WorldWideScience

Sample records for strong covalent solids

  1. Chemistry of Covalent Organic Frameworks.

    Science.gov (United States)

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  2. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    Science.gov (United States)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  3. Covalent attachment of proteins to solid supports and surfaces via Sortase-mediated ligation.

    Directory of Open Access Journals (Sweden)

    Lilyan Chan

    Full Text Available BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays.

  4. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity

    KAUST Repository

    Huang, Wei

    2016-04-11

    Herein, we report a novel trifluoromethanesulfonic acid vapor-assisted solid phase synthetic method to construct nanoporous covalent triazine frameworks with highly ordered hollow interconnected pores under mild reaction conditions. This unique solid state synthetic route allows not only the avoidance of undesired side reactions caused by traditional high temperature synthesis, but also the maintaining of defined and precise optical and electronic properties of the nonporous triazine frameworks. Promising photocatalytic activity of the polytriazine networks was demonstrated in the photoreduction reaction of 4-nitrophenol into 4-aminophenol under visible light irradiation.

  5. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity

    KAUST Repository

    Huang, Wei; Wang, Zi Jun; Ma, Beatriz Chiyin; Ghasimi, Saman; Gehrig, Dominik; Laquai, Fré dé ric; Landfester, Katharina; Zhang, Kai A. I.

    2016-01-01

    Herein, we report a novel trifluoromethanesulfonic acid vapor-assisted solid phase synthetic method to construct nanoporous covalent triazine frameworks with highly ordered hollow interconnected pores under mild reaction conditions. This unique solid state synthetic route allows not only the avoidance of undesired side reactions caused by traditional high temperature synthesis, but also the maintaining of defined and precise optical and electronic properties of the nonporous triazine frameworks. Promising photocatalytic activity of the polytriazine networks was demonstrated in the photoreduction reaction of 4-nitrophenol into 4-aminophenol under visible light irradiation.

  6. Thermal solid-state Z/E isomerization of 2-alkylidene-4-oxothiazolidines: effects of non-covalent interactions

    Directory of Open Access Journals (Sweden)

    ZDRAVKO DŽAMBASKI

    2011-03-01

    Full Text Available Configurational isomerization of stereo-defined 5-substituted and unsubstituted 2-alkylidene-4-oxothiazolidines (1 in the solid state, giving the Z/E mixtures in various ratios, was investigated by 1H-NMR spectroscopy, X-ray powder crystallography and differential scanning calorimetry (DSC. The Z/E composition can be rationalized in terms of non-covalent interactions, involving intermolecular and intramolecular hydrogen bonding and directional non-bonded 1,5-type S×××O interactions. X-Ray powder crystallography, using selected crystalline (Z-4-oxothiazolidine substrates, revealed transformation to the amorphous state during the irreversible Z®E process. A correlation between previous results on the Z/E isomerization in solution and now in the solid state was established.

  7. A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace Sudan dyes in food samples.

    Science.gov (United States)

    Zhang, Chengjiang; Li, Gongke; Zhang, Zhuomin

    2015-11-06

    Covalent organic polymers (COPs) connected by covalent bonds are a new class of porous network materials with large surface area and potential superiority in sample pretreatment. In this study, a new hydrazone linked covalent organic polymer (HL-COP) adsorbent was well-designed and synthesized based on a simple Schiff-base reaction. The condensation of 1,4-phthalaldehyde and 1,3,5-benzenetricarbohydrazide as organic building blocks led to the synthesis of HL-COP with uniform particle size and good adsorption performance. This HL-COP adsorbent with high hydrophobic property and rich stacking π electrons contained abundant phenyl rings and imine (CN) groups throughout the entire molecular framework. The adsorption mechanism was explored and discussed based on π-π affinity, hydrophobic effect, hydrogen bonding and electron-donor-acceptor (EDA) interaction, which contributed to its strong recognition affinity to target compounds. Enrichment factors were 305-757 for six Sudan dyes by HL-COP micro-solid phase extraction (μ-SPE), indicating its remarkable preconcentration ability. Furthermore, the adsorption amounts by HL-COP μ-SPE were 1.0-11.0 folds as those by three commonly used commercial adsorbents. Then, HL-COP was applied as adsorbent of online μ-SPE coupled with high performance liquid chromatography (HPLC) for enrichment and analysis of trace Sudan dyes in food samples with detection limit of 0.03-0.15μg/L. The method was successfully applied for online analysis of chilli powder and sausage samples. Sudan II and Sudan III in one positive chilli powder sample were actually found and determined with concentrations of 8.3 and 6.8μg/kg, respectively. The recoveries of chilli powder and sausage samples were in range of 75.8-108.2% and 73.8-112.6% with relative standard deviations of 1.2-8.5% and 1.9-9.4% (n=5), respectively. The proposed method was accurate, reliable and convenient for the online simultaneous analysis of trace Sudan dyes in food samples

  8. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  9. Diastereotopic covalent binding of the natural inhibitor leupeptin to trypsin: Detection of two interconverting hemiacetals by solution and solid-state NMR spectroscopy

    International Nuclear Information System (INIS)

    Ortiz, C.; Tellier, C.; Williams, H.; Stolowich, N.J.; Scott, A.I.

    1991-01-01

    The naturally occurring peptidyl protease inhibitor leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal) has been prepared labeled with 13 C at the argininal carbonyl. 13 C chemical shift data for the trypsin-leupeptin inhibitor complex in the pH range 3.0-7.6 reveal the presence of two pH-dependent covalent complexes, suggestive of two interconverting diastereomers at the new asymmetric tetrahedral center created by covalent addition of Ser195 to either side of the 13 C-enriched aldehyde of the inhibitor. At pH 7 two signals are observable at δ 98.8 and δ 97.2 (84:16 ratio), while at pH 3.0 the latter signal predominates. In the selective proton 13 C-edited NOE spectrum of the major diastereomer at pH 7.4, a strong NOE is observed between the hemiacetal proton of the inhibitor and the C2 proton of His57 of the enzyme, thus defining the stereochemistry of the high pH complex to the S configuration in which the hemiacetal oxygen resides in the oxyanion hole. pH titration studies further indicate that the 13 C chemical shift of the S diastereomer follows a titration curve with a pK a of 4.69, the magnitude of which is consistent with direct titration of the hemiacetal oxygen. Similar pH-dependent chemical shifts were obtained by using CPMAS 13 C NMR, providing evidence for the existence of the same diastereomeric equilibrium in the solid state

  10. Solid-state mAbs and ADCs subjected to heat-stress stability conditions can be covalently modified with buffer and excipient molecules.

    Science.gov (United States)

    Valliere-Douglass, John F; Lewis, Patsy; Salas-Solano, Oscar; Jiang, Shan

    2015-02-01

    We report that a unique type of chemical modification occurs on lyophilized proteins. Freeze-dried mAbs and antibody-drug conjugates (ADCs) can be covalently modified with buffer and excipient molecules on the side chains of Glu, Asp, Thr, and Ser amino acids when subjected to temperature stress. The reaction occurs primarily via condensation of common buffers and excipients such as histidine, tris, trehalose and sucrose, with Glu and Asp carboxylates in the primary sequence of proteins. The reaction was also found to proceed through condensation of carboxylate containing buffers such as citrate, with Thr and Ser hydroxyls in the primary sequence of proteins. Based on the mass of the covalent adducts observed on mAbs and ADCs, it is apparent that the reaction produces water as a product and is thus favored in a low moisture environments such as a lyophilized protein cake. Herein, we present the evidence for the covalent modification of proteins drawn from case studies of in-depth characterization of heat-stressed mAbs and ADCs in the solid state. We also demonstrate how common charge variant assays such as imaged capillary isoelectric focusing and mass spectrometry can be used to monitor this specific class of protein modification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Random phase approximation applied to solids, molecules, and graphene-metal interfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    The random phase approximation (RPA) is attracting renewed interest as a universal and accurate method for first-principles total energy calculations. The RPA naturally accounts for long-range dispersive forces without compromising accuracy for short-range interactions making the RPA superior...... to semilocal and hybrid functionals in systems dominated by weak van der Waals or mixed covalent-dispersive interactions. In this work, we present plane-wave-based RPA calculations for a broad collection of systems with bond types ranging from strong covalent to van der Waals. Our main result is the RPA...... the RPA captures both the weak covalent and dispersive forces, which are equally important for these systems. We benchmark our implementation in the GPAW electronic structure code by calculating cohesive energies of graphite and a range of covalently bonded solids and molecules as well as the dissociation...

  12. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  13. CovalentDock Cloud: a web server for automated covalent docking.

    Science.gov (United States)

    Ouyang, Xuchang; Zhou, Shuo; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-07-01

    Covalent binding is an important mechanism for many drugs to gain its function. We developed a computational algorithm to model this chemical event and extended it to a web server, the CovalentDock Cloud, to make it accessible directly online without any local installation and configuration. It provides a simple yet user-friendly web interface to perform covalent docking experiments and analysis online. The web server accepts the structures of both the ligand and the receptor uploaded by the user or retrieved from online databases with valid access id. It identifies the potential covalent binding patterns, carries out the covalent docking experiments and provides visualization of the result for user analysis. This web server is free and open to all users at http://docking.sce.ntu.edu.sg/.

  14. The covalent effect on the energy levels of d3 ions in tetragonal compounds

    International Nuclear Information System (INIS)

    Li, Dong-Yang; Du, Mao-Lu

    2015-01-01

    For d 3 ions in covalent compounds with tetragonal symmetry, this paper presents a complete energy matrix, in which the different covalence of t 2 and e orbitals is considered not only in the electrostatic repulsions part of energy matrix elements but also in the crystal-field potential part of energy matrix elements. With taking and no taking the crystal field parameter B 00 0 into account, the effect of covalence on the energy levels of d 3 ions system were investigated, respectively. The investigation shows that it is very necessary for considering the different covalence of t 2 and e orbitals in both electrostatic repulsions part and crystal-field potential part when the optical properties of d 3 ions in strong covalent compounds with tetragonal symmetry is investigated. On the other hand, the crystal field parameter B 00 0 has a significant effect on the energy levels, and should be considered in investigations of d 3 ions in strong covalent compounds with tetragonal symmetry. Application to calculating the energy levels for Co 2+ in CdGa 2 Se 4 , the calculated results are in agreement with the experiment data

  15. Recent advances in covalent, site-specific protein immobilization [version 1; referees

    DEFF Research Database (Denmark)

    Meldal, Morten Peter; Schoffelen, Sanne

    2016-01-01

    The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control...

  16. Theoretical Insights into Monometallofullerene Th@C76: Strong Covalent Interaction between Thorium and the Carbon Cage.

    Science.gov (United States)

    Zhao, Pei; Zhao, Xiang; Ehara, Masahiro

    2018-03-19

    Th@C 76 has been studied by density functional theory combined with statistical mechanics calculations. The results reveal that Th@ T d (19151)-C 76 satisfying the isolated pentagon rule possesses the lowest energy. Nevertheless, considering the enthalpy-entropy interplay, Th@ C 1 (17418)-C 76 with one pair of adjacent pentagons is thermodynamically favorable at elevated temperatures, which is reported for the first time. The bonding critical points in both isomers were analyzed to disclose covalent interactions between the inner Th and cages. In addition, the Wiberg bond orders of M-C bonding in different endohedral metallofullerenes (EMFs) were investigated to prove stronger covalent interactions of Th-C in Th-based EMFs.

  17. Dynamic covalent gels assembled from small molecules:from discrete gelators to dynamic covalent polymers

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zhang; Li-Hua Zeng; Juan Feng

    2017-01-01

    Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules.First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding.Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators.Dynamic covalent bonding can be involved to form low molecular weight gelators.Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators.Two catalogues of gels show different properties arising from their different structures.This review aims to illustrate the structure-property relationships of these dynamic covalent gels.

  18. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  19. Solid-state dewetting and island morphologies in strongly anisotropic materials

    International Nuclear Information System (INIS)

    Jiang, Wei; Wang, Yan; Zhao, Quan; Srolovitz, David J.; Bao, Weizhu

    2016-01-01

    We propose a sharp-interface continuum model based on a thermodynamic variational approach to investigate the strong anisotropic effect on solid-state dewetting including contact line dynamics. For sufficiently strong surface energy anisotropy, we show that multiple equilibrium shapes may appear that cannot be described by the widely employed Winterbottom construction, i.e., the modified Wulff construction for an island on a substrate. We repair the Winterbottom construction to include multiple equilibrium shapes and employ our evolution model to demonstrate that all such shapes are dynamically accessible.

  20. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  1. Non-covalent associative structure of coal

    Energy Technology Data Exchange (ETDEWEB)

    Shui, H. [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering

    2004-06-01

    The recent progress of non-covalent associative structure of coal and the mechanisms of the carbon disulphide-N-methyl-2-pyrrolidone (CS{sub 2}/NMP) are mixed solvent and the additive addition enhancing the extraction yield of coals are reviewed, and the aggregation behaviour of coal in solid and solution states are presented, and the aggregation behavior of coal in solid and solution states are introduced in this paper. Coal extraction and swelling in organic solvents at room temperature were the most useful methods to understand the associative structure of coal. CS{sub 2}/NMP is a unique solvent to give high extraction yields for some bituminous coals. Some additives such as tetracyanoethylene (TCNE) can dissociate the stronger interactions among coal molecules and enhance the extraction yields of coal in the mixed solvent. 37 refs., 1 fig.

  2. Covalently functionalized graphene sheets with biocompatible natural amino acids

    International Nuclear Information System (INIS)

    Mallakpour, Shadpour; Abdolmaleki, Amir; Borandeh, Sedigheh

    2014-01-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  3. Atomic Covalent Functionalization of Graphene

    Science.gov (United States)

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    -dimensional materials with fundamentally different electronic and physical properties. Specifically, we focus on recent studies of the addition of atomic hydrogen, fluorine, and oxygen to the basal plane of graphene. In each of these reactions a high energy, activating step initiates the process, breaking the local π structure and distorting the surrounding lattice. Scanning tunneling microscopy experiments reveal that substrate mediated interactions often dominate when the initial binding event occurs. We then compare these substrate effects with the results of theoretical studies that typically assume a vacuum environment. As the surface coverage increases, clusters often form around the initial distortion, and the stoichiometric composition of the saturated end product depends strongly on both the substrate and reactant species. In addition to these chemical and structural observations, we review how covalent modification can extend the range of physical properties that are achievable in two-dimensional materials. PMID:23030800

  4. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    Science.gov (United States)

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine

    Science.gov (United States)

    Li, Yong-Xi; Zhu, Jinhui; Chen, Yu; Zhang, Jinjuan; Wang, Jun; Zhang, Bin; He, Ying; Blau, Werner J.

    2011-05-01

    A soluble graphite oxide (GO) axially substituted gallium phthalocyanine (PcGa) hybrid material (GO-PcGa) was for the first time synthesized by the reaction of tBu4PcGaCl with GO in anhydrous DMSO at 110 °C in the presence of K2CO3. The formation of a Ga-O bond between PcGa and GO has been confirmed by x-ray photoelectron spectroscopy. In contrast to GO, the D and G bands of GO-PcGa in the Raman spectrum are shifted to the lower wavenumbers by Δν = 11 and 18 cm - 1, respectively. At the same level of concentration of 0.1 g l - 1, GO-PcGa exhibit much larger nonlinear optical extinction coefficients and strong optical limiting performance than GO, tBu4PcGaCl and C60 at both 532 and 1064 nm, implying a remarkable accumulation effect as a result of the covalent link between GO and PcGa. GO-PcGa possesses three main mechanisms for the nonlinear optical response—nonlinear light scattering, two-photon absorption and reverse saturable absorption for the 532 nm pulses and nonlinear light scattering for the 1064 nm pulses. tBu4PcGaCl does not make any significant contribution to the optical limiting at 1064 nm, while GO-PcGa has a much greater optical limiting response than GO at this wavelength, this suggesting that the PcGa moiety could certainly play an unknown but important role in the GO-PcGa material system.

  6. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    Science.gov (United States)

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  7. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    Science.gov (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  8. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  9. Evidence of significant covalent bonding in Au(CN)(2)(-).

    Science.gov (United States)

    Wang, Xue-Bin; Wang, Yi-Lei; Yang, Jie; Xing, Xiao-Peng; Li, Jun; Wang, Lai-Sheng

    2009-11-18

    The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is still lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-C bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoelectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability.

  10. Building high-coverage monolayers of covalently bound magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mackenzie G.; Teplyakov, Andrew V., E-mail: andrewt@udel.edu

    2016-12-01

    Graphical abstract: - Highlights: • A method for forming a layer of covalently bound nanoparticles is offered. • A nearly perfect monolayer of covalently bound magnetic nanoparticles was formed on gold. • Spectroscopic techniques confirmed covalent binding by the “click” reaction. • The influence of the functionalization scheme on surface coverage was investigated. - Abstract: This work presents an approach for producing a high-coverage single monolayer of magnetic nanoparticles using “click chemistry” between complementarily functionalized nanoparticles and a flat substrate. This method highlights essential aspects of the functionalization scheme for substrate surface and nanoparticles to produce exceptionally high surface coverage without sacrificing selectivity or control over the layer produced. The deposition of one single layer of magnetic particles without agglomeration, over a large area, with a nearly 100% coverage is confirmed by electron microscopy. Spectroscopic techniques, supplemented by computational predictions, are used to interrogate the chemistry of the attachment and to confirm covalent binding, rather than attachment through self-assembly or weak van der Waals bonding. Density functional theory calculations for the surface intermediate of this copper-catalyzed process provide mechanistic insight into the effects of the functionalization scheme on surface coverage. Based on this analysis, it appears that steric limitations of the intermediate structure affect nanoparticle coverage on a flat solid substrate; however, this can be overcome by designing a functionalization scheme in such a way that the copper-based intermediate is formed on the spherical nanoparticles instead. This observation can be carried over to other approaches for creating highly controlled single- or multilayered nanostructures of a wide range of materials to result in high coverage and possibly, conformal filling.

  11. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    International Nuclear Information System (INIS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-01-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al 12 Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al 12 Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported

  12. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  13. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  14. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  15. Nanomolar hydrogen peroxide detection using horseradish peroxidase covalently linked to undoped nanocrystalline diamond surfaces

    Czech Academy of Sciences Publication Activity Database

    Wang, Q.; Kromka, Alexander; Houdková, Jana; Babchenko, Oleg; Rezek, Bohuslav; Li, M.; Boukherroub, R.; Szunerits, S.

    2012-01-01

    Roč. 28, č. 1 (2012), s. 587-592 ISSN 0743-7463 R&D Projects: GA AV ČR KAN400100701; GA AV ČR(CZ) IAAX00100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : intrinsic diamond * large area growth * optical biosensor * covalent * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.187, year: 2012

  16. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  17. Assessing Covalency in Cerium and Uranium Hexachlorides: A Correlated Wavefunction and Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Reece Beekmeyer

    2015-11-01

    Full Text Available The electronic structure of a series of uranium and cerium hexachlorides in a variety of oxidation states was evaluated at both the correlated wavefunction and density functional (DFT levels of theory. Following recent experimental observations of covalency in tetravalent cerium hexachlorides, bonding character was studied using topological and integrated analysis based on the quantum theory of atoms in molecules (QTAIM. This analysis revealed that M–Cl covalency was strongly dependent on oxidation state, with greater covalency found in higher oxidation state complexes. Comparison of M–Cl delocalisation indices revealed a discrepancy between correlated wavefunction and DFT-derived values. Decomposition of these delocalisation indices demonstrated that the origin of this discrepancy lay in ungerade contributions associated with the f-manifold which we suggest is due to self-interaction error inherent to DFT-based methods. By all measures used in this study, extremely similar levels of covalency between complexes of U and Ce in the same oxidation state was found.

  18. DFT+DMFT study on soft moment magnetism and covalent bonding in SrRu.sub.2./sub.O.sub.6./sub.

    Czech Academy of Sciences Publication Activity Database

    Hariki, A.; Hausoel, A.; Sangiovanni, G.; Kuneš, Jan

    2017-01-01

    Roč. 96, č. 15 (2017), s. 1-8, č. článku 155135. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : covalent insulator * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  19. Covalent modification of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties

    International Nuclear Information System (INIS)

    Aissa, Abdallah; Debbabi, Mongi; Gruselle, Michel; Thouvenot, Rene; Gredin, Patrick; Traksmaa, Rainer; Tonsuaadu, Kaia

    2007-01-01

    The reaction between phenyl phosphonic dichloride (C 6 H 5 P(O)Cl 2 ) and synthetic calcium hydroxy- and fluorapatite has been investigated. The presence of mono- or polymeric (C 6 H 5 PO) fragment bound to hydroxyapatite was evidenced by IR, and solid-state 31 P NMR spectroscopy. X-ray powder analysis has shown that the apatitic structure remains unchanged during the reaction. In contrast, no reaction was found using fluorapatite. According to the results found for these two different apatites a mechanism was proposed for the formation of covalent P-O-P bonds as the result of a reaction between the C 6 H 5 P(O)Cl 2 organic reagent and (HPO 4 ) - and/or OH - ions of the hydroxyapatite. - Graphical abstract: Representation of the first step of the reaction between the phenyl phosphonic dichloride and the hydroxyl groups on the surface of the apatite, leading to covalent P-O-P bond with elimination of HCl

  20. Covalent bonding in heavy metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Nelin, Connie J.; Hrovat, Dave A.; Ilton, Eugene S.

    2017-04-07

    Novel theoretical methods were used to quantify the magnitude and the energetic contributions of 4f/5f-O2p and 5d/6d-O2p interactions to covalent bonding in lanthanide and actinide oxides. Although many analyses have neglected the involvement of the frontier d orbitals, the present study shows that f and d covalency are of comparable importance. Two trends are identified. As is expected, the covalent mixing is larger when the nominal oxidation state is higher. More subtly, the importance of the nf covalent mixing decreases sharply relative to (n+1)d as the nf occupation increases. Atomic properties of the metal cations that drive these trends are identified.

  1. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    Directory of Open Access Journals (Sweden)

    Martin Hartmann

    2010-02-01

    Full Text Available Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3 aminopropyltrimethoxysilane (ATS, 3-glycidoxypropyltrimethoxysilane (GTS and with 3 aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO and glucose oxidase (GOx and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions.

  2. Covalent Organic

    DEFF Research Database (Denmark)

    Vutti, Surendra

    chemistry of silicon, InAs and GaAs materials, covalentsurface functionalization using organosilanes, liquid-phase, and vapor-phasefunctionalizations, diazo-transfer reaction, CuAAC click chemistry, different types ofbiorthogonal chemistries, SPAAC chemistry, and cellular interactions of chemically...... immobilization of D-amino acid adhesion peptideson azide functionalized silicon, GaAs and InAs materials by using CuAAC-click chemistry.The covalent immobilization of penetration peptide (TAT) on gold nanotips of InAs NWs isalso demonstrated.In chapter four, the covalent immobilization of GFP on silicon wafers......, GaAs wafers andGaAs NWs is demonstrated. Series of Fmoc-Pra-OH, NHS-PEG5-NHS and BCN-NHSfunctionalized silicon surfaces has been prepared, whereby GFP-N3 and GFP-bicyclononyneare immobilized by using CuAAC and SPAAC chemistry. The specific and covalentimmobilization of GFP-N3 on bicyclononyne...

  3. Covalent bond force profile and cleavage in a single polymer chain

    Science.gov (United States)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  4. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  5. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  6. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  7. Volkov basis for simulation of interaction of strong laser pulses and solids

    Science.gov (United States)

    Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán

    2018-01-01

    An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.

  8. Covalent and non-covalent functionalization and solubilization of ...

    Indian Academy of Sciences (India)

    Wintec

    photographs of the dispersions of amide-functio- nalized DWNTs in dichloromethane and tetrahydro- furan. In figure 3b, we show a TEM image of DWNTs after covalent functionalization. The images are not as sharp after functionalization as in the case of pris- tine nanotubes (figure 3a), and the bundles seem to be intact.

  9. Surface passivation for tight-binding calculations of covalent solids

    International Nuclear Information System (INIS)

    Bernstein, N

    2007-01-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp 3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system

  10. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  11. Effect of photocurrent enhancement in porphyrin–graphene covalent hybrids

    International Nuclear Information System (INIS)

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A.

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH 2 TPP) by an amidation reaction between the amino group in NH 2 TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH 2 TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH 2 TPP-graphene-NH 2 TPP. Its UV–visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH 2 TPP and graphene oxide, because a 59 nm red shift of the strong graphene oxide absorption is observed from 238 to 297 nm, with significant spectral broadening between 300 and 700 nm. Fluorescence emission spectroscopy indicates efficient quenching of NH 2 TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH 2 TPP and GO. A reversible on/off photo-current density of 47 mA/cm 2 is observed when NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈ 1 eV, according to UV–visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84 eV for NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. - Highlights: • Porphyrins are covalently bound to sheets of graphene oxide via an amidation reaction. • The formed hetero-junction interface decreases the optical band gap of graphene oxide. • Cyclic voltammetry predicts a graphene oxide band gap of 0.84 eV, which is easily photo-excited. • Its on/off photo-current density of 46 μA/cm 2 is 5-fold larger than that for physically stacked hybrid

  12. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    Science.gov (United States)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

  13. Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls

    Directory of Open Access Journals (Sweden)

    Hezekiel Mathambo Kumalo

    2015-01-01

    Full Text Available he present art of drug discovery and design of new drugs is based on suicidal irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed some significant advantages over non-covalent inhibitors such as covalent warheads can target rare, non-conserved residue of a particular target protein and thus led to development of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with shallow binding cleavage which will led to development of novel inhibitors with increased potency than non-covalent inhibitors. Several computational approaches have been developed to simulate covalent interactions; however, this is still a challenging area to explore. Covalent molecular docking has been recently implemented in the computer-aided drug design workflows to describe covalent interactions between inhibitors and biological targets. In this review we highlight: (i covalent interactions in biomolecular systems; (ii the mathematical framework of covalent molecular docking; (iii implementation of covalent docking protocol in drug design workflows; (iv applications covalent docking: case studies and (v shortcomings and future perspectives of covalent docking. To the best of our knowledge; this review is the first account that highlights different aspects of covalent docking with its merits and pitfalls. We believe that the method and applications highlighted in this study will help future efforts towards the design of irreversible inhibitors.

  14. Rationally Designed, Multifunctional Self-Assembled Nanoparticles for Covalently Networked, Flexible and Self-Healable Superhydrophobic Composite Films.

    Science.gov (United States)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-03-21

    For constructing bioinspired functional films with various superhydrophobic functions, including self-cleaning, anticorrosion, antibioadhesion, and oil-water separation, hydrophobic nanomaterials have been widely used as crucial structural components. In general, hydrophobic nanomaterials, however, cannot form strong chemical bond networks in organic-inorganic hybrid composite films because of the absence of chemically compatible binding components. Herein, we report the rationally designed, multifunctional self-assembled nanoparticles with tunable functionalities of covalent cross-linking and hydrophobicity for constructing three-dimensionally interconnected superhydrophobic composite films via a facile solution-based fabrication at room temperature. The multifunctional self-assembled nanoparticles allow the systematic control of functionalities of composite films, as well as the stable formation of covalently linked superhydrophobic composite films with excellent flexibility (bending radii of 6.5 and 3.0 mm, 1000 cycles) and self-healing ability (water contact angle > 150°, ≥10 cycles). The presented strategy can be a versatile and effective route to generating other advanced functional films with covalently interconnected composite networks.

