of parity non-conservation in deep-inelastic scattering of polarized electrons from deuterium was reported in an experiment at SLAC in 1978. The events at SLAC and elsewhere leading to the successful search for parity non-conservation in the electromagnetic processes are described

  10. Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas

    Science.gov (United States)

    Mohajer Iravani, Baharak

    Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower

  11. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  12. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    International Nuclear Information System (INIS)

    CHASE, B.; CITTERIO, M.; LANNI, F.; MAKOWIECKI, D.; RADEKA, S.; RESCIA, S.; TAKAI, H.

    1999-01-01

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail

  13. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    International Nuclear Information System (INIS)

    CHASE, R.L.; CITTERIO, M.; LANNI, F.; MAKOWIECKI, D.; RADEKA, V.; RESCIA, S.; TAKAI, H.; BAN, J.; PARSONS, J.; SIPPACH, W.

    2000-01-01

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail

  14. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  15. Lightning induced inappropriate ICD shock: an unusual case of electromagnetic interference.

    Science.gov (United States)

    Anderson, Daniel R; Gillberg, Jeffrey M; Torrey, Jeffrey W; Koneru, Jayanthi N

    2012-06-01

    An unusual case of electromagnetic interference is presented. As a result of a lightning shock to a Shower House, our patient received two shocks. An elucidation of the different mechanisms for the two shocks is presented. ©2010, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  16. Generation of complete coherence in Young's interference experiment with random mutually uncorrelated electromagnetic beams

    NARCIS (Netherlands)

    Agarwal, G. S.; Dogariu, A.; Visser, T.D.; Wolf, E.

    2005-01-01

    The recently developed theory that unifies the treatments of polarization and coherence of random electro-magnetic beams is applied to study field correlations in Young's interference experiment. It is found that at certain pairs of points the transmitted field is spatially fully coherent,

  17. Systematic Design of a Transimpedance Amplifier With Specified Electromagnetic Out-of-Band Interference Behavior

    NARCIS (Netherlands)

    van der Horst, Marcel J.; Linnenbank, Andre C.; Serdijn, Wouter A.; Long, John R.

    2010-01-01

    In negative-feedback amplifier design, electromagnetic interference (EMI) behavior is usually completely disregarded. EMI can, e.g., result in detection of low-frequency envelope variations of the usually high-frequency interfering signals. If the detected signals end up in the pass band of the

  18. [The effect of an experimental occlusal interference on the masticatory cycle recorded by electromagnetic pantography].

    Science.gov (United States)

    Godefroy, J N; Yardin, M

    1991-06-01

    The effects of occlusal interference on masticatory cycles have been studied in twenty nine volunteers with complete natural dentition, using an electromagnetic pantograph (Sirognatograph, Siemens A.G.). After a one week recall, a decrease in speed motion was noted and the range of cycles in the horizontal plane had been altered.

  19. Electromagnetic interference of bone-anchored hearing aids by cellular phones.

    Science.gov (United States)

    Kompis, M; Negri, S; Häusler, R

    2000-10-01

    We report a case of electromagnetic interference between a bone-anchored hearing aid (BAHA) and a cellular phone. A 54-year-old women was successfully treated for severe mixed conductive and sensorineural hearing loss with a BAHA. Five years after implantation, the patient experienced a sudden feeling of dizziness, accompanied by a loud buzzing sound and by a sensation of head pressure while examining a digital mobile phone. During a subsequent experiment, the buzzing sound could be reproduced and was identified as electromagnetic interference between the BAHA and digital cellular phones. Seventeen adult BAHA users from our clinic participated in a subsequent survey. Of the 13 patients with some experience of digital cellular phones, 11 reported hearing annoying noises elicited by these devices. However, no other sensation, such as dizziness, was described. Owing to the increasing number of users of both hearing aids and cellular phones, the incidence of electromagnetic interference must be expected to increase as well. Although to date there is no evidence that such interference may be harmful or dangerous to users of conventional or bone-anchored hearing aids, unexpected interference can be a frightening experience.

  20. Electromagnetic Interference Issues of A Wireless Power Transmission Converter

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Haji Bashi, Mazaher; Silva, Filipe Miguel Faria da

    2018-01-01

    field and the leakage current flowing through stray capacitors. In this paper, the EMI of wireless power transmission technology is highlighted and for the first time evaluated from a new perspective. The possible parasitic paths are identified simply. Additionally, effective high-frequency models......Many recent studies have focused on the inductive charging to transfer electrical power from a source to batteries without any electrical interface. The main problem with them is that inductive charging technologies may have electromagnetic compatibility (EMC) issues caused by the leakage magnetic...... for each part of the inductive charger are presented. At the first, the lowest EMI technology for wireless charging is chosen and simulated. To overcome the EMI and leakage current problems, this paper also suggests using a new passive EMI filter topology. Simulation results show the necessity...

  1. Effects of electromagnetic shielding cases for semiconductor-type electronic personal dosimeters on preventing electromagnetic interference

    International Nuclear Information System (INIS)

    Deji, Shizuhiko; Ito, Shigeki; Nishizawa, Kunihide; Saze, Takuya; Mori, Kazuyuki

    2005-01-01

    Performance of electromagnetic shielding cases for preventing malfunction of semiconductor-type electronic personal dosimeters (SEPDs) caused by high frequency electromagnetic fields emitted from a digital cellular telephone (cell phone) and a card reader of access control system were analyzed. The cases were handcrafted by using cloth of activated carbon fiber, polyester film laminated metal, and two kinds of metal netting. Five kinds of SEPDs put in the cases were exposed to the high frequency electromagnetic fields for 50 sec or 1 min. The cases prevented perfectly the malfunction due to the cell phone. The cases shortened distances required to prevent the malfunction due to the card reader, but did not prevent the malfunction. The electromagnetic immunity level of SEPD inserted in the cases increased from greater than 11.2 to greater than 18.7 times for the cell phone and from 1.1 to greater than 4.3 times for the card reader. The maximum of electromagnetic shielding effectiveness of each case was greater than 18.7 times for the cell phone and greater than 4.3 times for the card reader. (author)

  2. Fabrication and electromagnetic interference shielding effectiveness of polymeric composites filled with silver-coated microorganism cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mingming, E-mail: lan_mingming@163.com [College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002 (China); Zhang, Deyuan; Cai, Jun; Hu, Yanyan; Yuan, Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2014-07-01

    In this paper, helical silver-coated Spirulina cells were used as conductive fillers for the fabrication of polymeric composites. The morphology and composition of the coated Spirulina cells were analyzed with scanning electron microscope and energy dispersive X-ray spectrometer. The densities of silver-coated Spirulina cells were measured using the standard Archimedes method with distilled water. The electrical resistivity was measured by four-probe technique using ammeter and voltmeter whereas electromagnetic interference shielding effectiveness was measured by four-port method using vector network analyzer and coaxial-airline sample holder. The results showed that the silver-coated Spirulina cells with different coating thickness were lightweight fillers compared to the other typical conductive particles. The polymeric composites could achieve good conductivity at the lower content of silver-coated Spirulina cells owing to their helical shape. The shielding effectiveness of polymeric composites had a strong dependence on their conductivity. At the coating thickness of 0.96 μm and the content of 40 vol%, the shielding effectiveness could reach above 74.3 dB in entire test wave band.

  3. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films

    International Nuclear Information System (INIS)

    Li Yong; Chen Changxin; Zhang Song; Ni Yuwei; Huang Jie

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field

  4. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  5. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    Energy Technology Data Exchange (ETDEWEB)

    J. Cunningham and J. Shank

    2004-11-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I&C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner.

  6. Guidelines for Electromagnetic Interference Testing of Power Plant Equipment: Revision 3 to TR-102323

    International Nuclear Information System (INIS)

    Cunningham, J.; Shank, J.

    2004-01-01

    To continue meeting safety and reliability requirements while controlling costs, operators of nuclear power plants must be able to replace and upgrade equipment in a cost-effective manner. One issue that has been problematic for new plant equipment and especially for digital instrumentation and control (I and C) systems in recent years is electromagnetic compatibility (EMC). The EMC issue usually involves testing to show that critical equipment will not be adversely affected by electromagnetic interference (EMI) in the plant environment. This guide will help nuclear plant engineers address EMC issues and qualification testing in a consistent, comprehensive manner

  7. The effect of electromagnetic interference from mobile communication on the performance of intensive care ventilators.

    Science.gov (United States)

    Jones, R P; Conway, D H

    2005-08-01

    Electromagnetic interference produced by wireless communication can affect medical devices and hospital policies exist to address this risk. During the transfer of ventilated patients, these policies may be compromised by essential communication between base and receiving hospitals. Local wireless networks (e.g. Bluetooth) may reduce the 'spaghetti syndrome' of wires and cables seen on intensive care units, but also generate electromagnetic interference. The aim of this study was to investigate these effects on displayed and actual ventilator performance. Five ventilators were tested: Drager Oxylog 2000, BREAS LTV-1000, Respironics BiPAP VISION, Puritan Bennett 7200 and 840. Electromagnetic interference was generated by three devices: Simoco 8020 radio handset, Nokia 7210 and Nokia 6230 mobile phone, Nokia 6230 communicating via Bluetooth with a Palm Tungsten T Personal Digital Assistant. We followed the American National Standard Recommended Practice for On-Site, Ad Hoc Testing (ANSI C63) for electromagnetic interference. We used a ventilator tester, to simulate healthy adult lungs and measure ventilator performance. The communication device under test was moved in towards each ventilator from a distance of 1 m in six axes. Alarms or error codes on the ventilator were recorded, as was ventilator performance. All ventilators tested, except for the Respironics VISION, showed a display error when subjected to electromagnetic interference from the Nokia phones and Simoco radio. Ventilator performance was only affected by the radio which caused the Puritan Bennett 840 to stop functioning completely. The transfer ventilators' performance were not affected by radio or mobile phone, although the mobile phone did trigger a low-power alarm. Effects on intensive care ventilators included display reset, with the ventilator restoring normal display function within 2 s, and low-power/low-pressure alarms. Bluetooth transmission had no effect on the function of all the

  8. AANA Journal Course: update for nurse anesthetists. Arrhythmia management devices and electromagnetic interference.

    Science.gov (United States)

    Mattingly, Emily

    2005-04-01

    The technological complexity of implantable arrhythmia management devices, specifically pacemakers and defibrillators, has increased dramatically since their introduction only a few decades ago. Patients with such devices are encountered much more frequently in hospitals and surgery centers, yet anesthesia provider knowledge of safe and proper management is often incomplete. Anesthesia textbooks and references may provide only short paragraphs on arrhythmia management devices that do not address important perioperative management strategies for this ever-growing patient population. It is no longer satisfactory to simply place a magnet over an implanted device during surgery and assume that this action protects the patient from harm due to electromagnetic interference from inappropriate device function. This AANA Journal course serves as a concise review of basic device function, the sources and effects of electromagnetic interference in the operative setting, and patient management recommendations from current literature.

  9. Inelastic processes and interference effects during the interaction of positronium with ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eseev, M. K., E-mail: m_eseev@mail.ru; Matveev, V. I., E-mail: matveev.victor@pomorsu.ru [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2013-11-15

    The excitation, breakup, and reradiation during the interaction of a positronium atom with ultrashort electromagnetic pulses are considered. The probabilities of inelastic processes and reradiation spectra have been obtained. The interference between the amplitudes of the photon emission by the electron and positron is shown to contribute noticeably to the reradiation spectra. The developed approach is applicable for describing the interaction of positronium with ultrashort pulses of attosecond or shorter duration.

  10. Laser diode current controller with a high level of protection against electromagnetic interference

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Jedlička, Petr; Číp, Ondřej; Růžička, Bohdan

    2003-01-01

    Roč. 74, č. 8 (2003), s. 3816 - 3819 ISSN 0034-6748 R&D Projects: GA AV ČR IBS2508201; GA AV ČR IAA2065803; GA ČR GA101/01/1104; GA AV ČR IBS2065009 Institutional research plan: CEZ:AV0Z2065902 Keywords : laser diode * electromagnetic interference * ripple free voltage Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.343, year: 2003

  11. Polarization of the interference field during reflection of electromagnetic waves from an intermedia boundary

    Science.gov (United States)

    Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.

    1996-10-01

    It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.

  12. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    International Nuclear Information System (INIS)

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants

  13. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  14. Multiscale KF Algorithm for Strong Fractional Noise Interference Suppression in Discrete-Time UWB Systems

    Directory of Open Access Journals (Sweden)

    Liyun Su

    2011-01-01

    Full Text Available In order to suppress the interference of the strong fractional noise signal in discrete-time ultrawideband (UWB systems, this paper presents a new UWB multi-scale Kalman filter (KF algorithm for the interference suppression. This approach solves the problem of the narrowband interference (NBI as nonstationary fractional signal in UWB communication, which does not need to estimate any channel parameter. In this paper, the received sampled signal is transformed through multiscale wavelet to obtain a state transition equation and an observation equation based on the stationarity theory of wavelet coefficients in time domain. Then through the Kalman filter method, fractional signal of arbitrary scale is easily figured out. Finally, fractional noise interference is subtracted from the received signal. Performance analysis and computer simulations reveal that this algorithm is effective to reduce the strong fractional noise when the sampling rate is low.

  15. Reduction of Electromagnetic Interference Using ZnO-PCL Nanocomposites at Microwave Frequency

    Directory of Open Access Journals (Sweden)

    Abubakar Yakubu

    2015-01-01

    Full Text Available In industrial equipment and home appliance applications, the electromagnetic compatibility compliance directive (ECCD demands that electromagnetic interference side effects be eliminated or marginally minimized. The equipment must not disturb radio and telecommunication as well as other appliances. Additionally the ECCD also governs the immunity of such equipment to interference and seeks to ensure that this equipment is not disturbed by radio emissions when used as intended. Many types of absorbing materials are commercially available. However, many are expensive and not environmentally friendly. It is in the light of the above that we studied the electromagnetic absorption properties of ZnO-PCL nanocomposites prepared from cheap and abundant resources which are environmentally friendly (zinc and polycaprolactone. The test was carried out using a microstrip, open ended coaxial probe, and vector network analyzer. Amongst other findings, result showed that the ZnO-PCL nanocomposite has the capability of attenuating microwave frequency up to −18.2 dB due to their very high specific surface areas attributed to the nanofillers at 12 GHz.

  16. Electromagnetic Interference Assessment of CDMA and GSM Wireless Phones to Aircraft Navigation Radios

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Koppen, Sandra V.; Salud, M. Theresa

    2002-01-01

    To address the concern for cellular phone electromagnetic interference (EMI) to aircraft radios, a radiated emission measurement process for CDMA (IS-95) and GSM (ETSI GSM 11.22) wireless handsets was developed. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective isotropic radiated power. Eight representative handsets (4 GSM, 4 CDMA) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation for cellular/PCS phones, Bluetooth, IEEE802.11b, IEEE802.11a, FRS/GMRS radios, and other portable transmitters. Aircraft interference path loss (IPL) and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using this data, a preliminary risk assessment is provided for CDMA and GSM wireless phone interference to aircraft localizer, Glideslope, VOR, and GPS radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, IPL, and navigation radio interference thresholds needs to be extended for an accurate risk assessment for wireless transmitters in aircraft.

  17. Technical basis for acceptance criteria on the susceptibility of digital systems to electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1992-01-01

    This paper discusses the development of the technical basis for establishing acceptance criteria on the susceptibility of digital systems to electromagnetic interference (EMI). The effort is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed with the application of digital instrumentation and controls systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic voltage levels, thereby leading to the risk of susceptibility when spurious interference is misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and their impact on other nearby circuits and systems. Then, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related problems associated with EMI will be greatly reduced

  18. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    Science.gov (United States)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  19. Electromagnetic interference produced by power or electrified railway lines on metallic pipe networks

    International Nuclear Information System (INIS)

    Lucca, G.

    1999-01-01

    The paper presents an algorithm for the calculation, in the frequency domain, of the induced voltages and currents on a generic metallic pipe network exposed to the electromagnetic interference from a power line or an electrified railway line. By assuming as known the voltages and the currents on the inducing line, the algorithm may be subdivided into the following main steps: a) determination of the ideal electromotive force and current generators to be applied to the induced structure in order to represent the electromagnetic influence from the inducing line; b) modelling of the pipe network by means of a suitable equivalent electric network; c) calculation of voltages and currents on the induced network [it

  20. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    International Nuclear Information System (INIS)

    Bi, Shuguang; Zhang, Liying; Mu, Chenzhong; Liu, Ming; Hu, Xiao

    2017-01-01

    Graphical abstract: The electromagnetic interference shielding behavior and proposed mechanisms of ultralight free-standing 3D graphene aerogels. - Highlights: • The electromagnetic interference (EMI) shielding properties and mechanisms of ultralight 3D graphene aerogels (GAs) were systematically studied with respect to both the unique porous network and the intrinsic properties of the graphene sheets. • Thickness of the shielding material played a critical role on EMI SE. • By compressing the porous GAs into compact film didnt increase the EMI SE despite the increased electrical conductivity and connectivity. EMI SE is highly dependent on the effective amounts of the materials response to the EM waves. - Abstract: Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm"3) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp"2 graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  1. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Shuguang [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Zhang, Liying, E-mail: LY.Zhang@ntu.edu.sg [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Mu, Chenzhong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Liu, Ming, E-mail: LIUMING@ntu.edu.sg [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Hu, Xiao [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2017-08-01

    Graphical abstract: The electromagnetic interference shielding behavior and proposed mechanisms of ultralight free-standing 3D graphene aerogels. - Highlights: • The electromagnetic interference (EMI) shielding properties and mechanisms of ultralight 3D graphene aerogels (GAs) were systematically studied with respect to both the unique porous network and the intrinsic properties of the graphene sheets. • Thickness of the shielding material played a critical role on EMI SE. • By compressing the porous GAs into compact film didnt increase the EMI SE despite the increased electrical conductivity and connectivity. EMI SE is highly dependent on the effective amounts of the materials response to the EM waves. - Abstract: Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm{sup 3}) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp{sup 2} graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  2. Evaluation of electromagnetic interference environment of the instrumentation and control systems in nuclear power units

    Energy Technology Data Exchange (ETDEWEB)

    Min, Moon-Gi; Lee, Jae-Ki; Ji, Yeong-Haw; Jo, Sung-Han [Korea Hydro & Nuclear Power Co., Ltd., 1312-70 Yuesong-daero, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-04-15

    Highlights: • We surveyed the electromagnetic emissions at the location of I&C systems. • We assessed the electromagnetic levels on reactor types from thirteen nuclear plants. • We evaluated the margin between plant emission limits and the highest composite levels. • We presented the formula of radiated susceptibility test levels to non-safety-related I&C systems. - Abstract: The electromagnetic interference (EMI) generated from sources in power units can interfere with digital Instrument and Control (I&C) systems. When EMI is emitted with conducted and radiated noise, it interferes with the signals of the I&C systems. Since the digital I&C systems are efficient and competitively priced, the analogue I&C systems have been upgraded and replaced with digital I&C systems, but these systems have less EMI immunity. When safety-related I&C systems are installed in the units, the verification of equipment EMI should not be done in site-specific tests but in test facilities. There are needs to do the overall site-specific EMI assessment of I&C systems depending on the reactor types from thirteen operating units. This study evaluated the margin between plant emission limits and the highest composite plant emissions of the EMI. When the non-safety-related I&C equipment or systems are placed in the units, there are no individual test levels of the radiated electrical field. If need be, the level should comply with the test levels of the radiated electrical field on the safety-related I&C systems. This paper presents the test levels of radiated electrical fields to non-safety-related I&C equipment or systems.

  3. A Systems-Based Risk Assessment Framework for Intentional Electromagnetic Interference (IEMI) on Critical Infrastructures.

    Science.gov (United States)

    Oakes, Benjamin Donald; Mattsson, Lars-Göran; Näsman, Per; Glazunov, Andrés Alayón

    2018-01-03

    Modern infrastructures are becoming increasingly dependent on electronic systems, leaving them more vulnerable to electrical surges or electromagnetic interference. Electromagnetic disturbances appear in nature, e.g., lightning and solar wind; however, they may also be generated by man-made technology to maliciously damage or disturb electronic equipment. This article presents a systematic risk assessment framework for identifying possible, consequential, and plausible intentional electromagnetic interference (IEMI) attacks on an arbitrary distribution network infrastructure. In the absence of available data on IEMI occurrences, we find that a systems-based risk assessment is more useful than a probabilistic approach. We therefore modify the often applied definition of risk, i.e., a set of triplets containing scenario, probability, and consequence, to a set of quadruplets: scenario, resource requirements, plausibility, and consequence. Probability is "replaced" by resource requirements and plausibility, where the former is the minimum amount and type of equipment necessary to successfully carry out an attack scenario and the latter is a subjective assessment of the extent of the existence of attackers who possess the motivation, knowledge, and resources necessary to carry out the scenario. We apply the concept of intrusion areas and classify electromagnetic source technology according to key attributes. Worst-case scenarios are identified for different quantities of attacker resources. The most plausible and consequential of these are deemed the most important scenarios and should provide useful decision support in a countermeasures effort. Finally, an example of the proposed risk assessment framework, based on notional data, is provided on a hypothetical water distribution network. © 2017 Society for Risk Analysis.

  4. Proceedings: Electromagnetic interference control in modern digital instrumentation and control upgrades

    International Nuclear Information System (INIS)

    1993-06-01

    A workshop on Electro-Magnetic Interference (EMI) Control in Modern Digital Instrumentation ampersand Control System Upgrade was held in Baltimore on September 10-11, 1992 to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 70 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, and government agencies. The workshop consists of four sessions: (1) Organizational EMC Perspectives, (2) EMI Environment, Case Histories ampersand Solutions, (3) EMC in Digital Instrumentation ampersand Control Systems, and (4) EMI Utility Needs. A group discussion followed the presentations to identify utility needs. Individual papers have been cataloged separately

  5. Air-gap Limitations and Bypass Techniques: “Command and Control” using Smart Electromagnetic Interferences

    Directory of Open Access Journals (Sweden)

    Chaouki Kasmi

    2016-01-01

    Full Text Available Air gaps are generally considered to be a very efficient information security protection. However, this technique also showed limitations, involving finding covert channels for bridging the air gap. Interestingly, recent publications have pointed out that a smart use of the intentional electromagnetic interferences introduced new threats for information security. In this paper, an innovative way for remotely communicating with a malware already installed on a computer by involving the induced perturbations is discussed leading to the design of a new air gap bridging covert channel.

  6. Anti-electromagnetic interference analysis of equivalent circuit of ion channel based on the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Chu, J; Chang, X L; Zhao, M; Man, M H; Wei, M; Yuan, L

    2013-01-01

    With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of b ioelectrical immunity . So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.

  7. Shielding effectiveness of a unit of neuro physiology against electromagnetic interference

    International Nuclear Information System (INIS)

    Febles Santana, V.; Miguel Bilbao, S. de; Lubary Rodriguez, C. S.; Melian del Castillo, M. R.; Herraz Gomez, J. G.; Ramos Gonzalez, V.; Fernandez de Aldecoa, J. C.

    2011-01-01

    During construction of the new building Ambulatory Activity in the Hospital Universitario de Canarias (HUC), was designed and implemented the shield in the form of Faraday cage, five rooms adjacent to the Unit of Neuro physiology, located at the northeast corner 3C plant of the building, in order to sufficiently attenuate radio signals present in the medium and thus enable correct functionality of electro medical equipment free of artifacts caused by external electromagnetic fields. The experience held, once finished the work and commissioning the unit, is that interference is undesirable in some cases even hinder the proper development of medical diagnostic studies. Therefore, technical staff of the Engineering Branch of HUC, initiated a program of measures to determine the effectiveness of the Faraday cage constructed, checking the attenuation levels achieved for frequencies of interest and, if necessary, the deficiencies identified in the design and execution of it, and proposed improvements to minimize interference problems exist.

  8. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  9. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  10. Electromagnetic processes in strong crystalline fields - NA63 Status Report

    CERN Document Server

    Ugerhoj, Ulrik

    2009-01-01

    Results obtained in the framework of the NA63 experiment cite{Ande05} at CERN are reported. Analysis of the trident production in the strong crystalline fields of single Ge crystals is completed. Yields in the random ('amorphous') orientation are in good agreement with calculations, and in the aligned case the production is enhanced by about a factor 3 compared to a Ge amorphous material. Results on the formation lengths of several microns for the production of GeV photons from ultrarelativistic electrons have been published. In 2008 we performed a measurement of resonance phenomena in structured targets and studied a possible change in restricted energy loss in thin solid state detectors, for sufficiently high values of the Lorentz factor. The plans for 2009 are to study the 'semi-bare electron' from radiation emission in thin targets and to study the spin-flip mechanisms in radiation emission, relevant for beamstrahlung phenomena in future linear colliders such as CLIC.

  11. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  12. Shielding and filtering techniques to protect sensitive instrumentation from electromagnetic interference caused by arc welding

    International Nuclear Information System (INIS)

    Kalechstein, W.

    1997-01-01

    Electromagnetic interference (EMI) caused by arc welding is a concern for sensitive CANDU instrumentation and control equipment, especially start-up instrumentation (SUI) and ion chamber instruments used to measure neutron flux at low power. Measurements of the effectiveness of simple shielding and filtering techniques that may be applied to limit arc welding electromagnetic emissions below the interference threshold are described. Shielding configurations investigated include an arrangement in which the welding power supply, torch (electrode holder), interconnecting cables and welder operator were housed in a single enclosure and a more practical configuration of separate shields for the power supply, cables and operator with torch. The two configuration were found to provide 30 dB and 26 dB attenuation, respectively, for arc welder electric-field emissions and were successful in preventing EMI in SUI set up just outside the shielding enclosures. Practical improvements that may be incorporated in the shielding arrangement to facilitate quick setup in the field in a variety of application environments, while maintaining adequate EMI protection, are discussed. (author)

  13. Investigation of electromagnetic interference effects by ESD simulator on test parameters of tunneling magnetic recording heads

    Energy Technology Data Exchange (ETDEWEB)

    Kruesubthaworn, A., E-mail: anankr@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Mewes, T.; Mewes, C.K.A. [Department of Physics and Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-01-01

    Electrostatic discharge (ESD) has been an important issue in the manufacturing processes of hard disk drive. It can also generate electromagnetic interference (EMI) which could possibly damage magnetic recording heads. The aims of this work are to measure the EMI from ESD events and to examine the effects of EMI on the heads. The discharge current and the EMI generated by an ESD simulator were experimentally measured. Also, the EMI was applied to the heads to determine if this can cause changes of head parameters. Our results show that the discharge current waveform is consistent with the theoretical waveform of the IEC ESD standard. Additionally, we found that the EMI applied due to ESD at distances greater than 2 cm does not have any significant effect on the head parameters. Hence, further detailed experiments are proposed to evaluate the EMI effects on recording head parameters in order to improve the measurement methodologies to prevent the degradation of the heads performance and to increase the robustness of the heads. - Highlights: • The electrostatic discharge (ESD) has been an important issue for the hard disk drive. • The electromagnetic interference (EMI) radiated by ESD IEC 61000-4-2 was focused. • Effects of the EMI on the magnetic recording head were examined. • The change of parameters of the writer and reader due to the EMI was measured. • The EMI could not cause any significant affectation on the writer and reader.

  14. Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)

    2015-09-17

    The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks

  15. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  16. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    Science.gov (United States)

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  17. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092 (China); Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903 (United States); Wang, Yang; Weng, George J., E-mail: weng@jove.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903 (United States); Zhong, Zheng [School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092 (China)

    2016-08-28

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-void composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.

  18. Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A revie

    Directory of Open Access Journals (Sweden)

    Periyasamy M. Mariappan

    2016-09-01

    Full Text Available There has been an increase in the potential use of wireless devices in healthcare domain for a variety of reasons. The most commonly used device is the cellular phone, which emits strong electromagnetic energy affecting thereby the functionality of the vital medical equipment such as ventilators, ECG monitors, cardiac monitors, and defibrillators. This prompted the healthcare concerns to restrict the use of these phones in the proximity of critical and non-critical care medical equipment. Due to the developments made in the design of medical equipment to comply with the EMC standards, the restriction had been slowly laid off. Still, the researchers are concerned about the electromagnetic interference with medical devices by cellular phones in the healthcare domain and recommend for conducting continuous research to study their interaction with medical equipment. This paper overviews the certain investigations carried out in the recent years to study the electromagnetic interference between medical devices and 2G/3G/4G LTE cellular phones. During the initial development of cellular phones, the 2G cellular phones had caused more interference that affects the function and operation of some medical devices. The possibility of interference from 3G cellular phones with medical devices was considerably lower than the 2G phones, but still exists. Furthermore, almost all of the 4G phones have little to no interference with the medical devices. Currently, with the development of the medical devices industry, the current medical devices are designed to operate safely under any conditions of usage. Finally, a careful analysis would require statistics on the frequency of adverse events across the healthcare system, which apparently do not exist.

  19. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  20. Interference effects during the reradiation of ultrashort electromagnetic pulses by polyatomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N.; Matveev, V. I., E-mail: mezon98@mail.ru [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2013-11-15

    A theory of the reradiation of ultrashort electromagnetic pulses by arbitrary polyatomic systems of isolated complex atoms has been developed. The technique used allows the spatial inhomogeneity of the field of an ultrashort pulse and photon momenta in reradiation processes to be accurately taken into account. The angular distributions of the reradiation spectra have been obtained for an arbitrary number of atoms in the system. The processes of interference between the photon emission amplitudes are shown to give rise to characteristic “diffraction” maxima. We consider one-dimensional, two-dimensional, and three-dimensional rectangular lattices as examples as well as planar and cylindrical structures as models of planar nanosystems and nanotubes.

  1. Status of NRC approval of EPRI electromagnetic interference susceptibility testing guidelines for digital equipment

    International Nuclear Information System (INIS)

    James, R.W.; Shank, J.W.; Yoder, C.

    1996-01-01

    Historically, nuclear power plants installing digital equipment have been required to conduct expensive, site-specific electromagnetic interference (EMI) surveys to demonstrate that EMI will not affect the operation of sensitive electronic equipment. Consequently, EPRI formed a Utility Working Group which developed a set of generic EMI susceptibility testing guidelines, which were published as an EPRI report in September 1994. These guidelines are based upon EMI survey data obtained from several different plants and include criteria for determining their applicability. The Working Group interacted with NRC staff to obtain NRC approval. In April 1996, the NRC issued a Safety Evaluation Report (SER) endorsing the guidelines as a valid means of demonstrating EMI compatibility. The issuance of this SER was conditional on issuing a revision to the EPRI EMI Guidelines. This paper summarizes the guidelines, the NRC SER, and the current status of Revision 1 to the report

  2. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    Science.gov (United States)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  3. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    Science.gov (United States)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  4. Weak-electromagnetic interference effects in the production of hadrons in electron-positron collisions

    International Nuclear Information System (INIS)

    Nieves, J.F.

    1980-01-01

    A framework for a systematic study of the weak-electromagnetic interference effects in the production of hadrons in e - e + collisions is presented and, in the case of the inclusive processes, the predictions of the quark-parton model are given. The approach to the calculation of these effects in e - e + H + X, where H is a pseudoscalar meson, a spin-1/2 baryon, or a vector meson, consists of setting down a general formula for the appropriate transition probability in terms of structure functions whose form is delimited by symmetry considerations. The quark-parton model is then used to express the structure functions in terms of the quark couplings and fragmentation probabilities. In this fashion the forward-backward asymmetry A/sub H/ and longitudinal polarization P/sub H/ are calculated in terms of the vector (a/sub q/) and axial-vector (b/sub q/) weak-neutral-current couplings of the quarks composing H, their electric charges Q/sub q/, and their (q → H) fragmentation probabilities. Using a theoretical argument for hadrons containing one heavy c,b,...quark, and SU(3) symmetry for hadrons composed of light u,d,s quarks, A/sub H/ is expressed in terms of b/sub q/ and Q/sub q/ only. In similar fashion, some relations between the various P/sub H/, independent of the fragmentation probabilities, are obtained. The results are discussed in detail for the strange and charmed hadrons.The exclusive processes e - e + → M anti M and e - e + → MV, where M is a pseudoscalar meson and V is a vector meson, are also discussed and the possibility of observing the weak-electromagnetic interference effects when M and V contain the t quark is noted

  5. A Novel Application of Machine Learning Methods to Model Microcontroller Upset Due to Intentional Electromagnetic Interference

    Science.gov (United States)

    Bilalic, Rusmir

    A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.

  6. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene.

    Science.gov (United States)

    Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling

    2017-10-04

    Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

  7. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    Science.gov (United States)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  8. Electromagnetic interference of implantable cardiac devices from a shoulder massage machine.

    Science.gov (United States)

    Yoshida, Saeko; Fujiwara, Kousaku; Kohira, Satoshi; Hirose, Minoru

    2014-09-01

    Shoulder massage machines have two pads that are driven by solenoid coils to perform a per cussive massage on the shoulders. There have been concerns that such machines might create electromagnetic interference (EMI) in implantable cardiac devices because of the time-varying magnetic fields produced by the alternating current in the solenoid coils. The objective of this study was to investigate the potential EMI from one such shoulder massage machine on implantable cardiac devices. We measured the distribution profile of the magnetic field intensity around the massage machine. Furthermore, we performed an inhibition test and an asynchronous test on an implantable cardiac pacemaker using the standardized Irnich human body model. We examined the events on an implantable cardioverter-defibrillator (ICD) using a pacemaker programmer while the massage machine was in operation. The magnetic field distribution profile exhibited a peak intensity of 212 (A/m) in one of the solenoid coils. The maximal interference distance between the massage machine and the implantable cardiac pacemaker was 28 cm. Ventricular fibrillation was induced when the massage machine was brought near the electrode of the ICD and touched the Irnich human body model. It is necessary to provide a "don't use" warning on the box or the exterior of the massage machines or in the user manuals and to caution patients with implanted pacemakers about the dangers and appropriate usage of massage machines.

  9. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    Science.gov (United States)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-04-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  10. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    Science.gov (United States)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-05-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  11. Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless

    Science.gov (United States)

    Ely, Jay J.

    2005-01-01

    Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI.

  12. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  13. Low risk of electromagnetic interference between smartphones and contemporary implantable cardioverter defibrillators.

    Science.gov (United States)

    Burri, Haran; Mondouagne Engkolo, Louis Paulin; Dayal, Nicolas; Etemadi, Abdul; Makhlouf, Anne-Marie; Stettler, Carine; Trentaz, Florence

    2016-05-01

    Manufacturers of implantable cardioverter defibrillators (ICDs) recommend that cell phones be maintained at a distance of ∼15 cm from the implanted device in order to avoid risk of dysfunction due to electromagnetic interference (EMI). Data relating to this issue are outdated and do not reflect modern technology. Our aim was to evaluate whether EMI is still an issue with contemporary ICDs and smartphones. Consecutive patients implanted with a wireless-enabled ICD were tested for potential interference with two models of recent 4G smartphones in conditions intended to maximize risk of EMI. A magnet effect (due to the phone speakers) was tested by placing the smartphones in the standby mode directly over the ICD generator. The presence of EMI artefacts on the real-time electrograms was evaluated by placing the smartphones in the standby, dialling, and operating modes directly over the generator casing and over the parasternal region in the vicinity of the ventricular lead. A total of 63 patients equipped with 29 different models of single, dual, or biventricular ICDs from five major manufacturers were included. None of the patients showed any evidence of interference with the smartphones during any of the 882 tests. The risk of EMI between modern smartphones and contemporary ICDs is low. This is probably due to the filters incorporated in the ICDs and low emission by the phones, as well as the small size of the magnets in the smartphones tested. NCT02330900 (http://www.clinicaltrials.gov). Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  14. New Definitions of Electromagnetic Screening of Cases in Front of Radiates Interferences

    Science.gov (United States)

    Garcia Perez, Luis Gines

    Electromagnetic shielding enclosures are simulated in this PhD thesis. Metallic enclosures with a frontal aperture have been implemented and shielding effectiveness has been calculated in frequency and time domains. The CST Microwave Studio application has been used, and necessary electromagnetic shielding measurements have been implemented in order to confirm the simulated results. An anechoic chamber and the network vector analyser ZVA 67 R&S have been employed. There were different set-ups that consist on two shielding enclosures with different apertures on their frontal walls, as well as an electric and a magnetic probes, and an external log-periodic antenna. The electromagnetic field shielding of enclosures against radiated interferences, and its study in the frequency and time domains requires to determine specific parameters for the measurement of the shielding effectiveness (SE). With this target recently it has been essayed indicators based on the peak reduction of electric and magnetic fields and the energy density in the time domain. Although many papers have been published with numeric simulations, rarely real measures in laboratory have been published. In the first part of this study, some important theoretical concepts have been explained, as the high intensity penetration of radiated fields in enclosures with apertures, several ways to define the shielding effectiveness, analytic formulations and different parameters among other concepts, in the frequency and time domains. Then, the system is defined, as from the implementations for simulations and calculations in CST Microwave Studio point of view, as from the set-ups implemented in laboratory point of view. In this section the features and utilization of the network vector analyser ZVA 67 R&S;, anechoic chamber design and dimensions, log-periodic antenna features, and all the different probes, enclosures and apertures employed have been detailed. After de system definition simulated and measured

  15. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    International Nuclear Information System (INIS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-01-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency

  16. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    Science.gov (United States)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  17. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Kirill Tuchin

    2013-01-01

    Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

  18. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  19. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    Science.gov (United States)

    Guag, Joshua; Addissie, Bisrat; Witters, Donald

    2017-03-20

    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED

  20. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    Science.gov (United States)

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  1. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.

    Science.gov (United States)

    Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng

    2017-11-30

    Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.

  2. Experimentation at LEP: weak-electromagnetic interference, QED and two-photon physics

    International Nuclear Information System (INIS)

    Davier, M.

    1979-01-01

    The energy range opened by LEP will permit a clean and direct study of the weak interaction. Of particular importance are those effects resulting from the interference between the weak and the electromagnetic (EM) currents: it is shown that they give access to the basic couplings which can be measured unambiguously. The paper is in three parts. The first and major section deals with the weak interaction experiments. Most of the calculations and estimates rely on the Weinberg-Salam model as a realistic guide of what might happen. The second section is devoted to 2γ processes. On one hand they constitute an interesting physics study which has been assessed both from theory and experiment and appears promising. On the other hand, they can generate background to many annihilation channels and this aspect has been studied in detail. The last section presents a brief look at short distance tests of Quantum Electrodynamics (QED) - a restricted, but important area of research at LEP. (Auth.)

  3. Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2016-12-01

    Full Text Available Quasi-resonant flyback (QRF converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

  4. Electromagnetic soliton production during interaction of relativistically strong laser pulses with plasma

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Kamenets, F.F.; Naumova, N.M.

    1995-01-01

    The paper presents the results of a numeric modelling of the propagation of ultra short relativistically strong laser pulses in a rarefied plasma by the 'particle in cell'. Primary attention is paid to the process of the formation of electromagnetic solitons which can not be described in the approximation of envelopes. It is found that under certain conditions a significant portion of pulse energy can transform is solitons. The soliton excitation mechanism is related to a decrease of local frequency of electromagnetic radiation due to the generation of wave plasma waves. From one soliton to a stub of solitons can be generated in the wake of a relatively long pulse depending on the parameters of laser pulse in plasma. Particles are effectively accelerated forwards radiation propagation in the electric field of wake plasma waves. 22 refs., 7 figs

  5. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  6. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    Directory of Open Access Journals (Sweden)

    Zornoza, E.

    2010-12-01

    Full Text Available The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre, fly ash (with 5.6%, 15.9% and 24.3% Fe2O3, and a mix of both on electromagnetic interference (EMI shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic radiation and the percentage of the magnetic fraction in the fly ash. The findings showed that the polyacrylonitrile-based carbon fibres, which had the highest aspect ratio, provided more effective shielding than any of the other carbon materials studied. Shielding was more effective in thicker specimens and at higher radiation frequencies. Raising the magnetic fraction of the fly ash, in turn, also enhanced paste shielding performance. Finally, adding both carbon fibre and fly ash to the paste resulted in the most effective EMI shielding as a result of the synergies generated.

    En el presente trabajo se investiga la influencia de la adición de diferentes tipos de materiales carbonosos (polvo de grafito y 3 tipos de fibra de carbono, de una ceniza volante con diferentes contenidos de fase magnética (5,6%, 15,9% y 24,3% de Fe2O3 y de una mezcla de ambos, sobre la capacidad de apantallar interferencias electromagnéticas de pastas de cemento Pórtland. Entre los parámetros estudiados se encuentra: el tipo de material carbonoso, la relación de aspecto del material carbonoso, el espesor del material compuesto, la frecuencia de la radiación electromagnética incidente y el porcentaje de fracción magnética en la ceniza volante. Los resultados obtenidos indican que entre los materiales carbonosos estudiados son las fibras de carbono basadas en poliacrilonitrilo con una mayor relación de aspecto las que dan mejores resultados de apantallamiento. Al aumentar

  7. Intrathecal Pump Exposure to Electromagnetic Interference: A Report of Device Interrogation following Multiple ECT Sessions.

    Science.gov (United States)

    Bicket, Mark C; Hanna, George M

    2016-02-01

    Intrathecal drug delivery systems represent an increasingly common treatment modality for patients with a variety of conditions, including chronic pain and spasticity. Pumps rely on electronic programming to properly control and administer highly concentrated medications. Electromagnetic interference (EMI) is a known exposure that may cause a potential patient safety issue stemming from direct patient injury, pump damage, or changes to pump operation or flow rate. The objective of our case report was to describe an approach to evaluating a patient with a pump prior to and following exposure to EMI from electroconvulsive therapy (ECT), as well as to document findings from device interrogations associated with this event. Case report. Academic university-based pain management center. We present the case of a patient with an intrathecal pump who underwent multiple exposures to EMI in the form of 42 ECT sessions. Interrogation of the intrathecal drug delivery system revealed no safety issues following ECT sessions. At no time were error messages, unintentional changes in event logs, unintentional changes in pump settings, or evidence of pump stall or over-infusion noted. Communication with multiple entities (patient, family, consulting physicians, and device manufacturer) and maintaining vigilance through device interrogation both before and after EMI exposure are appropriate safeguards to mitigate the risk and detect potential adverse events of EMI with intrathecal drug delivery systems. Given the infrequent reports of device exposure to ECT, best practices may be derived from experience with EMI exposure from magnetic resonance imaging (MRI). Although routine EMI exposure to intrathecal drug delivery systems should be avoided, we describe one patient with repeated exposure to ECT without apparent complication.

  8. Evaluating Electromagnetic Interference of Communication Devices with Root ZX Mini Apex Locator

    Directory of Open Access Journals (Sweden)

    Marzieh Shafieibavani

    2016-01-01

    Full Text Available Introduction: The correct determination of working length is a critical factor in the success of endodontic treatment. Nowadays, the electronic apex locators (EALs is more used because of their ease of use, high accuracy, and the uncertainty of other methods. Because EALs use the electronic method, it is likely that electromagnetic waves (EMWs affect their performance. This study aims to investigate the possibility of this interference. Materials and Methods: The visual canal length (CL of 12 maxillary incisors (Vertucci’s type I was measured with a K-file and magnifying glass. Root ZX mini apex locator is used to measure CL in the absence/presence of EMWs in both the second (2G and third generations (3G of mobile communication network at the mode of ringing and conversation at direct contact and the distances of 25 and 50 cm. Results: The mean CL at presence of EMWs in all conditions and distances (by removing the conversation with 2G at direct contact group were not significantly difference with CL and EAL and absence of investigated EMWs group (Repeated-Measures Analysis of Variance (ANOVA, P = 0.083. The indicator of EAL were unstable on apex sign at least 5 seconds for 5 teeth (41.7% of samples in conversation with 2G at the direct contact group. Conclusion: EMWs of 2G and 3G not causes malfunctions of the Root ZX mini apex locator except conversation with 2G at the direct contact.