  15. An investigation of problematic solids in oil sands processing : separation and characterization of organic matter strongly bound to oil sands solids

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, T.; Woods, J.R.; Kung, J.; Fu, D.; Kingston, D.; Kotlyar, L.S. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology; Sparks, B.D. [V. Bede Technical Associates, Ottawa, ON (Canada)

    2009-07-01

    Some of the solid fractions in Athabasca oilsands are associated with strongly bound organic matter that is insoluble in toluene, a solvent commonly used to extract bitumen. The presence of toluene insoluble organic matter (TIOM) increases oil wettability of solids which may adversely affect the release of bitumen from the oilsands. Some of the solid material from the coking operation may be carried over to downstream operations where it can cause fouling. This study used supercritical fluid extraction with methanol to remove TIOM from oilsands after extraction of bitumen by toluene. The methanol extract (ME) is soluble in toluene and was analyzed. Results were compared with corresponding bitumen fractions prepared using a modified HPLC SARA separation technique. Number average molecular weights for the ME were similar to those for resins separated from bitumen. The study also showed that the number of alkyl substituents on aromatic ring systems and the lengths of paraffinic straight chains for resins and ME samples were similar, with only minor differences in terms of H/C atomic ratios and aromaticities. The ME was more polar than the resin and asphaltene fractions, which may explain the selective adsorption of this fraction. tabs., figs.

  16. Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing.

    Science.gov (United States)

    Kabb, Christopher P; O'Bryan, Christopher S; Deng, Christopher C; Angelini, Thomas E; Sumerlin, Brent S

    2018-05-16

    Reversible covalent chemistry provides access to robust materials with the ability to be degraded and reformed upon exposure to an appropriate stimulus. Photoresponsive units are attractive for this purpose, as the spatial and temporal application of light is easily controlled. Coumarin derivatives undergo a [2 + 2] cycloaddition upon exposure to long-wave UV irradiation (365 nm), and this process can be reversed using short-wave UV light (254 nm). Therefore, polymers cross-linked by coumarin groups are excellent candidates as reversible covalent gels. In this work, copolymerization of coumarin-containing monomers with the hydrophilic comonomer N, N-dimethylacrylamide yielded water-soluble, linear polymers that could be cured with long-wave UV light into free-standing hydrogels, even in the absence of a photoinitiator. Importantly, the gels were reverted back to soluble copolymers upon short-wave UV irradiation. This process could be cycled, allowing for recycling and remolding of the hydrogel into additional shapes. Further, this hydrogel can be imprinted with patterns through a mask-based, post-gelation photoetching method. Traditional limitations of this technique, such as the requirement for uniform etching in one direction, have been overcome by combining these materials with a soft-matter additive manufacturing methodology. In a representative application of this approach, we printed solid structures in which the interior coumarin-cross-linked gel is surrounded by a nondegradable gel. Upon exposure to short-wave UV irradiation, the coumarin-cross-linked gel was reverted to soluble prepolymers that were washed away to yield hollow hydrogel objects.

  17. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    Science.gov (United States)

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  18. Covalent Surface Modifications of Carbon Nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Pavia Sanders, Adriana [Sandia National Lab. (SNL-CA), Livermore, CA (United States); O' Bryan, Greg [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

  19. Covalent magnetism, exchange interactions and anisotropy of the high temperature layered antiferromagnet MnB₂.

    Science.gov (United States)

    Khmelevskyi, S; Mohn, P

    2012-01-11

    The investigation of the electronic structure and magnetism for the compound MnB(2) with crystal structure type AlB(2) has been revisited to resolve contradictions between various experimental and theoretical results present in the literature. We find that MnB(2) exhibits an interesting example of a Kübler's covalent magnetism (Williams et al 1981 J. Appl. Phys. 52 2069). The covalent magnetism also appears to be the source of some disagreement between the calculated values of the magnetic moments and those given by neutron diffraction experiments. We show that this shortcoming is due to the atomic sphere approximation applied in earlier calculations. The application of the disordered local moment approach and the calculation of the inter-atomic exchange interactions within the Liechtenstein formalism reveal strong local moment antiferromagnetism with a high Néel temperature predicted from Monte Carlo simulations. A fully relativistic band structure calculation and then the application of the torque method yields a strong in-plane anisotropy of the Mn magnetic moments. The agreement of these results with neutron diffraction studies rules out any possible weak itinerant electron magnetism scenarios as proposed earlier for MnB(2).

  20. Linkage of biomolecules to solid phases for immunoassay

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    Topics covered by this lecture include a brief review of the principal methods of linkage of biomolecules to solid phase matrices. Copies of the key self explanatory slides are presented as figures together with reprints of two publications by the author dealing with a preferred chemistry for the covalent linkage of antibodies to hydroxyl and amino functional groups and the effects of changes in solid phase matrix and antibody coupling chemistry on the performance of a typical excess reagent immunoassay for thyroid stimulating hormone

  1. Covalent versus ionic bonding in alkalimetal fluoride oligomers

    NARCIS (Netherlands)

    Bickelhaupt, F.M.; Sola, M.; Fonseca Guerra, C.

    2007-01-01

    The most polar bond in chemistry is that between a fluorine and an alkalimetal atom. Inspired by our recent finding that other polar bonds (C - M and H - M) have important covalent contributions (i.e., stabilization due to bond overlap), we herein address the question if covalency is also essential

  2. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chunlin; Xiao, Hanxi [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Cai, Qing [Chemistry Department, City University of New York, New York, NY 10016 (United States); Tang, Jianting; Cai, Tiejun [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Deng, Qian, E-mail: dengqian10502@163.com [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2016-11-15

    Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds. While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules

  3. Covalent modification and exfoliation of graphene oxide using ferrocene

    Science.gov (United States)

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  4. Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis.

    Science.gov (United States)

    Migliore, Marco; Pontis, Silvia; Fuentes de Arriba, Angel Luis; Realini, Natalia; Torrente, Esther; Armirotti, Andrea; Romeo, Elisa; Di Martino, Simona; Russo, Debora; Pizzirani, Daniela; Summa, Maria; Lanfranco, Massimiliano; Ottonello, Giuliana; Busquet, Perrine; Jung, Kwang-Mook; Garcia-Guzman, Miguel; Heim, Roger; Scarpelli, Rita; Piomelli, Daniele

    2016-09-05

    Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  6. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  7. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudifard, Matin [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Soudi, Sara [Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Soleimani, Masoud [Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hosseinzadeh, Simzar [Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Esmaeili, Elaheh [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vossoughi, Manouchehr, E-mail: vosoughi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2016-01-01

    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O{sub 2} plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods. - Highlights: • Introduction of novel strategy for antibody immobilization using high surface area electrospun

  8. The covalence effect of energy levels of ZnS:Mn2+

    International Nuclear Information System (INIS)

    Dong-Yang, Li; Mao-Lu, Du; Yi, Huang

    2013-01-01

    The contribution of the different covalence for t 2 and e orbitals must be considered in the investigation of the optical and magnetic properties of the transition metal ion in II–VI and III–V semiconductors. In present paper, two covalent parameters N t and N e associated with t 2 and e orbitals have been adopted to describe the covalence. The energy matrices considering the different covalence for t 2 and e orbitals have been provided for d 5 ions in crystal. These matrices show that the contribution from the Racah parameter A cannot be neglected in calculation of energy-level of d 5 ions in covalent crystal. The calculated results using the matrix show that the energy levels of 4 E and 4 A 1 states split, and the energy-level difference between 4 E and 4 A 1 states increases with increase of the different covalence between t 2 and e orbitals. These energy levels are always degenerate, when the different covalence for t 2 and e orbitals is neglected. By using the energy matrices, the energy-level of ZnS:Mn 2+ has been calculated. The calculated energy levels of ZnS:Mn 2+ are in good agreement with the experiments

  9. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  10. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  11. Hydrogels Based on Dynamic Covalent and Non Covalent Bonds: A Chemistry Perspective

    Directory of Open Access Journals (Sweden)

    Francesco Picchioni

    2018-03-01

    Full Text Available Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing. These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.

  12. Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.

    Science.gov (United States)

    Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C

    2014-09-01

    Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue

  13. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    Science.gov (United States)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial

  14. The effect of high antigen density on solid-phase radioimmunoassays for antibody regardless of immunoglobulin class

    International Nuclear Information System (INIS)

    Rubin, R.L.; Hardtke, M.A.; Carr, R.I.

    1980-01-01

    Human sera containing antibody to casein or to bovine serum albumin were used to assess the validity and utility of a solid-phase assay for quantitating antibody activity. Rabbit anti-human immunoglobulin radiolabeled with 125 I and capable of reacting with all human immunoglobulin classes was used to detect antibody bound to antigen immobilized to polystyrene tubes by a new covalent technique. This method results in very high antigen concentrations in highly stable association with polystyrene tubes. Kinetic and absorption studies demonstrated that low avidity antibodies are better detected when antigen is immobilized by the covalent method than when passively adsorbed. Conditions are described for minimizing artifactual interactions and for obtaining results similar to those obtained with conventional, liquid-phase assays. Failure to reach equilibrium in solid-phase assays and other problems are proposed to explain, in part, the inability to obtain a better correlation between solid- and liquid-phase immunoassays. (Auth.)

  15. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  16. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    Science.gov (United States)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  17. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  18. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  19. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis.

    Science.gov (United States)

    Wang, Xuan; Ye, Nengsheng

    2017-12-01

    In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF- or COF-based solid-phase extraction (SPE), solid-phase microextraction (SPME), gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  1. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  2. Covalent and non-covalent chemical engineering of actin for biotechnological applications.

    Science.gov (United States)

    Kumar, Saroj; Mansson, Alf

    2017-11-15

    The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuang-Kai; Wang, Chi-Ching; Chao, Jui-I [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan (China); Zheng, Wen-Wei; Lo, Yu-Shiu; Chen, Chinpiao [Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan (China); Chiu, Yu-Chung; Cheng, Chia-Liang, E-mail: clcheng@mail.ndhu.edu.tw, E-mail: chinpiao@mail.ndhu.edu.tw, E-mail: jichao@faculty.nctu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2010-08-06

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 {mu}g ml{sup -1} ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  4. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  5. Covalently linked bisporphyrins bearing tetraphenylporphyrin and ...

    Indian Academy of Sciences (India)

    Covalently linked bisporphyrins bearing tetraphenylporphyrin and perbromoporphyrin units: Synthesis and their properties. Puttaiah Bhyrappa V Krishnan ... yields of the TPP moiety. Electrochemical redox and fluorescence data seem to suggest the possible existence of intramolecular interactions in these bisporphyrins.

  6. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  7. Covalently bound conjugates of albumin and heparin: Synthesis, fractionation and characterization

    NARCIS (Netherlands)

    Hennink, Wim E.; Feijen, Jan; Ebert, Charles D.; Kim, Sung Wan

    1983-01-01

    Covalently bound conjugates of human serum albumin and heparin were prepared as compounds which could improve the blood-compatibility of polymer surfaces either by preadsorption or by covalent coupling of the conjugates onto blood contacting surfaces. The conjugates (10–16 weight % of heparin) were

  8. Covalently Immobilised Cytochrome C Imaged by In Situ Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Olesen, Klaus G.; Danilov, Alexey I.

    1997-01-01

    In situ scanning tunnelling microscopy (STM) imaging of cytochrome c (cyt c) on polycrystalline Pt surfaces and on Au(lll) was achieved first by covalent immobilisation of 3-aminopropyltriethoxysilane (3-APTS) brought to react with oxide present on the Pt surfaces. Covalently bound 3-APTS forms...

  9. On-surface synthesis of covalent coordination polymers on micrometer scale

    Institute of Scientific and Technical Information of China (English)

    Mathieu Koudia; Elena Nardi; Olivier Siri; Mathieu Abel

    2017-01-01

    On-surface synthesis under ultrahigh vacuum provides a promising strategy to control matter at the atomic level,with important implications for the design of new two-dimensional materials having remarkable electronic,magnetic,or catalytic properties.This strategy must address the problem of limited extension of the domains due to the irreversible nature of covalent bonds,which prevents the ripening of defects.We show here that extended materials can be produced by a controlled co-deposition process.In particular,co-deposition of quinoid zwitterion molecules with iron atoms on a Ag(111) surface held at 570 K allows the formation of micrometer-sized domains based on covalent coordination bonds.This work opens up the construction of micrometer-scale single-layer covalent coordination materials under vacuum conditions.

  10. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  11. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  12. Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials.

    Science.gov (United States)

    Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A; Dahl, Jeremy E P; Schreiner, Peter R; Ravoo, Bart Jan

    2017-11-13

    We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host-guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. We found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantane as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host-guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. New solid phase radioimmunoassay (CLB-RIA) for the detection of hepatitis-B antigen and antibody

    Energy Technology Data Exchange (ETDEWEB)

    Duimel, W J [Centraal Laboratorium van de Bloedtransfusiedienst, Amsterdam; Brummelhuis, H G.J.

    1975-07-01

    A new competitive solid phase radioimmunoassay (CLB-RIA) has been developed for the detection of HBAg and HBAb in human serum and plasma. In the assay, sheep antibodies to HBAg, covalently linked to an insoluble carrier, highly purified /sup 125/I labelled HBAg and the serum or plasma sample are incubated for 20 h at room temperature. After incubation, the bound and the free fraction of the tracer are separated by centrifugation. The presence of both HBAg and HBAb results in a decrease of the amount of bound tracer, when compared with a negative control serum. Differentiation between HBAg and HBAb requires the use of another type of radioimmunoassay. For this purpose a sandwich solid phase radioimmunoassay, for the detection of HBAb only, has been developed (CLB-AURIA). In this, assay-purified HBAg is covalently linked to an insoluble carrier. Using a mixture of both immunosorbents (insolubilized HBAg and HBAb), it is possible to detect and to distinguish HBAg and HBAb in one single solid phase radioimmunoassay (CLB-MIRIA). The influence of three parameters on the CLB-RIA, the incubation time, the amount of tracer and the effect of Tween-20 has been studied. The sensitivity of the described solid phase CLB-RIA for the detection of HBAg is comparable to that of other radioimmunoassays reported in literature; its specificity is very high.

  14. Recent Developments in the Site-Specific Immobilization of Proteins onto Solid Supports

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2007-02-21

    Immobilization of proteins onto surfaces is of great importance in numerous applications, including protein analysis, drug screening, and medical diagnostics, among others. The success of all these technologies relies on the immobilization technique employed to attach a protein to the corresponding surface. Non-specific physical adsorption or chemical cross-linking with appropriate surfaces results in the immobilization of the protein in random orientations. Site-specific covalent attachment, on the other hand, leads to molecules being arranged in a definite, orderly fashion and allows the use of spacers and linkers to help minimize steric hindrances between the protein and the surface. The present work reviews the latest chemical and biochemical developments for the site-specific covalent attachment of proteins onto solid supports.

  15. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  16. Electrochromic Behaviors of Water-Soluble Polyaniline with Covalently Bonded Acetyl Ferrocene

    Science.gov (United States)

    Xiong, Shanxin; Wang, Ru; Li, Shuaishuai; Wu, Bohua; Chu, Jia; Wang, Xiaoqin; Zhang, Runlan; Gong, Ming

    2018-04-01

    A novel ferrocene-containing hybrid electrochromic material was synthesized via copolymerization of aniline with p-phenylenediamine functionalized acetyl ferrocene in the presence of poly (styrene sulfonate) dopant in an aqueous medium, and neat polyaniline (PANI) was prepared for comparison. The polymerization characteristics and the structure of the copolymer were systematically studied by Fourier-transform infrared, meanwhile, their electrochromic properties and electrochemical behaviors were tested by UV-vis spectra, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). It was found that the strong covalent bond and large conjugated system between PANI and ferrocene enhance the electron transfer rate and electron delocalization in the ferrocene-polyaniline (Fc-PANI) hybrid. In particular, the electrochromic device with Fc-PANI as the active layer shows significant enhancement in optical contrast over the PANI-based device.

  17. Development of Solid-State Electrochemiluminescence (ECL Sensor Based on Ru(bpy32+-Encapsulated Silica Nanoparticles for the Detection of Biogenic Polyamines

    Directory of Open Access Journals (Sweden)

    Anna-Maria Spehar-Délèze

    2015-05-01

    Full Text Available A solid state electrochemiluminescence (ECL sensor based on Ru(bpy32+-encapsulated silica nanoparticles (RuNP covalently immobilised on a screen printed carbon electrode has been developed and characterised. RuNPs were synthesised using water-in-oil microemulsion method, amino groups were introduced on their surface, and they were characterised by transmission electron microscopy. Aminated RuNPs were covalently immobilised on activate screen-printed carbon electrodes to form a solid state ECL biosensor. The biosensor surfaces were characterised using electrochemistry and scanning electron microscopy, which showed that aminated nanoparticles formed dense 3D layers on the electrode surface thus allowing immobilisation of high amount of Ru(bpy32+. The developed sensor was used for ECL detection of biogenic polyamines, namely spermine, spermidine, cadaverine and putrescine. The sensor exhibited high sensitivity and stability.

  18. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-01

    Full Text Available cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent...

  19. 共价键的离子化%Ionization of Covalent Bond

    Institute of Scientific and Technical Information of China (English)

    王稼国; 荆西平

    2017-01-01

    本文用化学键理论分析和推导了共价键离子化的几种方式,包括金属和非金属单质中共价键的诱导离子化、化合物中共价键的降温和自诱导离子化以及含氢化合物和金属化合物的诱导离子化.从能量角度分析了离子化趋势的规律性,并且讨论了共价键的离子化的一些重要应用.%Several ionization patterns of covalent bond,including induced-ionization of covalent bond in metals and nonmetals,induced-ionization of covalent bond in hydrogen compounds and metal compounds,lowering temperature and self-induced ionization of compound,and so on,were dedueed and analyzed by using chemical bond theory.The trend of ionization was also analyzed on energy changing and several important applications of the ionization of covalent bond were discussed.

  20. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    Science.gov (United States)

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  1. Formation of covalent linkages between nuclear and protein constituents of ribosomes of E. coli MRE 600 irradiated by gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Ekert, B; Giocanti, N [Institut du Radium, 91 - Orsay (France)

    1977-04-01

    Gamma irradiation of E.coli MRE 600 ribosomes in aqueous suspensions led to covalent linkages between the RNA and some ribosomal proteins. The presence of oxygen during the irradiation strongly inhibited this phenomenon. It appears clearly that only a few proteins were able to participate in these cross-linking reactions, which occurred simultaneously in the two sub-units. The radiochemical yield was determined at several concentrations and was relatively low.

  2. Predominantly ligand guided non-covalently linked assemblies of ...

    Indian Academy of Sciences (India)

    JUBARAJ B BARUAH

    2018-05-12

    May 12, 2018 ... Abstract. Various non-covalently linked inorganic self-assemblies formed by the supramolecular interacting .... metal-organic frameworks.59 Inorganic chemists rou- ...... two-dimensional organic–inorganic layered perovskite.

  3. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can.......20 (SLL/C and SBCC/C) and ∼0.28 (C/L). Finally, the specific influences of the strongly amphiphilic nature of the AmphComb blocks on the observed morphological and hierarchical behaviours of our system are discussed. For reference, stoichiometric strongly amphiphilic comb-like (AmphComb) ionic...

  4. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.

    Science.gov (United States)

    Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña

    2017-11-24

    Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), ... workers proposed the electrostatic-covalent model of hydrogen bonding. ..... tain degree of electron donation and acceptance occurs.

  6. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion.

    Science.gov (United States)

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  7. Binding matter with antimatter: the covalent positron bond.

    Science.gov (United States)

    Charry, Jorge Alfonso; Varella, Marcio T Do N; Reyes, Andrés

    2018-05-16

    We report sufficient theoretical evidence of the energy stability of the e⁺H₂²⁻ molecule, formed by two H⁻ anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e⁺H₂²⁻ molecule is 74 kJ/mol (0.77 eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  9. Cluster induced chemistry at solid surfaces: Molecular dynamics simulations of keV C60 bombardment of Si

    International Nuclear Information System (INIS)

    Krantzman, K.D.; Kingsbury, D.B.; Garrison, Barbara J.

    2007-01-01

    Molecular dynamics simulations of the sputtering of Si by keV C 60 bombardment have been performed as a function of incident kinetic energy at two incident angles, normal incidence and 45 deg. Nearly all of the C atoms remain embedded in the surface after bombardment because the C atoms from the projectile form strong covalent bonds with the Si atoms in the target. At low incident kinetic energies, the sputtering yield of Si atoms is small and there is a net deposition of solid material from the projectile atoms. As the incident kinetic energy is increased, the yield of sputtered Si atoms increases. A transition occurs in which the yield of sputtered Si atoms exceeds the number of C atoms deposited, and there is a net erosion of the solid material. A significantly higher sputter yield is observed at an incident angle of 45 deg. than at normal incidence, and therefore, the energy value is lower for the transition from net deposition to net erosion. This phenomenon is discussed in terms of the depth distribution of deposited energy, which is found to be shallower at an incident angle of 45 deg

  10. Strong and weak adsorption of CO{sub 2} on PuO{sub 2} (1 1 0) surfaces from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.L. [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Deng, X.D. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Li, G.; Lai, X.C. [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Meng, D.Q., E-mail: yuhuilong2002@126.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2014-10-15

    Highlights: • The CO{sub 2} adsorption on PuO{sub 2} (1 1 0) surface was studied by GGA + U. • Both weak and strong adsorptions exist between CO{sub 2} and the PuO{sub 2} (1 1 0) surface. • Electrostatic interactions were involved in the weak interactions. • Covalent bonding was developed in the strong adsorptions. - Abstract: The CO{sub 2} adsorption on plutonium dioxide (PuO{sub 2}) (1 1 0) surface was studied using projector-augmented wave (PAW) method based on density-functional theory corrected for onsite Coulombic interactions (GGA + U). It is found that CO{sub 2} has several different adsorption features on PuO{sub 2} (1 1 0) surface. Both weak and strong adsorptions exist between CO{sub 2} and the PuO{sub 2} (1 1 0) surface. Further investigation of partial density of states (PDOS) and charge density difference on two typical absorption sites reveal that electrostatic interactions were involved in the weak interactions, while covalent bonding was developed in the strong adsorptions.

  11. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation.

    Science.gov (United States)

    Greenwood, John; Phan, Thanh Hai; Fujita, Yasuhiko; Li, Zhi; Ivasenko, Oleksandr; Vanderlinden, Willem; Van Gorp, Hans; Frederickx, Wout; Lu, Gang; Tahara, Kazukuni; Tobe, Yoshito; Uji-I, Hiroshi; Mertens, Stijn F L; De Feyter, Steven

    2015-05-26

    We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

  12. Eriocalyxin B Inhibits STAT3 Signaling by Covalently Targeting STAT3 and Blocking Phosphorylation and Activation of STAT3.

    Directory of Open Access Journals (Sweden)

    Xiaokui Yu

    Full Text Available Activated STAT3 plays an important role in oncogenesis by stimulating cell proliferation and resisting apoptosis. STAT3 therefore is an attractive target for cancer therapy. We have screened a traditional Chinese herb medicine compound library and found Eriocalyxin B (EB, a diterpenoid from Isodon eriocalyx, as a specific inhibitor of STAT3. EB selectively inhibited constitutive as well as IL-6-induced phosphorylation of STAT3 and induced apoptosis of STAT3-dependent tumor cells. EB did not affect the upstream protein tyrosine kinases or the phosphatase (PTPase of STAT3, but rather interacted directly with STAT3. The effects of EB could be abolished by DTT or GSH, suggesting a thiol-mediated covalent linkage between EB and STAT3. Site mutagenesis of cysteine in and near the SH2 domain of STAT3 identified Cys712 to be the critical amino acid for the EB-induced inactivation of STAT3. Furthermore, LC/MS/MS analyses demonstrated that an α, β-unsaturated carbonyl of EB covalently interacted with the Cys712 of STAT3. Computational modeling analyses also supported a direct interaction between EB and the Cys712 of STAT3. These data strongly suggest that EB directly targets STAT3 through a covalent linkage to inhibit the phosphorylation and activation of STAT3 and induces apoptosis of STAT3-dependent tumor cells.

  13. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  14. Relation of radiation damage of metallic solids to electronic structure. Pt. 5

    International Nuclear Information System (INIS)

    Shalaev, A.M.; Adamenko, A.A.

    1977-01-01

    The problem of relating a damage in metal solids to the parameters of radiation fluxes and the physical nature of a target is considered. Basing upon experimental and theoretical investigations into the processes of interaction of particle fluxes with solids, the following conclusions have been reached. Threshold energy of ion displacement in the crystal lattice of a metal solid is dependent on the energy of a bombarding particle, which is due to ionization and electroexcitation stimulated by energy transfer from a fast particle to a system of collectivized electrons. The rate of metal solid damage by radiation depends on the state of the crystal lattice, in particular on its defectness. Variations of local electron density in the vicinity of a defect are related with changing thermodynamic characteristics of radiation-induced defect formation. A type of atomic bond in a solid affects the rate of radiation damage. The greatest damage occurs in materials with a covalent bond

  15. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

    Science.gov (United States)

    Wu, Jinrong; Cai, Li-Heng; Weitz, David A

    2017-10-01

    Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inter- and intramolecular non-covalent interactions in 1-methylimidazole-2-carbaldehyde complexes of copper, silver, and gold

    Science.gov (United States)

    Koskinen, Laura; Jääskeläinen, Sirpa; Hirva, Pipsa; Haukka, Matti

    2014-09-01

    Three new imidazole compounds, [CuBr2(mimc)2] (1), [Ag(mimc)2][CF3SO3] (2), and [AuCl3(mimc)] (3) (mimc = 1-methylimidazole-2-carbaldehyde), have been synthesized, structurally characterized, and further analyzed using the QTAIM analysis. The compounds exhibit self-assembled 3D networks arising from intermolecular non-covalent interactions such as metallophilic interactions, metal-π contacts, halogens-halogen interactions, and hydrogen bonds. These weak interactions have a strong impact on the coordination sphere of the metal atoms and on the packing of compounds 1, 2, and 3.

  17. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  18. Covalent modification of platelet proteins by palmitate

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    Covalent attachment of fatty acid to proteins plays an important role in association of certain proteins with hydrophobic membrane structures. In platelets, the structure of many membrane glycoproteins (GPs) has been examined in detail, but the question of fatty acid acylation of platelet proteins has not been addressed. In this study, we wished to determine (a) whether platelet proteins could be fatty acid acylated; and, if so, (b) whether these modified proteins were present in isolated platelet membranes and cytoskeletal fractions; and (c) if the pattern of fatty acid acylated proteins changed on stimulation of the platelets with the agonist thrombin. We observed that in platelets allowed to incorporate 3H-palmitate, a small percentage (1.37%) of radioactivity incorporated into the cells became covalently bound to protein. Selective cleavage of thioester, thioester plus O-ester, and amide-linked 3H-fatty acids from proteins, and their subsequent analysis by high-performance liquid chromatography (HPLC) indicated that the greatest part of 3H-fatty acid covalently bound to protein was thioester-linked 3H-palmitate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, at least ten major radiolabeled proteins were detected. Activation of platelets by thrombin greatly increased the quantity of 3H-palmitoylated proteins associated with the cytoskeleton. Nearly all radiolabeled proteins were recovered in the membrane fraction, indicating that these proteins are either integral or peripheral membrane proteins or proteins tightly associated to membrane constituents. Components of the GPIIb-IIIa complex were not palmitoylated. Thus, platelet proteins are significantly modified posttranslationally by 3H-palmitate, and incorporation of palmitoylated proteins into the cytoskeleton is a prominent component of the platelet response to thrombin stimulation

  19. Covalent Crosslinking of Porous Poly(Ionic Liquid) Membrane via a Triazine Network

    OpenAIRE

    Täuber, Karoline; Dani, Alessandro; Yuan, Jiayin

    2017-01-01

    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  20. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  1. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    International Nuclear Information System (INIS)

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  2. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Science.gov (United States)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  3. Construction of covalently coupled, concatameric dimers of 7TM receptors

    DEFF Research Database (Denmark)

    Terpager, Marie; Scholl, D Jason; Kubale, Valentina

    2009-01-01

    -Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...... for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse...