  9. Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.

  10. Electromagnetic interference from welding and motors on implantable cardioverter-defibrillators as tested in the electrically hostile work site.

    Science.gov (United States)

    Fetter, J G; Benditt, D G; Stanton, M S

    1996-08-01

    This study was designed to determine the susceptibility of an implanted cardioverter-defibrillator to electromagnetic interference in an electrically hostile work site environment, with the ultimate goal of allowing the patient to return to work. Normal operation of an implanted cardioverter-defibrillator depends on reliable sensing of the heart's electrical activity. Consequently, there is concern that external electromagnetic interference from external sources in the work place, especially welding equipment or motor-generator systems, may be sensed and produce inappropriate shocks or abnormal reed switch operation, temporarily suspending detection of ventricular tachycardia or ventricular fibrillation. The effects of electromagnetic interference on the operation of one type of implantable cardioverter-defibrillator (Medtronic models 7217 and 7219) was measured by using internal event counter monitoring in 10 patients operating arc welders at up to 900 A or working near 200-hp motors and 1 patient close to a locomotive starter drawing up to 400 A. The electromagnetic interference produced two sources of potential interference on the sensing circuit or reed switch operation, respectively: 1) electrical fields with measured frequencies up to 50 MHz produced by the high currents during welding electrode activation, and 2) magnetic fields produced by the current in the welding electrode and cable. The defibrillator sensitivity was programmed to the highest (most sensitive) value: 0.15 mV (model 7219) or 0.3 mV (model 7217). The ventricular tachycardia and ventricular fibrillation therapies were temporarily turned off but the detection circuits left on. None of the implanted defibrillators tested were affected by oversensing of the electric field as verified by telemetry from the detection circuits. The magnetic field from 225-A welding current produced a flux density of 1.2 G; this density was not adequate to close the reed switch, which requires approximately 10 G

  11. Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    Suganuma, Hideo; Tatsumi, Toshitaka.

    1993-01-01

    We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)

  12. Lagrangian formulation for a gauge theory of strong and electromagnetic interactions defined on a Cartan bundle

    International Nuclear Information System (INIS)

    Drechsler, W.

    1977-01-01

    A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory

  13. An electromagnetic compatibility study of cardiac pacemaker to low frequency interferences

    International Nuclear Information System (INIS)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M.

    2006-01-01

    This paper presents an experimental study of the behaviour of cardiac pacemaker submitted to low frequency electromagnetic interferences. The method used in this study is progressive. It consists in starting from the target (the cardiac pacemaker), identifying and quantifying the disturbances (the source), and then introducing secondary influencing parameters in stepwise fashion. The general problematic consists in checking this immunity in relation with led disruptions and in relation with beaming disruptions. The experimental approach suggests two kind of tests corresponding to the two studied coupling modes. The first one corresponds to a direct applying of the disruptive signal between the pacemaker terminals. The objective of this phase is to determine the characteristics of the signal (amplitude and frequency) which are detected by the pacemaker and which generate modifications of its operation. In the second phase the pacemaker is subjected to a variable low frequency magnetic field. This last interacts with the pacemaker by inductive coupling through the loop formed by the pacemaker and its leads and the surrounding medium. This interaction results in an induced electromotive force between the terminals of the pacemaker which can potentially disturb the operation of this last. The objective of this phase is to characterize the signal (magnetic field) likely to generate these disturbances. Tests are carried out on six single chamber pacemaker and five dual chamber pacemaker. The interfering signal frequencies are 50 Hz, 60 Hz, 10 khz and 25 khz. Tracking and programming of the pacemaker housing is achieved with the telemetry system. In this study, the devices have all been configured in inhibited stimulation (S.S.I. or V.V.I. mode according to the international codification), this configuration being the most widespread. The housing stimulates the basic frequency in the absence o f intrinsic activity, the stimulation can be inhibited in each chamber by a

  14. An electromagnetic compatibility study of cardiac pacemaker to low frequency interferences

    Energy Technology Data Exchange (ETDEWEB)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M. [Nancy-1 Univ. Henri Poincare, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France)

    2006-07-01

    This paper presents an experimental study of the behaviour of cardiac pacemaker submitted to low frequency electromagnetic interferences. The method used in this study is progressive. It consists in starting from the target (the cardiac pacemaker), identifying and quantifying the disturbances (the source), and then introducing secondary influencing parameters in stepwise fashion. The general problematic consists in checking this immunity in relation with led disruptions and in relation with beaming disruptions. The experimental approach suggests two kind of tests corresponding to the two studied coupling modes. The first one corresponds to a direct applying of the disruptive signal between the pacemaker terminals. The objective of this phase is to determine the characteristics of the signal (amplitude and frequency) which are detected by the pacemaker and which generate modifications of its operation. In the second phase the pacemaker is subjected to a variable low frequency magnetic field. This last interacts with the pacemaker by inductive coupling through the loop formed by the pacemaker and its leads and the surrounding medium. This interaction results in an induced electromotive force between the terminals of the pacemaker which can potentially disturb the operation of this last. The objective of this phase is to characterize the signal (magnetic field) likely to generate these disturbances. Tests are carried out on six single chamber pacemaker and five dual chamber pacemaker. The interfering signal frequencies are 50 Hz, 60 Hz, 10 khz and 25 khz. Tracking and programming of the pacemaker housing is achieved with the telemetry system. In this study, the devices have all been configured in inhibited stimulation (S.S.I. or V.V.I. mode according to the international codification), this configuration being the most widespread. The housing stimulates the basic frequency in the absence o f intrinsic activity, the stimulation can be inhibited in each chamber by a

  15. The measurement of interplanetary scintillations in conditions of strong radio interference

    International Nuclear Information System (INIS)

    Duffett-Smith, P.J.

    1980-01-01

    Observations of interplanetary scintillations (IPS) are often severely limited by interference from man-made transmissions within the receiver pass-band. A new method of measuring IPS is described which can give useful data even in conditions of bad interference. (author)

  16. Introduction to gauge theories of the strong, weak, and electromagnetic interactions

    International Nuclear Information System (INIS)

    Quigg, C.

    1980-07-01

    The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios

  17. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    Science.gov (United States)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  18. Introduction to unified theories of weak, electromagnetic and strong interactions - SU(5)

    International Nuclear Information System (INIS)

    Billoire, Alain; Morel, Andre.

    1980-11-01

    These notes correspond to a series of lectures given at Salay during winter 1979-1980. They are meant to be an introduction to the so-called grand unified theories of weak, electromagnetic and strong interactions. In a first part, we recall in a very elementary way the standard SU(2) model of electroweak interactions, putting the emphasis on the questions which are left open by this model and which unified theories help to answer. In part II, we explain in a systematic way how unified theories can be constructed, and develop the SU(5) model in great detail. Other models, like SO(10) and E 6 , are not presented, because SU(5) is the simplest one and has been subject to the deepest investigations up to now. Also it appears that most concepts and general results are not specific to any particular symmetry group [fr

  19. Application of chaotic pulse width modulation control for suppressing electromagnetic interference in a half-bridge converter

    Directory of Open Access Journals (Sweden)

    Yuhong Song

    2014-08-01

    Full Text Available It was proposed in the former research that chaos control can be used to suppress electromagnetic interference (EMI in DC–DC converters. Analysis on a half-bridge converter is detailed in this study. Here, the practical example of the power supply of personal computers is given to show that, with an external chaotic signal to a pulse width modulation control circuit, the proposed approach can reduce EMI by reducing the amplitudes of power signals such as transformer current and output inductor currents at multiples of fundamental frequency.

  20. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  1. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  2. Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance

    International Nuclear Information System (INIS)

    Yang Lijun; Zhang Lianshui; Li Xiaoli; Han Li; Fu Guangsheng; Manson, Neil B.; Suter, Dieter; Wei Changjiang

    2005-01-01

    In this paper we study the nonlinear behavior of an electromagnetically induced transparency (EIT) resonance subject to a coherent driving field. The EIT is associated with a Λ three-level system where two hyperfine levels within an electronic ground state are coupled to a common excited state level by a coupling field and a probe field. In addition there is an radio-frequency (rf) field driving a hyperfine transition within the ground state. The paper contrasts two different situations. In one case the rf-driven transition shares a common level with the probed transition and in the second case it shares a common level with the coupled transition. In both cases the EIT resonance is split into a doublet and the characteristics of the EIT doublet are determined by the strength and frequency of the rf-driving field. The doublet splitting originates from the rf-field induced dynamic Stark effect and has close analogy with the Autler-Townes effect observed in three-level pump-probe spectroscopy study. The situation changes when the rf field is strong and the two cases are very different. One is analogous to two Λ three-level systems with EIT resonance associated with each. The other corresponds to a doubly driven three-level system with rf-field-induced electromagnetically induced absorption resonance. The two situations are modeled using numerical solutions of the relevant equation of motion of density matrix. In addition a physical account of their behaviors is given in terms of a dressed state picture

  3. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    Science.gov (United States)

    Greening, Gage J.

    2016-01-01

    The Project Management and Engineering Branch (SF4) supports the Human Health and Performance Directorate (HH&P) and is responsible for developing and supporting human systems hardware for the International Space Station (ISS). When a principal investigator's (PI) medical research project on the ISS is accepted, SF4 develops the necessary hardware and software to transport to the ISS. The two projects I primarily worked on were the centrifuge and ultrasound projects. Centrifuge: One concern with spacecraft such as the ISS is electromagnetic interference (EMI) from onboard equipment, typically from radio waves (frequencies of 3 kHz to 300 GHz), which can negatively affect nearby circuitry. Standard commercial centrifuges produce EMI above safety limits, so my task was to help reduce EMI production from this equipment. Two centrifuges were tested: one unmodified as a control and one modified. To reduce EMI below safety limits, one centrifuge was modified to become a Faraday shield, in which significant electrical contact was made between all regions of the centrifuge housing. This included removing non-conductive paint, applying conductive fabric to the lid and foam sealer, adding a 10,000 µF decoupling capacitor across the power supply, and adding copper adhesive-mount gaskets to the housing interior. EMI testing of both centrifuges was performed in the EMI/EMC Control Test and Measurement Facility. EMI for both centrifuges was below safety limits for frequencies between 10 MHz and 15 GHz (pass); however, between 14 kHz and 10 MHz, EMI for the unmodified centrifuge exceeded safety limits (fail) as expected. Alternatively, for the modified centrifuge with the Faraday shield, EMI was below the safely limit of 55 dBµV/m for electromagnetic frequencies between 14 kHz and 10 MHz. This result indicates our modifications were successful. The successful EMI test allowed us to communicate with the vendor what modifications they needed to make to their commercial unit to

  4. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  5. The Potential of Coconut Shell Powder (CSP) and Coconut Shell Activated Carbon (CSAC) Composites as Electromagnetic Interference (EMI) Absorbing Material

    International Nuclear Information System (INIS)

    Siti Nurbazilah Abdul Jabal; Seok, Y.B.; Hoon, W.F.

    2016-01-01

    Agriculture waste is potentially useful as an alternative material to absorb and attenuate electromagnetic interference (EMI). This research highlights the use of coconut shell powder (CSP) and coconut shell activated carbon (CSAC) as raw materials with epoxy resin and amine hardener composite to absorb microwave signals over frequency of 1 - 8 GHz. In order to investigate the suitability of these raw materials as EMI absorbing material, carbon composition of the raw materials is determined through CHNS Elemental Analysis. The surface morphology of the raw materials in term of porosity is investigated by using TM3000 Scanning Electron Microscope (SEM). The complex permittivity of the composites is determined by using high temperature dielectric probe in conjunction with Network Analyzer. From the result, the Carbon% of CSP and CSAC is 46.70 % and 84.28 % respectively. In term of surface morphology, the surface porosity of CSP and CSAC is in the range of 2 μm and 1 μm respectively. For the dielectric properties, the dielectric constant and the dielectric loss factor for CSP and CSAC is 4.5767 and 64.8307 and 1.2144 and 13.8296 respectively. The materials more potentially useful as substitute materials for electromagnetic interference (EMI) absorbing are discussed. (author)

  6. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    Science.gov (United States)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  7. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions

    Science.gov (United States)

    Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.

    2018-02-01

    Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.

  8. The influence of electromagnetic interference and ionizing radiation on cardiac pacemakers

    International Nuclear Information System (INIS)

    Salmi, J.; Malmivuo, J.A.V.

    1990-01-01

    Adverse effects of the ionizing and non-ionizing electromagnetic fields on five pacemaker models have been tested. The study consisted of three parts: 1. measurement of magnetic fields in a radiotherapy room (microtron MM14), 2. the application of non-ionizing electromagnetic fields on pacemakers in a test laboratory (1 ... 1000 μT, 10 ... 10 000 Hz), and 3. the application of ionizing radiation of different types of radiotherapy devices on the pacemakers. The magnetic field strength in the microtron treatment room was found to be under 7.5 μT, which is one order of magnitude lower than the tolerance level obtained for the pacemakers in the test laboratory. All the tested pacemakers tolerated the ionizing radiation dose levels (less than 60 Gy) which are used in the radiotherapy. (orig.) [de

  9. Resonant excitation and the decay of autoionization states in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Andryushin, A.I.; Kazakov, A.E.; Fedorov, M.V.

    1985-01-01

    Photoionization of atoms involving resonant excitation of the auto-ionization state is studied. The evolution of the total ionization probability, its dependence on the frequency of the resonance radiation and also the photoelectron energy spectrum are investigated. It is shown that the energy of the final state of the system may be localized either in the vicinity of E approximately Esub(α), where Esub(α) is the auto-ionization energy, or in the vicinity of E approximately Esub(α)+h/2πω where h/2πω is the quantum energy of the resonance radiation. The photoelectron specturum in the region E approximately Esub(α)+h/2πω as a whole is similar to the electron spectrum on photoionization of atoms involving resonance excitation of the bound state. A strong effect on the photoelectron spectrum in the region E approximately Esub(α) is exerted by interference of various decay channels of the ground state in the resonance field which leads to the appearance in the spectrum of a characteristic structure of the Fano type. Interence also affects the widths of the two spectral curves, the relatve amount of electrons in the two energy ranges and also other characteristics of the ionization process. It is shown that the presence of a noninterfering photoionization channel of the autoionization state ensures the finiteness of the swidths and heights of the spectral curves and the absence of complete ''coherency merging''

  10. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    Energy Technology Data Exchange (ETDEWEB)

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  11. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I ampersand C systems

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.

    1994-04-01

    This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I ampersand C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I ampersand C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I ampersand C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I ampersand C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided

  12. Problems related to stimulated electromagnetic emissions, strong turbulence and ionospheric modification

    International Nuclear Information System (INIS)

    Goodman, S.

    1993-05-01

    Optical pumping of the ionospheric plasma by high-frequency radio waves produces a state of turbulence. Several consequences of the pumping are considered in this thesis. At reflection altitude the plasma is thought to be dominated by parametric instabilities and strong turbulence; these are both encapsulated in the so called Zakharov equations. The Zakharov equations are derived and generalised from kinetic theory. Limits of validity, corrections to the ion sound speed,effective ponderomotive force, nonlinear damping and other generalisation are included. As an example of the difference a kinetic approach makes, the threshold for parametric instabilities is seen to be lowered in a kinetic plasma. Mostly relevant to the upper hybrid layer is the recent discovery in the pumping experiments of stimulated electromagnetic emissions (SEE). In particular one feature of SEE which occurs around the cyclotron harmonics and depends on density striations is investigated. The observed frequency of emission, dependency on striations, time evolution and cutoff frequency below which the feature does not occur, are explained. Two theoretical approaches are taken. The first is a parametric three wave decay instability followed by a nonlinear mixing to produce SEE. Thresholds for the instability are well within experimental capacity. The second, less orthodox, approach, is a finite amplitude model. The finite amplitude model goes beyond the traditional parametric approach by being able to predict radiated power output. Miscellaneous aspects of a turbulent ionosphere are also examined. The dependency of the scattering cross section of a turbulent plasma upon higher order perturbations is considered. In a turbulent plasma, density gradients steeper than characteristic plasma scales may develop. The case of calculating the dielectric permittivity for a linear gradient of arbitrary steepness is considered

  13. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.; Reddy, S.; Pons, J.A.

    1999-01-01

    An extensive study of the effects of correlations on both charged and neutral current weak interaction rates in dense matter is performed. Both strong and electromagnetic correlations are considered. The propagation of particle-hole interactions in the medium plays an important role in determining the neutrino mean free paths. The effects due to Pauli blocking and density, spin, and isospin correlations in the medium significantly reduce the neutrino cross sections. As a result of the lack of experimental information at high density, these correlations are necessarily model dependent. For example, spin correlations in nonrelativistic models are found to lead to larger suppressions of neutrino cross sections compared to those of relativistic models. This is due to the tendency of the nonrelativistic models to develop spin instabilities. Notwithstanding the above caveats, and the differences between nonrelativistic and relativistic approaches such as the spin- and isospin-dependent interactions and the nucleon effective masses, suppressions of order 2 - 3, relative to the case in which correlations are ignored, are obtained. Neutrino interactions in dense matter are especially important for supernova and early neutron star evolution calculations. The effects of correlations for protoneutron star evolution are calculated. Large effects on the internal thermodynamic properties of protoneutron stars, such as the temperature, are found. These translate into significant early enhancements in the emitted neutrino energies and fluxes, especially after a few seconds. At late times, beyond about 10 s, the emitted neutrino fluxes decrease more rapidly compared to simulations without the effects of correlations, due to the more rapid onset of neutrino transparency in the protoneutron star. copyright 1999 The American Physical Society

  14. Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions

    International Nuclear Information System (INIS)

    Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng

    2012-01-01

    We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.

  15. Measurements, characteristics, and origin of new electromagnetic interference on magnetocardiographic measurements

    International Nuclear Information System (INIS)

    Gu Hong-Fang; Cai Wen-Yan; Wei Yu-Ke; Liu Zheng-Hao; Wang Qian; Wang Yue; Dai Yuan-Dong; Ma Ping

    2012-01-01

    In order to eliminate the influence of the large-amplitude magnetic field noise that has complicated magnetocardiographic studies since October 2009, we have performed high-accuracy measurement of the environmental magnetic field noise in the vicinity of Beijing Subway Line 4 using a three-component height T c radio frequency (rf) superconducting quantum interference device (SQUID). By analysing the spatial form and other characteristics of the time and the frequency domains and by calculating the circumferential magnetic field distribution based on a duel-end feeding system model, we reach the following conclusions: (i) the main source of magnetic field noise is the magnetic field generated by the subway trains, and (ii) the magnetic field interference results mainly from the imbalance between traction current and return rail current that is caused by the leakage current. (general)

  16. The effects of ionizing radiation on eight cardiac pacemakers and the influence of electromagnetic interference from two linear accelerators

    International Nuclear Information System (INIS)

    Venselaar, J.L.M.

    1985-01-01

    Eight cardiac pacemakers were irradiated in a cobalt-60 beam. Two out of six demand-type pacemakers showed an alarming decrease in pulse repetition frequency when irradiated to dose levels that are used in radiotherapy. Two modern programmable pacemakers showed a failure at a dose of 97 and 147 Gy, respectively. The dose levels at which these failures occurred were low enough to recommend that cardiac pacemakers should always be kept outside the radiation beam. The signals induced by electromagnetic interference (EMI) from two linear accelerators were measured using a simulation model of a pacemaker. In the laboratory, 22 modern-type pacemakers were tested with these signals to determine the sensitivity for the electromagnetic fields in the treatment rooms. It was observed that an inhibition of one pacemaker pulse was to be expected on one of the two linear accelerators when switching the machine on and off. No permanent effects were found. These findings resulted in the recommendation in our department not to use this treatment machine for radiation therapy of pacemaker-bearing patients. (orig.)

  17. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    Science.gov (United States)

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  18. Electromagnetic interference of GSM mobile phones with the implantable deep brain stimulator, ITREL-III

    Directory of Open Access Journals (Sweden)

    Alesch François

    2003-05-01

    Full Text Available Abstract Background The purpose was to investigate mobile phone interference with implantable deep brain stimulators by means of 10 different 900 Mega Hertz (MHz and 10 different 1800 MHz GSM (Global System for Mobile Communications mobile phones. Methods All tests were performed in vitro using a phantom especially developed for testing with deep brain stimulators. The phantom was filled with liquid phantom materials simulating brain and muscle tissue. All examinations were carried out inside an anechoic chamber on two implants of the same type of deep brain stimulator: ITREL-III from Medtronic Inc., USA. Results Despite a maximum transmitted peak power of mobile phones of 1 Watt (W at 1800 MHz and 2 W at 900 MHz respectively, no influence on the ITREL-III was found. Neither the shape of the pulse form changed nor did single pulses fail. Tests with increased transmitted power using CW signals and broadband dipoles have shown that inhibition of the ITREL-III occurs at frequency dependent power levels which are below the emissions of GSM mobile phones. The ITREL-III is essentially more sensitive at 1800 MHz than at 900 MHz. Particularly the frequency range around 1500 MHz shows a very low interference threshold. Conclusion These investigations do not indicate a direct risk for ITREL-III patients using the tested GSM phones. Based on the interference levels found with CW signals, which are below the mobile phone emissions, we recommend similar precautions as for patients with cardiac pacemakers: 1. The phone should be used at the ear at the opposite side of the implant and 2. The patient should avoid carrying the phone close to the implant.

  19. Probing non nucleonic degrees of freedom with strong and electromagnetic interactions

    International Nuclear Information System (INIS)

    Frois, B.