  4. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    Science.gov (United States)

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  5. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    Science.gov (United States)

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-06

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake.

    Science.gov (United States)

    Lee, Jong Woo; Lee, Seonju; Jang, Sangmok; Han, Kyu Young; Kim, Younggyu; Hyun, Jaekyung; Kim, Seong Keun; Lee, Yan

    2013-05-01

    Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs. The polymer-coated FNDs, along with BSA- and HSA-coated FNDs, showed non-aggregation characteristics and maintained their size at the physiological salt concentration. The well-dispersed, polymer- or protein-coated FNDs in physiological solutions showed enhanced intracellular uptake, which was confirmed by CLSM. In addition, the biocompatibility of the coated FNDs was expressly supported by a cytotoxicity assay. Our simple non-covalent coating with the block copolymer, which can be easily modified by various chemical methods, projects a very promising outlook for future biomedical applications, especially in comparison with covalent coating or protein-based coating.

  7. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes.

    Science.gov (United States)

    Kovaříček, Petr; Lehn, Jean-Marie

    2012-06-06

    The formation and exchange processes of imines of salicylaldehyde, pyridine-2-carboxaldehyde, and benzaldehyde have been studied, showing that the former has features of particular interest for dynamic covalent chemistry, displaying high efficiency and fast rates. The monoimines formed with aliphatic α,ω-diamines display an internal exchange process of self-transimination type, inducing a local motion of either "stepping-in-place" or "single-step" type by bond interchange, whose rate decreases rapidly with the distance of the terminal amino groups. Control of the speed of the process over a wide range may be achieved by substituents, solvent composition, and temperature. These monoimines also undergo intermolecular exchange, thus merging motional and constitutional covalent behavior within the same molecule. With polyamines, the monoimines formed execute internal motions that have been characterized by extensive one-dimensional, two-dimensional, and EXSY proton NMR studies. In particular, with linear polyamines, nondirectional displacement occurs by shifting of the aldehyde residue along the polyamine chain serving as molecular track. Imines thus behave as simple prototypes of systems displaying relative motions of molecular moieties, a subject of high current interest in the investigation of synthetic and biological molecular motors. The motional processes described are of dynamic covalent nature and take place without change in molecular constitution. They thus represent a category of dynamic covalent motions, resulting from reversible covalent bond formation and dissociation. They extend dynamic covalent chemistry into the area of molecular motions. A major further step will be to achieve control of directionality. The results reported here for imines open wide perspectives, together with other chemical groups, for the implementation of such features in multifunctional molecules toward the design of molecular devices presenting a complex combination of

  8. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry

    Science.gov (United States)

    Green, Malcolm L. H.; Parkin, Gerard

    2014-01-01

    The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…

  9. Covalent microcontact printing of proteins fro cell patterning

    NARCIS (Netherlands)

    Rozkiewicz, D.I.; Kraan, Yvonne M.; Werten, Marc W.T.; de Wolf, Frits A.; Subramaniam, Vinod; Ravoo, B.J.; Reinhoudt, David

    2006-01-01

    We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An

  10. Multi-step non-covalent pathways to supramolecular systems

    NARCIS (Netherlands)

    Hermans, T.M.

    2010-01-01

    The spontaneous organization of building blocks into ordered structures governed by non-covalent interactions, or self-assembly, is a commonly encountered pathway in nature to obtain functional materials. These materials often consist of many different components ordered into intricate structures.

  11. The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; Winter, Remko T.; Damsma, Gerke E.; Janssen, Dick B.; Fraaije, Marco W.

    2008-01-01

    ChitO (chito-oligosaccharide oxidase) from Fusarium graminearum catalyses the regioselective oxidation of N-acetylated oligosaccharides. The enzyme harbours an FAD cofactor that is covalently attached to His(94) and Cys(154). The functional role of this unusual bi-covalent flavin-protein linkage was

  12. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Molla Gianluca

    2010-04-01

    Full Text Available Abstract Background Cholesterol oxidase is an alcohol dehydrogenase/oxidase flavoprotein that catalyzes the dehydrogenation of C(3-OH of cholesterol. It has two major biotechnological applications, i.e. in the determination of serum (and food cholesterol levels and as biocatalyst providing valuable intermediates for industrial steroid drug production. Cholesterol oxidases of type I are those containing the FAD cofactor tightly but not covalently bound to the protein moiety, whereas type II members contain covalently bound FAD. This is the first report on the over-expression in Escherichia coli of type II cholesterol oxidase from Brevibacterium sterolicum (BCO. Results Design of the plasmid construct encoding the mature BCO, optimization of medium composition and identification of the best cultivation/induction conditions for growing and expressing the active protein in recombinant E. coli cells, concurred to achieve a valuable improvement: BCO volumetric productivity was increased from ~500 up to ~25000 U/L and its crude extract specific activity from 0.5 up to 7.0 U/mg protein. Interestingly, under optimal expression conditions, nearly 55% of the soluble recombinant BCO is produced as covalently FAD bound form, whereas the protein containing non-covalently bound FAD is preferentially accumulated in insoluble inclusion bodies. Conclusions Comparison of our results with those published on non-covalent (type I COs expressed in recombinant form (either in E. coli or Streptomyces spp., shows that the fully active type II BCO can be produced in E. coli at valuable expression levels. The improved over-production of the FAD-bound cholesterol oxidase will support its development as a novel biotool to be exploited in biotechnological applications.

  13. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  14. Evaluation of covalency of ions in lead-free perovskite-type dielectric oxides

    Directory of Open Access Journals (Sweden)

    Naohisa Takesue

    2017-10-01

    Full Text Available Electronic states of ions in lead-free perovskite-type dielectric oxides have been investigated with a first-principle cluster calculation. For this calculation a double-perovskite cluster model based upon the simple cubic ABO3 was used; A and B are both the cations, and O is the oxygen anion. Systematic variations of ionic species for A and B, and lengths of the model cube edge were given to the model. Results of charge transfers of the ions show that their magnitudes depend on the edge length; the lager length leads to the higher transfer magnitude. This tendency implies spatial tolerance of the ions to the clusters, and are expected to correlate with electric polarizability and dipole reversibility of this kind of oxides. The density of states and the overlap population indicate that the higher cation valence causes the higher covalency of the anions. Considering all results together provides us an idea to obtain lead-free high-performance ferroelectrics, as high as the lead-based solid solutions.

  15. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    Directory of Open Access Journals (Sweden)

    Alexey V. Kondyurin

    2012-01-01

    Full Text Available The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers.

  16. Covalent α-synuclein dimers: chemico-physical and aggregation properties.

    Directory of Open Access Journals (Sweden)

    Micaela Pivato

    Full Text Available The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1-104 and 29-140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results

  17. Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters.

    Science.gov (United States)

    Zhong, Cheng; Chen, Beibei; He, Man; Hu, Bin

    2017-02-03

    In this study, covalent triazine framework-1 (CTF-1) was adopted as solid phase extraction (SPE) sorbents, and a method of SPE inline coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for trace analysis of three nitroimidazolaes (including metronidazole, ronidazole and dimetridazole) in porcine liver and environmental water samples. CTF-1 has rich π-electron and N containing triazine, thus can form π-π interaction and intermolecular hydrogen bond with three target polar nitroimidazoles, resulting in high extraction efficiency (87%-98%). Besides, CTF-1 has large specific area, which benefits rapid mass transfer and low column pressure, leading to fast adsorption/desorption dynamics. Several parameters affecting inline SPE including pH, sample flow rate, sample volume, desorption reagents, elution flow rate, elution volume, and ionic strength were investigated. Under the optimal experimental conditions, the limits of detection (S/N=3) were found to be in the range of 0.11-0.13μg/L. The enrichment factors (EFs) ranged from 52 to 59 fold (theoretical EF was 60-fold). The relative standard deviations were in the range of 4.3-9.4% (n=7, c=1μg/L), and the linear range was 0.5-500μg/L for three target analytes. The sample throughput is 7/h. The proposed method was successfully applied to the analysis of nitroimidazoles in porcine liver and environmental water samples with good recoveries for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

    Science.gov (United States)

    Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.; Yang, Yang; Jariwala, Deep; Marks, Tobin J.; Schatz, George C.; Hersam, Mark C.

    2016-06-01

    Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

  19. Covalent modification of serum transferrin with phospholipid and incorporation into liposomal membranes

    DEFF Research Database (Denmark)

    Afzelius, P; Demant, E J; Hansen, Gert Helge

    1989-01-01

    A method is described for incorporation of water-soluble proteins into liposomal membranes using covalent protein-phospholipid conjugates in detergent solution. A disulfide derivative of phosphatidylethanolamine containing a reactive N-hydroxysuccinimide ester group is synthesized, and the deriva......A method is described for incorporation of water-soluble proteins into liposomal membranes using covalent protein-phospholipid conjugates in detergent solution. A disulfide derivative of phosphatidylethanolamine containing a reactive N-hydroxysuccinimide ester group is synthesized...

  20. Macromolecular weight specificity in covalent binding of bromobenzene

    International Nuclear Information System (INIS)

    Sun, J.D.; Dent, J.G.

    1984-01-01

    Bromobenzene is a hepatotoxicant that causes centrilobular necrosis. Pretreatment of animals with 3-methylcholanthrene decreases and phenobarbital pretreatment enhances the hepatotoxic action of this compound. We have investigated the macromolecular weight specificity of the covalent interactions of bromobenzene with liver macromolecules following incubation of [ 14 C]bromobenzene in isolated hepatocytes. Hepatocytes were prepared from Fischer-344 rats treated for 3 days with 3-methylcholanthrene, phenobarbital, or normal saline. After a 1-hr incubation, total covalent binding, as measured by sodium dodecyl sulfate-equilibrium dialysis, was twofold less in hepatocytes from 3-methylcholanthrene-treated rats and sixfold greater in hepatocytes from phenobarbital-treated rats, as compared to hepatocytes from control animals. Analysis of the arylated macromolecules by electrophoresis on 15% sodium dodecyl sulfate-polyacrylamide disc gels indicated that in the first 1 to 3 min of incubation substantial amounts of covalently bound radiolabel were associated with macromolecules of between 20,000 and 40,000. The amount of radioactivity associated with these macromolecules rapidly diminished in hepatocytes from control and 3-methylcholanthrene-treated animals. In hepatocytes from phenobarbital-treated animals, the amount of radioactivity associated with macromolecules, 20,000, increased throughout the incubation. The amount of radiolabel associated with macromolecules, 20,000, increased in all incubations. When nontoxic doses of phenylmethylsulfonyl fluoride, a specific inhibitor of serine proteases, were added to control hepatocytes incubated with [ 14 C]-bromobenzene, the decrease in radioactivity associated with larger (greater than 20,000) macromolecules was inhibited and a corresponding lack of increase in radioactivity associated with smaller macromolecules was observed

  1. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  2. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    International Nuclear Information System (INIS)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo

    2016-01-01

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification

  3. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)

    2016-10-15

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  4. Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers

    NARCIS (Netherlands)

    Schaeffer, Gaël; Buhler, Eric; Candau, Sauveur Jean; Lehn, Jean-Marie

    2013-01-01

    Double-dynamic polymers, incorporating both molecular and supramolecular dynamic features (“double dynamers”) have been generated, where these functions are present in a nonstoichiometric ratio in the main chain of the polymer. It has been achieved by (1) the formation of covalent oligo-dynamers in

  5. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  6. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner.

    Directory of Open Access Journals (Sweden)

    Josef Köck

    Full Text Available Persistence of hepatitis B virus (HBV infection requires covalently closed circular (cccDNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.

  7. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  8. Non-covalent and reversible functionalization of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antonello Di Crescenzo

    2014-09-01

    Full Text Available Carbon nanotubes (CNTs have been proposed and actively explored as multipurpose innovative nanoscaffolds for applications in fields such as material science, drug delivery and diagnostic applications. Their versatile physicochemical features are nonetheless limited by their scarce solubilization in both aqueous and organic solvents. In order to overcome this drawback CNTs can be easily non-covalently functionalized with different dispersants. In the present review we focus on the peculiar hydrophobic character of pristine CNTs that prevent them to easily disperse in organic solvents. We report some interesting examples of CNTs dispersants with the aim to highlight the essential features a molecule should possess in order to act as a good carbon nanotube dispersant both in water and in organic solvents. The review pinpoints also a few examples of dispersant design. The last section is devoted to the exploitation of the major quality of non-covalent functionalization that is its reversibility and the possibility to obtain stimuli-responsive precipitation or dispersion of CNTs.

  9. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  10. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  11. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    OpenAIRE

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  12. Non-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene

    Science.gov (United States)

    Rodriguez, Jorge H.; Deligkaris, Christos

    2013-03-01

    Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[ α]pyrene, namely (+)-anti-BPDE, is known to undergo both physical and chemical complexation with DNA. The major covalent adduct, a promutagenic, is known to be an external (+)-trans-anti-BPDE-N2-dGuanosine configuration whose origins are not fully understood. Thus, it is desirable to study the mechanisms of external non-covalent BPDE-DNA binding and their possible relationships to external covalent trans adduct formation. We present a detailed codon-by-codon computational study of the non-covalent interactions of (+)-anti-BPDE with DNA which explains and correctly predicts preferential (+)-anti-BPDE binding at minor groove guanosines. Due to its relevance to carcinogenesis, the interaction of (+)-anti-BPDE with exon 1 of the human K-ras gene has been studied in detail. Present address: Department of Physics, Drury University

  13. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  14. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    Science.gov (United States)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  15. Reversible and formaldehyde-mediated covalent binding of a bis-amino mitoxantrone analogue to DNA.

    Science.gov (United States)

    Konda, Shyam K; Kelso, Celine; Pumuye, Paul P; Medan, Jelena; Sleebs, Brad E; Cutts, Suzanne M; Phillips, Don R; Collins, J Grant

    2016-05-18

    The ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2. Incubation of WEHI-150 with d(CG(5Me)CGCG)2 in the presence of formaldehyde resulted in the formation of significantly greater amounts of covalent adducts than was observed with d(CGCGCG)2. In order to understand the observed increase of covalent adducts with d(CG(5Me)CGCG)2, an NMR study of the reversible interaction of WEHI-150 at both CpG and (5Me)CpG sites was undertaken. Intermolecular NOEs were observed in the NOESY spectra of d(ACGGCCGT)2 with added WEHI-150 that indicated that the drug selectively intercalated at the CpG sites and from the major groove. In particular, NOEs were observed from the WEHI-150 H2,3 protons to the H1' protons of G3 and G7 and from the H6,7 protons to the H5 protons of C2 and C6. By contrast, intermolecular NOEs were observed between the WEHI-150 H2,3 protons to the H2'' proton of the (5Me)C3 in d(CG(5Me)CGCG)2, and between the drug aliphatic protons and the H1' proton of G4. This demonstrated that WEHI-150 preferentially intercalates at (5Me)CpG sites, compared to CpG sequences, and predominantly via the minor groove at the (5Me)CpG site. The results of this study demonstrate that WEHI-150 is likely to form interstrand DNA cross-links, upon activation by formaldehyde, and consequently exhibit greater cytotoxicity than other current anthracenedione drugs.

  16. 4fn-15d centroid shift in lanthanides and relation with anion polarizability, covalency, and cation electronegativity

    International Nuclear Information System (INIS)

    Dorenbos, P.; Andriessen, J.; Eijk, C.W.E. van

    2003-01-01

    Data collected on the centroid shift of the 5d-configuration of Ce 3+ in oxide and fluoride compounds were recently analyzed with a model involving the correlated motion between 5d-electron and ligand electrons. The correlation effects are proportional to the polarizability of the anion ligands and it leads, like covalency, to lowering of the 5d-orbital energies. By means of ab initio Hartree-Fock-LCAO calculations including configuration interaction the contribution from covalency and correlated motion to the centroid shift are determined separately for Ce 3+ in various compounds. It will be shown that in fluoride compounds, covalency provides an insignificant contribution. In oxides, polarizability appears to be of comparable importance as covalency

  17. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  18. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  19. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Science.gov (United States)

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  20. Recent advances in covalent, site-specific protein immobilization [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Morten Meldal

    2016-09-01

    Full Text Available The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches based on bioorthogonal reactions, like the azide–alkyne cycloaddition, have proven to be powerful tools. The lack of comparative studies and quantitative analysis of these immobilization methods hampers the selection process of the optimal strategy for a given application. However, besides immobilization efficiency, the freedom in selecting the site of conjugation and the size of the conjugation tag and the researcher’s expertise regarding molecular biology and/or chemical techniques will be determining factors in this regard.

  1. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  2. Covalent Grafting of the RGD-Peptide onto Polyetheretherketone Surfaces via Schiff Base Formation

    Directory of Open Access Journals (Sweden)

    Marc Becker

    2013-01-01

    Full Text Available In recent years, the synthetic polymer polyetheretherketone (PEEK has increasingly been used in a number of orthopedic implementations, due to its excellent mechanical properties, bioinertness, and chemical resistance. For in vivo applications, the surface of PEEK, which does not naturally support cell adhesion, has to be modified to improve tissue integration. In the present work we demonstrate a novel wet-chemical modification of PEEK to modify the surface, enabling the covalent grafting of the cell-adhesive RGD-peptide. Modification of the polymer surface was achieved via Schiff base formation using an aliphatic diamine and subsequent crosslinker-mediated immobilization of the peptide. In cell culture experiments with primary osteoblasts it was shown that the RGD-modified PEEK not only significantly promoted cellular adhesion but also strongly enhanced the proliferation of osteoblasts on the modified polymer surface.

  3. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  4. Covalent Attachment of Bent-Core Mesogens to Silicon Surfaces

    NARCIS (Netherlands)

    Scheres, L.; Achten, R.; Giesbers, M.; Smet, de L.; Arafat, A.; Sudhölter, E.J.R.; Marcelis, A.T.M.; Zuilhof, H.

    2009-01-01

    Two vinyl-terminated bent core-shaped liquid crystalline molecules that exhibit thermotropic antiferroelectric SmCPA phases have been covalently attached onto a hydrogen-terminated silicon(111) surface. The surface attachment was achieved via a mild procedure from a mesitylene solution, using

  5. Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigment-Based Covalent-Triazine Framework

    KAUST Repository

    Lu, Yue; He, Jia; Chen, Yanli; Wang, Heng; Zhao, Yunfeng; Han, Yu; Ding, Yi

    2017-01-01

    A novel covalent-triazine framework (CTF-PO71) is designed and prepared from an organic pigment molecule for high-performance gas separation. The functional sites with different electrostatic potentials on the pore surface of CTF-PO71 demonstrate a strong interaction between C2H2 and CTF-PO71 to achieve preferential adsorption of C2H2 over C2H4, thus enabling effective capture of a trace amount of C2H2 from the gas mixture. This is the first organic porous polymer that is capable of separating C2H2 and C2H4. The commercial availability and the low cost of the pigment as well as the high stability of the resultant framework endow CTF-PO71 with a significant potential for practical applications.

  6. Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigment-Based Covalent-Triazine Framework

    KAUST Repository

    Lu, Yue

    2017-10-24

    A novel covalent-triazine framework (CTF-PO71) is designed and prepared from an organic pigment molecule for high-performance gas separation. The functional sites with different electrostatic potentials on the pore surface of CTF-PO71 demonstrate a strong interaction between C2H2 and CTF-PO71 to achieve preferential adsorption of C2H2 over C2H4, thus enabling effective capture of a trace amount of C2H2 from the gas mixture. This is the first organic porous polymer that is capable of separating C2H2 and C2H4. The commercial availability and the low cost of the pigment as well as the high stability of the resultant framework endow CTF-PO71 with a significant potential for practical applications.

  7. Covalent immobilization of lipase from Candida rugosa on Eupergit®

    Directory of Open Access Journals (Sweden)

    Bezbradica Dejan I.

    2005-01-01

    Full Text Available An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme.

  8. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil.

    Science.gov (United States)

    Xie, Wenlei; Zang, Xuezhen

    2017-07-15

    Hydroxyapatite-encapsulated γ-Fe 2 O 3 nanoparticles were prepared, and lipase from Candida rugosa was then covalently bound onto the magnetic materials via covalent linkages. The magnetic carrier and immobilized lipase were characterized by enzyme activity assays, XRD, FT-IR, TEM, VSM and N 2 adsorption-desorption techniques. Results demonstrated that γ-Fe 2 O 3 nanoparticles were coated with the hydroxyapatite, and the lipase was indeed tethered to the magnetic carriers without damage to their structure. The immobilized lipase showed a strong magnetic responsiveness and displayed high catalytic activities towards the interesterification of soybean oil. The interesterified products were evaluated for their total fatty acid (FA) composition, slip melting point (SMP), iodine value, triacylglycerols (TAGs) profile and FA composition at sn-2 position in TAGs. The FA positional distributions and TAG species significantly changed after the enzymatic interesterification. Besides this, the interesterified products showed an obvious reduction in their SMP in comparison with the physical blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Black, Hayden T; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  10. Th-Based Endohedral Metallofullerenes: Anomalous Metal Position and Significant Metal-Cage Covalent Interactions with the Involvement of Th 5f Orbitals.

    Science.gov (United States)

    Li, Ying; Yang, Le; Liu, Chang; Hou, Qinghua; Jin, Peng; Lu, Xing

    2018-05-29

    Endohedral metallofullerenes (EMFs) containing actinides are rather intriguing due to potential 5f-orbital participation in the metal-metal or metal-cage bonding. In this work, density functional theory calculations first characterized the structure of recently synthesized ThC 74 as Th@ D 3 h (14246)-C 74 . We found that the thorium atom adopts an unusual off-axis position inside cage due to small metal ion size and the requirement of large coordination number, which phenomenon was further extended to other Th-based EMFs. Significantly, besides the strong metal-cage electrostatic attractions, topological and orbital analysis revealed that all the investigated Th-based EMFs exhibit obvious covalent interactions between metal and cage with substantial contribution from the Th 5f orbitals. The encapsulation by fullerenes is thus proposed as a practical pathway toward the f-orbital covalency for thorium. Interestingly, the anomalous internal position of Th led to a novel three-dimensional metal trajectory at elevated temperatures in the D 3 h -C 74 cavity, as elucidated by the static computations and molecular dynamic simulations.

  11. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  12. Contribution of the covalent and the Van der Waals force to the nuclear binding

    International Nuclear Information System (INIS)

    Rosina, M.; Povh, B.

    1994-01-01

    The contribution of the covalent and the Van der Waals force to the nuclear binding is estimated in a simplified model for medium distance of about 1 fm. It is shown how colour effects suppress these two forces as compared to the case of the forces between atoms. The covalent and the Van der Waals force represent a minor though noticeable component of the nuclear force. (orig.)

  13. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridinemoieties as well as epoxide groups, were synthesized via free-radical polymerization. The products were cross-linked non-covalently with iron(II) ions and covalently by treatment with AlCl3. Both steps could be combined in

  14. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  15. Thiolated polymers: evaluation of the influence of the amount of covalently attached L-cysteine to poly(acrylic acid).

    Science.gov (United States)

    Palmberger, Thomas F; Albrecht, Karin; Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2007-06-01

    It was the aim of this study to investigate the influence of the amount of thiol groups being covalently attached to poly(acrylic acid) 450 kDa on its properties. Five different PAA(450)-L-cysteine conjugates (PAA(450)-Cys) were synthesized bearing 53.0 (PAA I), 113.4 (PAA II), 288.8 (PAA III), 549.1 (PAA IV) and 767.0 (PAA V) micromol immobilized thiol groups per gram polymer. Mucoadhesion studies utilizing the rotating cylinder method, tensile studies and disintegration studies were performed. Self-crosslinking properties were measured by the increase in viscosity. Permeation studies were performed on rat small intestine and Caco-2 monolayers using sodium fluorescein as model drug. Following residence times on the rotating cylinder could be identified: PAA I 3.1; PAA II 5.2; PAA III 22.0; PAA IV 33.8; PAA V 53.7; control 1.3 [h]. The disintegration time of all PAA(450)-Cys tablets was strongly dependent on the degree of thiolation of the polymer. Self-crosslinking studies showed that the different PAA(450)-Cys conjugates (3% m/v) in phosphate buffer, pH 6.8, formed intramolecular disulfide bonds. In case of Caco-2 monolayer transport studies following P(app)-values could be identified: PAA I 9.8; PAA II 10.1; PAA III 11.1; PAA IV 8.9; PAA V 8.2; control 6.4 [P(app)x10(-6), cms(-1)]. Mucoadhesive and self-crosslinking properties are strongly dependent on the degree of thiolation of the polymer and with respect to transport studies, an optimum amount of covalently attached L-cysteine could be identified.

  16. Covalent bindings in proteins following UV-C irradiation

    International Nuclear Information System (INIS)

    Diezel, W.; Meffert, H.; Soennichsen, N.; Reinicke, C.

    1980-01-01

    Following a UV-C irradiation of catalase cross-linked catalase subunits could be detected by sodium dodecylsulfate gel electrophoresis. The subunits of aldolase were not cross-linked. The origin of covalent bindings in the catalase molecule is suggested to be effected by a free radical chain reaction induced by the heme component of catalase after UV-C irradiation. (author)

  17. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thamake, S I; Raut, S L [Department of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 (United States); Ranjan, A P; Vishwanatha, J K [Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Gryczynski, Z, E-mail: jamboor.vishwanatha@unthsc.edu [Center for Commercialization of Fluorescence Technology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-01-21

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  18. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    Science.gov (United States)

    Thamake, S. I.; Raut, S. L.; Ranjan, A. P.; Gryczynski, Z.; Vishwanatha, J. K.

    2011-01-01

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  19. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    Science.gov (United States)

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  20. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridine-moieties as well as epoxide groups, were synthesized via free-radical polymeri-zation. The products were cross-linked non-covalently with iron(II) ions and cova-lently by treatment with AlCl3. Both steps could be combined in

  1. Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Wei-Wei; Li, Hang [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Shi, Ling-Ying, E-mail: shilingying@scu.edu.cn [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Diao, Yong-Fu; Zhang, Yu-Lin; Ran, Rong [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200 (China)

    2017-05-15

    Highlights: • The graphene oxide (GO) was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. • Through the vacuum filtration method, the GO, RGO and PDMS-modified graphene membranes were successfully prepared respectively. • The morphology of membranes had smooth surface and well-stacked structure indicated by SEM and EDS mapping results. • The contact angle of GO-g-PDMS membrane was high to be 129.5° indicating a great enhancement of hydrophobicity. - Abstract: In this study, the graphene oxide was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. And the membranes of the graphene oxide (GO), reduced graphene oxide (RGO) and PDMS-covalently modified graphene were prepared respectively by a vacuum filtration method, and the wettability of these membranes were investigated. Infrared spectroscopy, Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetry analysis combined with dispersion ability indicated that PDMS chains were successfully grafted on the surface of graphene oxide sheets. The morphology of the prepared membranes had smooth surface and well-stacked structure in the cross-section indicated by the scanning electron microscope and EDS-mapping. The contact angle measurements indicated that the PDMS-modified graphene membrane with water contact angle 129.5° showed increased hydrophobicity compared with GO and RGO membranes.

  2. Improved coupling of bacterial polysaccharides to macromolecules and solid supports

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method of producing a polysaccharide-carrier conjugate comprising coupling a polysaccharide to a carrier, said polysaccharide comprising at least one monosaccharide unit comprising a keto-carboxy group according to the formula -C(=O)COOR, where R is either hydrogen or C1......-alkoxyamine group of the carrier with a keto-carboxy group of said polysaccharide to form a covalent amide bond between the carrier and the polysaccharide. Another aspect of the present invention relates to a compound or solid surface obtained when performing the method of the present invention. A third aspect...

  3. COVAL, Compound Probability Distribution for Function of Probability Distribution

    International Nuclear Information System (INIS)

    Astolfi, M.; Elbaz, J.

    1979-01-01

    1 - Nature of the physical problem solved: Computation of the probability distribution of a function of variables, given the probability distribution of the variables themselves. 'COVAL' has been applied to reliability analysis of a structure subject to random loads. 2 - Method of solution: Numerical transformation of probability distributions

  4. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods.

    Science.gov (United States)

    Bordenave, Nicolas; Hamaker, Bruce R; Ferruzzi, Mario G

    2014-01-01

    Many of the potential health benefits of flavonoids have been associated with their specific chemical and biological properties including their ability to interact and bind non-covalently to macronutrients in foods. While flavonoid-protein interactions and binding have been the subject of intensive study, significantly less is understood about non-covalent interactions with carbohydrates and lipids. These interactions with macronutrients are likely to impact both the flavonoid properties in foods, such as their radical scavenging activity, and the food or beverage matrix itself, including their taste, texture and other sensorial properties. Overall, non-covalent binding of flavonoids with macronutrients is primarily driven by van der Waals interactions. From the flavonoid perspective, these interactions are modulated by characteristics such as degree of polymerization, molecular flexibility, number of external hydroxyl groups, or number of terminal galloyl groups. From the macronutrient standpoint, electrostatic and ionic interactions are generally predominant with carbohydrates, while hydrophobic interactions are generally predominant with lipids and mainly limited to interactions with flavonols. All of these interactions are involved in flavonoid-protein interactions. While primarily associated with undesirable characteristics in foods and beverages, such as astringency, negative impact on macronutrient digestibility and hazing, more recent efforts have attempted to leverage these interactions to develop controlled delivery systems or strategies to enhance flavonoids bioavailability. This paper aims at reviewing the fundamental bases for non-covalent interactions, their occurrence in food and beverage systems and their impact on the physico-chemical, organoleptic and some nutritional properties of food.

  5. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  6. Fabrication and characterization of all-covalent nanocomposite functionalized screen-printed voltammetric sensors

    International Nuclear Information System (INIS)

    Jasmin, Jean-Philippe; Cannizzo, Caroline; Dumas, Eddy; Chaussé, Annie

    2014-01-01

    Highlights: • Screen printed electrodes were covalently functionalized by gold nanoparticles. • The covalent grafting of AuNPs was achieved via diazonium salt chemistry. • Two grafting methods and two types of AuNPs were compared. • Carboxylate ligands were grafted on these nanostructured electrodes. • Good preliminary responses towards lead analysis were obtained by SW-ASV. - Abstract: We report in this paper an all-covalent method to obtain highly nanostructured carbon screen printed electrodes (SPEs) bearing gold nanoparticles (AuNPs) functionalized by complexing groups using diazonium salts chemistry. SPEs were first modified with 4-aminophenyl functions (SPE-Ph-NH 2 ). The amino moieties were then converted into diazonium salts (SPE-Ph-N 2 + Cl − ). These reactive SPEs were then used to immobilize AuNPs by electrochemical or spontaneous method. The spontaneous method proved to be a more efficient grafting approach. Two types of AuNPs suspensions were compared: AuNPs obtained via the well-known Turkevich method, citrate-stabilized and having a diameter of about 20 nm, and AuNPs obtained by the method recently described by Eah et al., stabilizer-free with an average diameter of 4 nm. We show that the size of the Au-NPs, their concentration and their surface properties are key parameters that affect the electrochemical properties of the final nanostructured SPEs. The covalent grafting of 4-carboxyphenyl ligands through diazonium chemistry, able to complex metallic cations, at the surface of SPE-Ph-AuNPs allowed their use for the detection of Pb(II). Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, Scanning Electron Microscopy, Rutherford Backscattering and X-ray Photoelectron Spectroscopy were used to characterize these nanostructured materials

  7. Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation.

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    Full Text Available GTP cyclohydrolase 1 (GTPCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4. GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131 in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.

  8. Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection

    Directory of Open Access Journals (Sweden)

    Sanghee Kim

    2012-01-01

    Full Text Available A solid-phase immunoassay of polystyrene-encapsulated semiconductor nanoparticles was demonstrated for cardiac troponin I (cTnI detection. CdSe/ZnS coreshells were encapsulated with a carboxyl-functionalized polystyrene nanoparticle to capture the target antibody through a covalent bonding and to eliminate the photoblinking and toxicity of semiconductor luminescent immunosensor. The polystyrene-encapsulated CdSe/ZnS fluorophores on surface-modified glass chip identified cTnI antigens at the level of ~ng/mL. It was an initial demonstration of diagnostic chip for monitoring a cardiovascular disease.

  9. Inactivation of a solid-state detergent protease by hydrogen peroxide vapor and humidity

    DEFF Research Database (Denmark)

    Biran, Suzan; Jensen, Anker Degn; Kiil, Søren

    2009-01-01

    An experimental study on solid-state stability of a detergent protease (Savinase®) is reported. The inactivation kinetics of technical grade enzyme powder was determined as a function of gas phase H2O2 concentration and humidity by employing a quick assay running over few hours instead of several...... weeks as typical in industry. The results indicated that enzymes adsorbed significant amounts of moisture and H2O2 during exposure. The amount of adsorbed H2O2 did not depend on humidity in the gas stream, which implied that water and H2O2 were not competing for the same adsorption sites. Inactivation...... of the solid-state enzyme was caused by the mutual effect of increasing hydration and H2O2 (g) concentration. No auto-proteolytic activity or covalently bound aggregate formation was detected. A simple mechanism for solid-state enzyme oxidation was proposed and the kinetic parameters in the resulting rate...

  10. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  11. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  12. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite.

    Science.gov (United States)

    Zou, Zhanan; Zhu, Chengpu; Li, Yan; Lei, Xingfeng; Zhang, Wei; Xiao, Jianliang

    2018-02-01

    Electronic skin (e-skin) mimicking functionalities and mechanical properties of natural skin can find broad applications. We report the first dynamic covalent thermoset-based e-skin, which is connected through robust covalent bonds, rendering the resulting devices good chemical and thermal stability at service condition. By doping the dynamic covalent thermoset with conductive silver nanoparticles, we demonstrate a robust yet rehealable, fully recyclable, and malleable e-skin. Tactile, temperature, flow, and humidity sensing capabilities are realized. The e-skin can be rehealed when it is damaged and can be fully recycled at room temperature, which has rarely, if at all, been demonstrated for e-skin. After rehealing or recycling, the e-skin regains mechanical and electrical properties comparable to the original e-skin. In addition, malleability enables the e-skin to permanently conform to complex, curved surfaces without introducing excessive interfacial stresses. These properties of the e-skin yield an economical and eco-friendly technology that can find broad applications in robotics, prosthetics, health care, and human-computer interface.

  13. Pulmonary toxicity of trichloroethylene in mice. Covalent binding and morphological manifestations

    International Nuclear Information System (INIS)

    Forkert, P.G.; Birch, D.W.

    1989-01-01

    We examined the time course of trichloroethylene (TCE)-induced pulmonary injury and focused on morphological changes and covalent binding of [ 14 C]TCE soon after administration of a single dose of TCE (2000 mg/kg) to CD-1 male mice. At 1 hr after chemical treatment, Clara cells of the bronchiolar epithelium exhibited necrotic changes involving the mitochondria and endoplasmic reticulum. Dilatation of the endoplasmic reticulum became more severe at 2 hr after TCE administration and, by 4 hr, distended cisternae coalesced to form small vacuoles within the cytoplasmic matrix of the Clara cell. The severity of cellular damage increased progressively between 8 and 12 hr and, by 24 hr, the majority of Clara cells within an airway were severely vacuolated. Covalent binding of [ 14 C]TCE to lung macromolecules was evident at 1 hr, peaked at 4 hr, declined thereafter, and reached a plateau between 12 and 24 hr. Peak binding (142.6 +/- 31.8 nmol/g of wet weight) represented approximately 20% of [ 14 C]TCE distributed to the lung. Although the levels of binding in the liver were at all times greater than those in the lung, liver injury was relatively insignificant. The results demonstrate a positive correlation between the onset of Clara cell injury and the formation of reactive metabolites, as assessed by covalent binding of [ 14 C]TCE

  14. Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N

    International Nuclear Information System (INIS)

    Filippetti, A.; Spaldin, N.A.; Sanvito, S.

    2005-01-01

    The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data

  15. Effects of Covalent Functionalization of MWCNTs on the Thermal Properties and Non-Isothermal Crystallization Behaviors of PPS Composites

    Directory of Open Access Journals (Sweden)

    Myounguk Kim

    2017-09-01

    Full Text Available In this study, a PPS/MWCNTs composite was prepared with poly(phenylene sulfide (PPS, as well as pristine and covalent functionalized multi-walled carbon nanotubes (MWCNTs via melt-blending techniques. Moreover, the dispersion of the MWCNTs on the PPS matrix was improved by covalent functionalization as can be seen from a Field-Emission Scanning Electron Microscope (FE-SEM images. The thermal properties of the PPS/MWCNTs composites were characterized using a thermal conductivity analyzer, and a differential scanning calorimeter (DSC. To analyze the crystallization behavior of polymers under conditions similar with those in industry, the non-isothermal crystallization behaviors of the PPS/MWCNTs composites were confirmed using various kinetic equations, such as the modified Avrami equation and Avrami-Ozawa combined equation. The crystallization rate of PPS/1 wt % pristine MWCNTs composite (PPSP1 was faster because of the intrinsic nucleation effect of the MWCNTs. However, the crystallization rates of the composites containing covalently-functionalized MWCNTs were slower than PPSP1 because of the destruction of the MWCNTs graphitic structure via covalent functionalization. Furthermore, the activation energies calculated by Kissinger’s method were consistently decreased by covalent functionalization.

  16. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks

  17. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    Science.gov (United States)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  18. Privileged Electrophile Sensors: A Resource for Covalent Drug Development.

    Science.gov (United States)

    Long, Marcus John Curtis; Aye, Yimon

    2017-07-20

    This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reversible covalent binding of neratinib to human serum albumin in vitro.

    Science.gov (United States)

    Chandrasekaran, Appavu; Shen, Li; Lockhead, Susan; Oganesian, Aram; Wang, Jianyao; Scatina, JoAnn

    2010-12-01

    Neratinib (HKI-272), an irreversible inhibitor of Her 2 tyrosine kinase, is currently in development as an alternative for first and second line therapy in metastatic breast cancer patients who overexpress Her 2. Following incubation of [(14)C]neratinib in control human plasma at 37°C for 6 hours, about 60% to 70% of the radioactivity was not extractable, due to covalent binding to albumin. In this study, factors that could potentially affect the covalent binding of neratinib to plasma proteins, specifically to albumin were investigated. When [(14)C]neratinib was incubated at 10 μg/mL in human serum albumin (HSA) or control human plasma, the percent binding increased with time; the highest percentages of binding (46 and 67%, respectively) were observed at 6 hours, the longest duration of incubation examined. Binding increased with increasing temperature; the highest percentages of binding to HSA or human plasma (59 and 78%) were observed at 45°C, the highest temperature tested. The binding also increased with increasing pH of incubation; the highest percentages of binding (56 and 65%) were observed at pH 8.5, the highest pH value tested. The percentages of binding were similar (53% to 57%) when a wide range of concentrations of [(14)C]neratinib (50 ng/mL to 10 μg/mL) were incubated with human plasma at 37°C for 6 hours, indicating that the binding was independent of the substrate concentration, especially in the therapeutic range (50 to 200 ng/mL). When human plasma proteins containing covalently bound [(14)C]neratinb were suspended in a 10 fold volume of phosphate buffer at pH 4.0, 6.0, 7.4, and 8.5, and further incubated at 37°C for ~ 16 hours, about 45%, 44%, 32%, and 12% of the total radioactivity, respectively, was released as unchanged [(14)C]neratinib, indicating that the binding is reversible in nature, with more released at pH 7.4 and below. In conclusion, the covalent binding of neratinib to serum albumin is pH, time and temperature dependent, but

  20. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012

  1. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  2. Catalyst recycling via specific non-covalent adsorption on modified silicas

    NARCIS (Netherlands)

    Kluwer, A.M.; Simons, C.; Knijnenburg, Q.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2013-01-01

    This article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular

  3. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea

    DEFF Research Database (Denmark)

    Jensen, Malene H; Mirza, Osman Asghar; Albenne, Cecile

    2004-01-01

    The alpha-retaining amylosucrase from the glycoside hydrolase family 13 performs a transfer reaction of a glucosyl moiety from sucrose to an acceptor molecule. Amylosucrase has previously been shown to be able to use alpha-D-glucopyranosyl fluoride as a substrate, which suggested that it could also...... the first covalent intermediate of an alpha-retaining glycoside hydrolase where the glucosyl moiety is identical to the expected biologically relevant entity. Comparison to other enzymes with anticipated glucosylic covalent intermediates suggests that this structure is a representative model...... for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen...

  4. Origin of the Distinct Diffusion Behaviors of Cu and Ag in Covalent and Ionic Semiconductors.

    Science.gov (United States)

    Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wei, Su-Huai

    2016-10-14

    It is well known that Cu diffuses faster than Ag in covalent semiconductors such as Si, which has prevented the replacement of Ag by Cu as a contact material in Si solar cells for reducing the cost. Surprisingly, in more ionic materials such as CdTe, Ag diffuses faster than Cu despite that it is larger than Cu, which has prevented the replacement of Cu by Ag in CdTe solar cells to improve the performance. But, so far, the mechanisms behind these distinct diffusion behaviors of Cu and Ag in covalent and ionic semiconductors have not been addressed. Here we reveal the underlying mechanisms by combining the first-principles calculations and group theory analysis. We find that the symmetry controlled s-d coupling plays a critical role in determining the diffusion behaviors. The s-d coupling is absent in pure covalent semiconductors but increases with the ionicity of the zinc blende semiconductors, and is larger for Cu than for Ag, owing to its higher d orbital energy. In conjunction with Coulomb interaction and strain energy, the s-d coupling is able to explain all the diffusion behaviors from Cu to Ag and from covalent to ionic hosts. This in-depth understanding enables us to engineer the diffusion of impurities in various semiconductors.

  5. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  6. Modeling the role of covalent enzyme modification in Escherichia coli nitrogen metabolism

    International Nuclear Information System (INIS)

    Kidd, Philip B; Wingreen, Ned S

    2010-01-01

    In the bacterium Escherichia coli, the enzyme glutamine synthetase (GS) converts ammonium into the amino acid glutamine. GS is principally active when the cell is experiencing nitrogen limitation, and its activity is regulated by a bicyclic covalent modification cascade. The advantages of this bicyclic-cascade architecture are poorly understood. We analyze a simple model of the GS cascade in comparison to other regulatory schemes and conclude that the bicyclic cascade is suboptimal for maintaining metabolic homeostasis of the free glutamine pool. Instead, we argue that the lag inherent in the covalent modification of GS slows the response to an ammonium shock and thereby allows GS to transiently detoxify the cell, while maintaining homeostasis over longer times

  7. ESI-MS study on non-covalent bond complex of rhFKBP12 and new neurogrowth promoter

    Institute of Scientific and Technical Information of China (English)

    WANG; Hongxia; (王红霞); ZHANG; Xuemin; (张学敏); YANG; Songcheng; (杨松成); XIAO; Junhai; (肖军海); NIE; Aihua; (聂爱华); ZHAO; Liqin; (赵丽琴); LI; Song; (李松)

    2003-01-01

    An ESI-MS method for studying the non-covalent bond complex of rhFKBP12 with its nonimmunosuppressive ligands was developed. The method was used to screen out three compounds capable of binding to rhFKBP12 non-covalently from 52 compounds. By competing binding experiment, the binding site and the relative binding strength of these three compounds 000107, 000308 and A2B12 with rhFKBP12 were measured. All of them have the same binding site as FK506 does. X-ray crystalline diffraction experiment of non-covalent bond complex of 000107, 000308 with rhFKBP12 by Tsinghua University showed the same results. Among them 000308 has good effect on stimulating neurite to grow in chicken sensory neuronal cultures.

  8. Description of Non-Covalent Interactions in SCC-DFTB Methods

    Czech Academy of Sciences Publication Activity Database

    Miriyala, Vijay Madhav; Řezáč, Jan

    2017-01-01

    Roč. 38, č. 10 (2017), s. 688-697 ISSN 0192-8651 R&D Projects: GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : density functional tight binding * DFTB3 * non- covalent interactions * dispersion correction * hydrogen bonding correction Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.229, year: 2016

  9. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Science.gov (United States)

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  10. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  11. Solvent-free covalent functionalization of nanodiamond with amines

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Santamaría-Bonfil, Adriana; Meza-Laguna, Victor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Gromovoy, Taras Yu. [Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Alvares-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Contreras-Torres, Flavio F.; Rizo, Juan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Zavala, Guadalupe [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos (Mexico); Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico)

    2013-06-15

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  12. Solvent-free covalent functionalization of nanodiamond with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Santamaría-Bonfil, Adriana; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Alvares-Zauco, Edgar; Contreras-Torres, Flavio F.; Rizo, Juan; Zavala, Guadalupe; Basiuk, Vladimir A.

    2013-01-01

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  13. Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability

    International Nuclear Information System (INIS)

    Kong, Deyang; Xia, Qing; Liu, Guoqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Covalent coupling to natural humic constituents comprises an important transformation pathway for anilinic pollutants in the environment. We systematically investigated the reactions of chlorine substituted anilines with catechol and syringic acid in horseradish peroxidase (HRP) catalyzed systems. It was demonstrated that although nucleophilic addition was the mechanism of covalent bonding to both catechol and syringic acid, chloroanilines coupled to the 2 humic constituents via slightly different pathways. 1,4-addition and 1,2-addition are involved to catechol and syringic acid, respectively. 1,4-addition showed empirical 2nd order kinetics and this pathway seemed to be more permanent than 1,2-addition. Stability experiments demonstrated that cross-coupling products with syringic acid could be easily released in acidic conditions. However, cross-coupling with catechol was relatively stable at similar conditions. Thus, the environmental behavior and bioavailability of the coupling products should be carefully assessed. -- Highlights: •Chloroanilines covalently coupled to humic constituents in HRP catalyzed processes, which facilitated their transformation. •MS technique was employed to analyze the coupling products and therefore elucidate the reaction pathways. •Chloroanilines couple to catechol and syringic acid via 1,4- and 1,2-nucleophilic addition pathways, respectively. •Cross-coupling products formed via 1,4-nucleophilic addition pathway were more stable than those via 1,2-addition pathway. -- Bound residues of chloroanilines formed via 1,2- and 1,4-nucleophilic addition pathways showed different stability

  14. Structural and biochemical analyses reveal insights into covalent flavinylation of the Escherichia coli Complex II homolog quinol:fumarate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Starbird, C.A.; Maklashina, Elena; Sharma, Pankaj; Qualls-Histed, Susan; Cecchini, Gary; Iverson, T.M. (VA); (UCSF); (Vanderbilt)

    2017-06-14

    The Escherichia coli Complex II homolog quinol:fumarate reductase (QFR, FrdABCD) catalyzes the interconversion of fumarate and succinate at a covalently attached FAD within the FrdA subunit. The SdhE assembly factor enhances covalent flavinylation of Complex II homologs, but the mechanisms underlying the covalent attachment of FAD remain to be fully elucidated. Here, we explored the mechanisms of covalent flavinylation of the E. coli QFR FrdA subunit. Using a ΔsdhE E. coli strain, we show that the requirement for the assembly factor depends on the cellular redox environment. We next identified residues important for the covalent attachment and selected the FrdAE245 residue, which contributes to proton shuttling during fumarate reduction, for detailed biophysical and structural characterization. We found that QFR complexes containing FrdAE245Q have a structure similar to that of the WT flavoprotein, but lack detectable substrate binding and turnover. In the context of the isolated FrdA subunit, the anticipated assembly intermediate during covalent flavinylation, FrdAE245 variants had stability similar to that of WT FrdA, contained noncovalent FAD, and displayed a reduced capacity to interact with SdhE. However, small-angle X-ray scattering (SAXS) analysis of WT FrdA cross-linked to SdhE suggested that the FrdAE245 residue is unlikely to contribute directly to the FrdA-SdhE protein-protein interface. We also found that no auxiliary factor is absolutely required for flavinylation, indicating that the covalent flavinylation is autocatalytic. We propose that multiple factors, including the SdhE assembly factor and bound dicarboxylates, stimulate covalent flavinylation by preorganizing the active site to stabilize the quinone-methide intermediate.

  15. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    , the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release...... of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2...

  16. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    Science.gov (United States)

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

    Directory of Open Access Journals (Sweden)

    M. Fátima Barroso

    2016-05-01

    Full Text Available In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC and 1-undecanethiol (SH. After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures.

  18. Covalent attachment of antagonists to the a7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides

    DEFF Research Database (Denmark)

    Ambrus, Joseph I; Halliday, Jill I; Kanizaj, Nicholas

    2012-01-01

    The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR).......The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR)....

  19. A solid-on-solid invasion percolation model for self-affine interfaces

    International Nuclear Information System (INIS)

    Arizmendi, C.M.; Martin, H.O.; Sanchez, J.R.

    1993-08-01

    The scaling properties of the interface of a new growth model are studied. The model is based on the standard invasion percolation without trapping in which the solid-on-solid condition is imposed. The local correlation between points of the interface can be controlled through a parameter. The self-affine properties of the interface show strong dependence on the existence of the local correlation. The dependence of the relevant exponents of the interface with the correlation is analysed. (author). 8 refs, 4 figs

  20. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  1. Carbohydrate as covalent crosslink in human inter-alpha-trypsin inhibitor

    DEFF Research Database (Denmark)

    Jessen, T E; Faarvang, K L; Ploug, M

    1988-01-01

    The primary structure of inter-alpha-trypsin inhibitor is partially elucidated, but controversy about the construction of the polypeptide backbone still exists. We present evidence suggesting that inter-alpha-trypsin inhibitor represents a novel plasma protein structure with two separate polypept...... polypeptide chains covalently crosslinked only by carbohydrate (chondroitin sulphate)....

  2. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation.

    Science.gov (United States)

    Zhang, Jie; Men, Yuwen; Lv, Shanshan; Yi, Long; Chen, Jian-Feng

    2015-12-21

    An efficient and bench-stable reagent was synthesized for direct and covalent introduction of tetrazines onto target protein or virus surfaces, which can be further modified based on tetrazine-ene ligation to achieve fluorescence labelling or PEGylation under mild conditions.

  3. Improved Performance of Pseudomonas fluorescens lipase by covalent immobilization onto Amberzyme

    NARCIS (Netherlands)

    Aslan, Yakup; Handayani, Nurrahmi; Stavila, Erythrina; Loos, Katja

    2013-01-01

    Objective: In this study, the conditions of covalent immobilization of Pseudomonas fluorescens lipase onto an oxirane-activated support (Amberzyme) were optimized to obtain a high activity yield. Furthermore, the operational and storage stabilities of immobilized lipase were tested. Methods: Optimum

  4. Solid-state harmonics beyond the atomic limit.

    Science.gov (United States)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  5. Phosphopeptide Enrichment by Covalent Chromatography after Derivatization of Protein Digests Immobilized on Reversed-Phase Supports

    Science.gov (United States)

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O

  6. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  7. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qinmin; Jiang, Yinghua [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-03-15

    Polysiloxane multilayers were covalently bonded to the surface of natural graphite particles via diazonium chemistry and silylation reaction. The as-prepared graphite exhibited excellent discharge-charge behavior as negative electrode materials in lithium ion batteries. The improvement in the electrochemical performance of the graphite electrodes was attributed to the formation of a stable and flexible passive film on their surfaces. It was also revealed that the chemical compositions of the multilayers exerted influence on the electrochemical behavior of the graphite electrodes. The result of this study presents a new strategy to the formation of elastic and strong passive film on the graphite electrode via molecular design. Owing to the diversity of polysilxoane multilayers, this method also enables researchers to control the surface chemistries of carbonaceous materials with flexibility. (author)

  8. Improving the Thermostability and Optimal Temperature of a Lipase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Covalent Immobilization

    Directory of Open Access Journals (Sweden)

    Roberta V. Branco

    2015-01-01

    Full Text Available A recombinant thermostable lipase (Pf2001Δ60 from the hyperthermophilic Archaeon Pyrococcus furiosus (PFUL was immobilized by hydrophobic interaction on octyl-agarose (octyl PFUL and by covalent bond on aldehyde activated-agarose in the presence of DTT at pH = 7.0 (one-point covalent attachment (glyoxyl-DTT PFUL and on glyoxyl-agarose at pH 10.2 (multipoint covalent attachment (glyoxyl PFUL. The enzyme’s properties, such as optimal temperature and pH, thermostability, and selectivity, were improved by covalent immobilization. The highest enzyme stability at 70°C for 48 h incubation was achieved for glyoxyl PFUL (around 82% of residual activity, whereas glyoxyl-DTT PFUL maintained around 69% activity, followed by octyl PFUL (27% remaining activity. Immobilization on glyoxyl-agarose improved the optimal temperature to 90°C, while the optimal temperature of octyl PFUL was 70°C. Also, very significant changes in activity with different substrates were found. In general, the covalent bond derivatives were more active than octyl PFUL. The E value also depended substantially on the derivative and the conditions used. It was observed that the reaction of glyoxyl-DTT PFUL using methyl mandelate as a substrate at pH 7 presented the best results for enantioselectivity E=22 and enantiomeric excess (ee (% = 91.