    1985-10-01

    In this talk, I would like to examine our present view on non-nucleonic degrees of freedom with a few typical experimental results obtained recently both with hadronic and electromagnetic probes at intermediate energies. It is the first generation of experimental data which has probed mesonic degrees of freedom with a spatial resolution of the order of 0.5 fm. This has made possible for example the measurement of the size of the pion-nucleon interaction region. This is very stimulating progress and we begin to have a coherent overview on the various reaction mechanisms which are induced by hadronic and electromagnetic probes

  20. Radiation from a Relativistic Electron Beam in a Molecular Medium due to Parametric Pumping by a Strong Electromagnetic Wave,

    Science.gov (United States)

    1981-02-01

    UNIVERSITY OF MARYLAND DEPARTMENT OF PHYSICS 4WJD ASTRONOMY COLLG PAM A 2 3i 81 4 30) 235. RADIATION FROM A .ELATIVISTIC_§LECTRON BEAM IN AZOLECULAR...A MOLECULAR MEDIUM DUE TO PARAMETRIC PUMPING BY A STRONG ELECTROMAGNETIC WAVE L. Stenflo Department of Plasma Physics Umel University S-90187 Umel...GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81

  1. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong, E-mail: zddai@nuaa.edu.cn

    2014-08-30

    Highlights: • Cu–Ni alloy open-cell foam integrated with CNTs was used for EMI shielding. • The composite was prepared by electroless, electro-, and electrophoretic deposition. • The main shielding mechanism was multiple reflections and absorptions of microwaves. • The composite had a porous structure, large surface area, and inherent permeability. - Abstract: A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu–Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu–Ni–CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8–12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  2. Remote-actuator used in environments for high electromagnetic interference; Actuador telecontrolado para ambientes de alta interferencia electromagnetica

    Energy Technology Data Exchange (ETDEWEB)

    Perez Abad, Carlos Alberto; Velazquez Hernandez, Jose Conrado; Montero Cervantes, Julio Cesar [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: caperez@iie.org.mx; jconrado@iie.org.mx; jcmc@iie.org.mx

    2010-11-15

    This article presents the design of an actuator telecontrolled used in environments of high electromagnetic interference, especially designed for high-power laboratories Comision Federal de Electricidad, LAPEM (Laboratorio de pruebas de equipos y materiales) basically the actuator is an electronic component in a series of hardware and software involved in short circuit tests performed LAPEM but because of its design can be used in any industry involving fire remotely due to the electromagnetic pollution caused by high currents and voltages involved in the tests, the means of communication between the actuator and programmable controller sequences (CPS) is optical fiber that ensures the integrity of the control signal that activates the device. We present the electronic modules that comprise it and the evidence and findings. [Spanish] En este articulo se presenta el diseno de un actuador telecontrolado utilizado en ambientes de alta interferencia electromagnetica, en especial fue disenado para los laboratorios de alta potencia del LAPEM (Laboratorio de pruebas de equipos y materiales), Comision Federal de Electricidad, basicamente el actuador es un componente electronico de una serie de hardware y software involucrados en las pruebas de corto circuito que realiza el LAPEM pero debido a su diseno puede ser utilizado en cualquier otra industria que involucre disparos en forma remota, debido a la contaminacion electromagnetica causada por las altas corrientes y voltajes involucradas en las pruebas, el medio de comunicacion entre el actuador y el Controlador programable de Secuencias (CPS) es fibra optica con esto se asegura la integridad de la senal de control que activa el dispositivo. Se presenta los modulos electronicos que lo componen asi como las pruebas y resultados obtenidos.

  3. Fabrication of conducting composite sheets using cost-effective graphite flakes and amorphous styrene acrylonitrile for enhanced thermistor, dielectric, and electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Varij, E-mail: varijpanwarcertain@gmail.com [Electronics and Communication Engineering, Graphic Era University, Dehradun, Uttarakhand (India); Gill, Fateh Singh; Rathi, Vikas; Tewari, V.K. [Electronics and Communication Engineering, Graphic Era University, Dehradun, Uttarakhand (India); Mehra, R.M. [Sharda University, Greater Noida (India); Park, Jong-Oh, E-mail: jop@jnu.ac.kr [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Park, Sukho, E-mail: shpark12@dgist.ac.kr [Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of)

    2017-06-01

    The fabrication of strong conducting composite sheets (CCSs) using a simple technique with cost-effective materials is desirable for capacitor, decoupling capacitor, and electromagnetic interference (EMI) shielding applications. Here, we used cost-effective graphite flakes (GFs) as a conducting filler and amorphous poly (styrene-co-acrylonitrile) (PSAN) as an insulating polymer to fabricate a CCS via a simple mechanical mixing and hot compression molding process in 2.5 h, with the aim to save time and avoid the use of toxic reagents, which are generally used in chemical methods. In the present method, the GFs are connected in diffusively adhere polymer matrix, controlled by temperature and pressure that generate the conduction in the CCSs. The resulting PSAN/GF CCSs were characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and hardness tests. The GFs penetrated the interfacial region of PSAN, thus improving the thermistor and dielectric properties (dielectric constant, AC conductivity, and dissipation factor) of the PSAN/GF CCSs. Furthermore, the PSAN/GF CCSs showed enhanced hardness and EMI shielding effectiveness (SE) properties in the X-band frequency range (8.5–12.5 GHz). The percolation theory was implemented to DC and AC conductivity. To detect the transition of the dielectric properties, the dielectric constant of the CCSs was analyzed with increasing volume fraction of GFs in the radio frequency region. The improved dielectric constant, AC conductivity, and dissipation factor of the PSAN/GF CCS, indicated a significant improvement in their EMI shielding properties in the X-band frequency range, which were measured using the waveguide method. The ac conductivity of PSAN/GF CCS shows stable behavior in the higher frequency ranges. The EMISE of PSAN/GF CCS were found to increase with increasing GF content due to the absorbance mechanism. - Highlights: • Enhanced hardness and

  4. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    Science.gov (United States)

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0

  5. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  6. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    Directory of Open Access Journals (Sweden)

    B. V. Bhaskara Rao

    2016-06-01

    Full Text Available Radar X-band electromagnetic interference shielding (EMS is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT has been homogeneously integrated (0 – 9 wt% with polymer, poly (vinylidene fluoride, PVDF to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE of 17.7 dB/(g/cm3 (99.6% EMS, with maintained hardness and improved conductivity. With multilayer stacking (900 microns of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3 (99.93% EMS. Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  7. Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites

    Directory of Open Access Journals (Sweden)

    Suman Chhetri

    2016-12-01

    Full Text Available Graphene oxide (GO was non-covalently functionalized using sulfanilic acid azocromotrop (SAC followed by hydrazine reduction to achieve SAC functionalized reduced GO (SAC-rGO. Fourier transform infrared spectra analysis and electrical conductivity measurements confirmed the successful functionlization and reduction of GO. The electrical conductivity of ~515 S•m−1 for SAC-rGO was recorded. The non-covalently functionalized reduced GO was subsequently dispersed in epoxy matrix at the loading level of 0.3 to 0.5 wt% to investigate its electromagnetic interference (EMI shielding properties. The morphological and structural characterization of the SAC-rGO/epoxy composites was carried out using X-ray diffraction and Transmission electron microscopy analysis, which revealed the good dispersion of SAC-rGO in the epoxy. The SAC-rGO/epoxy composites showed the EMI shielding of −22.6 dB at the loading of 0.5 wt% SAC-rGO. Dynamical mechanical properties of the composites were studied to establish the reinforcing competency of the SAC-rGO. The storage modulus of the composites was found to increase within the studied temperature. Thermal stability of pure epoxy and its composites were compared by selecting the temperatures at 10 and 50% weight loss, respectively.

  8. The significance of a new correspondence principle for electromagnetic interaction in strong optical field ionisation

    International Nuclear Information System (INIS)

    Boreham, B. W.; Hora, H.

    1997-01-01

    We have recently developed a correspondence principle for electromagnetic interaction. When applied to laser interactions with electrons this correspondence principle identifies a critical laser intensity I*. This critical intensity is a transition intensity separating classical mechanical and quantum mechanical interaction regimes. In this paper we discuss the further application of I* to the interaction of bound electrons in atoms. By comparing I* with the ionisation threshold intensities as calculated from a cycle-averaged simple-atom model we conclude that I* can be usefully interpreted as a lower bound to the classical regime in studies of ionisation of gas atoms by intense laser beams

  9. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  10. Strong negative interference of ethamsylate (Dicynone®) in serum creatinine quantification via enzymatic assay using Trinder reaction.

    Science.gov (United States)

    Wiewiorka, Ondrej; Dastych, Milan; Čermáková, Zdenka

    2013-08-01

    With discrepancies encountered as early as the verification of enzymatic method for quantification of serum creatinine, our research pointed to a later confirmed interference caused by a compound called ethamsylate present in the commonly used antihemorrhagic drug Dicynone. We measured concentrations of creatinine of 10 patients with blood taken before and 15 minutes after the intravenous administration of a 500 mg dose of Dicynone. The creatinine concentration was determined using Jaffe method and enzymatic method that utilize Trinder reaction (Roche) in analyzer Cobas c 501 (Roche AG, Basel, Switzerland). We also monitored concentration of blood creatinine in three patients before and 15 minutes after application of Dicynone (500 mg i.v.) and in the following 6th, 12th, 18th, and 24th hours. We discovered a significant negative bias in creatinine results using enzymatic assay with Trinder reaction in blood taken 15 min after i.v. application of 500 mg Dicynone to patients compared to their pre-application values (average decrease of 47%). Unlike this, the results of compensated Jaffe method yielded steady results in all samples (average deviation 0.6% from original values). However, 12 h after the drug administration comparable results were seen as before the administration. Considering the strong negative interference of ethamsylate in enzymatic assay using Trinder reaction for creatinine quantification, blood from patients with prescribed Dicynone should be taken at least 12 h after the last application of the drug for obtaining the correct creatinine values.

  11. A Novel Blind Source Separation Algorithm and Performance Analysis of Weak Signal against Strong Interference in Passive Radar Systems

    Directory of Open Access Journals (Sweden)

    Chengjie Li

    2016-01-01

    Full Text Available In Passive Radar System, obtaining the mixed weak object signal against the super power signal (jamming is still a challenging task. In this paper, a novel framework based on Passive Radar System is designed for weak object signal separation. Firstly, we propose an Interference Cancellation algorithm (IC-algorithm to extract the mixed weak object signals from the strong jamming. Then, an improved FastICA algorithm with K-means cluster is designed to separate each weak signal from the mixed weak object signals. At last, we discuss the performance of the proposed method and verify the novel method based on several simulations. The experimental results demonstrate the effectiveness of the proposed method.

  12. Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K., E-mail: chandrababu954@gmail.com [Ceramic Composite Laboratory, Centre for Crystal Growth, SAS, VIT University, Vellore 632014, Tamilnadu (India); Madhuri, W., E-mail: madhuriw12@gmail.com [Ceramic Composite Laboratory, Centre for Crystal Growth, SAS, VIT University, Vellore 632014, Tamilnadu (India); IFW, Leibniz Institute for Solid State and Materials Research, Technische Universität Dresden, 01069 Dresden (Germany)

    2017-02-01

    Bulk and nano Ni{sub 1-x}Mg{sub x}Fe{sub 2}O{sub 4} (x = 0–1) samples were synthesized via microwave double sintering and microwave assisted hydrothermal techniques respectively. The diffraction pattern confirmed the formation of cubic spinel phases in case of both the ferrites. The larger bulk densities were achieved to the bulk than that of nano. In addition, a comparative study on X-band (8.4–12 GHz) electromagnetic interference shielding properties of current bulk and nanomaterials was elucidated. The results showed that the bulk Ni{sub 0.6}Mg{sub 0.4}Fe{sub 2}O{sub 4} composition revealed the highest total shielding efficiency (SE{sub T}) of ∼17 dB. In comparison, the shielding efficiency values of all bulk contents were higher than that of nano because of larger bulk densities. Moreover, the ac-electromagnetic parameters such as electrical conductivity (σ{sub ac}), the respective real (ε′ & μ′) and imaginary parts (ε″ & μ″) of complex permittivity and permeability were investigated as a function of gigahertz frequency. The bulk ferrites of x = 0.4 & 0.6 showed the high ε″ of 10.26 & 6.71 and μ″ of 3.65 & 3.09 respectively at 12 GHz which can work as promising microwave absorber materials. Interestingly, nanoferrites exhibited negative μ″ values at few frequencies due to geometrical effects which improves the microwave absorption. - Highlights: • Bulk and nano NiMg ferrites are prepared by microwave and hydrothermal method. • X-band EMI shielding properties are studied for both bulk and nano ferrites. • Bulk Ni{sub 0.6}Mg{sub 0.4}Fe{sub 2}O{sub 4} revealed the highest SE{sub T} of ∼17 dB at 8.4 GHz. • Bulk x = 0.4 & 0.6 showed the high ε″ and μ″ at 12 GHz for absorber applications.

  13. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  14. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  15. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites

    Science.gov (United States)

    Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo

    2018-03-01

    A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.

  16. Instability of collective strong-interaction phenomena in hadron production as a possible origin of the weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1975-12-01

    A systematic calculus of long-range Regge cut effects in multiparticle production is constructed in the form of an infrared-divergent stochastic field theory. Total cross sections and two-body overlap integrals in such a theory may depend very sensitively upon internal quantum-numbers of incident particles, resulting in a strong symmetry breaking at ultra-high energies. Such symmetry violations will influence low energy processes through dispersion relations, and a bootstrap of weak interactions becomes possible. A rough analytic estimate of the scale of thresholds for such effects yields a BCS-type gap equation, which expresses the scale of weak and electromagnetic couplings in terms of purely strong-interaction parameters

  17. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation.

    Science.gov (United States)

    Xu, Falin; Bai, Qiongdan; Zhou, Kai; Ma, Li; Duan, Jiajia; Zhuang, Fangli; Xie, Cuicui; Li, Wenli; Zou, Peng; Zhu, Changlian

    2017-01-01

    To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.

  18. Aspects of the flipped unification of strong, weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.

    1988-12-19

    We explore phenomenological aspects of a recently proposed flipped SU(5) x U(1) supersymmetric GUT which incorporates an economical and natural mechanism for splitting Higgs doublets and triplets, and can be derived from string theory. Using experimental values of sin/sup 2/theta/sub W/ and the strong QCD coupling, we estimate the grand unification scale M/sub G/, where the strong and weak coupling strengths are equal, and the superunification scale M/sub SU/, where all couplings are equal. We find typical values of M/sub G/ approx. = 10/sup 15/ to 10/sup 17/ GeV, with M/sub SU/ somewhat higher and close to the value suggested by string models. We discuss different mechanisms for baryon decay, finding that the dominant one is gauge-boson exchange giving rise to p -> e/sup +/ /sup 0/, anti /sup +/ and n -> e/sup +/ /sup -/, anti /sup 0/ with partial lifetimes approx. = 10/sup 35+-2/ y. We show that a large GUT symmetry-breaking scale M/sub G/ is naturally generated by radiative corrections to the effective potential if a small amount approx. = m/sub W/ of soft supersymmetry breaking is generated dynamically at a large scale. We analyze the low-energy effective theory obtained using the renormalization group equations, demonstrating that electroweak symmetry breaking is obtained if m/sub t/ approx. = 60 to 90 GeV. We analyze the spectrum of sparticles, with particular attention to neutralinos.

  19. Animal magnetocardiography using superconducting quantum interference device gradiometers assisted with magnetic nanoparticle injection: A sensitive method for early detecting electromagnetic changes induced by hypercholesterolemia

    Science.gov (United States)

    Wu, C. C.; Hong, B. F.; Wu, B. H.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. Isaac; Tseng, W. K.; Liu, Y. B.; Lin, L. C.; Lu, L. S.; Lee, Y. H.

    2007-01-01

    In this work, the authors used a superconducting quantum interference device (SQUID) magnetocardiography (MCG) system consisted of 64-channel low-transition-temperature SQUID gradiometers to detect the MCG signals of hepercholesterolemic rabbits. In addition, the MCG signals were recorded before and after the injection of magnetic nanoparticles into the rabbits' ear veins to investigate the effects of magnetic nanoparticles on the MCG signals. These MCG data were compared to those of normal rabbits to reveal the feasibility for early detection of the electromagnetic changes induced by hypercholesterolemia using MCG with the assistance of magnetic nanoparticle injection.

  20. Electron-photon and electron-electron interactions in the presence of strong electromagnetic fields

    International Nuclear Information System (INIS)

    Surzhykov, A.; Fritzsche, S.; Stoehlker, Th.

    2010-01-01

    During the last decade, photon emission from highly-charged, heavy ions has been in the focus of intense studies at the GSI accelerator and storage ring facility in Darmstadt. These studies have revealed unique information about the electron-electron and electron-photon interactions in the presence of extremely strong nuclear fields. Apart from the radiative electron capture processes, characteristic photon emission following collisional excitation of projectile ions has also attracted much interest. In this contribution, we summarize the recent theoretical studies on the production of excited ionic states and their subsequent radiative decay. We will pay special attention to the angular and polarization properties of Kα emission from helium-like ions produced by means of dielectronic recombination. The results obtained for this (resonant) capture process will be compared with the theoretical predictions for the characteristic X-rays following Coulomb excitation and radiative recombination of few-electron, heavy ions. Work is supported by Helmholtz Association and GSl under the project VH-NG--421. (author)

  1. Shielding effectiveness of a unit of neuro physiology against electromagnetic interference; Eficacia del apantallamiento de una unidad de neurofisiologia frente a interferencias electromagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Febles Santana, V.; Miguel Bilbao, S. de; Lubary Rodriguez, C. S.; Melian del Castillo, M. R.; Herraz Gomez, J. G.; Ramos Gonzalez, V.; Fernandez de Aldecoa, J. C.

    2011-07-01

    During construction of the new building Ambulatory Activity in the Hospital Universitario de Canarias (HUC), was designed and implemented the shield in the form of Faraday cage, five rooms adjacent to the Unit of Neuro physiology, located at the northeast corner 3C plant of the building, in order to sufficiently attenuate radio signals present in the medium and thus enable correct functionality of electro medical equipment free of artifacts caused by external electromagnetic fields. The experience held, once finished the work and commissioning the unit, is that interference is undesirable in some cases even hinder the proper development of medical diagnostic studies. Therefore, technical staff of the Engineering Branch of HUC, initiated a program of measures to determine the effectiveness of the Faraday cage constructed, checking the attenuation levels achieved for frequencies of interest and, if necessary, the deficiencies identified in the design and execution of it, and proposed improvements to minimize interference problems exist.

  2. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    International Nuclear Information System (INIS)

    Thompson, Christopher; Gill, Ramandeep

    2014-01-01

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10 3 -10 8 ). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m e c 2 in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F ω ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10 –5 of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle) –1 at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  3. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher; Gill, Ramandeep [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-08-10

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10{sup 3}-10{sup 8}). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m{sub e}c {sup 2} in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F{sub ω} ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10{sup –5} of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle){sup –1} at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  4. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix.

    Science.gov (United States)

    Mondal, Subhadip; Ganguly, Sayan; Rahaman, Mostafizur; Aldalbahi, Ali; Chaki, Tapan K; Khastgir, Dipak; Das, Narayan Ch

    2016-09-21

    The fabrication of scalable and affordable conductive Ketjen carbon black (K-CB)-elastomer composites for adjustable electromagnetic interference (EMI) shielding remains a difficult challenge. Herein, chlorinated polyethylene (CPE)-K-CB composites have been developed by single step solution mixing to achieve high EMI shielding performance associated with absorption dominance potency by conductive dissipation as well as the reflection of electromagnetic waves. The dispersion of K-CB inside the CPE matrix has been corroborated by electron micrographs and atomic force microscopy (AFM). The K-CB filler and CPE polymer interaction has been investigated through the bound rubber content (Bdr) and the dynamic mechanical properties. The relatively low loading of K-CB with respect to other conventional carbon fillers contributes to a promising low percolation threshold (9.6 wt% K-CB) and a reasonably high EMI shielding effectiveness (EMI SE) value of 38.4 dB (at 30 wt% loading) in the X-band region (8.2 to 12.4 GHz). Classical percolation theory reveals that the electrical conduction behavior through the composite system is quasi-two dimensional in nature. Our belief lies in the promotion of scalable production of flexible and cost-effective K-CB-CPE composites of superior EMI SE to avoid electromagnetic radiation pollution.

  5. AN ANTHOLOGY OF THE DISTINGUISHED ACHIEVEMENTS IN SCIENCE AND TECHNIQUE. PART 33: ELECTROMAGNETIC COMPATIBILITY AND PROTECTION FROM ACTION OF POWERFUL ELECTROMAGNETIC INTERFERENCE OF RADIOELECTRONIC, ELECTRICAL ENGINEERING AND ELECTRIC POWER EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-09-01

    Full Text Available Purpose. Implementation of brief analytical review of basic scientific and technical achievements in area of electromagnetic compatibility (EMC and protection from destabilizing and striking action of powerful electromagnetic interference (PEMI of natural and artificial origin of radioelectronic, electrical engineering and electric power equipment. Methodology. Scientific methods of collection, analysis and analytical treatment of scientific and technical information in a sphere EMC and such areas of knowledge’s as radioelectronics, electrical engineering and electric power engineering. Results. A brief scientific and technical review is resulted modern positions problems EMC and protection of equipment from action on them PEMI. It is shown that PEMI can result in failures in-process and death of examined equipment. Annual harm in the industrially developed countries of the world from the striking affecting of PEMI modern equipment with integral microcircuits and semiconductor devices can make ten of milliards of USD. The basic methods of protection of equipment are resulted from PEMI and protective devices (PD, intended for the increase of effectiveness of modern equipment to the action of external PEMI. Principles of work of the resulted PD and their basic technical descriptions are described. Originality. On the basis of materials of scientific monographs, journal publications, normative documents and internet-reports systematization of basic PD, in-use presently in an area EMC and protection of different equipment from the hazard agency of external PEMI is executed. Practical value. Popularization of scientific and technical knowledge’s in an area EMC and protection of modern equipment from a dangerous action on them PEMI. Formulation of important for society scientific and technical problems and tasks, arising up in an area EMC and providing of the reliable functioning of modern equipment in power electromagnetic interference.