  9. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  10. Covalently attached multilayer assemblies of diazo-resins and binuclear cobalt phthalocyanines

    International Nuclear Information System (INIS)

    Li Xiaofang; Zhao Shuang; Yang Min; Sun Changqing; Guo, Liping

    2005-01-01

    By using the ionic self-assembly technique, ordered multilayer thin films composed of diazo-resin (DAR) as polycation and water-soluble binuclear cobalt phthalocyaninehexasulfonate (Bi-CoPc) as polyanion were alternately fabricated on quartz, CaF 2 and glassy carbon electrodes (GCEs). Upon ultraviolet irradiation, the adjacent interface of the multilayer films reacted to form a covalently cross-linking structure. The obtained thin films were characterized by ultraviolet (UV)-vis, Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), surface photovoltage spectra (SPS), and cyclic voltammetry. The results show that the uniform, highly stable and ordered multilayer thin films were formed. The linkage nature between the adjacent interface of the multilayer films converts from ionic to covalent, and, as a result, the stability of the multilayer thin films dramatically improved. The multilayer thin films on GCEs also exhibited excellent electrochemical behavior

  11. Covalently attached multilayer assemblies of diazo-resins and binuclear cobalt phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaofang [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Zhao Shuang [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Yang Min [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Sun Changqing [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China)]. E-mail: sunchq@mail.jlu.edu.cn; Guo, Liping [Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2005-05-01

    By using the ionic self-assembly technique, ordered multilayer thin films composed of diazo-resin (DAR) as polycation and water-soluble binuclear cobalt phthalocyaninehexasulfonate (Bi-CoPc) as polyanion were alternately fabricated on quartz, CaF{sub 2} and glassy carbon electrodes (GCEs). Upon ultraviolet irradiation, the adjacent interface of the multilayer films reacted to form a covalently cross-linking structure. The obtained thin films were characterized by ultraviolet (UV)-vis, Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), surface photovoltage spectra (SPS), and cyclic voltammetry. The results show that the uniform, highly stable and ordered multilayer thin films were formed. The linkage nature between the adjacent interface of the multilayer films converts from ionic to covalent, and, as a result, the stability of the multilayer thin films dramatically improved. The multilayer thin films on GCEs also exhibited excellent electrochemical behavior.

  12. Solid Phase Radioimmunoassay for Measuring Serum Prolactin Using Antibody Coupled Magnetizable Particles

    International Nuclear Information System (INIS)

    El-Bayoumy, A.S.A.

    2012-01-01

    The objective of the present work was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase magnetic particles for the measurement of prolactin (PRL) in human serum are described. The production of polyclonal antibodies was carried out by immunizing three Balb/C mice intraperitoneal through primary injection and two booster doses. Low density magnetizable cellulose iron oxide particles have been used to couple covalently to the IgG fraction of polyclonal anti-prolactin using carbonyl diimidazole activation method and applied as a solid phase separating agent for RIA of serum prolactin. Preparation of 125 I-PRL tracer was prepared using lactoperoxidase method and it was purified by gel filtration using sephadex G-100. The PRL standards were prepared using a highly purified PRL antigen with assay buffer as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of prolactin based on magnetizable solid phase separation. These magnetic particles retain their characteristics during storage for 6 months at 4 degree C. In conclusion, this assay could be used as a useful diagnostic tool for pituitary dysfunction and possible reproductive disability.

  13. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  14. Improved Procedure for Preparation of Covalently Bonded Cellulose Tris-phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    秦峰; 陈小明; 刘月启; 邹汉法; 王俊德

    2005-01-01

    The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

  15. Highly Stable Porous Covalent Triazine-Piperazine Linked Nanoflower as a Feasible Adsorbent for Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar

    2016-02-11

    Here, we report a porous covalent triazine-piperazine linked polymer (CTPP) featuring 3D nanoflower morphology and enhanced capture/removal of CO2, CH4 from air (N2), essential to control greenhouse gas emission and natural gas upgrading. 13C solid-state NMR and FTIR analyses and CHN and X-ray photoelectron spectroscopy (XPS) elemental analyses confirmed the integration of triazine and piperazine components in the network. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analyses revealed a relatively uniform particle size of approximately 400 to 500 nm with 3D nanoflower microstructure, which was formed by the self-assembly of interwoven and slight bent nanoflake components. The material exhibited outstanding chemical robustness under acidic and basic medium and high thermal stability up to 773 K. The CTPP possess high surface area (779 m2/g) and single-component gas adsorption study exhibited enhanced CO2 and CH4 uptake of 3.48 mmol/g, 1.09 mmol/g, respectively at 273 K, 1 bar; coupled with high sorption selectivities for CO2/N2 and CH4/N2 of 128 and 17, respectively. The enriched Lewis basicity of the CTPP favors the interaction with CO2, which results in an enhanced CO2 adsorption capacity and high CO2/N2 selectivity. The binary mixture breakthrough study for the flue gas composition at 298 K showed a high CO2/N2 selectivity of 82. CO2 heats of adsorption for the CTPP (34 kJ mol−1) were realized at the borderline between strong physisorption and weak chemisorption (QstCO2; 25−50 kJ mol−1) and low Qst value for N2 (22.09 kJ mol−1), providing the ultimate validation for the high selectivity of CO2 over N2.

  16. COVALENTLY ATTACHED MULTILAYER ULTRA-THIN FILMS FROM DIAZORESIN AND CALIXARENES

    Institute of Scientific and Technical Information of China (English)

    Zhao-hui Yang; Wei-xiao Cao

    2003-01-01

    A kind of photosensitive ultra-thin film was fabricated from diazoresin (DR) and various calixarenes by using the self-assembly technique. Under UV irradiation both the ionic- and hydrogen bonds between the layers of the film will convert into covalent bonds. As a result, the stability of the film toward polar solvents increases dramatically.

  17. Covalent Functionalization of Carbon Nanotube by Tetrasubtituted Amino Manganese Phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    Zheng Long YANG; Hong Zheng CHEN; Lei CAO; Han Yin LI; Mang WANG

    2004-01-01

    The multiwall carbon nanotube (MWCNT) bonded to 2, 9, 16, 23-tetraamino manganese phthalocyanine (TAMnPc) was obtained by covalent functionalization, and its chemical structure was characterized by TEM. The photoconductivity of single-layered photoreceptors, where MWCNT bonded by TAMnPc (MWCNT-b-TAMnPc) served as the charge generation material (CGM), was also studied.

  18. Studies on the metabolism of chlorotrianisene to a reactive intermediate and subsequent covalent binding to microsomal proteins

    International Nuclear Information System (INIS)

    Juedes, M.J.

    1989-01-01

    The studies on chlorotrianisene were conducted to determine whether metabolism of chlorotrianisene occurs via the cytochrome P450 monooxygenase system and whether a reactive intermediate is being formed that is capable of binding covalently to microsomal proteins. [ 3 H]-chlorotrianisene was incubated with liver microsomes supplemented with NADPH. At the termination of the incubation, the protein was trapped on a glass filter and the unbound chlorotrianisene was removed by extensive washing of the protein with organic solvent. A dramatic stimulation of covalent binding was demonstrated in microsomes from rats treated with methylcholanthrene (60 fold increase) versus control or phenobarbital treatment. Verification of covalent binding was achieved by localization of radiolabeled bands following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the macromolecules in the incubation mixture. Further analysis of the radiolabeled macromolecules separated on SDS-PAGE revealed that these macromolecules were degraded by protease degradation indicating that the macromolecules were proteins. Further investigations were done to determine the cause of the dramatic stimulation of covalent binding detected in microsomes from methylcholanthrene treated rats versus control or phenobarbital treated rats. Further evidence for the participation of P-450c was obtained with a reconstituted cytochrome P-450 system. Incubations of chlorotrianisene with reconstituted P-450c and NADPH-cytochrome P-450 reductase exhibited covalent binding characteristics comparable to those seen in microsomal incubations. Investigations into the nature of the binding site and the reactive intermediate are currently being conducted. By analyzing the BSA adduct, the author intends to isolate the specific amino acid binding site(s)

  19. Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: adodji@gmail.com [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)

    2014-11-30

    Highlights: • Natural metal-oxides, hydroxides are detected on the top surface of steel substrates we tested. • Polysilazane reacts with hydroxide functional groups on steel substrates to form Cr–O–Si and Fe–O–Si covalent bonds. • Covalent bonding between steel and polysilazane at the interface was probed using spectroscopic techniques. - Abstract: In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se{sub 2} (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me–O–Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr–O–Si and Fe–O–Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  20. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen; Joshi, Trinity; Li, Huifang; Chavez, Anton D.; Pedramrazi, Zahra; Liu, Pei-Nian; Li, Hong; Dichtel, William R.; Bredas, Jean-Luc; Crommie, Michael F.

    2017-01-01

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde

  1. Covalent Bonding of Chlorogenic Acid Induces Structural Modifications on Sunflower Proteins

    NARCIS (Netherlands)

    Karefyllakis, D.; Salakou, Stavroula; Bitter, J.H.; Goot, van der A.J.; Nikiforidis, K.

    2018-01-01

    Proteins and phenols coexist in the confined space of plant cells leading to reactions between them, which result in new covalently bonded complex molecules. This kind of reactions has been widely observed during storage and processing of plant materials. However, the nature of the new complex

  2. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Mei; Lu, Jia; Li, Lianbo; Feru, Frederic; Quan, Chunshan; Gero, Thomas W.; Ficarro, Scott B.; Xiong, Yuan; Ambrogio, Chiara; Paranal, Raymond M.; Catalano, Marco; Shao, Jay; Wong, Kwok-Kin; Marto, Jarrod A.; Fischer, Eric S.; Jänne, Pasi A.; Scott, David A.; Westover, Kenneth D.; Gray, Nathanael S. (DFCI); (UTSMC); (Harvard-Med); (NYUSM)

    2017-08-01

    Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.

  3. Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides

    DEFF Research Database (Denmark)

    Fleckenstein, Burkhard; Qiao, Shuo-Wang; Larsen, Martin Røssel

    2004-01-01

    recognized by intestinal T cells from patients. Incubation of TG2 with gliadin peptides also results in the formation of covalent TG2-peptide complexes. Here we report the characterization of complexes between TG2 and two immunodominant gliadin peptides. Two types of covalent complexes were found......; the peptides are either linked via a thioester bond to the active site cysteine of TG2 or via isopeptide bonds to particular lysine residues of the enzyme. We quantified the number of gliadin peptides bound to TG2 under different conditions. After 30 min of incubation of TG2 at 1 microm with an equimolar ratio...... of peptides to TG2, approximately equal amounts of peptides were bound by thioester and isopeptide linkage. At higher peptide to TG2 ratios, more than one peptide was linked to TG2, and isopeptide bond formation dominated. The lysine residues in TG2 that act as acyl acceptors were identified by matrix...

  4. Development of solid phase radioimmunoassay using antibody coupled magnetizable particles for measurement of progesterone in human serum

    International Nuclear Information System (INIS)

    Mehany, N.L.

    2007-01-01

    The aim of the present study was to prepare solid phase radioimmunoassay (RIA) reagents. Development as well as optimization and validation of RIA system using solid phase magnetic particles for the measurement of progesterone in human serum are described. The production of polyclonal antibodies was carried out by immunizing five white New-Zealand rabbits subcutaneously. Low density magnetizable cellulose iron oxide particles have been used to couple covalently to the IgG fraction of polyclonal anti-progesterone using carbonyl diimidazole activation method and applied as a solid phase separating agent for RIA of serum progesterone. 125 I-progesterone tracer was prepared using chloramine-T and iodogen oxidation methods and purified using high performance liquid chromatography. The progesterone standards were prepared using highly purified progesterone powder with hormone free serum as standard matrix. Optimization and validation of the assay were carried out. The results obtained provide a low cost, simple, sensitive, specific and accurate RIA system of progesterone based on magnetizable solid phase separation. This may be extremely helpful in diagnosis and proper management of ovulation during childbearing years

  5. Characterising non-covalent interactions with the Cambridge Structural Database.

    Science.gov (United States)

    Lommerse, J P; Taylor, R

    1997-02-01

    This review describes how the CSD can be used to study non-covalent interactions. Several different types of information may be obtained. First, the relative frequencies of various interactions can be studied; for example, we have shown that the terminal oxygen atoms of phosphate groups accept hydrogen bonds far more often than the linkage oxygens. Secondly, information can be obtained about the geometries of nonbonded contacts; for example, hydrogen bonds to P-O groups rarely form along the extension of the P-O bond, whereas short contacts between oxygen and carbon-bound iodine show a strong preference for linear C-I ... O angles. Thirdly, the CSD can be searched for novel interactions which may be exploited in inhibitor design; for example, the I ... O contacts just mentioned, and N-H ... pi hydrogen bonds. Finally, the CSD can suggest synthetic targets for medicinal chemistry; for example, molecules containing delocalised electron deficient groups such as trimethylammonium, pyridinium, thaizolium and dinitrophenyl have a good chance of binding to an active-site tryptophan. Although the CSD contains small-molecule crystal structures, not protein-ligand complexes, there is considerable evidence that the contacts seen in the two types of structures are similar. We have illustrated this a number of times in the present review and additional evidence has been given previously by Klebe. The major advantages of the CSD are its size, diversity and experimental accuracy. For these reasons, it is a useful tool for modellers engaged in rational inhibitor design.

  6. Rooster comb hyaluronate-protein, a non-covalently linked complex.

    Science.gov (United States)

    Tsiganos, C P; Vynios, D H; Kalpaxis, D L

    1986-01-01

    Hyaluronate from rooster comb was isolated by ion-exchange chromatography on DEAE-cellulose from tissue extracts and papain digests. The preparations were labelled with [14C]acetic anhydride and subjected to CsCl-density-gradient centrifugation in 4 M-guanidinium chloride in the presence and absence of 4% ZwittergentTM 3-12. A radioactive protein fraction was separated from the hyaluronate when the zwitterionic detergent was also present. The protein could also be separated from the glycosaminoglycan by chromatography on Sepharose CL-6B eluted with the same solvent mixture. The protein fraction contained three protein bands of Mr 15,000-17,000 as assessed by polyacrylamide-gel electrophoresis in 0.1% SDS, and seemed to lack lysozyme activity. No evidence of other protein or amino acid(s) covalently linked with the hyaluronate was obtained. The hyaluronate-protein complex may be re-formed upon mixing the components, the extent of its formation depending on the conditions used. The results show that, as in chondrosarcoma [Mason, d'Arville, Kimura & Hascall (1982) Biochem. J. 207, 445-457] and teratocarcinoma cells [Prehm (1983) Biochem. J. 211, 191-198] the rooster comb hyaluronate also is not linked covalently to a core protein. PMID:3741374

  7. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    Science.gov (United States)

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  8. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    Science.gov (United States)

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  9. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2017-05-01

    Highlights: • Novel lysine modified fibrous adsorbents were prepared using a facile and green method. • PAN-Lys exhibited high adsorption activity and fast adsorption rate. • PAN-Lys significantly remove U(VI) from simulated seawater. - Abstract: Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3–30 μg L{sup −1}) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  10. Covalent interactions of 1,2,3-trichloropropane with hepatic macromolecules: studies in the male F-344 rat.

    Science.gov (United States)

    Weber, G L; Sipes, I G

    1990-07-01

    Preliminary investigations into the role of biotransformation in 1,2,3-trichloropropane (TCP)-induced tumor formation have been undertaken. Male F-344 rats were administered 30 mg/kg [14C]TCP (100 microCi/kg) ip and killed 4 hr later. The extent of covalent binding to hepatic protein, DNA, and RNA was 418, 244, and 432 pmol [14C]TCP equivalents/mg, respectively. An in vivo covalent binding time course showed no significant change in [14C]TCP equivalents bound to hepatic DNA (1-48 hr), while binding to protein was maximal by 4 hr and decreased significantly by 48 hr. The binding of TCP-associated radioactivity to hepatic protein and DNA was shown to be cumulative for two and three doses when given 24 hr apart. Pretreatment of animals with phenobarbital caused a decrease while pretreatment with SKF 525-A caused an increase in covalent binding of [14C]TCP equivalents to protein and DNA. Pretreatment of rats with beta-naphthoflavone did not alter the covalent binding of [14C]TCP equivalents to protein or DNA. However, glutathione depletion with L-buthionine-(R,S)-sulfoximine increased binding to protein by 342% while it decreased binding to DNA by 56%. Intraperitoneal administration of TCP also depleted hepatic GSH by 41 and 61% 2 hr after doses of 30 and 100 mg/kg. The in vivo binding data suggest a dual role for GSH in the bioactivation of TCP. It may, in part, be that GSH is involved in the bioactivation and covalent binding of TCP to hepatic DNA. However, it also appears to detoxify a reactive intermediate(s) that binds to protein.

  11. Controlling the orientation of spin-correlated radical pairs by covalent linkage to nanoporous anodic aluminum oxide membranes.

    Science.gov (United States)

    Chen, Hsiao-Fan; Gardner, Daniel M; Carmieli, Raanan; Wasielewski, Michael R

    2013-10-07

    Ordered multi-spin assemblies are required for developing solid-state molecule-based spintronics. A linear donor-chromophore-acceptor (D-C-A) molecule was covalently attached inside the 150 nm diam. nanopores of an anodic aluminum oxide (AAO) membrane. Photoexcitation of D-C-A in a 343 mT magnetic field results in sub-nanosecond, two-step electron transfer to yield the spin-correlated radical ion pair (SCRP) (1)(D(+)˙-C-A(-)˙), which then undergoes radical pair intersystem crossing (RP-ISC) to yield (3)(D(+)˙-C-A(-)˙). RP-ISC results in S-T0 mixing to selectively populate the coherent superposition states |S'> and |T'>. Microwave-induced transitions between these states and the unpopulated |T(+1)> and |T(-1)> states result in spin-polarized time-resolved EPR (TREPR) spectra. The dependence of the electron spin polarization (ESP) phase of the TREPR spectra on the orientation of the AAO membrane pores relative to the externally applied magnetic field is used to determine the overall orientation of the SCRPs within the pores at room temperature.

  12. Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen.

    Science.gov (United States)

    Rezvanian, Parsa; Daza, Rafael; López, Patricia A; Ramos, Milagros; González-Nieto, Daniel; Elices, Manuel; Guinea, Gustavo V; Pérez-Rigueiro, José

    2018-02-20

    This study presents the development of an efficient procedure for covalently immobilizing collagen molecules on AVS-functionalized Ti-6Al-4V samples, and the assessment of the survival and proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile functionalization technique that allows obtaining a high density of active amine groups on the surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning protocol is developed for the removal of the excess of carbodiimide from the samples. The results demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the optimized protocol, increases the number of viable cells present on the material. Consequently, AVS in combination with the carbodiimide chemistry appears as a robust method for the immobilization of proteins and, for the first time, it is shown that it can be used to enhance the biological response to the material.

  13. “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuang; Zhao, Xiaosheng; Li, Bo; Bai, Chiyao; Li, Yang; Wang, Lei; Wen, Rui; Zhang, Meicheng; Ma, Lijian; Li, Shoujian, E-mail: sjli000616@scu.edu.cn

    2016-08-15

    Highlights: • Phosphorus element was first introduced into covalent organic frameworks (COFs). • Monomer in C{sub 3}-like spatial configuration was first used to construct COF materials. • A new 2D super-microporous phosphazene-based sorbent (MPCOF) was synthesized. • Separation of U (VI) by MPCOF at high acidic media (up to 1M HNO{sub 3}) was achieved. • Selectivity for U (VI) separation from multi-ion solution can reach unreported 92%. - Abstract: So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C{sub 2}–C{sub 4}, C{sub 6} and T{sub d}) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new “stereoscopic” 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C{sub 3}-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0–2.1 nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1–2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71 mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50 mg/g) and selectivity (>60%) were obtained under strong acidic condition (1 M HNO{sub 3}). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect.

  14. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    Science.gov (United States)

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  15. Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, Jayaraman, E-mail: jsu2@np.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Environmental & Water Technology Centre of Innovation, Ngee Ann Polytechnic, 599489 (Singapore); Dharmarajan, Rajarathnam [CERAR, University of South Australia, Mawson Lakes, SA 5095 (Australia); Srinivasan, M.P., E-mail: chesmp@nus.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore)

    2015-08-31

    This work demonstrates the fabrication of molecular hybrid films comprising gold nanoparticles (AuNPs) incorporated in covalently assembled, substituted polythiophene (poly(3-(2-bromoethoxy)ethoxymethylthiophene-2,5-diyl (PBrEEMT))) films by different surface chemistry routes. AuNPs are incorporated in the immobilized polythiophene matrix due to its affinity for amine and sulfur. The amount of AuNPs present depends on the nature of the incorporation, the extent of film coverage and interaction of thiophene and amine groups. PBrEEMT films functionalized with amine rich polyallylamine immobilize greater numbers of AuNPs due to more extensive gold–amine interactions. Covalent binding between AuNP and PBrEEMT films was accomplished by using pre-functionalised AuNPs (4-aminothiophenol functionalized AuNPs). Atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to study the morphology and chemical constituents of assembled films. These approaches will pave the way for developing facile methods for nanoparticle incorporation and will also facilitate direct interaction of nanoparticles with the conducting polymer matrix and enhance the electrical properties of the films. - Highlights: • Covalent molecular assembly enabled the fabrication of molecular hybrid films. • Monomeric and polymeric species were employed as intermediate linkers. • Adopted approaches facilitated the direct interaction of gold nanoparticle in films. • The amount of nanoparticle incorporation depended on the extent of film coverage.

  16. Covalent immobilisation of antibodies in Teflon-FEP microfluidic devices for the sensitive quantification of clinically relevant protein biomarkers.

    Science.gov (United States)

    Pivetal, Jeremy; Pereira, Filipa M; Barbosa, Ana I; Castanheira, Ana P; Reis, Nuno M; Edwards, Alexander D

    2017-03-13

    This study reports for the first time the sensitive colorimetric and fluorescence detection of clinically relevant protein biomarkers by sandwich immunoassays using the covalent immobilisation of antibodies onto the fluoropolymer surface inside Teflon®-FEP microfluidic devices. Teflon®-FEP has outstanding optical transparency ideal for high-sensitivity colorimetric and fluorescence bioassays, however this thermoplastic is regarded as chemically inert and very hydrophobic. Covalent immobilisation can offer benefits over passive adsorption to plastic surfaces by allowing better control over antibody density, orientation and analyte binding capacity, and so we tested a range of different and novel covalent immobilisation strategies. We first functionalised the inner surface of a 10-bore, 200 μm internal diameter FEP microcapillary film with high-molecular weight polyvinyl alcohol (PVOH) without changing the outstanding optical transparency of the device delivered by the matched refractive index of FEP and water. Glutaraldehyde immobilisation was compared with the use of photoactivated linkers and NHS-ester crosslinkers for covalently immobilising capture antibodies onto PVOH. Three clinically relevant sandwich ELISAs were tested against the cytokine IL-1β, the myocardial infarct marker cardiac troponin I (cTnI), and the chronic heart failure marker brain natriuretic peptide (BNP). Overall, glutaraldehyde immobilisation was effective for BNP assays, but yielded unacceptable background for IL-1β and cTnI assays caused by direct binding of the biotinylated detection antibody to the modified PVOH surface. We found NHS-ester groups reacted with APTES-treated PVOH coated fluoropolymers. This facilitated a novel method for capture antibody immobilisation onto fluoropolymer devices using a bifunctional NHS-maleimide crosslinker. The density of covalently immobilised capture antibodies achieved using PVOH/APTES/NHS/maleimide approached levels seen with passive adsorption

  17. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    Science.gov (United States)

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  18. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    Science.gov (United States)

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  19. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  20. Nonlinear wave collapse and strong turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1997-01-01

    The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society

  1. Gel Electrolytes of Covalent Network Polybenzimidazole and Phosphoric Acid by Direct Casting

    DEFF Research Database (Denmark)

    Kirkebæk, Andreas; Aili, David; Henkensmeier, Dirk

    2017-01-01

    for preparing mechanically robust covalent network polybenzimidazole membranes containing up to 95 wt% phosphoric acid. Diamino-terminal pre-polymers of different chain lengths are first prepared, followed by addition of a trifunctional carboxylic acid. The crude solutions are cast and subsequently heat treated...

  2. Covalent immobilization of redox protein within the mesopores of transparent conducting electrodes

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rathouský, Jiří; Fattakhova-Rohlfing, D.

    2014-01-01

    Roč. 116, JAN 2014 (2014), s. 1-8 ISSN 0013-4686 R&D Projects: GA ČR GA104/08/0435 Institutional support: RVO:61388955 Keywords : Covalent immobilization * Porous electrodes * Redox proteins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.504, year: 2014

  3. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens Honore; Koumoutsakos, Petros

    2016-01-01

    , we demonstrate, through transient heat-dissipation simulations, that a covalently bonded graphene-carbon nanotube (G-CNT) hybrid immersed in water is a promising solution for the ultrafast cooling of such high-temperature and high heat-flux surfaces. The G-CNT hybrid offers a unique platform...

  4. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  5. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    Science.gov (United States)

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO2 capture

    KAUST Repository

    Das, Swapan Kumar

    2017-07-17

    The sustainable capture and sequestration of CO2 from flue gas emission is an important and unavoidable challenge to control greenhouse gas release and climate change. In this report, we describe a triazine-triphenylamine-based microporous covalent organic polymer under mild synthetic conditions. 13C and 15N solid-state NMR and FTIR analyses confirm the linkage of the triazine and triphenylamine components in the porous polymer skeleton. The material is composed of spherical particles 1.0 to 2.0 μm in size and possesses a high surface area (1104 m2/g). The material exhibits superb chemical robustness under acidic and basic conditions and high thermal stability. Single-component gas adsorption exhibits an enhanced CO2 uptake of 3.12 mmol/g coupled with high sorption selectivity for CO2/N2 of 64 at 273 K and 1 bar, whereas the binary gas mixture breakthrough study using a model flue gas composition at 298 K shows a high CO2/N2 selectivity of 58. The enhanced performance is attributed to the high Lewis basicity of the framework, as it favors the interaction with CO2.

  7. Magnetite nanoparticles coated with covalently immobilized ionic liquids as a sorbent for extraction of non-steroidal anti-inflammatory drugs from biological fluids

    International Nuclear Information System (INIS)

    Amiri, Maryam; Yadollah, Yamini; Safari, Meysam; Asiabi, Hamid

    2016-01-01

    Magnetic core-shell nanoparticles (mag-NPs) of type SiO_2-Fe_3O_4 were covalently modified with the ionic liquid dimethyl octadecyl[3-(trimethoxysilyl propyl)]ammonium chloride. The NPs were characterized via FTIR and scanning electron microscopy and evaluated with respect to the extraction of the nonsteroidal anti-inflammatory drugs (NSAIDs) tolmetin, indometacin and naproxen from blood samples. Supercritical fluid extraction was used to eliminate matrix effects before extraction with the mag-NPs. The effects of pH value of sample solution, amount of adsorbent, times of adsorption and desorption, salt effect, type and volume of suitable solvent for desorption were optimized. Under optimum conditions, magnetic solid phase extraction (MSPE) resulted in limits of detection that range between 0.1 and 0.3 μg L"−"1. In case of supercritical fluid extraction along with magnetic solid phase extraction (SFE- MSPE), the LODs ranged from 0.2 to 0.3 mg kg"−"1. The analytical ranges for all of the NSAIDs varied within 0.2–15 mg kg"-"1 and 0.1–250 μg L"−"1 in the SFE-MSPE and MSPE methods, respectively. The relative standard deviations for the extraction of the NSAIDs from blood samples via SFE-MSPE are <10.2%. (author)

  8. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    Institute of Scientific and Technical Information of China (English)

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  9. Revisiting nitrogen species in covalent triazine frameworks

    KAUST Repository

    Osadchii, Dmitrii Yu.

    2017-11-28

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  10. Revisiting nitrogen species in covalent triazine frameworks

    KAUST Repository

    Osadchii, Dmitrii Yu.; Olivos Suarez, Alma Itzel; Bavykina, Anastasiya V.; Gascon, Jorge

    2017-01-01

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  11. Relativistic four-component potential energy curves for the lowest 23 covalent states of molecular bromine (Br2).