  6. Triviality-quantum decoherence of quantum chromodynamics SU(∞) in the presence of an external strong white-noise electromagnetic field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2004-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of a very strong external white-noise electromagnetic (strength) field within the context of QCD in the 't Hooft limit of a large number of colors

  7. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    Science.gov (United States)

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-05-27

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  8. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Xiaohu Huang

    2015-01-01

    Full Text Available Electromagnetic interference (EMI shielding materials made of Ni-Co coated on web-like biocarbon nanofibers were successfully prepared by electroless plating. Biocarbon nanofibers (CF with a novel web-like structure comprised of entangled and interconnected carbon nanoribbons were obtained using bacterial cellulose pyrolyzed at 1200°C. Paraffin wax matrix composites filled with different loadings (10, 20, and 30 wt%, resp. of CF and Ni-Co coated CF (NCCF were prepared. The electrical conductivities and electromagnetic parameters of the composites were investigated by the four-probe method and vector network analysis. From these results, the EMI shielding efficiencies (SE of NCCF composites were shown to be significantly higher than that of CF at the same mass fraction. The paraffin wax composites containing 30 wt% NCCF showed the highest EMI SE of 41.2 dB (99.99% attenuation, which are attributed to the higher electrical conductivity and permittivity of the NCCF composites than the CF composites. Additionally, EMI SE increased with an increase in CF and NCCF loading and the absorption was determined to be the primary factor governing EMI shielding. This study conclusively reveals that NCCF composites have potential applications as EMI shielding materials.

  9. Detection and elimination of the electromagnetic interferences in the neutron flux measurement circuit, Source Range; Deteccion y eliminacion de interferencias electromagneticas en el circuito de medicion de flujo neutronico, rango de fuente

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. M.; Esguivillas, L.; Valle, J. L.

    2010-07-01

    This paper compiles an experience in Asco I Nuclear Power Plant about electromagnetic interferences associated to the neutron flux measurement system, Source Range Asco I NPP. The circuit affected is the proportional detector (BF3) located outside the reactor vessel to measure the neutron leakage in shutdown and in start-up.

  10. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  11. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    Science.gov (United States)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  12. Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows

    Science.gov (United States)

    Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.

    2017-07-01

    While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.

  13. Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device

    Directory of Open Access Journals (Sweden)

    Maxim Goryachev

    2018-04-01

    Full Text Available A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10 18 Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.

  14. Mechanically Robust Magnetic Carbon Nanotube Papers Prepared with CoFe2O4 Nanoparticles for Electromagnetic Interference Shielding and Magnetomechanical Actuation.

    Science.gov (United States)

    Lim, Guh-Hwan; Woo, Seongwon; Lee, Hoyoung; Moon, Kyoung-Seok; Sohn, Hiesang; Lee, Sang-Eui; Lim, Byungkwon

    2017-11-22

    The introduction of inorganic nanoparticles into carbon nanotube (CNT) papers can provide a versatile route to the fabrication of CNT papers with diverse functionalities, but it may lead to a reduction in their mechanical properties. Here, we describe a simple and effective strategy for the fabrication of mechanically robust magnetic CNT papers for electromagnetic interference (EMI) shielding and magnetomechanical actuation applications. The magnetic CNT papers were produced by vacuum filtration of an aqueous suspension of CNTs, CoFe 2 O 4 nanoparticles, and poly(vinyl alcohol) (PVA). PVA plays a critical role in enhancing the mechanical strength of CNT papers. The magnetic CNT papers containing 73 wt % of CoFe 2 O 4 nanoparticles exhibited high mechanical properties with Young's modulus of 3.2 GPa and tensile strength of 30.0 MPa. This magnetic CNT paper was successfully demonstrated as EMI shielding paper with shielding effectiveness of ∼30 dB (99.9%) in 0.5-1.0 GHz, and also as a magnetomechanical actuator in an audible frequency range from 200 to 20 000 Hz.

  15. AC conductivity, magnetic and shielding effectiveness studies on polyaniline embedded Co0.5Mn0.5Fe2O4 nanoparticles for electromagnetic interference suppression

    Science.gov (United States)

    Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.

    2018-05-01

    Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.

  16. Structural, magnetic and microwave absorption behavior of Co-Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Prabhjyot, E-mail: prabhjyot.2525@gmail.com [Department of Chemistry, Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005 (India); Chawla, S.K., E-mail: sschawla118@gmail.com [Department of Chemistry, Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005 (India); Narang, Sukhleen Bindra, E-mail: sukhleen2@yahoo.com [Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005 (India); Pubby, Kunal, E-mail: kunalpubby02@gmail.com [Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005 (India)

    2017-01-15

    Strontium hexaferrites, doped with varying Co-Zr content (x) have been synthesized by sol-gel auto-combustion route using tartaric acid as fuel at 800 °C. X-ray diffraction and Fourier transform Infra-red have been carried out to confirm the phase formation, particle size (average 21.9–36.8 nm) and the bond formation respectively. Magnetic properties are scrutinized using vibrating sample magnetometer. Techniques like scanning electron microscopy, transmission electron microscopy and energy dispersive scattering have been employed to explore the surface morphology, particle size and composition of the nano-powders. Electromagnetic characterization of the prepared ferrites has been done using Vector Network Anlyzer in 12.4–18 GHz frequency range. The effect of calcination temperature (500–1000 °C) on the structure, morphology and magnetic properties has also been studied for x=0.2 and 800 °C has been found to be the most suitable temperature with the best magnetic properties. Increase in doping has resulted in resonance peaks in dielectric and magnetic loss spectra, leading to microwave absorption peaks. Ferrites with x=0.2, 0.8 and 1.0 have appropriate reflection loss less than −10 dB and bandwidth in Ku-band, hence can be used as effective absorbers in suppression of electromagnetic interference (EMI). The governance of impedance matching in deciding the absorption properties has been proved by using input impedance calculations. - Highlights: • Co-Zr doped strontium hexaferrite nanopowders have been prepared by sol-gel route. • 800 °C was most suitable temperaturewith best structural and magnetic properties. • Samples have M-type hexagonal structure with an average particle size of 36.47 nm. • Samples x=0.2, 0.8 and 1.0 are suitable for suppression of EM waves in Ku-band. • The origin of absorption peaks: impedance matching and losses has been explained.

  17. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  18. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  19. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    Science.gov (United States)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  20. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    Science.gov (United States)

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  1. Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding

    Science.gov (United States)

    Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang

    2017-10-01

    The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.

  2. Electromagnetic Noise Interference and Compatibility

    Science.gov (United States)

    1975-11-01

    L ’on trouve dane 74 haute atmoephire rdeister aux grande froide ainei qu ’l La granda ohaZemn, rsie ter d La dipreesion, aux paesa~go dane L ’lau...ent rhacteura code no 071482 du 26/8/69 eat absolument identique A Is sp6cification DOUGLAS. En ce qui concerne lea essaia aux transitoires de courte

  3. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  4. Electromagnetic radiation from positive-energy bound electrons in the Coulomb field of a nucleus at rest in a strong uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, S. A.; Koryagin, S. A., E-mail: koryagin@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2012-06-15

    A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.

  5. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  6. Interference of Multiple Surface Plasmon Polaritons

    International Nuclear Information System (INIS)

    Wang, Dapeng; Yuan, Xiaocong; Lin, Jiao

    2017-01-01

    Benefiting from strongly electromagnetic confinement and enhancement effects, surface plasmon polaritons (SPPs) hold great promises for tailoring light on micro and nanoscale. By contrast with previous efforts which massively concentrate on localized SPP mode, we investigated the propagating SPPs in this paper. A number of symmetrical gratings on metal surface are employed to excite multiple SPPs. Interestingly, the exotic interfering phenomena have been observed. They show good agreement with free-space interferences and take advantage of precise controllability. These findings will be promising in the applications of optical tweezers and SPP lithography. (paper)

  7. Formation of a Refracted Electromagnetic Wave at the Output from a Plane-Parallel Dielectric Layer and Interference Nature of Fermat's Principle

    Science.gov (United States)

    Averbukh, B. B.; Averbukh, I. B.

    2015-04-01

    It is shown that a transition layer representing a spatial region in which field propagation is analogous to refraction in an inhomogeneous medium exists after a dielectric layer. In this region located within the near field zone the direction of the wave vector of the transmitted field varies smoothly, and with increasing distance from the layer, approaches to that of the wave incident on the layer. It is shown that such behavior of the field and occurrence of the transition layer are caused by the interference of the incident wave field and the fields of secondary sources excited in the dielectric by the incident wave field. It is shown that the refraction of the field in a homogeneous medium after the dielectric corresponds to Fermat's principle, and the interference nature of Fermat's principle is justified.

  8. Interference coupling analysis based on a hybrid method: application to a radio telescope system

    Science.gov (United States)

    Xu, Qing-Lin; Qiu, Yang; Tian, Jin; Liu, Qi

    2018-02-01

    Working in a way that passively receives electromagnetic radiation from a celestial body, a radio telescope can be easily disturbed by external radio frequency interference as well as electromagnetic interference generated by electric and electronic components operating at the telescope site. A quantitative analysis of these interferences must be taken into account carefully for further electromagnetic protection of the radio telescope. In this paper, based on electromagnetic topology theory, a hybrid method that combines the Baum-Liu-Tesche (BLT) equation and transfer function is proposed. In this method, the coupling path of the radio telescope is divided into strong coupling and weak coupling sub-paths, and the coupling intensity criterion is proposed by analyzing the conditions in which the BLT equation simplifies to a transfer function. According to the coupling intensity criterion, the topological model of a typical radio telescope system is established. The proposed method is used to solve the interference response of the radio telescope system by analyzing subsystems with different coupling modes separately and then integrating the responses of the subsystems as the response of the entire system. The validity of the proposed method is verified numerically. The results indicate that the proposed method, compared with the direct solving method, reduces the difficulty and improves the efficiency of interference prediction.

  9. A self-interference cancelling receiver for in-band full-duplex wireless with low distortion under cancellation of strong TX leakage

    NARCIS (Netherlands)

    van den Broek, Dirk-Jan; Klumperink, Eric A.M.; Nauta, Bram

    2015-01-01

    In-band full-duplex (FD) wireless communication, i.e. simultaneous transmission and reception at the same frequency, in the same channel, promises up to 2x spectral efficiency, along with advantages in higher network layers [1]. the main challenge is dealing with strong in-band leakage from the

  10. Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: Enhanced dielectric and electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Aepuru, Radhamanohar [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Bhaskara Rao, B.V.; Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025 (India); Panda, H.S., E-mail: himanshusp@diat.ac.in [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2015-11-01

    Flower like radial zinc oxide (RZnO) was prepared by using a facile solvothermal method and used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. Structural informations of the samples are analyzed by X-ray diffraction and correlated with high resolution transmission electron microscopy along with high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). For the first time, stability studies are carried out by solvent relaxation nuclear magnetic resonance experiments. Dielectric studies of the PVDF and PVDF-RZnO nanocomposites are reported over the wide range of frequency (0.01 Hz–1 MHz) and temperature (25–90 °C). Dielectric property of the PVDF-RZnO nanocomposites was significantly improved wrt filler percentage in PVDF. Unique negative permittivity was observed in the composites having higher filler content (>40 wt%) typically at low frequencies. First time, it is observed that the higher RZnO content in PVDF results the formation of pseudo conducting network and hence improved the electromagnetic shielding efficiency (85%) than PVDF and PVDF-commercial ZnO composites. - Highlights: • Radial ZnO-PVDF nanocomposites were fabricated by using solution casting. • Pseudo conducting network is confirmed through cryo-fracture morphology study. • Stability study of the nano fillers was performed in the polymer matrix. • Unique negative permittivity behavior of the nanocomposites was observed. • EMI shielding property of the radial ZnO-PVDF nanocomposites was performed.

  11. Mechanical and electromagnetic interference shielding Properties of poly(vinyl alcohol)/graphene and poly(vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating.

    Science.gov (United States)

    Fujimori, Kazushige; Gopiraman, Mayakrishnan; Kim, Han-Ki; Kim, Byoung-Suhk; Kim, Ick-Soo

    2013-03-01

    We report the mechanical property and electromagnetic interference shielding effectiveness (EMI SE) of poly(vinyl alcohol) (PVA)/graphene and PVA/multi-walled carbon nanotube (MWCNT) composite nanofibers prepared by electrospinning. The metal (Cu) was deposited on the resultant PVA composite nanofibers using metal deposition technique in order to improve the mechanical properties and EMI shielding properties. The resulting PVA composite nanofibers and Cu-deposited corresponding nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD). Tensile tests were performed on the PVA/graphene and PVA/MWCNT composite nanofibers. The tensile strength of the PVA/graphene and PVA/MWCNT composite nanofibers was found to be 19.2 +/- 0.3 MPa at graphene content - 6.0 wt% and 12.2 +/- 0.2 MPa at MWCNT content - 3.0 wt%, respectively. The EMI SE of the Cu-deposited PVA/graphene composite nanofibers was significantly improved compared to pure PVA/graphene composite nanofibers, and also depended on the thickness of Cu metal layer deposited on the PVA composite nanofibers.

  12. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  13. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  14. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

    Science.gov (United States)

    Kochetov, A. V.

    2018-05-01

    This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

  15. Strong interaction between dye molecule and electromagnetic field localized around 1 Nm3 at gaps of nanoparticle dimers by plasmon resonance

    Science.gov (United States)

    Itoh, Tamitake; Yamamoto, Yuko S.

    2017-11-01

    Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.

  16. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  17. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  18. Evaluation of Nanocomposites for Shielding Electromagnetic Interference

    Science.gov (United States)

    2011-09-01

    ESD Electrostatic Discharge FAA Federal Aviation Administration FRP Fiberglass Reinforced Plastic GCR Galactic Cosmic Radiation GSM Grams...debris currently being tracked by the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and North...stripped away as the atom accelerated in interstellar space to speeds approaching the speed of light and eventually, only the nucleus of the atom

  19. Carbon nanostructure composite for electromagnetic interference ...

    Indian Academy of Sciences (India)

    Department of Applied Physics, Defence Institute of Advanced Technology (DU), ... are performed at different frequencies and methods of processing the ..... Work has also been done on activation of the surface of carbon fibre using chemical ..... 3 kHz to 300 GHz, Institute of Electrical and Electonics Engineers, Incorporated.

  20. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  1. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  2. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  3. Beamforming design with proactive interference cancelation in MISO interference channels

    Science.gov (United States)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  4. Electromagnetic processes in strong crystalline fields

    CERN Document Server

    Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A

    2009-01-01

    As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...

  5. Electromagnetic probes of strongly interacting matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The nuclear matter under extreme conditions of temperatures () and baryonic densities () undergoes a phase transition to quark gluon plasma (QGP). It is expected that such extreme conditions can be achieved by colliding nuclei at ultrarelativistic energies. In the present review, the suitability of ...

  6. Supersymmetry and weak, electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1977-01-01

    A supersymmetric theory of particle interactions is discussed. It is based on the earlier model which involves gauge (or vector) superfields, and matter (or chiral) superfields; each of them describes a vector and a Majorana spinor in the first case, or a two-component Dirac spinor and a complex scalar in the second case. The new theory suggests the possible existence of spin - 1/2 gluons and heavy spin-0 quarks, besides spin - 1 gluons and spin - 1/2 quarks. To prevent scalar particles to be exchanged in processes such as μ or β decays a new class of leptons with its own quantum number is introduced; it includes charged leptons and a ''photonic neutrino''

  7. Electromagnetic probes of strongly interacting matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Collisions between two nuclei at relativistic energies will create charged particles – either in .... The thermal cutting rules give a systematic procedure to express ...... mesons due to its interaction with the thermal partons [80] and employment of running .... [16] J Deng, Q Wang, N Xu and P Zhuang, Phys. Lett.

  8. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  9. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  10. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  11. Electromagnetic compatibility methods, analysis, circuits, and measurement

    CERN Document Server

    Weston, David A

    2016-01-01

    Revised, updated, and expanded, Electromagnetic Compatibility: Methods, Analysis, Circuits, and Measurement, Third Edition provides comprehensive practical coverage of the design, problem solving, and testing of electromagnetic compatibility (EMC) in electrical and electronic equipment and systems. This new edition provides novel information on theory, applications, evaluations, electromagnetic computational programs, and prediction techniques available. With sixty-nine schematics providing examples for circuit level electromagnetic interference (EMI) hardening and cost effective EMI problem solving, this book also includes 1130 illustrations and tables. Including extensive data on components and their correct implementation, the myths, misapplication, misconceptions, and fallacies that are common when discussing EMC/EMI will also be addressed and corrected.

  12. Electromagnetic compatibility of nuclear power plants

    International Nuclear Information System (INIS)

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants

  13. The Interaction of Magnetizations with an External Electromagnetic Field and a Time-Dependent Magnetic Aharonov-Bohm Effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    We investigate how the choice of the magnetization distribution inside the sample affects its interaction with the external electromagnetic field. The strong selectivity to the time dependence of the external electromagnetic field arises for the particular magnetizations. This can be used for the storage and ciphering of information. We propose a time-dependent Aharonov-Bohm-like experiment in which the phase of the wave function is changed by the time-dependent vector magnetic potential. The arising time-dependent interference picture may be viewed as a new channel for the information transfer. 15 refs., 4 figs

  14. Handbook of electromagnetic compatibility

    CERN Document Server

    1995-01-01

    This""know-how""book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline.Handbook of E

  15. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  16. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  17. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  18. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  19. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  20. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    Energy Technology Data Exchange (ETDEWEB)

    Paddubskaya, A. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius (Lithuania); Valynets, N.; Batrakov, K. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Kuzhir, P., E-mail: polina.kuzhir@gmail.com; Maksimenko, S. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Tomsk State University, Tomsk 634050 (Russian Federation); Kotsilkova, R.; Velichkova, H.; Petrova, I. [Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, Sofia (Bulgaria); Biró, I. [3D Wishes, Bíró u. 44/a/2, Érd (Hungary); Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P. [Institute of Technical Physics and Materials Science, Centre for Energy Research, PO Box 49, 1525 Budapest (Hungary)

    2016-04-07

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  1. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    International Nuclear Information System (INIS)

    Paddubskaya, A.; Valynets, N.; Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-01-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  2. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  3. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  4. Graphene quantum interference photodetector

    Directory of Open Access Journals (Sweden)

    Mahbub Alam

    2015-03-01

    Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  5. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...

  6. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  7. Anomalous electromagnetically induced transparency in photonic-band-gap materials

    International Nuclear Information System (INIS)

    Singh, Mahi R.

    2004-01-01

    The phenomenon of electromagnetically induced transparency has been studied when a four-level atom is located in a photonic band gap material. Quantum interference is introduced by driving the two upper levels of the atom with a strong pump laser field. The top level and one of the ground levels are coupled by a weak probe laser field and absorption takes place between these two states. The susceptibility due to the absorption for this transition has been calculated by using the master equation method in linear response theory. Numerical simulations are performed for the real and imaginary parts of the susceptibility for a photonic band gap material whose gap-midgap ratio is 21%. It is found that when resonance frequencies lie within the band, the medium becomes transparent under the action of the strong pump laser field. More interesting results are found when one of the resonance frequencies lies at the band edge and within the band gap. When the resonance frequency lies at the band edge, the medium becomes nontransparent even under a strong pump laser field. On the other hand, when the resonance frequency lies within the band gap, the medium becomes transparent even under a weak pump laser field. In summary, we found that the medium can be transformed from the transparent state to the nontransparent state just by changing the location of the resonance frequency. We call these two effects anomalous electromagnetically induced transparency

  8. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  9. IETS and quantum interference

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2014-01-01

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....

  10. Quantum interference in plasmonic circuits.

    Science.gov (United States)

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  11. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  12. Hadronic processes and electromagnetic corrections

    International Nuclear Information System (INIS)

    Scimemi, I.

    2004-01-01

    The inclusion of electromagnetism in a low energy effective theory is worth further study in view of the present high precision experiments (muon g - 2, π 0 → γγ, τ decays, etc.). In particular in many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. The theoretical problems that I want to point out here are following: the splitting of a pure QCD and a pure electromagnetic part in a hadronic process is model dependent: is it possible to parametrise in a clear way this splitting? What kind of information (scale dependence, gauge dependence,) is actually included in the parameters of the low energy effective theory? I will attempt to answer these questions introducing a possible convention to perform the splitting between strong and electromagnetic parts in some examples

  13. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    Energy Technology Data Exchange (ETDEWEB)

    Sharapova, P R; Tikhonova, O V [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  14. Electromagnetically induced absorption via incoherent collisions

    International Nuclear Information System (INIS)

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-01-01

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  15. An overview of electromagnetic compatibility (EMC)

    International Nuclear Information System (INIS)

    Raffi, M.; Qadeer, S.; Anwar, M.

    1998-01-01

    The world is becoming increasingly dependent upon the use of electrical and electronic equipment. In the recent years, introduction of semiconductor based devices, microprocessor and micro computer have brought about a technological revolution that has had far reaching effects in the home, in industry, in commerce and in defense. Electromagnetic Compatibility (EMC) is the discipline which attempts to over come or, at least, minimize the effects of mismatch between equipment and the operating environment in accordance with agreed specifications, standards and regulations. Increased electromagnetic pollution in the environment has caused tremendous concern in the electronic industry and among users. Designers of the electronic products and systems want to be sure that their products do not emit excessive, unintentional radiation to interfere with the operation of the other systems, nor should these products be susceptible to electromagnetic interference which may degrade their performance. (author)

  16. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  17. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  18. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  19. Polímeros condutores intrínsecos e seu potencial em blindagem de radiações eletromagnéticas Intrinsically conducting polymers and their potencial in electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Roselena Faez

    2000-09-01

    Full Text Available A procura por novos materiais que possuam propriedades magnéticas e dielétricas adequadas ao uso em absorvedores de radiação eletromagnética é de grande importância. Dentre os materiais em estudo, os polímeros condutores têm sido aplicados como centros de absorção de radiação, devido à possibilidade de variação da sua condutividade com a freqüência da radiação das ondas incidentes, sendo esta pesquisa o estado da arte no processamento de materiais absorvedores de radiação (MAR. O objetivo deste trabalho é apresentar a ampla faixa de propriedades dos polímeros condutores, correlacionando-as com o potencial de aplicação destes materiais como aditivos no processamento de MAR. Uma breve análise dos resultados obtidos com uma blenda de EPDM contendo 30-80 %(m/m de PAni-DBSA e espessuras de 1 e 3 mm, analisadas na faixa de 8-12 GHz, mostra que o material absorveu na faixa de 50 a 90% da radiação incidente.The search for new materials possessing magnetic and dieletric properties adequated to be used as radar absorbing materials has been of great importance. Among the materials under study, conducting polymers have been applied due to the possibility of variation of their conductivity with the frequency of the incident radiation. These research areas have been considered the state of the art in the processing of radar absorbing materials. The aim of this work is to present the large range of properties of the conducting polymers and their correlation with the potential application of these materials as electromagnetic radiation absorbers. Some results are also presented on blends of EPDM and 30-80% (w/w of PAni-DBSA with thickness of 1 and 3 mm, analysed in the range of 8-12 GHz, which absorbed in the range of 50-90% of incident radiation.