    Science.gov (United States)

    Gomes, José da Silva; Gargano, Ricardo; Martins, João B L; M de Macedo, Luiz Guilherme

    2014-08-07

    The covalent excited states and ground state of the Br2 molecule has been investigated by using four-component relativistic COSCI and MRCISD methods. These methods were performed for all covalent states in the representation Ω((±)). Calculated potential energy curves (PECs) were obtained at the four-component COSCI level, and spectroscopic constants (R(e), D(e), D0, ω(e), ω(e)x(e), ω(e)y(e), B(e), α(e), γ(e), Te, Dv) for bounded states are reported. The vertical excitations for all covalent states are reported at COSCI, MRCISD, and MRCISD+Q levels. We also present spectroscopic constants for two weakly bounded states (A':(1)2u and B':(1)0(-)u) not yet reported in the literature, as well as accurate analytical curves for all five relativistic molecular bounded sates [the ground state X:0 g(+) and the excited states A:(1)1(u), B:(1)0(u)(+), C:(2)1(u), and B':(1)0(u)(-)] found in this work.

  12. Study of reaction and heat release from solid combustion in strong magnetic field; Kyojiba wo riyoshita hikinshitsu kotai nensho shori no hanno to netsu no seigy ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Fujita, O; Iiya, M; Kudo, K [Hokkaido University, Sapporo (Japan)

    1997-02-01

    To establish the inhomogeneous solid combustion control technology, effects of the strong magnetic field on the solid combustion were examined. When applying the sufficiently strong magnetic field, it is possible to control the air flow in combustion field by utilizing the force applying to constituent oxygen with large susceptibility. Based on this possibility, combustion experiments of expanded polystyrene plates were conducted between the magnetic poles of electro-magnet having the maximum flux density of 1 T and the maximum magnetic field gradient of 0.5 T/cm. To observe the effects of magnetic field without the effects of natural convection, combustion experiments of acrylic sheets were conducted between the magnetic poles of electro-magnet having the maximum flux density of 0.6 T and the magnetic field gradient of about 0.1 T/cm under the microgravity conditions between 10{sup -4} and 10{sup -5}g using a microgravity test facility. Consequently, prospective combustion results could be obtained, in which the force of flame received from the magnetic field is almost equivalent to the buoyancy of flame. It was demonstrated that combustion can be controlled by the magnetic field. 1 ref., 3 figs., 1 tab.

  13. Development of strongly coupled FSI technology involving thin walled structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2011-01-01

    Full Text Available A strongly coupled finite volume-finite element fluid-structure interaction (FSI) scheme is developed. Both an edge-based finite volume and Galerkin finite element scheme are implemented and evaluated for modelling the mechanics of solids...

  14. Aromatic C-Nitroso Compounds and Their Dimers: A Model for Probing the Reaction Mechanisms in Crystalline Molecular Solids

    Directory of Open Access Journals (Sweden)

    Ivana Biljan

    2017-12-01

    Full Text Available This review is focused on the dimerization and dissociation of aromatic C-nitroso compounds and their dimers, the reactions that could be used as a convenient model for studying the thermal organic solid-state reaction mechanisms. This molecular model is simple because it includes formation or breaking of only one covalent bond between two nitrogen atoms. The crystalline molecular solids of nitroso dimers (azodioxides dissociate by photolysis under the cryogenic conditions, and re-dimerize by slow warming. The thermal re-dimerization reaction is examined under the different topotactic conditions in crystals: disordering, surface defects, and phase transformations. Depending on the conditions, and on the molecular structure, aromatic C-nitroso compounds can associate to form one-dimensional polymeric structures and are able to self-assemble on gold surfaces.

  15. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  16. Non-covalent interactions of cadmium sulphide and gold nanoparticles with DNA

    Science.gov (United States)

    Atay, Z.; Biver, T.; Corti, A.; Eltugral, N.; Lorenzini, E.; Masini, M.; Paolicchi, A.; Pucci, A.; Ruggeri, G.; Secco, F.; Venturini, M.

    2010-08-01

    Mercaptoethanol-capped CdS nanoparticles (CdSnp) and monohydroxy-(1-mercaptoundec-11-yl)tetraethylene-glycol-capped Au nanoparticles (Aunp) were synthesised, characterised and their interactions with DNA were investigated. Aunp are stable in different aqueous solvents, whereas CdSnp do precipitate in 0.1 M NaCl and form two different cluster types in 0.1 M NaNO3. As regards the CdSnp/DNA interaction, absorbance and fluorescence titrations, ethidium bromide displacement assays and gel electrophoresis experiments indicate that a non-covalent interaction between DNA and the CdSnp external surface does take place. The binding constant was evaluated to be equal to (2.2 ± 0.5) × 105 M-1. On the contrary, concerning Aunp, no direct interaction with DNA could be observed. Possible interaction with serum albumin was also checked, but no effects could be observed for either CdSnp or Aunp. Finally, short-time exposure of cultured cells to nanoparticles revealed the ability of CdSnp to enter the cells and allocate both in cytosol and nucleus, thus promoting cell proliferation at low concentration ( p resulted in a significant inhibition of cell growth, accompanied by apoptotic cell death. Aunp neither enter the cells, nor do affect cell proliferation. In conclusion, our data indicate that CdSnp can strongly interact with living cells and nucleic acid while no effects or interactions were observed for Aunp.

  17. Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates

    DEFF Research Database (Denmark)

    León, John Jairo Castillo; Rindzevicius, Tomas; Wu, Kaiyu

    2014-01-01

    Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The sur...... for applications in the detection and diagnosis of cancer or tropical diseases such as leishmaniasis and as a carrier nanosystem delivering drugs to malignant tumors that overexpress folate receptors....

  18. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    International Nuclear Information System (INIS)

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-01-01

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO 2 , ZnO and Fe 2 O 3 as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO 2 , Fe 2 O 3 and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  19. Muonium localization in solid krypton

    International Nuclear Information System (INIS)

    Storchak, V.; Cox, S.F.J.; Brewer, J.H.; Morris, G.D.

    1995-06-01

    Muonium spin relaxation in zero, longitudinal and transverse magnetic fields has been studied in solid and liquid krypton in the temperature range from 2 K to 120 K. In the solid at low temperatures, the spin dynamics exhibit features characteristic of a magnetically dilute crystal, permitting measurements of exceptionally low muonium diffusion rates. At the lowest temperatures, a static Kubo-Toyabe relaxation function has been observed for the first time for the atomic muonium state, indicating strong interstitial localization in the Kr lattice at low temperatures; muonium is determined to be localized at the tetrahedral interstitial position. At high temperatures, muonium diffusion in solid Kr exhibits a non-classical behaviour. (author). 31 refs., 6 figs

  20. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  1. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods

    Science.gov (United States)

    Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.

    2017-06-01

    In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial

  2. Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5

    KAUST Repository

    Li, Haoyuan; Chavez, Anton D.; Li, Huifang; Li, Hong; Dichtel, William R.; Bredas, Jean-Luc

    2017-01-01

    The preparation of two-dimensional covalent organic frameworks (2D COFs) with large crystalline domains and controlled morphology is necessary for realizing the full potential of their atomically precise structures and uniform, tailorable porosity

  3. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.L.; Rajagopalan, K.V. (Duke Univ. Medical Center, Durham, NC (USA)); London, R.E. (National Institute of Environmental Health Science, Research Triangle Park, NC (USA))

    1989-09-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and {sup 31}P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well.

  4. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    International Nuclear Information System (INIS)

    Johnson, J.L.; Rajagopalan, K.V.; London, R.E.

    1989-01-01

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and 31 P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well

  5. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  6. Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry.

    Science.gov (United States)

    Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven

    2018-04-11

    A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

  7. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  8. Application of solid-phase antibodies to radioimmunoassay

    International Nuclear Information System (INIS)

    McConway, M.G.; Chapman, R.S.

    1986-01-01

    Two types of polymeric microparticle, Dynospheres and reprecipitated acid-hydrolysed nylon 6/6, and two methods of activating these particles with either tresyl chloride or carbonyldiimidazole (CDI) prior to covalent linkage of antibodies were investigated with a view towards their respective adoption for the preparation of general solid-phase reagents for immunoassay applications. Activation of each particle and coupling of antibodies was rapid irrespective of the activator. CDI proved to be the activator of choice since it was cheap, less hazardous, more efficient and less pH dependent than tresyl chloride. Both types of microparticle remain buoyant during the RIA incubation periods and form stable pellets after centrifugation. In second antibody applications immobilisation of the first antibody occurs with a short incubation period of 30 min. Nylon microparticles have a higher antibody-coupling capacity and are the particles of choice in both first and second antibody applications. However, the nylon microparticles possess marginally higher non-specific binding characteristics. (Auth.)

  9. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chuacharoen, Thanida [Suan Sunandha Rajabhat University, Faculty of Science and Technology (Thailand); Sabliov, Cristina M., E-mail: CSabliov@agcenter.lsu.edu [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States)

    2017-02-15

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  10. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    Science.gov (United States)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-02-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  11. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    International Nuclear Information System (INIS)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-01-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ("1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  12. Molecular assembly of materials with covalent bonding: Path to robust structures

    International Nuclear Information System (INIS)

    Puniredd, Sreenivasa Reddy; Zhang Fengxiang; Srinivasan, M.P.

    2006-01-01

    Ultrathin films were fabricated using synthesized polyimide (HPI) with hydroxyl pendant groups in a layer-by-layer fashion on amine-terminated substrates of silicon, quartz and gold. The interlayer linkages were established by using terephthaloyl chloride as a bridging agent to form ester groups between HPI layers. Furthermore, when working on the nanometer scale in liquid solvents, necessity of a solvent rinse after each deposition step and the presence of residual solvent are problematic. To avoid the problems related to residual solvent we have fabricated an ultrathin film of oligoimide on amine-modified substrates of silicon and quartz through alternate layer-by-layer (LBL) assembly of pyromellitic dianhydride (PMDA) and diaminodiphenylether (DDE), with inter-layer links established by covalent bonds. The assembly was formed in supercritical carbon dioxide (SCCO 2 ), and in solution (N,N-dimethylacetamide, DMAc), and the imidization reaction was performed by thermal and chemical methods, in benzene and in the supercritical medium. We have compared these films with those assembled in a conventional solvent medium. The comparison is further extended to carrying out the imidization reaction by various methods. The films show excellent stability and strength, which can be attributed to the covalent interlayer linkage

  13. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  14. Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Han, Xuebin; Qiu, Feilong [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Junhe, E-mail: hxqiu@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-15

    Highlights: • A novel synthetic approach to graphene/polyaniline composite is developed. • Covalently bonds are introduced between graphene and polyaniline. • The composite exhibits great electrochemical property with capacitance of 489 F g{sup −1}. - Abstract: A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g{sup −1} at 0.5 A g{sup −1}, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  15. The Search for Covalently Ligandable Proteins in Biological Systems

    Directory of Open Access Journals (Sweden)

    Syed Lal Badshah

    2016-09-01

    Full Text Available This commentary highlights the recent article published in Nature, June 2016, titled: “Proteome-wide covalent ligand discovery in native biological systems”. They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here.

  16. Reaction mechanisms for on-surface synthesis of covalent nanostructures

    International Nuclear Information System (INIS)

    Björk, J

    2016-01-01

    In recent years, on-surface synthesis has become an increasingly popular strategy to form covalent nanostructures. The approach has great prospects for facilitating the manufacture of a range of fascinating materials with atomic precision. However, the on-surface reactions are enigmatic to control, currently restricting its bright perspectives and there is a great need to explore how the reactions are governed. The objective of this topical review is to summarize theoretical work that has focused on comprehending on-surface synthesis protocols through studies of reaction mechanisms. (topical review)

  17. Covalent functionalization of carbon nanotubes with tetramanganese complexes

    International Nuclear Information System (INIS)

    Meyer, Carola; Frielinghaus, Robert; Saelhoff, Anna-Katharina; Schneider, Claus M.; Besson, Claire; Floetotto, Henrik; Koegerler, Paul; Houben, Lothar

    2012-01-01

    We present first results on the covalent chemical functionalization of single-walled carbon nanotubes with polynuclear {Mn 4 } coordination complexes. Raman spectra prove that the reaction can only be achieved for tubes which have been oxidized to create carboxylic groups. HRTEM is used to show that the reaction can be carried out directly on a substrate as well. Analysis of the D/G intensity ratio for different oxidation times shows that it is possible to reduce the amount of defects created. This is important for the future application of this material in transport devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Functionalization of multiwalled carbon nanotubes by microwave irradiation for lysozyme attachment: comparison of covalent and adsorption methods by kinetics of thermal inactivation

    Science.gov (United States)

    Puentes-Camacho, Daniel; Velázquez, Enrique F.; Rodríguez-Félix, Dora E.; Castillo-Ortega, Mónica; Sotelo-Mundo, Rogerio R.; del Castillo-Castro, Teresa

    2017-12-01

    Proteins suffer changes in their tertiary structure when they are immobilized, and enzymatic activity is affected due to the low biocompatibility of some supporting materials. In this work immobilization of lysozyme on carbon nanotubes previously functionalized by microwave irradiation was studied. The effectiveness of the microwave-assisted acid treatment of carbon nanotubes was evaluated by XPS, TEM, Raman and FTIR spectroscopy. The carboxylic modification of nanotube surfaces by this fast, simple and feasible method allowed the physical adsorption and covalent linking of active lysozyme onto the carbonaceous material. Thermal inactivation kinetics, thermodynamic parameters and storage stability were studied for adsorbed and covalent enzyme complexes. A major stability was found for lysozyme immobilized by the covalent method, the activation energy for inactivation of the enzyme was higher for the covalent method and it was stable after 50 d of storage at 4 °C. The current study highlights the effect of protein immobilization method on the biotechnological potential of nanostructured biocatalysts.

  19. Covalent binding of organophosphorothioates to albumin: A new perspective for OP-pesticide biomonitoring?

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Zuylen, A. van; Rijssel, E. van; Schans, M.J. van der

    2009-01-01

    We here report on the covalent binding of various organophosphorothioate (OPT) pesticides to albumin at in vitro exposure levels that did not give rise to butyrylcholinesterase inhibition. Adduct formation occurred at the Tyr-411 residue of albumin, as was firmly corroborated by LC-tandem MS

  20. Designing Porphyrinic Covalent Organic Frameworks for the Photodynamic Inactivation of Bacteria

    Czech Academy of Sciences Publication Activity Database

    Hynek, Jan; Zelenka, J.; Rathouský, Jiří; Kubát, Pavel; Ruml, T.; Demel, Jan; Lang, Kamil

    2018-01-01

    Roč. 10, č. 10 (2018), s. 8527-8535 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : antibacterial coating * biofilm * covalent organic framework * photodynamic * porphyrin * singlet oxygen Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W) Impact factor: 7.504, year: 2016

  1. Preparation and characterization of two types of covalently immobilized amyloglucosidase

    Directory of Open Access Journals (Sweden)

    ZORAN VUJCIC

    2005-05-01

    Full Text Available Amyloglucosidase from A. niger was covalently immobilized onto poly (GMA-co-EGDMA by the glutaraldehyde and periodate method. The immobilization of amyloglucosidase after periodate oxidation gave a preparate with the highest specific activity reported so far on similar polymers. The obtained immobilized preparates show the same pH optimum, but a higher temperature optimum compared with the soluble enzyme. The kinetic parameters for the hydrolysis of soluble starch by free and both immobilized enzymes were determined.

  2. Stabilization of 5A1 urease by covalent attachement to wool | Ahmed ...

    African Journals Online (AJOL)

    The investigation of five bacterial strains for urease production referred that Bacillus licheniformis 5A1 had the highest urease activity (10.3U/ml/min) after 24h. The enzyme was covalently coupled to different carriers via glutaraldehyde, and wool gave the highest immobilization yield (76.4%) and retained 85% of the original ...

  3. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation.

    Science.gov (United States)

    Guan, Cui-Zhong; Wang, Dong; Wan, Li-Jun

    2012-03-21

    The construction of well-ordered 2D covalent networks via the dehydration of di-borate aromatic molecules was successfully realized through introducing a small amount of water into a closed reaction system to regulate the chemical equilibrium.

  4. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  5. Stiffening solids with liquid inclusions

    Science.gov (United States)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  6. Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation.

    Science.gov (United States)

    Dash, Bibek

    2018-04-26

    The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.

  7. Targeting of [[sup 111]In]biocytin to cultured ovarian adenocarcinoma cells using covalent monoclonal antibody -streptavidin conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, K.; Marks, A. (Toronto Univ., ON (Canada). Banting and Best Dept. of Medical Research); Baumal, R. (Hospital for Sick Children, Toronto, ON (Canada). Dept. of Pathology)

    1992-11-01

    Three monoclonal antibodies (mAb) directed against the human ovarian adenocarcinoma cell line HEY, were substituted with maleimide and covalently bonded to thiolated streptavidin. The conjugates were separated from unreacted reagents by successive affinity chromatography on protein A-Sepharose and iminobiotin columns. Purified conjugates consisted of an immunoglobulin (Ig) monomer bound to a streptavidin tetramer through a covalent bond between the Ig molecule and one of the streptavidin subunits. The conjugates were able to specifically target [[sup 111]In]biocytin to HEY cells in vitro in the presence of human serum and ascitic fluid from ovarian cancer patients. (Author).

  8. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  9. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    Science.gov (United States)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  10. Evaluation of the release characteristics of covalently attached or electrostatically bound biocidal polymers utilizing SERS and UV-Vis absorption

    Directory of Open Access Journals (Sweden)

    G. N. Mathioudakis

    2016-09-01

    Full Text Available In this work, biocidal polymers with antimicrobial quaternized ammonium groups introduced in the polymer biocidal chains either through covalent attachment or electrostatic interaction have been separately incorporated in a poly (methyl methacrylate polymer matrix. The objective of present study was to highlight the release characteristics of biocidal polymers, primarily in saline but also in water ethanol solutions, utilizing UV-Vis absorption and Surface Enhanced Raman Scattering (SERS. It is shown that through the combination of UV-Vis and SERS techniques, upon the release process, it is possible the discrimination of the polymeric backbone and the electrostatically bound biocidal species. Moreover, it is found that electrostatically bound and covalently attached biocidal species show different SERS patterns. The long term aim is the development of antimicrobial polymeric materials containing both ionically bound and covalently attached quaternary ammonium thus achieving a dual functionality in a single component polymeric design.

  11. Trapping and partial characterization of an adduct postulated to be the covalent catalytic ternary complex of thymidylate synthetase

    International Nuclear Information System (INIS)

    Ahmed, F.; Moore, M.A.; Dunlap, R.B.

    1986-01-01

    The proposed mechanism of action of thymidylate synthetase envisages the formation of a covalent ternary complex of the enzyme via the active site cysteine with dUMP and 5,10-methylenetetrahydrofolate (CH 2 H 4 folate). The authors recent success in using trichloroacetic acid to trap the covalent enzyme-FdUMP binary and ternary (enzyme-FdUMP-CH 2 H 4 folate) complexes led to the use of this technique in attempts to trap the transient covalent catalytic ternary complex. Experiments performed with [2-C 14 ]dUMP and 3 H-CH 2 H 4 folate show that both these ligands remained bound to the enzyme after trichloroacetic acid precipitation. The trapped covalent catalytic ternary complex was subjected to CNBr fragmentation, and the peptides were fractionated by HPLC. The isolated active-site peptide was shown to retain the two ligands and was subjected to a limited sequence analysis by the dansyl-Edman procedure. The inhibitory ternary complex formed with 14 C-FdUMP and 3 H-CH 2 4 folate served as a control. The active-site peptides isolated from the CNBr treated inhibitory ternary complex and the catalytic complex exhibited identical sequences for the first four N-terminal residues, Ala-Leu-Pro-Pro, and the fifth residue was found to be associated with the labeled ligands. Sequence analysis of the active site peptide derived from the carboxymethylated enzyme confirmed this sequence and the 5th residue was shown to be Cm-Cys

  12. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    Science.gov (United States)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  13. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  14. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon x irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 0 C/15 min) given prior to radiation dose not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 0 C. The DNA-protein crosslinks produced y 50-Gy x ray alone are removed after 2 hr at 37 0 C. However, if hyperthermia (43 0 C/15 min) is given prior to 100-Gy x ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding

  15. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    International Nuclear Information System (INIS)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui; Su, Zhiguo

    2012-01-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  16. Application of perturbed angular correlations to chemistry and related areas of solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Rinneberg, H H [Freie Univ. Berlin (Germany, F.R.)

    1979-06-01

    The paper reviews the more recent applications of ..gamma..-..gamma.. time-differential perturbed angular correlation (TDPAC) to chemistry and related areas of solid state physics. Topics which are discussed in some detail include: Supertransferred hyperfine fields at diamagnetic impurities in antiferromagnetic transition metal compounds and their relation to the covalency of the transition metal-ligand bond; effects of charge transfer on the quadrupole interactions in various partially covalent insulators measured by PAC; fluctuating electric field gradients in heptafluorohafnates; the influence of charge density waves in TaS/sub 2/ and the effect of intercalating on the field gradients at /sup 181/Ta; recent advances in the understanding of electric field gradients in metals; information obtained by PAC on the microscopic structure of alloys as well as defects in pure metals after quenching, implantation or irradiation. Magnetic and electric phase transitions observed in PAC spectra are briefly mentioned. In addition, recent measurements in liquids and gases are reviewed. Three introductory sections are devoted to a brief discussion of the time-differential PAC technique, to a concise explanation of the theoretical expressions needed to analyse PAC spectra and to a short description of the experimental set-up. An outlook suggests some areas of possible future applications.

  17. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum

  18. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Science.gov (United States)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  19. In vivo assessment of a novel dacron surface with covalently bound recombinant hirudin.

    Science.gov (United States)

    Wyers, M C; Phaneuf, M D; Rzucidlo, E M; Contreras, M A; LoGerfo, F W; Quist, W C

    1999-01-01

    Prosthetic arterial graft surfaces are relatively thrombogenic and fail to heal with a cellular neointima. The goal of this study was to characterize the in vivo antithrombin properties of a novel Dacron surface with covalently linked recombinant hirudin (rHir) implanted in a canine thoracic aorta with high flow and shear rates. rHir was bound to a knitted Dacron patch using crosslinker-modified bovine serum albumin (BSA) as a basecoat protein. BSA was first reacted with the heterobifunctional crosslinker, sulfo-SMCC. This BSA-SMCC complex was then bound to the carboxylic acid groups of hydrolyzed Dacron patches using the carbodiimide crosslinker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. Iodinated, Traut's-modified rHir (125I-rHir-SH) was then reacted with the Dacron-BSA-SMCC surface, thereby covalently binding 125I-rHir. Graft segments were washed and sonicated to remove any nonspecifically bound 125I-rHir. Dacron-BSA-SMCC-S-125I-rHir patches (n = 5) and control Dacron-BSA patches (n = 5) were implanted in series in the thoracic aortas of canines. These patches were exposed to nonheparinized, arterial blood flow for 2 hours. Patches were explanted and assessed for 125I-rHir loss. Antithrombin activity of explanted 1-cm2 patch segments was evaluated using a chromogenic assay with 1, 5, 10, 15 units of added thrombin. Light microscopy was performed to qualitatively examine the pseudointima. Two animals were excluded from the study owing to excessive bleeding through the knitted 125I-rHir patch. Comparison of preoperative and postoperative 125I-rHir gamma counts revealed an overall decrease of 20+/-5.4% over the period studied. Explanted 125I-rHir patch segments were able to inhibit 1, 5, and 7 NIHU of thrombin, demonstrating retained antithrombin activity. Gross and microscopic examination of the control and test Dacron surfaces showed marked differences. Dacron surfaces with covalently bound 125I-rHir had no gross thrombus and a thin

  20. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions.

    Science.gov (United States)

    Mitra, Tapas; Sailakshmi, G; Gnanamani, A; Mandal, A B

    2012-05-01

    The present study emphasizes the influence of non-covalent interactions on the mechanical and thermal properties of the scaffolds of chitosan/collagen origin. Malonic acid (MA), a bifuncitonal diacid was chosen to offer non-covalent cross-linking. Three dimensional scaffolds was prepared using chitosan at 1.0% (w/v) and MA at 0.2% (w/v), similarly collagen 0.5% (w/v) and MA 0.2% (w/v) and characterized. Results on FT-IR, TGA, DSC, SEM and mechanical properties (tensile strength, stiffness, Young's modulus, etc.) assessment demonstrated the existence of non-covalent interaction between MA and chitosan/collagen, which offered flexibility and high strength to the scaffolds suitable for tissue engineering research. Studies using NIH 3T3 fibroblast cells suggested biocompatibility nature of the scaffolds. Docking simulation study further supports the intermolecular hydrogen bonding interactions between MA and chitosan/collagen.

  1. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  2. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.

    Science.gov (United States)

    Dai, Yumin; Kizjakina, Karina; Campbell, Ashley C; Korasick, David A; Tanner, John J; Sobrado, Pablo

    2018-01-04

    The flavin-dependent enzyme 2-haloacrylate hydratase (2-HAH) catalyzes the conversion of 2-chloroacrylate, a major component in the manufacture of acrylic polymers, to pyruvate. The enzyme was expressed in Escherichia coli, purified, and characterized. 2-HAH was shown to be monomeric in solution and contained a non-covalent, yet tightly bound, flavin adenine dinucleotide (FAD). Although the catalyzed reaction was redox-neutral, 2-HAH was active only in the reduced state. A covalent flavin-substrate intermediate, consistent with the flavin-acrylate iminium ion, was trapped with cyanoborohydride and characterized by mass spectrometry. Small-angle X-ray scattering was consistent with 2-HAH belonging to the succinate dehydrogenase/fumarate reductase family of flavoproteins. These studies establish 2-HAH as a novel noncanonical flavoenzyme. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    Science.gov (United States)

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  4. Regio- and Stereospecific Conversion of 4-Alkylphenols by the Covalent Flavoprotein Vanillyl-Alcohol Oxidase

    NARCIS (Netherlands)

    Heuvel, Robert H.H. van den; Fraaije, Marco W.; Laane, Colja; Berkel, Willem J.H. van

    1998-01-01

    The regio- and stereospecific conversion of prochiral 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase was investigated. The enzyme was active, with 4-alkylphenols bearing aliphatic side chains of up to seven carbon atoms. Optimal catalytic efficiency occurred with 4-ethylphenol

  5. Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence

    Directory of Open Access Journals (Sweden)

    Majid Ebrahimizadeh Abrishami

    2016-11-01

    Full Text Available An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1−xPrxMnO3 and the first-order RP-system Ca2−xPrxMnO4 at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO6 network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the eg↑ pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity.

  6. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Xiaobo, E-mail: liuxb@uestc.edu.cn [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-06-15

    Highlights: > Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. > Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. > The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl{sub 3} as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g{sup -1}) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  7. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    International Nuclear Information System (INIS)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin; Liu Xiaobo

    2011-01-01

    Highlights: → Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. → Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. → The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl 3 as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g -1 ) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  8. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Li, Yuchen; Hu, Han; Jiang, Lei; Cheng, Qunfeng

    2015-10-27

    Graphene is the strongest and stiffest material, leading to the development of promising applications in many fields. However, the assembly of graphene nanosheets into macrosized nanocomposites for practical applications remains a challenge. Nacre in its natural form sets the "gold standard" for toughness and strength, which serves as a guide to the assembly of graphene nanosheets into high-performance nanocomposites. Here we show the strong, tough, conductive artificial nacre based on graphene oxide through synergistic interactions of hydrogen and covalent bonding. Tensile strength and toughness was 4 and 10 times higher, respectively, than that of natural nacre. The exceptional integrated strong and tough artificial nacre has promising applications in aerospace, artificial muscle, and tissue engineering, especially for flexible supercapacitor electrodes due to its high electrical conductivity. The use of synergistic interactions is a strategy for the development of high-performance nanocomposites.

  9. A new solid-phase sandwich radioimmunoassay and its application to the detection of snake venom

    International Nuclear Information System (INIS)

    Coulter, A.R.; Cox, J.C.; Sutherland, S.K.; Waddel, C.J.

    1978-01-01

    A solid-phase sandwich radioimmunoassay is described which can be used for the detection and quantitative estimation of crude snake venom and a snake neurotoxin in clinical and experimental situations. Rabbit IgG antivenom or antineurotoxin, covalently coupled to a solid phase (CH-Sepharose 4B) is incubated with sample of unknown venom concentration. Venom bound by the solid-phase antibody is detected by reaction with 125 I-labelled rabbit IgG antivenom or antineurotoxin ([ 125 I]IgG). The resultant count, T, is the total (specific and non-specific) uptake of [ 125 I]IgG. Non-specific binding N, is similarly determined, but with normal rabbit IgG antivenom or antineurotoxin ([ 125 I]IgG). The resultant count, T, is the total (specific and non-specific) uptake of [ 125 I]IgG. Non-specific binding N, is similarly determined, but with normal rabbit IgG bound to the solid phase. A T:N value greater than 1.8 for human serum or urine indicates the presence of venom in a sample (P>0.95). Positive samples are assayed at several dilutions and the venom present estimated from the specific count (T-N). Levels of 0.4 ng/ml of crude tiger snake venom (TSV) and 0.1 ng/ml of neurotoxin can be reliably detected by this procedure. (Auth.)

  10. Iron Intercalation in Covalent-Organic Frameworks: A Promising Approach for Semiconductors

    OpenAIRE

    Pakhira, Srimanta; Lucht, Kevin P.; Mendoza-Cortes, Jose L.

    2017-01-01

    Covalent-organic frameworks (COFs) are intriguing platforms for designing functional molecular materials. Here, we present a computational study based on van der Waals dispersion-corrected hybrid density functional theory (DFT-D) to design boroxine-linked and triazine-linked COFs intercalated with Fe. Keeping the original $P-6m2$ symmetry of the pristine COF (COF-Fe-0), we have computationally designed seven new COFs by intercalating Fe atoms between two organic layers. The equilibrium struct...

  11. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  12. Study of the extraction properties of a malonamide-based solid extractant for the separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sulakova, Jana; Nash, Kenneth L.; Alexandratos, Spiros D.; Yijia, Yang

    2011-01-01

    The properties of a TMMA-PVB solid extractant, where tetramethyl malonamide (TMMA) as the extracting agent is bonded by covalent boding to polyvinyl benzene (PVB), for the extraction of 154 Eu, 241 Am, 237 Np, 238 U and 232 Th from nitric acid solutions were investigated. The weight distribution coefficients D g were determined across a wide range of HNO 3 concentrations. Low HNO 3 concentrations have a negligible effect on the extraction, whereas high concentrations reduce the extraction properties. One gram of the material was found to bind approximately 1.5 mmol 154 Eu and 1.7 mmol 238 U. (P.A.)

  13. Les Houches Summer School : Strongly Interacting Quantum Systems out of Equilibrium

    CERN Document Server

    Millis, Andrew J; Parcollet, Olivier; Saleur, Hubert; Cugliandolo, Leticia F

    2016-01-01

    Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define dir...

  14. Air-stable n-type colloidal quantum dot solids

    KAUST Repository

    Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun; Hoogland, Sjoerd H.; Adinolfi, Valerio; Xu, Jixian; Li, Min; Kirmani, Ahmad R.; Sun, Jonpaul; Minor, James C.; Kemp, Kyle W.; Dong, Haopeng; Rollny, Lisa R.; Labelle, André J.; Carey, Graham H.; Sutherland, Brandon R.; Hill, Ian G.; Amassian, Aram; Liu, Huan; Tang, Jiang; Bakr, Osman; Sargent, E. H.

    2014-01-01

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  15. Air-stable n-type colloidal quantum dot solids

    KAUST Repository

    Ning, Zhijun

    2014-06-08

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  16. Trapping and partial characterization of an adduct postulated to be the covalent catalytic ternary complex of thymidylate synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.; Moore, M.A.; Dunlap, R.B.

    1986-05-01

    The proposed mechanism of action of thymidylate synthetase envisages the formation of a covalent ternary complex of the enzyme via the active site cysteine with dUMP and 5,10-methylenetetrahydrofolate (CH/sub 2/H/sub 4/folate). The authors recent success in using trichloroacetic acid to trap the covalent enzyme-FdUMP binary and ternary (enzyme-FdUMP-CH/sub 2/H/sub 4/folate) complexes led to the use of this technique in attempts to trap the transient covalent catalytic ternary complex. Experiments performed with (2-C/sup 14/)dUMP and /sup 3/H-CH/sub 2/H/sub 4/folate show that both these ligands remained bound to the enzyme after trichloroacetic acid precipitation. The trapped covalent catalytic ternary complex was subjected to CNBr fragmentation, and the peptides were fractionated by HPLC. The isolated active-site peptide was shown to retain the two ligands and was subjected to a limited sequence analysis by the dansyl-Edman procedure. The inhibitory ternary complex formed with /sup 14/C-FdUMP and /sup 3/H-CH/sub 2/ /sub 4/folate served as a control. The active-site peptides isolated from the CNBr treated inhibitory ternary complex and the catalytic complex exhibited identical sequences for the first four N-terminal residues, Ala-Leu-Pro-Pro, and the fifth residue was found to be associated with the labeled ligands. Sequence analysis of the active site peptide derived from the carboxymethylated enzyme confirmed this sequence and the 5th residue was shown to be Cm-Cys.

  17. Communication: Thermodynamics of condensed matter with strong pressure-energy correlations

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Bøhling, Lasse; Schrøder, Thomas

    2012-01-01

    We show that for any liquid or solid with strong correlation between its NVT virial and potential-energy equilibrium fluctuations, the temperature is a product of a function of excess entropy per particle and a function of density, T = f(s)h(ρ). This implies that (1) the system's isomorphs (curve...

  18. Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jansen, R.

    2002-01-01

    Covalent binding of various clinically important nitrogen mustards to the cysteine-34 residue of human serum albumin, in vitro and in vivo, is demonstrated. A rapid method for detection of these adducts is presented, based on liquid chromatography-tandem mass spectrometry analysis of the adducted

  19. Cellulose acetate membranes functionalized with resveratrol by covalent immobilization for improved osseointegration

    Science.gov (United States)

    Pandele, A. M.; Neacsu, P.; Cimpean, A.; Staras, A. I.; Miculescu, F.; Iordache, A.; Voicu, S. I.; Thakur, V. K.; Toader, O. D.

    2018-04-01

    Covalent immobilization of resveratrol onto cellulose acetate polymeric membranes used as coating on a Mg-1Ca-0.2Mn-0.6Zr alloy is presented for potential application in the improvement of osseointegration processes. For this purpose, cellulose acetate membrane is hydrolysed in the presence of potassium hydroxide, followed by covalent immobilization of aminopropyl triethoxy silane. Resveratrol was immobilized onto membranes using glutaraldehyde as linker. The newly synthesised functional membranes were thoroughly characterized for their structural characteristics determination employing X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM) techniques. Subsequently, in vitro cellular tests were performed for evaluating the cytotoxicity biocompatibility of synthesized materials and also the osseointegration potential of obtained derivatised membrane material. It was demonstrated that both polymeric membranes support viability and proliferation of the pre-osteoblastic MC3T3-E1 cells, thus providing a good protection against the potential harmful effects of the compounds released from coated alloys. Furthermore, cellulose acetate membrane functionalized with resveratrol exhibits a significant increase in alkaline phosphatase activity and extracellular matrix mineralization, suggesting its suitability to function as an implant surface coating for guided bone regeneration.

  20. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

    Science.gov (United States)

    Fu, Yongsheng; Zhu, Junwu; Hu, Chong; Wu, Xiaodong; Wang, Xin

    2014-10-01

    An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between the g-C3N4 and rGO sheets. The g-C3N4-rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA h g-1 at a current density of 100 mA g-1 after 50 cycles. Even at a large current density of 1000 mA g-1, a reversible capacity of 943 mA h g-1 can still be retained. The superior electrochemical performance of g-C3N4-rGO is attributed to the specific characteristics of the unique nanostructure of g-C3N4-rGO and the concerted effects of g-C3N4 and rGO, including covalent interactions between the two moieties, the good conductivity and high special surface area of the nanocomposite, as well as the template effect of the planar amino group of g-C3N4 for the dispersed decoration of Li+ ions.An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between

  1. Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Kumagai

    Full Text Available G protein-coupled receptors (GPCRs play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase to the N-terminal end of the receptor (HT-GPCR. HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.

  2. Synthesis of Covalently Cross-Linked Colloidosomes from Peroxidized Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Nadiya Popadyuk

    2016-10-01

    Full Text Available A new approach to the formation of cross-linked colloidosomes was developed on the basis of Pickering emulsions that were stabilized exclusively by peroxidized colloidal particles. Free radical polymerization and a soft template technique were used to convert droplets of a Pickering emulsion into colloidosomes. The peroxidized latex particles were synthesized in the emulsion polymerization process using amphiphilic polyperoxide copolymers poly(2-tert-butylperoxy-2-methyl-5-hexen-3-ine-co-maleic acid (PM-1-MAc or poly[N-(tert-butylperoxymethylacrylamide]-co-maleic acid (PM-2-MAc, which were applied as both initiators and surfactants (inisurfs. The polymerization in the presence of the inisurfs results in latexes with a controllable amount of peroxide and carboxyl groups at the particle surface. Peroxidized polystyrene latex particles with a covalently grafted layer of inisurf PM-1-MAc or PM-2-MAc were used as Pickering stabilizers to form Pickering emulsions. A mixture of styrene and/or butyl acrylate with divinylbenzene and hexadecane was applied as a template for the synthesis of colloidosomes. Peroxidized latex particles located at the interface are involved in the radical reactions of colloidosomes formation. As a result, covalently cross-linked colloidosomes were obtained. It was demonstrated that the structure of the synthesized (using peroxidized latex particles colloidosomes depends on the amount of functional groups and pH during the synthesis. Therefore, the size and morphology of colloidosomes can be controlled by latex particle surface properties.

  3. High covalence in CuSO4 and the radicalization of sulfate: an X-ray absorption and density functional study.

    Science.gov (United States)

    Szilagyi, Robert K; Frank, Patrick; DeBeer George, Serena; Hedman, Britt; Hodgson, Keith O

    2004-12-27

    Sulfur K-edge X-ray absorption spectroscopy (XAS) of anhydrous CuSO(4) reveals a well-resolved preedge transition feature at 2478.8 eV that has no counterpart in the XAS spectra of anhydrous ZnSO(4) or copper sulfate pentahydrate. Similar but weaker preedge features occur in the sulfur K-edge XAS spectra of [Cu(itao)SO(4)] (2478.4 eV) and [Cu[(CH(3))(6)tren]SO(4)] (2477.7 eV). Preedge features in the XAS spectra of transition metal ligands are generally attributed to covalent delocalization of a metal d-orbital hole into a ligand-based orbital. Copper L-edge XAS of CuSO(4) revealed that 56% of the Cu(II) 3d hole is delocalized onto the sulfate ligand. Hybrid density functional calculations on the two most realistic models of the covalent delocalization pathways in CuSO(4) indicate about 50% electron delocalization onto the sulfate oxygen-based 2p orbitals; however, at most 14% of that can be found on sulfate sulfur. Both experimental and computational results indicated that the high covalence of anhydrous CuSO(4) has made sulfate more like the radical monoanion, inducing an extensive mixing and redistribution of sulfur 3p-based unoccupied orbitals to lower energy in comparison to sulfate in ZnSO(4). It is this redistribution, rather than a direct covalent interaction between Cu(II) and sulfur, that is the origin of the observed sulfur XAS preedge feature. From pseudo-Voigt fits to the CuSO(4) sulfur K-edge XAS spectrum, a ground-state 3p character of 6% was quantified for the orbital contributing to the preedge transition, in reasonable agreement with the DFT calculation. Similar XAS fits indicated 2% sulfur 3p character for the preedge transition orbitals in [Cu(itao)SO(4)] and [Cu[(CH(3))(6)tren]SO(4)]. The covalent radicalization of ligands similar to sulfate, with consequent energy redistribution of the virtual orbitals, represents a new mechanism for the induction of ligand preedge XAS features. The high covalence of the Cu sites in CuSO(4) was found to be

  4. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  5. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    Science.gov (United States)

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  6. Molecular-dynamics simulation of crystalline 18-crown-6: thermal shortening of covalent bonds

    NARCIS (Netherlands)

    van Eerden, J.; Harkema, Sybolt; Feil, D.

    1990-01-01

    Molecular-dynamics simulations of crystalline 18-crown-6 have been performed in a study of the apparent thermal shortening of covalent bonds observed in crystal structures. At 100 K, a shortening of 0.006 _+ 0.001 A for C----C and C----O bonds was obtained. This result was found to be independent of

  7. Evidence for covalent attachment of phospholipid to the capsular polysaccharide of Haemophilus influenzae type b

    International Nuclear Information System (INIS)

    Kuo, J.S.; Doelling, V.W.; Graveline, J.F.; McCoy, D.W.

    1985-01-01

    Cells of Haemophilus influenzae type b were grown in a liquid medium containing [ 3 H]palmitate or [ 14 C]ribose or both for two generations of exponential growth. Radiolabeled type-specific capsular polysaccharide, polyribosyl ribitol phosphate (PRP), was purified from the culture supernatant by Cetavlon precipitation, ethanol fractionation, and hydroxylapatite and Sepharose 4B chromatography. The doubly labeled ( [ 3 H]palmitate and [ 14 C]ribose) PRP preparation was found to coelute in a single peak from a Sepharose 4B column, suggesting that both precursors were incorporated into the purified PRP. A singly labeled ( [ 3 H]palmitate) purified PRP preparation was found to be quantitatively immune precipitated by human serum containing antibody against PRP. Only after acid, alkaline, or phospholipase A2 treatment of PRP labeled with [ 3 H]palmitate or [ 3 H]palmitate and [ 14 C]ribose followed by chloroform-methanol extraction could most of the 3 H-radioactivity be recovered in the organic phase. The chloroform-soluble acid-hydrolyzed or phospholipase A2-treated product was identified as palmitic acid after thin-layer chromatography. These results strongly suggest that a phospholipid moiety is covalently associated with the H. influenzae type b polysaccharide PRP

  8. Carbon paste electrode with covalently immobilized thionine for electrochemical sensing of hydrogen peroxide

    Science.gov (United States)

    Thenmozhi, K.; Sriman Narayanan, S.

    2017-11-01

    A water-soluble redox mediator, thionin was covalently immobilized to the functionalized graphite powder and a carbon paste electrode was fabricated from this modified graphite powder. The immobilization procedure proved to be effective in anchoring the thionin mediator in the graphite electrode setup without any leakage problem during the electrochemical studies. The covalent immobilization of the thionin mediator was studied with FT-IR and the electrochemical response of the thionin carbon paste electrode was optimized on varying the supporting electrolyte, pH and scan rate. The modified electrode exhibited well-defined electrocatalytic activity towards the reduction of H2O2 at a lower potential of -0.266 V with good sensitivity. The developed amperometric sensor was efficient towards H2O2 in the linear range from 2.46 × 10-5 M to 4.76 × 10-3 M, with a detection limit of 1.47 × 10-5 M respectively. Important advantages of this sensor are its excellent electrochemical performance, simple fabrication, easy renewability, reproducible analytical results, acceptable accuracy and good operational and long-term stability.

  9. Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2012-09-01

    Full Text Available Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N2 adsorption-desorption and thermogravimetric (TG analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR and UV/VIS measurement. With o-dianisidine and H2O2 as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

  10. Dynamic Covalent Chemistry of Carbon Dioxide: Opportunities to Address Environmental Issues.

    Science.gov (United States)

    Septavaux, Jean; Germain, Geoffroy; Leclaire, Julien

    2017-07-18

    equilibrium. This equilibrium may involve covalent or noncovalent bond formation between a supplementary species and either the unloaded reactant or the CO 2 -loaded product. Thereby, this new reactive species may act as a CO 2 capture agonist or antagonist by either thermodynamically favoring the carbamation or decarbamation direction. Indeed, superagonism, the increase of CO 2 loading per amine site upon carbamation beyond the theoretical limit of 0.5, can be achieved using tightly bound cationic metal counterions. In all cases, upon binding and adduct formation, a mutual selection process occurs between one member of the CO 2 -based dynamic combinatorial library and one agonist or antagonist, which can itself be contained in a complex mixture of analogues. If this adduct is the only species that, upon formation, can self-aggregate into a separate solid phase, selection and binding are accompanied by translocation, rendering the purification procedure operationally straightforward. This general strategy, based on a simple design of coupled molecular systems, may easily be implemented within new, disruptive technologies for selective extraction of target molecules, thereby providing a substantial environmental and economic benefit.

  11. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.

    Science.gov (United States)

    Wang, Aijian; Ye, Jun; Humphrey, Mark G; Zhang, Chi

    2018-04-01

    In recent years, there has been a rapid growth in studies of the optoelectronic properties of graphene, carbon nanotubes (CNTs), and their derivatives. The chemical functionalization of graphene and CNTs is a key requirement for the development of this field, but it remains a significant challenge. The focus here is on recent advances in constructing nanohybrids of graphene or CNTs covalently linked to porphyrins or phthalocyanines, as well as their application in nonlinear optics. Following a summary of the syntheses of nanohybrids constructed from graphene or CNTs and porphyrins or phthalocyanines, explicit intraconjugate electronic interactions between photoexcited porphyrins/phthalocyanines and graphene/CNTs are introduced classified by energy transfer, electron transfer, and charge transfer, and their optoelectronic applications are also highlighted. The major current challenges for the development of covalently linked nanohybrids of porphyrins or phthalocyanines and carbon nanostructures are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  13. A Cost-Effective Physical Modeling Exercise to Develop Students' Understanding of Covalent Bonding

    Science.gov (United States)

    Turner, Kristy L.

    2016-01-01

    Chemical bonding is one of the basic concepts in chemistry, and the topic of covalent bonding forms an important core of knowledge for the high school chemistry student. For many teachers it is a challenging concept to teach, not least because it relies mainly on traditional instruction and written work. Similarly, many students find the topic…

  14. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  15. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces

    DEFF Research Database (Denmark)

    Koch, T.; Jacobsen, N.; Fensholdt, J.

    2000-01-01

    Ligand immobilization on solid surfaces is an essential step in fields such as diagnostics, bio sensor manufacturing, and new material sciences in general. In this paper a photochemical approach based on anthraquinone as the chromophore is presented. Photochemical procedures offer special...... advantages as they are able to generate highly reactive species in an orientation specific manner. As presented here, anthraquinone (AQ) mediated covalent DNA immobilization appears to be superior to currently known procedures. A synthetic procedure providing AQ-phosphoramidites is presented. These reagents...... facilitate AQ conjugation during routine DNA synthesis, thus enabling the AQ-oligonucleotides to be immobilized in a very convenient and efficient manner. AQ-conjugated PCR primers can be used directly in PCR. When the PCR is performed in solution, the amplicons can be immobilized after the PCR. Moreover...

  17. Are Orbital-Resolved Shared-Electron Distribution Indices and Cioslowski Covalent Bond Orders Useful for Molecules?

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert; Kohout, M.

    2015-01-01

    Roč. 113, 13-14 (2015), s. 1682-1689 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : domain averaged fermi holes * shared electron-distribution indices * Cioslowski covalent bond orders Subject RIV: CC - Organic Chemistry Impact factor: 1.837, year: 2015

  18. Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis.

    Science.gov (United States)

    Draghi, Patrícia Ferrante; Fernandes, Julio Cesar Bastos

    2017-03-01

    We developed a label-free potentiometric biosensor using tyrosinase extracted from Musa acuminata and immobilized by covalent bond on a surface of a solid-contact transducer. The transducer was manufactured containing two layers. The first layer contained a blend of poly(vinyl) chloride carboxylated (PVC-COOH), graphite and potassium permanganate. On this layer, we deposited a second layer containing just a mixture of poly(vinyl chloride) carboxylated and graphite. On the last layer of the transducer, we immobilized the tyrosinase enzyme by reaction with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride. The solid-contact potentiometric biosensor presented at low detection limit of 7.3×10 -7 M and a linear range to catechol concentration between 9.3×10 -7 M and 8.3×10 -2 M. This biosensor was applied to determine the amount of total phenols in different samples of honey and propolis. The results agreed with the Folin-Ciocalteu method. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biofunctional Paper via Covalent Modification of Cellulose

    Science.gov (United States)

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A.; Kaplan, Justin M.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to covalently immobilize small molecules, proteins and DNA onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane’s bioactivity was specific, dose-dependent, and stable over a long period of time. Use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices. PMID:22708701

  20. Pore surface engineering in covalent organic frameworks.

    Science.gov (United States)

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  1. Autoradiographic evidence of 2-methylindole covalent binding to pulmonary epithelial cells in the goat

    International Nuclear Information System (INIS)

    Becker, G.M.; Breeze, R.G.; Carlson, J.R.

    1984-01-01

    3-Methylindole (3MI), the main ruminal fermentation product of L-tryptophan, causes acute pulmonary edema and interstitial emphysema in ruminants. Intravenous infusion of 3MI in goats causes necrosis and sloughing of pneumocytes and bronchial epithelial cells. Previous studies indicate that a reactive metabolite or metabolites of 3MI bind covalently to tissue macromolecules in the lung and this binding is associated with the pneumotoxicity of 3MI. We undertook this autoradiographic study of 3MI covalent binding to test the hypothesis that reactive 3MI metabolite(s) bind to the lung cells susceptible to 3MI-induced injury. We infused goats with ( 3 H)3MI and killed them either 0.5, 2 or 6 h after start of the infusion. Sections of fixed lung were extensively washed, alcohol dehydrated and embedded in plastic. Only covalently bound radioactivity remained. Silver grains were quantitated per area in the developed autoradiographs. There was a 2:1 ratio of binding to the small airway epithelium compared to the interalveolar septa in all the goats. Both ciliated and non-ciliated bronchiolar cells were labelled, as were both types I and II pneumocytes. Normal goat lung slices incubated in vitro with ( 3 H)3MI were labeled in the same pattern. Inclusion of either of the inhibitors of cytochrome P-450, SKF-525-A or piperonyl butoxide significantly reduced this binding to both the pneumocytes and the bronchiolar cells. We consider these results supportive of our hypothesis that 3MI is metabolized to reactive intermediates by the epithelial cells of the lung, where they bind to macromolecules, which may cause cellular damage. (author)

  2. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Czech Academy of Sciences Publication Activity Database

    Melnichuk, I.; Choukourov, A.; Bilek, M.; Weiss, A.; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, J.; Kousal, J.; Shelemin, A.; Solař, P.; Slavínská, D.; Biederman, H.

    2015-01-01

    Roč. 351, Oct 1 (2015), s. 537-545 ISSN 0169-4332 R&D Projects: GA MZd(CZ) NT13297 Institutional support: RVO:67985823 Keywords : covalent binding * plasma polymers * MG-63 osteoblasts Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.150, year: 2015

  3. Covalent bonding and band-gap formation in ternary transition-metal di-aluminides: Al4MnCo and related compounds

    International Nuclear Information System (INIS)

    Krajci, M.; Hafner, J.

    2002-01-01

    In this paper we extend our previous study of the electronic structure of and bonding mechanism in transition-metal (TM) di-aluminides to ternary systems. We have studied the character of the bonding in Al 4 MnCo and related TM di-aluminides in the C11 b (MoSi 2 ) and C54 (TiSi 2 ) crystal structures. A peculiar feature of the electronic structure of these TM di-aluminides is the existence of a semiconducting gap at the Fermi level. In our previous work we predicted a gap in Al 2 TM compounds where the TM atoms have eight valence electrons. Here we demonstrate that the semiconducting gap does not disappear if the TM sites are occupied by two different TMs, provided that the electron-per-atom ratio is conserved. Such a replacement substantially increases the class of possibly semiconducting TM di-aluminides. Substitution for 3d TMs of 4d or 5d TMs enhances the width of the gap. From the analysis of the charge density distribution and the crystal orbital overlap population, we conclude that the bonding between atoms has dominantly covalent character. This is confirmed not only by the enhanced charge density halfway between atoms, but also by the clear bonding-antibonding splitting of the electronic states. If the gaps between split states that correspond to all bonding configurations in the crystal have a common overlap at the Fermi level, the intermetallic compound becomes a semiconductor. However, the results of the total-energy calculations suggest that the existence of a band gap does not necessarily imply a stable structure. Strong covalent bonds can exist also in Al-TM structures where no band gap is observed. (author)

  4. Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System.

    Science.gov (United States)

    Ni, Cailing; Zha, Daijun; Ye, Hebo; Hai, Yu; Zhou, Yuntao; Anslyn, Eric V; You, Lei

    2018-01-26

    Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Protection of a protein against irradiation-induced degradation by additives in the solid state

    International Nuclear Information System (INIS)

    Shalaev, E.; Reddy, R.; Kimball, R.N.; Weinschenk, M.F.; Guinn, M.; Margulis, L.

    2003-01-01

    The impact of ionizing radiation on a globular protein (porcine somatotropin, pST) in the solid state was studied using rate of dissolution, high-performance liquid chromatography, and Electron spin resonance (ESR) in the presence of different additives. o-Vanillin stabilized pST against irradiation-induced degradation whereas effects of trolox and isopropyl alcohol were less significant. Stabilization effect of o-vanillin has been related to the energy transfer from pST molecules to the additive which was facilitated by formation of covalent bonds between o-vanillin and pST molecules. Anticorrelation between the level of free radicals and chemical degradation (i.e. degradation increased with decrease in a free radical level) was observed in the presence of o-vanillin

  6. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  7. Role of metabolic activation by cytochrome P-450 in covalent binding of VP 16-213 to rat liver and HeLa cell microsomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    van Maanen, J.M.; de Ruiter, C.; de Vries, J.; Kootstra, P.R.; Gobas, F.; Pinedo, H.M.

    1985-09-01

    Covalent binding of /sup 3/H-labeled VP 16-213 to rat liver and HeLa cell microsomal proteins was studied in vitro. Metabolic activation by cytochrome P-450 was found to play a role in the covalent binding of VP 16-213 to rat liver microsomal proteins, as shown by the need of NADPH cofactor, the increased binding after phenobarbital pretreatment and the inhibition by SFK-525A. Addition of ascorbic acid or alpha-phenyl-N-tert. butylnitrone to the incubation mixture depressed covalent binding by about 85%, suggesting that formation of a reactive metabolite from the phenolic structure may be involved in the binding process. VP 16-213 did not inhibit aminopyrine N-demethylase at the concentration used in the binding experiments (17 microM), indicating that metabolism of its methylenedioxy group does not play a role in binding to microsomal proteins. HeLa cell microsomes were found to possess aminopyrine N-demethylase activity. Covalent binding of radiolabeled VP 16-213 to HeLa cell microsomes decreased by about 64% if NADPH was omitted.