  20. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  1. Time domain electromagnetic metal detectors

    International Nuclear Information System (INIS)

    Hoekstra, P.

    1996-01-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved

  2. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  3. A broadband electromagnetic UT system

    International Nuclear Information System (INIS)

    Repplinger, W.; Salzburger, H.J.

    1985-01-01

    An ultrasonic testing system based on contactless electromagnetic acoustic (E.M.A.) transduction has been developed by which broadband ultrasonic pulses are excited. This system overcomes disadvantages of usual E.M.A. transducers with meanderlike coil configuration, namely the excitation of narrowband pulses and the symmetrical radiation pattern. By dividing up a meanderlike coil into single elements and a time-delayed firing of the elements, whereby the time delay is given by the distance of the elements and the phase velocity of the wave propagating along the surface, the ultrasonic pulse radiated in one preferred direction becomes broadband by constructive interference. The signals radiated in the opposite direction do no more interfere. Its amplitude is smaller than that of the other direction, so that the transducer becomes uni-directional. This technique can be applied for the excitation of all dispersionless waves (bulk waves and guided waves)

  4. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  5. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  6. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  7. Electromagnetic launchers

    Science.gov (United States)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  8. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  9. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  10. Angularly resolved electron wave packet interferences

    International Nuclear Information System (INIS)

    Varju, K; Johnsson, P; Mauritsson, J; Remetter, T; Ruchon, T; Ni, Y; Lepine, F; Kling, M; Khan, J; Schafer, K J; Vrakking, M J J; L'Huillier, A

    2006-01-01

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation

  11. Angularly resolved electron wave packet interferences

    Energy Technology Data Exchange (ETDEWEB)

    Varju, K [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Johnsson, P [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Mauritsson, J [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Remetter, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ruchon, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ni, Y [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Lepine, F [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Kling, M [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Khan, J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Vrakking, M J J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden)

    2006-09-28

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation.

  12. Dark Matter Interference

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Sannino, Francesco

    2012-01-01

    We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio $f_n/f_p=-0.71$. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show ...

  13. THE MEASUREMENT ELECTROMAGNETIC INTERFERENCE IN THE REVERSE TRACTION NETWORK

    Directory of Open Access Journals (Sweden)

    T. M. Serdiuk

    2009-09-01

    Full Text Available The original automated method of measurement of electrical noise in the return electric-traction network is proposed. It is realized on the base of car-laboratory “Automatics, telemechanics and communication”. The mathematic model of return electric-traction network is developed to scientific bases of automated measurement. It allows us obtaining the mathematic expressions for change of voltage and current harmonics in the rail net and taking into account the inhomogeneity of lines for the following analytic determination of a source of electric noise.

  14. Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide

    Science.gov (United States)

    Wheeler, M. L.

    1998-01-01

    The objective of this test guide is to document appropriate unit level test methods and techniques for the performance of EMI testing of Direct Sequence (DS) spread spectrum receivers. Consideration of EMI test methods tailored for spread spectrum receivers utilizing frequency spreading, techniques other than direct sequence (such as frequency hopping, frequency chirping, and various hybrid methods) is beyond the scope of this test guide development program and is not addressed as part of this document EMI test requirements for NASA programs are primarily developed based on the requirements contained in MIL-STD-46 1 D (or earlier revisions of MIL-STD-46 1). The corresponding test method guidelines for the MIL-STD-461 D tests are provided in MIL-STD-462D. These test methods are well documented with the exception of the receiver antenna port susceptibility tests (intermodulation, cross modulation, and rejection of undesired signals) which must be tailored to the specific type of receiver that is being tested. Thus, test methods addressed in this guide consist only of antenna port tests designed to evaluate receiver susceptibility characteristics. MIL-STD-462D should be referred for guidance pertaining to test methods for EMI tests other than the antenna port tests. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.

  15. Renewable Energy, Photovoltaic Systems Near Airfields: Electromagnetic Interference

    Science.gov (United States)

    2015-04-01

    equipment to this standard and it is easily validated when procuring equipment. The FCC limits specify an upper bound on the amount of radiated ...60 Hz) operation. TYPICAL EMISSION SPECTRA AND COUNTERMEASURES Compliance with FCC Part 15 radiated specification does not guarantee a lack of ...TECHNIQUE To conduct field measurements of radiated emission, a wide-band spectrum analyzer with sensitivity down to 150 kHz is required, along with an

  16. Cell-phone interference with pocket dosimeters

    International Nuclear Information System (INIS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A

    2005-01-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  17. Cell-phone interference with pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A [Department of Radiation Oncology, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521 (United States)

    2005-05-07

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  18. Hearing aids' electromagnetic immunity to environmental RF fields

    International Nuclear Information System (INIS)

    Facta, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.

    2004-01-01

    In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range. (authors)

  19. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  20. Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.

    2002-01-01

    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part that is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief, our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high-efficiency conversion. With appropriate phase matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states vertical bar 0> and vertical bar 2> is always very small

  1. Geomagnetic oriented electromagnetic radiation in the ionosphere

    International Nuclear Information System (INIS)

    Benton, C.U.; Fowles, H.M.; Goen, P.K.

    1976-08-01

    Strong bursts of electromagnetic radiation were observed in the ionosphere during the Waso rocket Electromagnetic Pulse (EMP) experiment. The pulses have a frequency content from below 20 MHz to above 70 MHz. They vary in duration between 5 μs and 2 ms and in peak-amplitudes of 2 mV/m to greater than 200 mV/m. These pulses show a high degree of geomagnetic correlation and are of unknown origin

  2. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  3. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  4. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  5. Combined effects of 60Co dose and high frequency interferences on a discrete bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Raoult, J.; Jarrix, S.; Blain, A.; Dusseau, L.; Hoffmann, P.; Chatry, N.; Calvel, P.

    2012-01-01

    This paper concerns bipolar transistors subject to a double aggression: dose irradiation and high-frequency interference. The electromagnetic interference is injected in a contactless way in the near-field zone around the device. Parameters of the interference are power and frequency, the latter largely out of band of operation of the transistors. The output voltage of the transistor exhibits changes, due to rectification and to some extent to current crowding. The importance of the base bias set-up for the type of change occurring in voltage is displayed. After irradiation with a 60 Co source, the voltage output will change under electromagnetic interference but sometimes in an opposite way as initially measured. The impact of the irradiation with respect to electromagnetic susceptibility is highlighted from a physical point of view. Finally preliminary results of simulation for susceptibility prediction are given and a discussion is given on the limits of the transistor model used. (authors)

  6. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  7. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    Science.gov (United States)

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  8. Improper Gaussian Signaling in Interference-Limited Systems

    KAUST Repository

    Gaafar, Mohamed

    2016-05-01

    In the last decade, wireless applications have witnessed a tremendous growth. This can be envisioned in the surge of smart devices which became almost in everyone\\'s possession, demand for high speed connection and the internet of things (IoT) along with its enabling technologies. Hence, the multiuser interference became the main limiting factor in wireless communications. Moreover, just like diamonds and emeralds, the electromagnetic spectrum is limited and precious. Therefore, the high data rate application may not be satisfied by our current technologies. In order to solve this spectrum scarcity problem, researchers have steered their focus to develop new techniques such as cognitive radio (CR) and in-band full-duplex (FD). However, these systems suffer from the interference problem that can dramatically impede their quality-of-service (QoS). Therefore, investigating communication techniques/systems that can relieve the interference adverse signature becomes imperative. Improper Gaussian signaling (IGS) has been recently shown to outperform the traditional proper Gaussian signaling (PGS) in several interference-limited systems. In this thesis, we use IGS in order to mitigate the interference issue in three different communication settings. IGS has the ability to control the interference signal dimension, and hence, it can be considered as one form of interference alignment. In the first part, we investigate an underlay CR system with in-band FD primary users (PUs) and one-way communication for the secondary user (SU). IGS is employed to alleviate the interference introduced by the SU on the PUs. First, we derive a closed form expression and an upper bound for the SU and PUs outage probabilities, respectively. Second, we optimize the SU signal parameters, represented in its power and the circularity coefficient, to achieve the design objectives of the SU while satisfying certain QoS constraints for the PU under instantaneous, average and partial channel state

  9. High frequency electromagnetic processes in induction motors supplied from PWM inverters

    Directory of Open Access Journals (Sweden)

    Ioan Ţilea

    2010-12-01

    Full Text Available The paper presents the electromagnetic interference between induction motors and inverters when at high frequency electromagnetic process appears in induction motors having a parallel resonant effect because of parasitic capacitive coupling between windings and ground, using a numerical model in simulink and a high frequency induction motor equivalent circuit model this effect is shown.

  10. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    OpenAIRE

    Huang Yu-Hang; Zhu Wei-Hua; Jiang Xingfang

    2014-01-01

    There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The softwar...

  11. Electric smog: telemetry interference between ICD and LVAD.

    Science.gov (United States)

    Duncker, David; König, Thorben; Müller-Leisse, Johanna; Michalski, Roman; Oswald, Hanno; Schmitto, Jan D; Bauersachs, Johann; Veltmann, Christian

    2017-09-01

    Electromagnetic interferences between implantable cardioverter/defibrillators (ICD) and left ventricular assist devices (LVAD) impacting telemetry have been described in previous generations of ICD as well as LVAD, but have been predominantly overcome in current ICD generations. After introduction of a new fully magnetically levitated centrifugal continuous-flow circulatory pump, we report a case of tenacious telemetry interference between the HeartMate 3 LVAD and an ICD after battery exchange to an Iforia 5. Initialization of the initial telemetry handshake was only possible using several specific maneuvers simultaneously. In order to exclude device-device interference, we suggest to place the ICD above the LVAD before implantation and to test for possible telemetry interferences.

  12. An update on mobile phones interference with medical devices

    International Nuclear Information System (INIS)

    Pashazadeh, A. M.; Aghajani, M.; Nabipour, I.; Assadi, M.

    2013-01-01

    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems. (authors)

  13. An update on mobile phones interference with medical devices.

    Science.gov (United States)

    Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid

    2013-10-01

    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems.

  14. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  15. Tracking Electromagnetic Energy With SQUIDs

    Science.gov (United States)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  16. The Compensation Method of Vehicle Magnetic Interference for the Magnetic Gradiometer

    OpenAIRE

    Lv, Junwei; Yu, Zhentao; Huang, Jingli; Zhou, Jing

    2013-01-01

    The magnetic interference of vehicle imposes a strong influence on the magnetic gradiometer. Based on the mechanism of the vehicle magnetic interference, we firstly use the difference algorithm of the magnetic gradient tensor to fuse the magnetic interference of each vector magnetometer and establish a mathematical model of vehicle magnetic interference for the magnetic gradiometer. Next, we propose a compensation method for the vehicle magnetic interference and a recognition method for the e...

  17. Interference in the processing of adjunct control

    Directory of Open Access Journals (Sweden)

    Dan eParker

    2015-09-01

    Full Text Available Recent research on the memory operations used in language comprehension has revealed a selective profile of interference effects during memory retrieval. Dependencies such as subject-verb agreement show strong facilitatory interference effects from structurally inappropriate but feature-matching distractors, leading to illusions of grammaticality (Dillon, Mishler, Sloggett, & Phillips, 2013; Pearlmutter, Garnsey, & Bock, 1999; Wagers, Lau, & Phillips, 2009. In contrast, dependencies involving reflexive anaphors are generally immune to interference effects (Dillon et al., 2013; Sturt, 2003; Xiang, Dillon, & Phillips, 2009. This contrast has led to the proposal that all anaphors that are subject to structural constraints are immune to facilitatory interference. Here we use an animacy manipulation to examine whether adjunct control dependencies, which involve an interpreted anaphoric relation between a null subject and its licensor, are also immune to facilitatory interference effects. Our results show reliable facilitatory interference in the processing of adjunct control dependencies, which challenges the generalization that anaphoric dependencies as a class are immune to such effects. To account for the contrast between adjunct control and reflexive dependencies, we suggest that variability within anaphora could reflect either an inherent primacy of animacy cues in retrieval processes, or differential degrees of match between potential licensors and the retrieval probe.

  18. Interference and Sensitivity Analysis.

    Science.gov (United States)

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J; Halloran, M Elizabeth

    2014-11-01

    Causal inference with interference is a rapidly growing area. The literature has begun to relax the "no-interference" assumption that the treatment received by one individual does not affect the outcomes of other individuals. In this paper we briefly review the literature on causal inference in the presence of interference when treatments have been randomized. We then consider settings in which causal effects in the presence of interference are not identified, either because randomization alone does not suffice for identification, or because treatment is not randomized and there may be unmeasured confounders of the treatment-outcome relationship. We develop sensitivity analysis techniques for these settings. We describe several sensitivity analysis techniques for the infectiousness effect which, in a vaccine trial, captures the effect of the vaccine of one person on protecting a second person from infection even if the first is infected. We also develop two sensitivity analysis techniques for causal effects in the presence of unmeasured confounding which generalize analogous techniques when interference is absent. These two techniques for unmeasured confounding are compared and contrasted.

  19. Binaural Interference: Quo Vadis?

    Science.gov (United States)

    Jerger, James; Silman, Shlomo; Silverman, Carol; Emmer, Michele

    2017-04-01

    The reality of the phenomenon of binaural interference with speech recognition has been debated for two decades. Research has taken one of two avenues; group studies or case reports. In group studies, a sample of the elderly population is tested on speech recognition under three conditions; binaural, monaural right and monaural left. The aim is to determine the percent of the sample in which the expected outcome (binaural score-better-than-either-monaural score) is reversed (i.e., one of the monaural scores is better than the binaural score). This outcome has been commonly used to define binaural interference. The object of group studies is to answer the "how many" question, what is the prevalence of binaural interference in the sample. In case reports the binaural interference conclusion suggested by the speech recognition tests is not accepted until it has been corroborated by other independent diagnostic audiological measures. The aim is to attempt to determine the basis for the findings, to answer the "why" question. This article is at once tutorial, editorial and a case report. We argue that it is time to accept the reality of the phenomenon of binaural interference, to eschew group statistical approaches in search of an answer to the "how many" question, and to focus on individual case reports in search of an answer to the "why" question. American Academy of Audiology.

  20. Electromagnetic wave analogue of an electronic diode

    International Nuclear Information System (INIS)

    Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I

    2011-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of rotation of the polarization state and is also a key component in optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinarily strong nonlinear wave propagation effect in the same way as the electronic diode function is provided by the nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differs by a factor of 65.

  1. CONSEQUENCES OF SYMMETRY GROUPS FOR ELECTROMAGNETIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, A. J.; Sudarshan, E. C.G.

    1963-06-15

    The electromagnetic properties of SU/sub 3/ supermultiplets are obtained formally by a unitary transformation of a theory whose SU/sub 3/ invariant strong interactions are perturbed by merely charge-independent interactions. Several new results are presented, but the emphasis is on the simplicity and power of the method. Electromagnetic properties of the first and second kinds are distinguished, the former being independent of the precise manner in which the particular electromagnetic property depends on the electric charge current density. It is shown that all except two relations between the magnetic moments of the baryon octet hold equally well for other electromagnetic properties like self energies and Compton scattering amplitudes. (auth)

  2. On scattering of electromagnetic waves by a wormhole

    International Nuclear Information System (INIS)

    Kirillov, A.A.; Savelova, E.P.

    2012-01-01

    We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.

  3. On scattering of electromagnetic waves by a wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, A.A., E-mail: ka98@mail.ru [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation); Savelova, E.P. [Dubna International University of Nature, Society and Man, Universitetskaya Str. 19, Dubna, 141980 (Russian Federation)

    2012-04-20

    We consider scattering of a plane electromagnetic wave by a wormhole. It is found that the scattered wave is depolarized and has a specific interference picture depending on parameters of the wormhole and the distance to the observer. It is proposed that such features can be important in the direct search of wormholes.

  4. Effect of Mobile Phone Radiofrequency Electromagnetic Fields on ...

    African Journals Online (AJOL)

    Summary: Since cell phones emit radiofrequency electromagnetic fields (EMFs), this study tested the hypothesis that cell phones placed near the heart may interfere with the electrical rhythm of the heart or affect the blood pressure. Following informed consent, eighteen randomly selected apparently healthy male volunteers ...

  5. Electromagnetic energy flow lines as possible paths of photons

    Energy Technology Data Exchange (ETDEWEB)

    Davidovic, M [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Arsenovic, D; Bozic, M [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)], E-mail: milena@grf.bg.ac.yu, E-mail: asanz@imaff.cfmac.csic.es, E-mail: arsenovic@phy.bg.ac.yu, E-mail: bozic@phy.bg.ac.yu, E-mail: s.miret@imaff.cfmac.csic.es

    2009-07-15

    Motivated by recent experiments where interference patterns behind a grating are obtained by accumulating single photon events, we provide here an electromagnetic energy flow-line description to explain the emergence of such patterns. We find and discuss an analogy between the equation describing these energy flow lines and the equation of Bohmian trajectories used to describe the motion of massive particles.

  6. CERN Technical Training 2002: Learning for the LHC! Electromagnetic Compatibility (EMC): Introduction

    CERN Multimedia

    Davide Vitè

    2002-01-01

    A new session of the course Electromagnetic Compatibility (EMC): Introduction will be held on May 22 (am), in the framework of the CERN Technical Training Programme. This session, bilingual English-French, is free of charge, and will be given by F. Szoncso of TIS-GS division. The course is designed for physicists, engineers and technicians facing electromagnetic interference problems, and will describe the underlying phenomena and mechanisms of electromagnetic interference and their remedies. More information and online registration by EDH are available from the Technical Training "Electronics Design" pages, under the chapter "Miscellaneous". Please contact Technical.Training@cern.ch should you need any other information.

  7. Quantum interference between multi photon absorption pathways in organic solid

    International Nuclear Information System (INIS)

    Rebane, A.; Christensson, N.; Drobizhev, M.; Stepanenko, Y.; Spangler, C.W.

    2007-01-01

    We demonstrate spatial interference fringe pattern by simultaneous one- and three-photon absorption of UV and near-IR femtosecond pulses in thin film organic solid at room temperature. We use organic dendrimers that are specially designed to have strong fluorescence and very large three-photon absorption cross-section. High fringe visibility allows the quantum interference to be observed by eye

  8. Quantum processes in a strong electromagnetic field producing pairs. 3

    International Nuclear Information System (INIS)

    Gitman, D.M.; Gavrilov, S.P.

    1977-01-01

    The Furry picture in quantum electrodynamics with an external field producing real pairs has been generalized. For the required generalization to be achieved all operators of a spinor field are expressed through functions of production and annihilation operators and formulated are the rules for reduction to a generalized normal form, i.e., to such a form in which all the production operators in each term are on the left from all the annihilation operators. The diagram technique for matrix elements of random processes has been considered

  9. Generalized Multiphoton Quantum Interference

    Directory of Open Access Journals (Sweden)

    Max Tillmann

    2015-10-01

    Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  10. Interference in immunoassay

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    Interfering factors are evident in both limited reagent (radioimmunoassay) and excess reagent (immunometric assay) technologies and should be suspected whenever there is a discrepancy between analytical results and clinical findings in the investigation of particular diseases. The overall effect of interference in immunoassay is analytical bias in result, either positive or negative of variable magnitude. The interference maybe caused by a wide spectrum of factors from poor sample collection and handling to physiological factors e.g. lipaemia, heparin treatment, binding protein abnormalities, autoimmunity and drug treatments. The range of interfering factors is extensive and difficult to discuss effectively in a short review

  11. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  12. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  13. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  14. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  15. Electromagnetic Compatibility in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-01-01

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I ampersand C) systems used by the U.S. military. The potential for disruption of safety-related I ampersand C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I ampersand C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper

  16. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  17. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  18. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  19. Electromagnetic compatibility for the control and command equipments in nuclear power plants

    International Nuclear Information System (INIS)

    Buisson, J.

    1985-06-01

    Different kinds of electrical interference produce some disturbance on electronic sub-assemblies used to assume the control and the command of nuclear reactors. Following interferences are described: power supply lines perturbations, potential difference between grounding connections, electromagnetic fields. A method is described for testing the EMC of different equipments. The advantages of this method are: no destructive method, usable for testing equipment ''in situ'' in operating conditions on nuclear power plant, usable for testing equipment before operating conditions (acceptance test), level of the testing signals similar to the electrical interference level induced by the electromagnetic environment in normal operating conditions, no particular equipment and installation for test are required [fr

  20. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  1. Mesoscopic fluctuations of the population of a qubit in a strong alternating field

    Energy Technology Data Exchange (ETDEWEB)

    Denisenko, M. V., E-mail: mar.denisenko@gmail.com; Satanin, A. M. [Lobachevsky State University of Nizhny Novgorod (Russian Federation)

    2016-12-15

    Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau–Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of the population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.

  2. Acoustic transparency and opacity using Fano Interferences in Metamaterials

    KAUST Repository

    Khelif, A.

    2015-08-04

    We investigate both experimentally and theoretically how to generate the acoustical analogue of the Electromagnetically Induced Transparency. This phenomenon arises from Fano resonances originating from constructive and destructive interferences of a narrow discrete resonance with a broad spectral line or continuum. Measurements were realized on a double-cavity structure by using a Kundt’s Tube. Transmission properties reveal an asymmetric lineshape of the transmission that leads to acoustic transparency.

  3. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  4. Kvantová interference

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan

    2003-01-01

    Roč. 48, č. 4 (2003), s. 99-103 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : interference * quantum cryptography * quantum computing * quantum teleportation Subject RIV: BH - Optics, Masers, Lasers

  5. H{sup +}{sub 2} ionization by ultra-short electromagnetic pulses investigated through a non-perturbative Coulomb-Volkov approach

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, V D [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Macri, P [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas, 1428 Buenos Aires (Argentina); Gayet, R [CELIA, Centre Lasers Intenses et Applications, UMR 5107, Unite Mixte de Recherche CNRS-CEA-Universite Bordeaux 1, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2005-08-14

    The sudden Coulomb-Volkov theoretical approximation has been shown to well describe atomic ionization by intense and ultra-short electromagnetic pulses, such as pulses generated by very fast highly-charged ions. This approach is extended here to investigate single ionization of homonuclear diatomic molecules by such pulses in the framework of one-active electron. Under particular conditions, a Young-like interference formula can approximately be factored out. Present calculations show interference effects originating from the molecular two-centre structure. Fivefold differential angular distributions of the ejected electron are studied as a function of the molecular orientation and internuclear distance. Both non-perturbative and perturbative regimes are examined. In the non-perturbative case, an interference pattern is visible but a main lobe, opposite to the electric field polarization direction, dominates the angular distribution. In contrast, in perturbation conditions the structure of interferences shows analogies to the Young-like interference pattern obtained in ionization of molecules by fast electron impacts. Finally, the strong dependence of these Young-like angular distributions on the internuclear distance is addressed.

  6. Motion of charged particles in a knotted electromagnetic field

    International Nuclear Information System (INIS)

    Arrayas, M; Trueba, J L

    2010-01-01

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  7. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  8. Possible health hazards for cardiac pacemaker wearers from exposure to electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    Cardiac pacemakers are used to provide electrical stimulation to the heart when the heart's natural rhythm is interrupted. This study shows that they can be susceptible to electromagnetic fields. Pacemakers are well protected against common electromagnetic fields, such as those from household appliances. But intense electomagnetic fields, such as those found in some industrial settings, could affect the functioning of the pacemaker. Such interference may cause the pacemaker wearer to feel dizzy or experience an accelerated heartbeat. While this is not fatal, the pacemaker wearer should try to move away from the source of the interfering field and avoid situations in which interference could arise. After experiencing any of these symptoms, the pacemaker wearer should contact a physician. Potential sources of electromagnetic interference should be identified and characterized to determine if there could be an interference hazard. Exposure to interfering electomagnetic fields should be minimized. 7 refs., 1 fig.

  9. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  10. Time and interference: Effects on working memory.

    Science.gov (United States)

    Botto, Marta; Palladino, Paola

    2016-05-01

    This study tested predictions from the time-based resource-sharing (TBRS) model with a classical verbal working memory (WM) task, where target and non-target information interfere strongly with each other. Different predictions can be formulated according to the dominant perspectives (TBRS and interference hypothesis) on the role of inhibitory control in WM task performance. Here, we aimed to trace the activation of irrelevant information, examining priming effects in a lexical decision task immediately following WM recall. Results indicate the roles of both time and interference constraints in determining task performance. In particular, the role of time available seemed crucial at the highest WM loads (i.e., 3 and 4 memoranda). These were also associated with a higher activation of no-longer-relevant information but, in this case, independently from time available for processing. © 2015 The British Psychological Society.

  11. Application and research of artificial water mist on photoelectric interference

    Science.gov (United States)

    He, Yuejun; Ren, Baolin

    2018-04-01

    Water mist is a new type of photoelectric interfering material. It can exert a strong interference and shielding effect on infrared light, laser and radar wave through scattering, reflection, refraction and absorption. Based on this, this paper illustrates the application of an artificial high pressure water mist technology in infrared interference system. First, the operating principle of the infrared interference system is introduced. Next, the design principle of self-excited rotary vortex nozzle, the key part of the system, is elaborated. Then, the calculation of the main control parameters of the system is clarified. In the end, the paper verifies interference and shielding effect of the system by experiment. Experiment shows that the interference system can significantly reduce infrared signature of the target, featuring excellent infrared interference performance and high practical value.

  12. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  13. Teaching Electromagnetic Waves in College Physics Laboratory

    Science.gov (United States)

    Kezerashvili, Roman Y.; Leng, L.

    2006-12-01

    One of the important educational advantages of the simultaneous study of the electromagnetic waves and light is to show that light and the electromagnetic radiation have the same properties so that the students can visualize the properties of the electromagnetic radiation through observation of light propagation. In our approach we are suggest to study the properties of a microwave radiation and light in parallel. The following experiments can be easily designed and they provide a methodical introduction to electromagnetic theory using the microwave radiation and light: the study of the inverse square law of the dependence of the intensity of radiation (microwave and light) on the distance, the law of reflection and refraction, investigation of the phenomenon of polarization and how a polarizer can be used to alter the polarization of microwave radiation and light, measuring the Brewster's angle, studying interference by performing double-slit experiment for microwave radiation and light. Finally students measure the wavelength of the laser light and microwave radiation using the corresponding versions the Michelson’s interferometer, and recognize that these two radiations only differ by the wavelength or frequency.

  14. Codebook-based interference alignment for uplink MIMO interference channels

    KAUST Repository

    Lee, Hyun Ho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base

  15. Ionization in a quantized electromagnetic field

    International Nuclear Information System (INIS)

    Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.

    2007-01-01

    An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field

  16. Bright branes for strongly coupled plasmas

    International Nuclear Information System (INIS)

    Mateos, David; Patino, Leonardo

    2007-01-01

    We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments

  17. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  18. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  19. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  20. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  1. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  2. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  3. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...

  4. Requirements and analysis of electromagnetic compatibility of safety-related instrumentation and control system in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Sujuan

    2002-01-01

    The state-of-the-art instrumentation and control system and the influence of their application to the electromagnetic compatibility is analyzed. Based on the present situation of nuclear safety in China and relevant experiences from other countries, the author tries to probe into the requirements and test methods about how safety-related instrument and control system to accommodate electromagnetic interference, radio-frequency interference and power surges in the environments of nuclear power plant so as to develop Chinese safety standards

  5. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  6. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  7. Optical tweezers and paradoxes in electromagnetism

    International Nuclear Information System (INIS)

    Pfeifer, Robert N C; Nieminen, Timo A; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2011-01-01

    The widespread application of optical forces and torques has contributed to renewed interest in the fundamentals of the electromagnetic force and torque, including long-standing paradoxes such as the Abraham–Minkowski controversy and the angular momentum density of a circularly polarized plane wave. We discuss the relationship between these electromagnetic paradoxes and optical tweezers. In particular, consideration of possible optical tweezers experiments to attempt to resolve these paradoxes strongly suggests that they are beyond experimental resolution, yielding identical observable results in all cases

  8. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    Science.gov (United States)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  9. Theoretical status of weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, L. K.

    1980-07-01

    An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.

  10. Understanding interference experiments with polarized light through photon trajectories

    International Nuclear Information System (INIS)

    Sanz, A.S.; Davidovic, M.; Bozic, M.; Miret-Artes, S.

    2010-01-01

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.

  11. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  12. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  13. The electromagnetic properties of plasma produced by hypervelocity impact

    Science.gov (United States)

    Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng

    2018-02-01

    The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.

  14. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  15. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  16. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased

  17. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  18. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  19. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  20. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  1. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  2. Matter in the form of toroidal electromagnetic vortices

    Science.gov (United States)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact

  3. Mathematics and electromagnetism

    International Nuclear Information System (INIS)

    Rodriguez Danta, M.

    2000-01-01

    Symbiosis between mathematics and electromagnetism is analyzed in a simple and concise manner by taking a historical perspective. The universal tool character of mathematical models allowed the transfer of models from several branches of physics into the realm of electromagnetism by drawing analogies. The mutual interdependence between covariant formulation and tensor calculus is marked. The paper focuses on the guiding idea of field theory and Maxwell's equations. Likewise, geometrization of interactions in connection with gauge fields is also noted. (Author)

  4. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  5. Electromagnetic Fields Exposure Limits

    Science.gov (United States)

    2018-01-01

    Mr. T.P. (Tjerk) KUIPERS Senior Adviser Health Physics Military Healthcare & Occupational Health Expertise Co-ordination Centre Support...Test of Biological Integrity in Dogs Exposed to an Electromagnetic Pulse Environment”, Health Physics 36:159-165, 1979. [11] Baum, S.J., Ekstrom, M.E...Electromagnetic Radiation”, Health Physics 30:161-166, 1976. [12] Baum, S., Skidmore, W. and Ekstrom, M., “Continuous Exposure of Rodents to 108 Pulses

  6. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  7. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  8. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  9. The intention interference effect.

    Science.gov (United States)

    Cohen, Anna-Lisa; Kantner, Justin; Dixon, Roger A; Lindsay, D Stephen

    2011-01-01

    Intentions have been shown to be more accessible (e.g., more quickly and accurately recalled) compared to other sorts of to-be-remembered information; a result termed an intention superiority effect (Goschke & Kuhl, 1993). In the current study, we demonstrate an intention interference effect (IIE) in which color-naming performance in a Stroop task was slower for words belonging to an intention that participants had to remember to carry out (Do-the-Task condition) versus an intention that did not have to be executed (Ignore-the-Task condition). In previous work (e.g., Cohen et al., 2005), having a prospective intention in mind was confounded with carrying a memory load. In Experiment 1, we added a digit-retention task to control for effects of cognitive load. In Experiment 2, we eliminated the memory confound in a new way, by comparing intention-related and control words within each trial. Results from both Experiments 1 and 2 revealed an IIE suggesting that interference is very specific to the intention, not just to a memory load.

  10. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  11. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  12. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  14. On the exhaust of electromagnetic drive

    Directory of Open Access Journals (Sweden)

    Patrick Grahn

    2016-06-01

    Full Text Available Recent reports about propulsion without reaction mass have been met on one hand with enthusiasm and on the other hand with some doubts. Namely, closed metal cavities, when fueled with microwaves, have delivered thrust that could eventually maintain satellites on orbits using solar power. However, the measured thrust appears to be without any apparent exhaust. Thus the Law of Action-Reaction seems to have been violated. We consider the possibility that the exhaust is in a form that has so far escaped both experimental detection and theoretical attention. In the thruster’s cavity microwaves interfere with each other and invariably some photons will also end up co-propagating with opposite phases. At the destructive interference electromagnetic fields cancel. However, the photons themselves do not vanish for nothing but continue in propagation. These photon pairs without net electromagnetic field do not reflect back from the metal walls but escape from the resonator. By this action momentum is lost from the cavity which, according to the conservation of momentum, gives rise to an equal and opposite reaction. We examine theoretical corollaries and practical concerns that follow from the paired-photon conclusion.

  15. Selection of independent components based on cortical mapping of electromagnetic activity

    Science.gov (United States)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  16. Measurement technology of RF interference current in high current system

    Science.gov (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  17. The Impact of Radio Interference on Future Radio Telescopes

    Science.gov (United States)

    Mitchell, Daniel A.; Robertson, Gordon J.; Sault, Robert J.

    While future radio telescopes will require technological advances from the communications industry interference from sources such as satellites and mobile phones is a serious concern. In addition to the fact that the level of interference is growing constantly the increased capabilities of next generation instruments make them more prone to harmful interference. These facilities must have mechanisms to allow operation in a crowded spectrum. In this report some of the factors which may limit the effectiveness of these mechanisms are investigated. Radio astronomy is unique among other observing wavelengths in that the radiation can be fully sampled at a rate which completely specifies the electromagnetic environment. Knowledge of phases and antennae gain factors affords one the opportunity to attempt to mitigate interference from the astronomical data. At present several interference mitigation techniques have been demonstrated to be extremely effective. However the observational scales of the new facilities will push the techniques to their limits. Processes such as signal decorrelation varying antenna gain and instabilities in the primary beam will have a serious effect on some of the algorithms. In addition the sheer volume of data produced will render some techniques computationally and financially impossible.

  18. An investigation of the levels of electromagnetic radiation generated by wind turbines

    International Nuclear Information System (INIS)

    Morgan, C.A.

    1992-01-01

    The issue of electromagnetic interference is arising with some regularity as various wind energy projects throughout the UK reach the stage where local authority planning approval is sought. To many of the parties involved, wind turbines represent an unknown quantity and hence objections to their siting must be expected. Wind turbines may cause electromagnetic interference through two quite distinct processes. The first occurs when the wind turbine scatters electromagnetic signals passing through the area of the site and essentially, provides a second path between the transmitter and receiver of the signal. The second source of interference arises when signals generated within the wind turbine itself affect communications equipment or, indeed, any electronic circuitry. A case in point is a wind farm project under development by Bonython Estates of Cornwall. The aim of this project was to investigate the emissions from the wind turbines proposed for the Bonython development. This was achieved by means of field measurements on existing installations. (author)

  19. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  20. Brief Introduction of Chinese National Technical Committee for Standardization on Radio Interference

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Chinese Nationa Technical Committee for Standardization on Radio Interference(SAC/TC79),ESTABLISHED IN 1986,is the national technical organization relating to different departments for standardization,with responsibility for technical research of electromagnetic compatibility as well as the management of each subcommittee.

  1. Interference by new-generation mobile phones on critical care medical equipment

    NARCIS (Netherlands)

    van Lieshout, Erik Jan; van der Veer, Sabine N.; Hensbroek, Reinout; Korevaar, Johanna C.; Vroom, Margreeth B.; Schultz, Marcus J.

    2007-01-01

    INTRODUCTION: The aim of the study was to assess and classify incidents of electromagnetic interference (EMI) by second-generation and third-generation mobile phones on critical care medical equipment. METHODS: EMI was assessed with two General Packet Radio Service (GPRS) signals (900 MHz, 2 W, two

  2. Strong beam production for some elements

    International Nuclear Information System (INIS)

    Camplan, J.; Chaumont, J.; Meunier, R.

    1974-01-01

    Three electromagnetic isotope separators are installed in Rene Bernas Laboratory, one being especially adapted to ion implantation. The three apparatus use the same type of ion source and system of beam extraction. The special ion source is distinguishable from the others only by its smaller dimensions. These sources allow strong currents to be obtained for almost every element. The source and its extraction system are briefly described, examples of beams obtained are given [fr

  3. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A. [Dept. of Physics, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr. 13, 119234 Moscow (Russian Federation)

    2017-09-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  4. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    International Nuclear Information System (INIS)

    Dolgov, A.; Postnov, K.

    2017-01-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  5. Anomalous electromagnetic coupling via entanglement at the nanoscale

    International Nuclear Information System (INIS)

    Slepyan, Gregory; Boag, Amir; Mordachev, Vladimir; Sinkevich, Eugene; Maksimenko, Sergey; Kuzhir, Polina; Miano, Giovanni; Portnoi, Mikhail E; Maffucci, Antonio

    2017-01-01

    Understanding unwanted mutual interactions between devices at the nanoscale is crucial for the study of the electromagnetic compatibility in nanoelectronic and nanophotonic systems. Anomalous electromagnetic coupling (crosstalk) between nanodevices may arise from the combination of electromagnetic interaction and quantum entanglement. In this paper we study in detail the crosstalk between two identical nanodevices, each consisting of a quantum emitter (atom, quantum dot, etc), capacitively coupled to a pair of nanoelectrodes. Using the generalized susceptibility concept, the overall system is modeled as a two-port within the framework of the electrical circuit theory and it is characterized by the admittance matrix. We show that the entanglement changes dramatically the physical picture of the electromagnetic crosstalk. In particular, the excitation produced in one of the ports may be redistributed in equal parts between both the ports, in spite of the rather small electromagnetic interactions. Such an anomalous crosstalk is expected to appear at optical frequencies in lateral GaAs double quantum dots. A possible experimental set up is also discussed. The classical concepts of interference in the operation of electronic devices, which have been known since the early days of radio-communications and are associated with electromagnetic compatibility, should then be reconsidered at the nanoscale. (paper)

  6. Intraoperative visualization and assessment of electromagnetic tracking error

    Science.gov (United States)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  7. Primary Salvage Survey of the Interference of Radiowaves Emitted by Smartphones on Medical Equipment.

    Science.gov (United States)

    Takao, Hiroyuki; Yeh, Yu Chih; Arita, Hiroyuki; Obatake, Takumi; Sakano, Teppei; Kurihara, Minoru; Matsuki, Akira; Ishibashi, Toshihiro; Murayama, Yuichi

    2016-10-01

    Use of mobile phones has become a standard reality of everyday living for many people worldwide, including medical professionals, as data sharing has drastically helped to improve quality of care. This increase in the use of mobile phones within hospitals and medical facilities has raised concern regarding the influence of radio waves on medical equipment. Although comprehensive studies have examined the effects of electromagnetic interference from 2G wireless communication and personal digital cellular systems on medical equipment, similar studies on more recent wireless technologies such as Long Term Evolution, wideband code division multiple access, and high-speed uplink access have yet to be published. Numerous tests targeting current wireless technologies were conducted between December 2012 and March 2013 in an anechoic chamber, shielded from external radio signals, with a dipole antenna to assess the effects of smartphone interference on several types of medical equipment. The interference produced by electromagnetic waves across five frequency bands from four telecommunication standards was assessed on 49 components from 22 pieces of medical equipment. Of the 22 pieces of medical equipment tested, 13 experienced interference at maximum transmission power. In contrast, at minimum transmission power, the maximum interference distance varied from 2 to 5 cm for different wireless devices. Four machines were affected at the minimum transmission power, and the maximum interference distance at the maximum transmission power was 38 cm. Results show that the interference from smartphones on medical equipment is very controllable.

  8. Interference effects in MSSM Higgs searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Elina [Weizmann Institute of Science, Rehovot (Israel); Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-05-15

    Complex parameters in the MSSM lead to mixing and interference between the two heavier neutral CP-even and CP-odd Higgs states. These effects can become very large in the case of almost degenerate states. In a CP-violating benchmark scenario, we investigate phenomenological implications of such interferences in view of the LHC searches for heavy Higgs bosons decaying to a pair of τ-leptons and produced in gluon fusion and in association with b-quarks. Strongly destructive effects leave parameter regions unconstrained that would be regarded as excluded if no interference terms were taken into account.

  9. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    Science.gov (United States)

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  10. Selective interference with pacemaker activity by electrical dental devices.

    Science.gov (United States)

    Miller, C S; Leonelli, F M; Latham, E

    1998-01-01

    We sought to determine whether electromagnetic interference with cardiac pacemakers occurs during the operation of contemporary electrical dental equipment. Fourteen electrical dental devices were tested in vitro for their ability to interfere with the function of two Medtronics cardiac pacemakers (one a dual-chamber, bipolar Thera 7942 pacemaker, the other a single-chamber, unipolar Minix 8340 pacemaker). Atrial and ventricular pacemaker output and electrocardiographic activity were monitored by means of telemetry with the use of a Medtronics 9760/90 programmer. Atrial and ventricular pacing were inhibited by electromagnetic interference produced by the electrosurgical unit up to a distance of 10 cm, by the ultrasonic bath cleaner up to 30 cm, and by the magnetorestrictive ultrasonic scalers up to 37.5 cm. In contrast, operation of the amalgamator, electric pulp tester, composite curing light, dental handpieces, electric toothbrush, microwave oven, dental chair and light, ENAC ultrasonic instrument, radiography unit, and sonic scaler did not alter pacing rate or rhythm. These results suggest that certain electrosurgical and ultrasonic instruments may produce deleterious effects in medically fragile patients with cardiac pacemakers.

  11. Strong Coupling Continuum QCD

    International Nuclear Information System (INIS)

    Pennington, Michael

    2011-01-01

    The Schwinger-Dyson, Bethe-Salpeter system of equations are the link between coloured quarks and gluons, and colourless hadrons and their properties. This talk reviews some aspects of these studies from the infrared behavior of ghosts to the prediction of electromagnetic form-factors.

  12. Induced photoassociation in the field of a strong electomagnetic wave

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.; Lyul'ka, V.A.

    1979-01-01

    The quantum-mechanical problem of the stimulated transition of a system in the field of a strong electromagnetic wave from the continuous spectrum to a bound state possessing a finite lifetime is considered. The expressions obtained are employed to calculate stimulated production of mesic atoms and mesic molecules (ddμ). It is demonstrated that in an external electromagnetic field the probability for production of this type may considerably increase

  13. Electromagnetic probes of the QGP

    Directory of Open Access Journals (Sweden)

    Bratkovskaya E. L.

    2015-01-01

    Full Text Available We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 “puzzle”. While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  14. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  15. BETA (Bitter Electromagnet Testing Apparatus)

    Science.gov (United States)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  16. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  17. Feasibility study on analogue cancellation of local interference in multimode transceivers

    NARCIS (Netherlands)

    Habibi, H.; Zamanifekri, A.; Janssen, E.J.G.; Wu, Y.; Baltus, P.G.M.; Bergmans, J.W.M.

    2014-01-01

    In multimode transceivers, the transmitter for one communication standard induces a strong local interference in the receiver for another standard. Such strong interference can severely affect the receiver, if it is not suppressed at an early stage of the receiver. A widely explored method to cancel

  18. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  19. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  20. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  1. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  2. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electromagnetic Propagation Problems in the Tactical Environment

    Science.gov (United States)

    1982-04-01

    quiet rural areas 10 FREQUENCY 1000 MHz Fig. 7 Relative Noise Levels 1-13 H.J.A. ’ B1 AGARD-LE-120 LINK COnnUNICATION LINKS IN...kHz trans- missions from MSF, Rugby , England. Strong skywave interference occurs from some 200 km outwards with interference minima of some 20-30...with distance for transmissions from MSF ( Rugby ), 60 kHz, daytime conditions -«o- -200 Fig 2 Power level diagram for air-ground link, range

  4. Electromagnetic compatibility of WLAN adapters with life-supporting medical devices.

    Science.gov (United States)

    Calcagnini, G; Mattei, E; Censi, F; Triventi, M; Lo Sterzo, R; Marchetta, E; Bartolini, P

    2011-05-01

    This paper investigates the electromagnetic compatibility of 45 critical care medical devices (infusion pumps, defibrillators, monitors, lung ventilators, anesthesia machines and external pacemakers) with various types of wireless local area network (WLAN, IEEE 802.11 b/g, 2.45 GHz, 100 mW) adapters. Interference is evaluated by performing ad-hoc tests according to the ANSI C63.18 recommended practice. The behavior of the devices during the tests was monitored using patient simulators/device testers specific for each device class. Electromagnetic interference cases were observed in three of 45 devices at a maximum distance of 5 cm. In two cases the interference caused malfunctions that may have clinical consequences for the patient. The authors' findings show that the use of these wireless local area network adapters can be considered reasonably safe, although interference may occur if they are operated at very close distance (<10 cm) to the medical devices.

  5. Electromagnetic theory for filamentary superconductors

    International Nuclear Information System (INIS)

    Carr, W.J. Jr.

    1975-01-01

    It is shown that a multifilament superconductor, made up of a bundle of twisted filaments embedded in a normal matrix, can be treated as a new state of matter with anisotropic electrical and magnetic properties. Macroscopic electromagnetic field vectors, which satisfy Maxwell's equations, are defined in terms of averages over the ''microscopic'' fields. However, the sources for the field, i.e., the current and charge densities and the magnetization and polarization, differ in some respects from those for ordinary matter. In particular, since the elementary magnetic dipole moments are distributed along lines rather than located at fixed points, the definition of the magnetization transverse to the filaments differs by a factor of 2 from that for ordinary matter, and the definition of the macroscopic current density is also slightly modified. Constitutive relationships among the field vectors in terms of permeabilities, dielectric constants, and conductivities are examined in the limits of strong and weak fields

  6. The theory of electromagnetism

    CERN Document Server

    Jones, D S

    1964-01-01

    The Theory of the Electomagnetism covers the behavior of electromagnetic fields and those parts of applied mathematics necessary to discover this behavior. This book is composed of 11 chapters that emphasize the Maxwell's equations. The first chapter is concerned with the general properties of solutions of Maxwell's equations in matter, which has certain macroscopic properties. The succeeding chapters consider specific problems in electromagnetism, including the determination of the field produced by a variable charge, first in isolation and then in the surface distributions of an antenna. The

  7. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  8. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  9. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  10. Developmental Change in Proactive Interference.

    Science.gov (United States)

    Kail, Robert

    2002-01-01

    Two studies examined age-related change in proactive interference from previously learned material. The meta-analysis of 26 studies indicated that proactive interference decreased with age. The cross-sectional study found that third through sixth graders' and college students' recall was accurate on Trial 1, but became less so over Trials 2…

  11. Sleep can reduce proactive interference.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2014-01-01

    Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.

  12. Output Interference in Recognition Memory

    Science.gov (United States)

    Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.

    2011-01-01

    Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…

  13. Interference Phenomenon with Mobile Displays

    Science.gov (United States)

    Trantham, Kenneth

    2015-01-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  14. Electromagnetic Fields in Reverberant Environments

    NARCIS (Netherlands)

    Vogt-Ardatjew, Robert Andrzej

    2017-01-01

    The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical

  15. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  16. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  17. Communications in interference limited networks

    CERN Document Server

    2016-01-01

    This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.

  18. Computer aided method of low voltage power distribution networks protection system against lightning and electromagnetic pulse generated by high altitude nuclear burst

    International Nuclear Information System (INIS)

    Laroubine, J.

    1989-01-01

    The lightning creates an electromagnetic field which produces a slow duration and high energy pulse of current on low voltage power distribution networks. On the other hand an high altitude nuclear burst generates an electromagnetic pulse which causes fast and intense interferences. We describe here the specifications of a passive filter that can reject these interferences. We used a computer aided method of simulation to create a prototype. Experimental results confirm the validity of the model used for simulation [fr

  19. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  20. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  1. Disconnected electromagnetic form factors

    International Nuclear Information System (INIS)

    Wilcox, Walter

    2001-01-01

    Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors

  2. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  3. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  4. Electromagnetic Environments Simulator (EMES)

    International Nuclear Information System (INIS)

    Varnado, G.B.

    1975-11-01

    A multipurpose electromagnetic environments simulator has been designed to provide a capability for performing EMR, EMP, and lightning near stroke testing of systems, subsystems and components in a single facility. This report describes the final facility design and presents the analytical and experimental verification of the design

  5. Pregnancy and electromagnetic fields

    International Nuclear Information System (INIS)

    Bisseriex, Ch.; Laurent, P.; Cabaret, Ph.; Bonnet, C.; Marteau, E.; Le Berre, G.; Tirlemont, S.; Castro, H.; Becker, A.; Demaret, Ph.; Donati, M.; Ganem, Y.; Moureaux, P.

    2011-07-01

    This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields

  6. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  7. "Hearing" Electromagnetic Waves

    Science.gov (United States)

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  8. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  9. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  10. A Circuit Design and its Experimental Analysis for Electromagnetic Flowmeter in Measurement of Sewage

    Directory of Open Access Journals (Sweden)

    Huang Yu-Hang

    2014-02-01

    Full Text Available There are many problems in the traditional electromagnetic flowmeter. The problems involve three aspects. The first one is that the measurement precision is low. The second one is that the measurement range is narrow. The third one is that the test results are susceptible to interference. For the problems a new electromagnetic flowmeter controlled by single-chip microcomputer has been proposed. The medium/large-sized electromagnetic flowmeter is suitable for measurement of sewage. The software and hardware circuit of the electromagnetic flowmeter has been designed and tested. The tested data have been analyzed by the least square method and the error is 0.8 %. The result shown that the electromagnetic flowmeter controlled by single-chip microcomputer for measurement of sewage has reached the advanced level of similar products at home and abroad.

  11. Electromagnetic compatibility of PLC adapters for in-home/domestic networks

    Science.gov (United States)

    Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek

    2018-01-01

    The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

  12. Calculating hadronic properties in strong QCD

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1996-01-01

    This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)

  13. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  14. Interference effects in negative ion formation

    International Nuclear Information System (INIS)

    Alvarez, I.; Morales, A.; de Urquijo, J.; Cisneros, C.

    1984-01-01

    This paper presents recent data on differential cross sections for H - formation from collisions of H + and H 0 with Ar in the energy range 1.0 to 4 keV. Experimental data exhibit a sharp maximum at 0 0 scattering angle as well as an oscillatory structure. The functional form and scaling properties strongly indicate that there is a glory maximum which occurs when the classical deflection function changes over from attractive to repulsive at some finite impact parameter. The oscillations are predicted by the Bessel function and may be said to arise from interference of the contributions from the two branches of the deflection function near to a glory

  15. Preserved cumulative semantic interference despite amnesia

    Directory of Open Access Journals (Sweden)

    Gary Michael Oppenheim

    2015-05-01

    As predicted by Oppenheim et al’s (2010 implicit incremental learning account, WRP’s BCN RTs demonstrated strong (and significant repetition priming and semantic blocking effects (Figure 1. Similar to typical results from neurally intact undergraduates, WRP took longer to name pictures presented in semantically homogeneous blocks than in heterogeneous blocks, an effect that increased with each cycle. This result challenges accounts that ascribe cumulative semantic interference in this task to explicit memory mechanisms, instead suggesting that the effect has the sort of implicit learning bases that are typically spared in hippocampal amnesia.

  16. A Decentralized Receiver in Gaussian Interference

    Directory of Open Access Journals (Sweden)

    Christian D. Chapman

    2018-04-01

    Full Text Available Bounds are developed on the maximum communications rate between a transmitter and a fusion node aided by a cluster of distributed receivers with limited resources for cooperation, all in the presence of an additive Gaussian interferer. The receivers cannot communicate with one another and can only convey processed versions of their observations to the fusion center through a Local Array Network (LAN with limited total throughput. The effectiveness of each bound’s approach for mitigating a strong interferer is assessed over a wide range of channels. It is seen that, if resources are shared effectively, even a simple quantize-and-forward strategy can mitigate an interferer 20 dB stronger than the signal in a diverse range of spatially Ricean channels. Monte-Carlo experiments for the bounds reveal that, while achievable rates are stable when varying the receiver’s observed scattered-path to line-of-sight signal power, the receivers must adapt how they share resources in response to this change. The bounds analyzed are proven to be achievable and are seen to be tight with capacity when LAN resources are either ample or limited.

  17. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  18. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  19. Interference management using direct sequence spread spectrum ...

    African Journals Online (AJOL)

    Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.

  20. Optical interference with noncoherent states

    International Nuclear Information System (INIS)

    Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon; Ron, Amiram

    2003-01-01

    We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors' readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where the currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources

  1. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  2. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  3. Interference, reduced action, and trajectories

    OpenAIRE

    Floyd, Edward R.

    2006-01-01

    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...

  4. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  5. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  6. Parametric transformation of weak gravitational wave into electromagnetic one in a three-level system

    International Nuclear Information System (INIS)

    Tagirov, Eh.A.

    1985-01-01

    A model of resonance parametric transformation of a gravitational wave to electromagnetic one is considered. Two plane monochromatic waves: a strong electromagnetic and weak gravitational - interacting in a medium generate at difference and sum frequencies an electromagnetic wave in a direction determined with the condition of spatial wave synchronism. Rarefied cold gas or beam of elementary emitters (''molecules'') serve as a medium model. Coefficients of parametric transformation have been determined

  7. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...... radiation on the nanoscale. Here, we present the underlying physical principles of radiation nanofocusing in metallic nanostructures, overview recent progress and major developments, and consider future directions and potential applications of this subfield of nano-optics....

  8. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  9. Electromagnetic compatibility and earths

    International Nuclear Information System (INIS)

    Duque Henao, Alan; Casas Ospina, Favio

    2001-01-01

    It is such the increment of applications of electric and electronic equipment in the modern companies that the lack of control of the electromagnetic perturbations, brings, get big losses and difficulties in the normal operations. The paper contribute to ago with base in the challenges that day-by-day are confronting, where the settings to earth, to be the foundation of the electric building, are fundamental for a good coexistence among the different equipment s

  10. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  11. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  12. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  13. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  14. Interference from retrieval cues in Parkinson's disease.

    Science.gov (United States)

    Crescentini, Cristiano; Marin, Dario; Del Missier, Fabio; Biasutti, Emanuele; Shallice, Tim

    2011-11-01

    Existing studies on memory interference in Parkinson's disease (PD) patients have provided mixed results and it is unknown whether PD patients have problems in overcoming interference from retrieval cues. We investigated this issue by using a part-list cuing paradigm. In this paradigm, after the study of a list of items, the presentation of some of these items as retrieval cues hinders the recall of the remaining ones. We tested PD patients' (n = 19) and control participants' (n = 16) episodic memory in the presence and absence of part-list cues, using initial-letter probes, and following either weak or strong serial associative encoding of list items. Both PD patients and control participants showed a comparable and significant part-list cuing effect after weak associative encoding (13% vs. 12% decrease in retrieval in part-list cuing vs. no part-list cuing -control- conditions in PD patients and control participants, respectively), denoting a similar effect of cue-driven interference in the two populations when a serial retrieval strategy is hard to develop. However, only PD patients showed a significant part-list cuing effect after strong associative encoding (20% vs. 5% decrease in retrieval in patients and controls, respectively). When encoding promotes the development of an effective serial retrieval strategy, the presentation of part-list cues has a specifically disruptive effect in PD patients. This indicates problems in strategic retrieval, probably related to PD patients' increased tendency to rely on external cues. Findings in control conditions suggest that less effective encoding may have contributed to PD patients' memory performance.

  15. Electromagnetic radiation unmasked

    International Nuclear Information System (INIS)

    Hart, P.

    1996-01-01

    This article describes the nature of the electromagnetic waves, what they are and how do they affect us. Current concern is focused on exposure to low level power-frequency magnetic fields like microwave radiation from mobile phones and leaking microwave ovens; high power radiation from defence and airport radars; fields close to high voltage transmission lines; radio frequency fields from industrial welders and heaters and DC magnetic fields in aluminium smelters. These fields with frequency less than 300 GHz do not carry sufficient energy to break chemical bonds and it is assumed that they cannot damage cell DNA. The amount of radiation absorbed by a human exposed to far field electromagnetic radiation (EMR) depends on the orientation and size of the person. In the 30-300 MHz range it is possible to excite resonance in the whole or partial body such as the head. It is emphasised that since there are some evidence that electromagnetic fields do harm, a policy of prudent avoidance is recommended, especially for children. ills

  16. The electromagnetic dark sector

    International Nuclear Information System (INIS)

    Jimenez, Jose Beltran; Maroto, Antonio L.

    2010-01-01

    We consider electromagnetic field quantization in an expanding universe. We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition. In this case there are three physical states, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field. An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory. The new state is decoupled from the conserved electromagnetic currents, but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background. The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.

  17. Metasurface-Enabled Remote Quantum Interference.

    Science.gov (United States)

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  18. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    International Nuclear Information System (INIS)

    Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.

    2016-01-01

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  19. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  20. Resonant emission of electromagnetic waves by plasma solitons

    International Nuclear Information System (INIS)

    Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.

    1988-01-01

    The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed

  1. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    Science.gov (United States)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  2. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  3. Electromagnetic Compatibility in Railways Analysis and Management

    CERN Document Server

    Ogunsola, Ade

    2013-01-01

    A railway is a complex distributed engineering system: the construction of a new railway or the modernisation of a existing one requires a deep understanding of the constitutive components and their interaction, inside the system itself and towards the outside world. The former covers the various subsystems (featuring a complex mix of high power sources, sensitive safety critical systems, intentional transmitters, etc.) and their interaction, including the specific functions and their relevance to safety. The latter represents all the additional possible external victims and sources of electromagnetic interaction. EMC thus starts from a comprehension of the emissions and immunity characteristics and the interactions between sources and victims, with a strong relationship to electromagnetics and to system modeling. On the other hand, the said functions are achieved and preserved and their relevance for safety is adequately handled, if the related requirements are well posed and managed throughout the process f...

  4. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  6. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  7. Intermode traces - fundamental interference phenomenon in quantum and wave physics

    NARCIS (Netherlands)

    Kaplan, A.E.; Stifter, P.; Leeuwen, van K.A.H.; Lamb, W.E.; Schleich, W.P.

    1998-01-01

    Highly regular spatio-temporal or multi-dimensional patterns in the quantum mechanical probability or classical field intensity distributions can appear due to pair interference between individual eigen-modes of the system forming the so called intermode traces. These patterns are strongly

  8. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  9. Scientific days on electromagnetic fields: from dosimetry to human health - Conference proceedings

    International Nuclear Information System (INIS)

    Wiart, J.; Ghanmi, A.; Picon, O.; Conil, E.; Varsier, N.; Hadjem, A.; Sudret, B.; Magne, I.; Souques, M.; Gaudaire, F.; De Seze, R.; Jawad, O.; Lautru, D.; Dricot, J.M.; Horlin, F.; De Doncker, P.; Drissaoui, A.; Musy, F.; Nicolas, L.; Perrussel, R.; Scorretti, R.; Voyer, D.; Jala, M.; Moulines, E.; Levy-Leduc, C.; Mahfouz, Z.; Gati, A.; Fouad Hanna, V.; Leveque, P.; Arnaud-Cormos, D.; Zhadobov, M.; Jarrige, P.; Gaborit, G.; Kohler, S.; Ticaud, N.; Duvillaret, L.; Guelilia, Z.; Loison, R.; Gillard, R.; Laisne, A.; Favet, D.; Benadhira, R.; Mir, L.; Nadi, M.; Kourtiche, D.; Gazeau, F.; Wilhelm, C.; Delemotte, L.; Breton, M.; Tarek, M.; Marc-Vergnes, J.P.; Yardin, C.; Perrin, A.; Le Drean, Y.; Sauleau, R.; Lambrozo, J.; Selmaoui, B.; Ghosn, R.; Thuroczy, G.; Villegier, A.S.; Loos, N.; Brenet-Dufour, V.; Liabeuf, S.; Bach, V.; Moretti, D.; Lewis, N.; Garenne, A.; Poulletier De Gannes, F.; Haro, E.; Lagroye, I.; Bornat, Y.; Boutaib, Y.; Saighi, S.; Renaud, S.; Veyre, B.; Schuz, J.; Deltour, I.; Van Deventer, E.; Vecchia, P.; Merckel, O.; Bellaouel, A.; Demaret, P.; Donati, P.; Jovanovic, D.; Chauvin, S.; Desreumaux, J.P.; Fouquet, L.; Picard, D.; Massardier-Pilonchery, A.; Hours, M.; Bergeret, A.; Person, C.; Toutain, Y.; Butet, R.; Berrahma, K.; Balderelli, I.; Stelmaszyk, V.; Cretallaz, C.; Lamproglou, I.; Amourette, C.; Diserbo, M.; Fauquette, W.; Martigne, P.; Collin, A.; Lagroye, I.; Ait Aissa, S.; Hurtier, A.; Taxile, M.; Le Montagner, L.; Athane, A.; Duleu, S.; Percherancier, Y.; Geffard, M.; Ruffie, G.; Billaudel, B.; Veyret, B.; Pelletier, A.; Delanaud, S.; Libert, J.P.; Schunck, T.; Bieth, F.; Soubere Mahamoud, Y.; Le Quement, C.; Ferrand, G.; Le Guevel, R.; Carton, P.H.; Luong, M.; Tanvir, S.; Selmaoui, B.; Silva Pires-Antonietti, V.; Sonnet, P.; Pulvin, S.; Kuster, O.; Tetelin, C.

    2012-04-01

    This document brings together the available presentations (articles and slides) given at the URSI scientific days on electromagnetic fields: dosimetry, peoples' exposure, biological and health risks, risk management, and medical uses. 48 presentations are compiled in this document and deal with: 1 - Stochastic dosimetry: variability challenge; 2 - How to estimate the exposure to 50/60 Hz magnetic field in an epidemiological study?; 3 - Joint analysis of population exposure and radio coverage of GSM and UMTS mobile phone networks; 4 - Study of the specific energy absorption rate (SAR) sensitiveness to phone positions near the head for 2 GSM mobile phones; 5 - Statistical Study of SAR under Wireless Channel - Exposure in Indoor Environment; 6 - Uncertainty propagation in numerical dosimetry: how to reduce calculation costs?; 7 - Use of a simplified pregnant woman model for foetus exposure analysis; 8 - SAR estimation using multi-exposure with a mobile phone; 9 - State-of-the-art in experimental dosimetry (RF and pulses); 10 - Mm-waves dosimetry: issues, stakes and actual solutions; 11 - Use of DG-FDTD for a dosimetry calculation in a strongly multi-scale problem: determination of the eye-SAR near a HF/VHF vehicle-borne source; 12 - Dosimetric measurements with a fiber-type electro-optical sensor; 13 - Partial experimental evaluation of basic restrictions in the HF/VHF range; 14 - Repetitive trans-cranial magnetic stimulation Stimulation (rTMS) in psychiatry: present day situation and perspectives; 15 - Medical applications of electric fields; 16 - Measurements for life: new perspectives? 17 - Nano-particles and magnetic stimuli for medical imaging and therapy; 18 - Molecular Insights into electroporation and siRNA electro-transfer through model cell membranes; 19 - State of knowledge on electromagnetic fields hypersensitivity (HS-CEM); 20 - Experimentation methodology: from results to interpretation; 22 - Mm waves - update on biological effects at 40-60 GHz; 23

  10. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  11. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...

  12. Emotions, cognitive interference, and concentration disruption in youth sport.

    Science.gov (United States)

    McCarthy, Paul J; Allen, Mark S; Jones, Marc V

    2013-01-01

    We explored the relationship between emotions, cognitive interference, concentration disruption and performance in youth sport. In study 1, 150 youth sport athletes (Mage = 13.13 years, s = 1.79) completed measures of emotion, cognitive interference, and concentration disruption for their most recently completed competition. In Study 2, 46 female rhythmic gymnasts (Mage = 10.30 years, s = 1.74) completed measures of emotion immediately before competition, and measures of cognitive interference and concentration disruption immediately after competition. Study 1 showed that anxiety and dejection were associated with more interfering thoughts and greater disruptions in concentration, whereas the effects of anger and happiness on interfering thoughts differed relative to the age of participants. Specifically, anger was associated with more interfering thoughts only in younger athletes and happiness was associated with fewer interfering thoughts only in older athletes. Study 2 showed that emotions experienced before competition were not strongly associated with cognitive interference or concentration disruption, but athletes reporting more thoughts of escape in competition were less successful in the competition as measured by objective performance scores. These findings demonstrate that emotions are important for cognitive interference and concentration disruption, and provide some initial evidence that cognitive interference is important for performance in youth sport.

  13. WEED INTERFERENCE IN EGGPLANT CROPS

    Directory of Open Access Journals (Sweden)

    LUIZ JUNIOR PEREIRA MARQUES

    2017-01-01

    Full Text Available Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1 increasing weed control and (2 increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154. Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT. Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI, Total Period of Interference Prevention (TPIP, and the Critical Period of Interference Prevention (CPIP. The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.

  14. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  15. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  16. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  17. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  18. Battlefield Electromagnetic Environments Office (BEEO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...

  19. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  20. Quark imprisonment as the origin of strong interactions

    CERN Document Server

    Amati, Daniele

    1974-01-01

    A formal scheme is suggested in which the only dynamical ingredients are weak and electro-magnetic interactions with quarks and leptons treated on the same footing. Strong interactions are generated by the requirement that quarks do not appear physically. (7 refs).