  8. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Lim, Kwon Taek; Jeong, Yeon Tae

    2011-01-01

    Amino - functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with

  9. Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO2 capture

    KAUST Repository

    Das, Swapan Kumar; Wang, Xinbo; Lai, Zhiping

    2017-01-01

    The sustainable capture and sequestration of CO2 from flue gas emission is an important and unavoidable challenge to control greenhouse gas release and climate change. In this report, we describe a triazine-triphenylamine-based microporous covalent

  10. Non-Covalent Organocatalyzed Domino Reactions Involving Oxindoles: Recent Advances

    Directory of Open Access Journals (Sweden)

    Tecla Gasperi

    2017-09-01

    Full Text Available The ubiquitous presence of spirooxindole architectures with several functionalities and stereogenic centers in bioactive molecules has been appealing for the development of novel methodologies seeking their preparation in high yields and selectivities. Expansion and refinement in the field of asymmetric organocatalysis have made possible the development of straightforward strategies that address these two requisites. In this review, we illustrate the current state-of-the-art in the field of spirooxindole synthesis through the use of non-covalent organocatalysis. We aim to provide a concise overview of very recent methods that allow to the isolation of unique, densely and diversified spirocyclic oxindole derivatives with high structural diversity via the use of cascade, tandem and domino processes.

  11. Co-pyrolysis of coal with organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Straka, P.; Buchtele, J. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    The co-pyrolysis of high volatile A bituminous coal with solid organic materials (proteins, cellulose, polyisoprene, polystyrene, polyethylene-glycolterephtalate-PEGT) at a high temperature conditions was investigated. Aim of the work was to evaluate, firstly, the changes of the texture and of the porous system of solid phase after high temperature treatment in presence of different types of macromolecular solids, secondly, properties and composition of the tar and gas. Considered organic solids are important waste components. During their co-pyrolysis the high volatile bituminous coal acts as a hydrogen donor in the temperature rank 220-480{degrees}C. In the rank 500- 1000{degrees}C the solid phase is formed. The co-pyrolysis was carried out at heating rate 3 K/min. It was found that an amount of organic solid (5-10%) affects important changes in the optical texture forms of solid phase, in the pore distribution and in the internal surface area. Transport large pores volume decreases in presence of PEGT, polystyrene and cellulose and increases in presence of proteins and polyisoprene. (image analysis measurements show that the tendency of coal to create coarse pores during co-pyrolysis is very strong and increases with increasing amount of organic solid in blend). An addition of considered materials changes the sorption ability (methylene blue test, iodine adsorption test), moreover, the reactivity of the solid phase.

  12. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School

    2018-01-05

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

  13. Gelation of covalently edge-modified laponites in aqueous media. 1. rheology and nuclear magnetic resonance.

    Science.gov (United States)

    Patil, Suhas P; Mathew, Renny; Ajithkumar, T G; Rajamohanan, P R; Mahesh, T S; Kumaraswamy, Guruswamy

    2008-04-17

    We describe the covalent modification of the edges of laponite with organic groups and the influence of this modification on gelation behavior. We compare three materials: an unmodified laponite, a laponite edge modified with a trimethyl moiety (MLap), and an octyldimethyl moiety (OLap). Gelation is investigated using rheology and NMR T1 relaxation measurements and nuclear Overhauser enhancement spectroscopy (NOESY). MLap and OLap show qualitatively different gelation. Gelation of MLap is very similar to laponite: MLap gels over the same time scale as laponite and has about the same solid modulus, and the MLap gel is almost as transparent as laponite. In contrast, OLap gels rapidly relative to laponite and forms a weak, turbid gel. We believe that gelation in laponite and MLap results from the formation of a network of well-dispersed platelets (or a few platelets), while in OLap, gelation results from a network of stacks of several platelets. NMR relaxation measurements indicate that gelation does not affect the average relaxation of water protons. However, T1 increases marginally for the protons in the organic moieties in MLap and decreases for protons in the organic moieties in OLap. Relaxation measurements, analyses of line width, and NOESY taken together suggest that, in OLap, gelation is a consequence of association of the organic moieties on the laponite edges, and that this association strengthens with time. Thus, the time-dependent changes in NMR suggest a structural origin for the time-dependent changes in the rheological behavior.

  14. Protein covalent modification by biologically active quinones

    Directory of Open Access Journals (Sweden)

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  15. Cell Signalling Through Covalent Modification and Allostery

    Science.gov (United States)

    Johnson, Louise N.

    Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases catalyze the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. This covalent modification allows activation or inhibition of enzyme activity, creates recognition sites for other proteins and promotes order/disorder or disorder/order transitions. These properties regulate ­signalling pathways and cellular processes that mediate metabolism, transcription, cell cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. In this lecture I shall review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase and the cell cycle cyclin dependent protein kinases as illustrations. Regulation of protein phosphorylation may be disrupted in the diseased state and protein kinases have become high profile targets for drug development. To date there are 11 compounds that have been approved for clinical use in the treatment of cancer.

  16. Dimeric DNA Aptamer Complexes for High-capacity–targeted Drug Delivery Using pH-sensitive Covalent Linkages

    Directory of Open Access Journals (Sweden)

    Olcay Boyacioglu

    2013-01-01

    Full Text Available Treatment with doxorubicin (Dox results in serious systemic toxicities that limit effectiveness for cancer treatment and cause long-term health issues for cancer patients. We identified a new DNA aptamer to prostate-specific membrane antigen (PSMA using fixed sequences to promote Dox binding and developed dimeric aptamer complexes (DACs for specific delivery of Dox to PSMA+ cancer cells. DACs are stable under physiological conditions and are internalized specifically into PSMA+ C4-2 cells with minimal uptake into PSMA-null PC3 cells. Cellular internalization of DAC was demonstrated by confocal microscopy and flow cytometry. Covalent modification of DAC with Dox (DAC-D resulted in a complex with stoichiometry ~4:1. Dox was covalently bound in DAC-D using a reversible linker that promotes covalent attachment of Dox to genomic DNA following cell internalization. Dox was released from the DAC-D under physiological conditions with a half-life of 8 hours, sufficient for in vivo targeting. DAC-D was used to selectively deliver Dox to C4-2 cells with endosomal release and nuclear localization of Dox. DAC-D was selectively cytotoxic to C4-2 cells with similar cytotoxicity as the molar equivalent of free-Dox. In contrast, DAC-D displayed minimal cytotoxicity to PC3 cells, demonstrating the complex displays a high degree of selectivity for PSMA+ cells. DAC-D displays specificity and stability features that may be useful for improved delivery of Dox selectively to malignant tissue in vivo.

  17. In vitro covalent binding of 3-[14C]methylindole metabolites in goat tissues

    International Nuclear Information System (INIS)

    Bray, T.M.; Carlson, J.R.; Nocerini, M.R.

    1984-01-01

    Covalent binding of 3-[ 14 C]methylindole (3[ 14 C]MI) in crude microsomal preparations of goat lung, liver, and kidney was measured to determine if a reactive intermediate was formed during the in vitro metabolism of 3-methylindole (3MI). The bound radioactivity was highest in lung compared to liver and kidney. The amount of bound radioactivity per nanomole of cytochrome P-450 was approximately 10 times higher in the lung compared to the liver. No detectable bound radioactivity was found when 3-[ 3 H]methyloxindole was used as the substrate. Cofactor requirements and the effects of inhibitors indicate that a mixed function oxidase (MFO) system is involved in formation of a reactive intermediate. Inhibitors and conjugating agents that are known to reduce the severity of 3MI-induced lung injury such as piperonyl butoxide (MFO inhibitor) and glutathione (conjugating agent) significantly decreased the in vitro binding of 3[ 14 C]MI. The results indicate that a reactive intermediate is produced during the metabolism of 3MI by the MFO system. The organ specificity in binding suggests that covalent binding by lung microsomes may be related to the mechanism of 3MI-induced lung injury

  18. Probing the interatomic potential of solids with strong-field nonlinear phononics

    Science.gov (United States)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  19. Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors

    International Nuclear Information System (INIS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-01-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT–graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT–graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene–CNT/Si solar cells reveal power conversion efficiencies up to 8.50%. (paper)

  20. A modern course in the quantum theory of solids

    CERN Document Server

    Han, Fuxiang

    2013-01-01

    This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids". The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.

  1. Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5

    KAUST Repository

    Li, Haoyuan

    2017-10-24

    The preparation of two-dimensional covalent organic frameworks (2D COFs) with large crystalline domains and controlled morphology is necessary for realizing the full potential of their atomically precise structures and uniform, tailorable porosity. Currently 2D COF syntheses are developed empirically, and most materials are isolated as insoluble and unprocessable powders with typical crystalline domain sizes smaller than 50 nm. Little is known about their nucleation and growth processes, which involve a combination of covalent bond formation, degenerate exchange, and non-covalent stacking processes. A deeper understanding of the chemical processes that lead to COF polymerization and crystallization is key to achieving improved materials quality and control. Here, we report a kinetic Monte Carlo (KMC) model that describes the formation of a prototypical boronate-ester linked 2D COF known as COF-5 from its 2,3,6,7,10,11-hexahydroxytriphenylene and 1,4-phenylene bis(boronic acid) monomers in solution. The key rate parameters for the KMC model were derived from experimental measurements when possible and complemented with reaction pathway analyses, molecular dynamics simulations, and binding free-energy calculations. The essential features of experimentally measured COF-5 growth kinetics are reproduced well by the KMC simulations. In particular, the simulations successfully captured a nucleation process followed by a subsequent growth process. The nucleating species are found to be multi-layer structures that form through multiple pathways. During the growth of COF-5, extensions in the lateral (in-plane) and vertical (stacking) directions are both seen to be linear with respect to time and are dominated by monomer addition and oligomer association, respectively. Finally, we show that the experimental observations of increased average crystallite size with the addition of water are modeled accurately by the simulations. These results will inform the rational development

  2. ???????????? SolidWorks/SolidWorks Flow Simulation/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???

    OpenAIRE

    ????????????, ?. ?.; ????????, ?. ?.; ?????, ?. ?.

    2012-01-01

    ? ?????? ???????? ??????? ??????? ???????? ?? ???????????? ??????????? ????????? SolidWorks/SolidWorks Flow Simulation (COSMOSFloWorks)/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???. ??? ???????? ????????? ???????? ?????????? ?? ?????? ???????? ??????? ? ????????????? ?????? ? ????????????? ????????????? ?????????? ???????????? SolidWorks Flow Simulation (COSMOSFloWorks). ??? ???????????? ??????????? ????????????? ?????? ?? ????????? ??????????? ??????? ?? ??????????? ...

  3. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.

    Science.gov (United States)

    Lei, Zhendong; Yang, Qinsi; Xu, Yi; Guo, Siyu; Sun, Weiwei; Liu, Hao; Lv, Li-Ping; Zhang, Yong; Wang, Yong

    2018-02-08

    Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g -1 and can sustain 500 cycles at 100 mA g -1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.

  4. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A

    Science.gov (United States)

    Leserman, Lee D.; Barbet, Jacques; Kourilsky, François; Weinstein, John N.

    1980-12-01

    Many applications envisioned for liposomes in cell biology and chemotherapy require their direction to specific cellular targets1-3. The ability to use antibody as a means of conferring specificity to liposomes would markedly increase their usefulness. We report here a method for covalently coupling soluble proteins, including monoclonal antibody and Staphylococcus aureus protein A (ref. 4), to small sonicated liposomes, by using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 3-(2-pyridyldithio)propionate (SPDP, Pharmacia). Liposomes bearing covalently coupled mouse monoclonal antibody against human β2-microglobulin [antibody B1.1G6 (IgG2a, κ) (B. Malissen et al., in preparation)] bound specifically to human, but not to mouse cells. Liposomes bearing protein A became bound to human cells previously incubated with the B1.1G6 antibody, but not to cells incubated without antibody. The coupling method results in efficient binding of protein to the liposomes without aggregation and without denaturation of the coupled ligand; at least 60% of liposomes bound functional protein. Further, liposomes did not leak encapsulated carboxyfluorescein (CF) as a consequence of the reaction.

  5. Stereodynamic tetrahydrobiisoindole “NU-BIPHEP(O”s: functionalization, rotational barriers and non-covalent interactions

    Directory of Open Access Journals (Sweden)

    Golo Storch

    2016-07-01

    Full Text Available Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC allowed for the determination of rotational barriers of ΔG‡298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(Os”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.

  6. Systematic studies of covalent functionalization of carbon nanotubes via argon plasma-assisted UV grafting

    International Nuclear Information System (INIS)

    Yan, Y H; Cui, J; Chan-Park, M B; Wang, X; Wu, Q Y

    2007-01-01

    Single-walled carbon nanotubes (SWNTs) with 1-vinylimidazole species covalently attached to their sidewalls and end caps have been prepared by ultraviolet (UV) irradiation in 1-vinylimidazole monomer. This process can be greatly assisted by argon (Ar) plasma pretreatment, which generates more defect sites at the tube ends and sidewalls acting as the active sites for the subsequent UV grafting of 1-vinylimidazole molecules. The effects of total deposited energy of Ar plasma treatment, either by change of treatment time or discharge power, on the functionalization degree and structural morphology of the resulting nanotubes are systematically studied. By control of the Ar plasma treatment time within 5 min at the discharge power of 200 W, no visible chopping of the functionalized SWNTs was observed. Under this advised optimum processing condition, the functionalization degree, estimated by x-ray photoelectron spectroscopy (XPS) measurement, is as high as around 26 wt% 1-vinylimidazole molecules grafted onto the nanotubes. This method may be extended to other reactive vinyl monomers and offers another diverse way of covalent functionalization of SWNTs

  7. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    Science.gov (United States)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  8. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    International Nuclear Information System (INIS)

    Melnichuk, Iurii; Choukourov, Andrei; Bilek, Marcela; Weiss, Anthony; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, Jan; Kousal, Jaroslav; Shelemin, Artem; Solař, Pavel

    2015-01-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  9. Dynamic Multi-Component Covalent Assembly for the Reversible Binding of Secondary Alcohols and Chirality Sensing

    Science.gov (United States)

    You, Lei; Berman, Jeffrey S.; Anslyn, Eric V.

    2011-01-01

    Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction. PMID:22109274

  10. Solid phase extraction membrane

    Science.gov (United States)

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  11. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  12. Role of direct covalent bonding in enhanced heat dissipation property of flexible graphene oxide–carbon nanotube hybrid film

    International Nuclear Information System (INIS)

    Hwang, Yongseon; Kim, Myeongjin; Kim, Jooheon

    2013-01-01

    The thermal conductivity of graphene oxide/multiwalled carbon nanotube (GO/MWCNT) hybrid films with and without covalent bonding is examined in this study. To fabricate chemically bonded GO/MWCNT hybrid films, chlorinated GO and amino-functionalized MWCNTs are bonded covalently. The mixtures of surface modified GO and MWCNT were filtered and then subjected to hot pressing to fabricate stacked films. Examination of these chemically bonded hybrid films reveal that chlorine-doped GO exhibits enhanced electrical properties because it creates hole charge carriers by attracting the electrons in GO towards chlorine. Enhanced electrical conductivity and low sheet resistance are observed also with increasing MWCNT loadings. On comparing the through-plane thermal properties, the chemically bonded hybrid films were found to exhibit higher thermal conductivity than do the physically bonded hybrid films because of the synergetic interaction of functional groups in GO and MWCNTs in the former films. However, excess addition of MWCNTs to the films leads to an increasing phonon scattering density and a decreased thermal conductivity. - Highlights: • Graphene oxide/carbon nanotube (GO/CNT) films are bonded covalently. • GO/CNT hybrid films are prepared through filtering and hot-pressing method. • Chemically bonded hybrid films exhibit enhanced electrical and thermal properties. • Enhanced thermal conductivity is explained according to increasing CNT contents

  13. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    An efficient strategy for the preparation of water-dispersible hybrid material containing graphene oxide and polyglycerol for the first time is demonstrated. Pristine graphite was firstly oxidized to obtain graphene oxide with hydroxyl functional groups. Then, the covalent grafting of polyglycerol

  14. Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration

    KAUST Repository

    Gadwal, Ikhlas; Sheng, Guan; Thankamony, Roshni Lilly; Liu, Yang; Li, Huifang; Lai, Zhiping

    2018-01-01

    We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building

  15. Nano-Sized Zero Valent Iron and Covalent Organic Polymer Composites for Azo Dye Remediation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, Jeehye; Hwang, Yuhoon

    2014-01-01

    . In this study, the effect of various covalent organic polymers (COPs) as effective supporting materials for nZVI for optimal pollutant degradation was assessed. These COPs demonstrate promising results for the ability to adsorb and remove carbon dioxide, yielding the notion that they are capable of groundwater...... in chlorinated organics, heavy metals, and various other groundwater contaminants....

  16. Covalently crosslinked diels-alder polymer networks.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  17. Conformational analysis of a covalently cross-linked Watson-Crick base pair model.

    Science.gov (United States)

    Jensen, Erik A; Allen, Benjamin D; Kishi, Yoshito; O'Leary, Daniel J

    2008-11-15

    Low-temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH(2)C(5') (psi) carbon-carbon bond, which is energetically preferred over the alternate CH(2)N(3) (phi) carbon-nitrogen bond rotation.

  18. Biofunctional paper via the covalent modification of cellulose.

    Science.gov (United States)

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A; Kaplan, Justin M; Andrade, Rodrigo B; Ratner, Daniel M

    2012-07-31

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies, and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to immobilize small molecules, proteins, and DNA covalently onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane's bioactivity was specific, dose-dependent, and stable over a long period of time. The use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices.

  19. Synthesis and characterization of type solid solution in the binary ...

    Indian Academy of Sciences (India)

    We have investigated Bi2O3–Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize -Bi2O3 ... Our experimental observations strongly suggested that oxygen deficiency type non-stoichiometry is present in doped type solid solutions.

  20. Covalent Modification of Highly Ordered Pyrolytic Graphite with a Stable Organic Free Radical by Using Diazonium Chemistry.

    Science.gov (United States)

    Seber, Gonca; Rudnev, Alexander V; Droghetti, Andrea; Rungger, Ivan; Veciana, Jaume; Mas-Torrent, Marta; Rovira, Concepció; Crivillers, Núria

    2017-01-26

    A novel, persistent, electrochemically active perchlorinated triphenylmethyl (PTM) radical with a diazonium functionality has been covalently attached to highly ordered pyrolytic graphite (HOPG) by electrografting in a single-step process. Electrochemical scanning tunneling microscopy (EC-STM) and Raman spectroscopy measurements revealed that PTM molecules had a higher tendency to covalently react at the HOPG step edges. The cross-section profiles from EC-STM images showed that there was current enhancement at the functionalized areas, which could be explained by redox-mediated electron tunneling through surface-confined redox-active molecules. Cyclic voltammetry clearly demonstrated that the intrinsic properties of the organic radical were preserved upon grafting and DFT calculations also revealed that the magnetic character of the PTM radical was preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion.

    Science.gov (United States)

    Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C

    2013-09-01

    Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The deflection angle of a gravitational source with a global monopole in the strong field limit

    International Nuclear Information System (INIS)

    Cheng Hongbo; Man Jingyun

    2011-01-01

    We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.

  3. Method of stripping solid particles

    International Nuclear Information System (INIS)

    1980-01-01

    A method of stripping loaded solid particles is specified in which uniform batches of the loaded particles are passed successively upwardly through an elution column in the form of discrete plugs, the particles of which do not intermingle substantially with the particles of the vertically adjacent plug(s), and are contacted therein with eluant liquid flowed downwardly, strong eluate being withdrawn from the lower region of the column, the loaded particles being supplied as a slurry in a carrier liquid, and successive batches of loaded particles being isolated as measured batches and being separated from their carrier liquid before being contacted with strong eluate and slurried with the strong eluate into the lower region of the column. An example describes the stripping of ion exchange resin particles loaded with complex uranium ions. (author)

  4. Development and evaluation of a simple, direct, solid-phase radioimmunoassay of serum cortisol from readily available reagents

    International Nuclear Information System (INIS)

    McConway, M.G.; Chapman, R.S.

    1986-01-01

    A simple, rapid solid-phase radioimmunoassay for serum cortisol was developed using cortisol antibody and commercially available radioiodinated cortisol ligand. The assay involves a 1-h incubation at ambient temperature, using the antibody covalently linked by the easily performed carbonyldiimidazole method, to microcrystalline cellulose. A detailed comparison of the accepted 0.125 mol/l citrate, pH 4.0, and an alternative 0.1 mol/l phosphate/8-anilinonaphthalene sulphonic acid, pH 7.4, diluent demonstrated similar precision and recovery. Phosphate, pH 7.4 diluent was adopted as the diluent of choice, since it was economical of antibody and maintained good precision over a wider working range of cortisol concentration. (Auth.)

  5. Evaluation of Antimicrobial Efficiency of New Polymers Comprised by Covalently Attached and/or Electrostatically Bound Bacteriostatic Species, Based on Quaternary Ammonium Compounds.

    Science.gov (United States)

    Kougia, Efstathia; Tselepi, Maria; Vasilopoulos, Gavriil; Lainioti, Georgia Ch; Koromilas, Nikos D; Druvari, Denisa; Bokias, Georgios; Vantarakis, Apostolos; Kallitsis, Joannis K

    2015-12-01

    In the present work a detailed study of new bacteriostatic copolymers with quaternized ammonium groups introduced in the polymer chain through covalent attachment or electrostatic interaction, was performed. Different copolymers have been considered since beside the active species, the hydrophobic/hydrophilic nature of the co-monomer was also evaluated in the case of covalently attached bacteriostatic groups, aiming at achieving permanent antibacterial activity. Homopolymers with quaternized ammonium/phosphonium groups were also tested for comparison reasons. The antimicrobial activity of the synthesized polymers after 3 and 24 h of exposure at 4 and 22 °C was investigated on cultures of Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, E. faecalis) bacteria. It was found that the combination of the hydrophilic monomer acrylic acid (AA), at low contents, with the covalently attached bacteriostatic group vinyl benzyl dimethylhexadecylammonium chloride (VBCHAM) in the copolymer P(AA-co-VBCHAM88), resulted in a high bacteriostatic activity against P. aeruginosa and E. faecalis (6 log reduction in certain cases). Moreover, the combination of covalently attached VBCHAM units with electrostatically bound cetyltrimethylammonium 4-styrene sulfonate (SSAmC16) units in the P(SSAmC16-co-VBCHAMx) copolymers led to efficient antimicrobial materials, especially against Gram-positive bacteria, where a log reduction between 4.9 and 6.2 was verified. These materials remain remarkably efficient even when they are incorporated in polysulfone membranes.

  6. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ehresmann, B.; Backendorf, C.; Ehresmann, C.; Ebel, J.P.

    1977-01-01

    The use of ultraviolet irradiation to form photochemical covalent bonds between the 16 S RNA and a ribosomal protein is a reliable method to check RNA regions which are interacting with the protein. This technique was successfully used to covalently link RNA or DNA and specific proteins in several cases. In the case of ribosome, it has been shown that the irradiation of 30 S and 50 S subunits using high doses of ultraviolet light allowed the covalent binding of almost all of the ribosomal proteins to the 16 S or 23 S RNAs. Using mild conditions, only proteins S7 and L4 could be covalently linked to the 16 S and 23 S RNAs, respectively, and the 16 S RNA region linked to protein S7 has now been characterized. The specificity of the photoreaction was demonstrated earlier and the tryptic peptides from proteins S4 and S7, photochemically linked to the 16 S RNA complexes, were identified. A report is presented on the sequences of the RNA regions which can be photochemically linked to proteins S4 and S7 after ultraviolet irradiation of the specific S4-16 S RNA and 20 S-16 S RNA complexes

  7. Linear Discriminant Analysis for the in Silico Discovery of Mechanism-Based Reversible Covalent Inhibitors of a Serine Protease: Application of Hydration Thermodynamics Analysis and Semi-empirical Molecular Orbital Calculation.

    Science.gov (United States)

    Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi

    2018-01-01

    We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.

  8. Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor.

    Science.gov (United States)

    Mahoney, Joseph M; Beatty, Alicia M; Smith, Bradley D

    2004-11-29

    A ditopic salt receptor that is known to bind and extract solid NaCl, KCl, NaBr, and KBr into organic solution as their contact ion pairs is now shown by NMR and X-ray crystallography to bind and extract solid LiCl and LiBr as water-separated ion pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane with a cation selectivity of K+ > Na+ > Li+. However, the selectivity order is strongly reversed when the receptor extracts solid alkali metal chlorides and bromides into organic solution. For a three-component mixture of solid LiCl, NaCl, and KCl, the ratio of salts extracted and complexed to the receptor in CDCl3 was 94:4:2, respectively. The same strong lithium selectivity was also observed in the case of a three-component mixture of solid LiBr, NaBr, and KBr where the ratio of extracted salts was 92:5:3. This observation is attributed to the unusually high solubility of lithium salts in organic solvents. The study suggests that ditopic receptors with an ability to extract solid salts as associated ion pairs may have application in separation processes.

  9. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  10. On the Mott transition and the new metal-insulator transitions in doped covalent and polar crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Begimkulov, U.; Kurbanov, U.T.; Yavidov, B.Y.

    2001-10-01

    The Mott transition and new metal-insulator transitions (MIT's) and their distinctive features in doped covalent semiconductors and polar compounds are studied within the continuum model of extrinsic carrier self-trapping, the Hubbard impurity band model (with on-site Coulomb repulsion and screening effects) and the extrinsic (bi)polaronic band model (with short- and long-range carrier-impurity, impurity-phonon and carrier-phonon interactions and intercarrier correlation) using the appropriate tight-binding approximations and variational methods. We have shown the formation possibility of large-radius localized one- and two-carrier impurity (or defect) states and narrow impurity bands in the band gap and charge transfer gap of these carrier-doped systems. The extrinsic Mott-Hubbard and (bi)polaronic insulating gaps are calculated exactly. The proper criterions for Mott transition, extrinsic excitonic and (bi)polaronic MIT's are obtained. We have demonstrated that the Mott transition occurs in doped covalent semiconductors (i.e. Si and Ge) and some insulators with weak carrier-phonon coupling near the large-radius dopants. While, in doped polar compounds (e.g. oxide high-T c superconductors (HTSC) and related materials) the MIT's are new extrinsic (or intrinsic) (bi)polaronic MIT's. We have found that the anisotropy of the dielectric (or (bi)polaronic) properties of doped cuprate HTSC is responsible for smooth (or continuous) MIT's, stripe formation and suppression of high-T c superconductivity. Various experimental results on in-gap states, bands and MIT's in doped covalent semiconductors, oxide HTSC and related materials are in good agreement with the developed theory of Mott transition and new (bi)polaronic MIT's. (author)

  11. A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Merrill

    2010-01-01

    Full Text Available Modification of proteins by the small ubiquitin like modifier (SUMO is an essential process in mammalian cells. SUMO is covalently attached to lysines in target proteins via an enzymatic cascade which consists of E1 and E2, SUMO activating and conjugating enzymes. There is also a variable requirement for non-enzymatic E3 adapter like proteins, which can increase the efficiency and specificity of the sumoylation process. In addition to covalent attachment of SUMO to target proteins, specific non-covalent SUMO interaction motifs (SIMs that are generally short hydrophobic peptide motifs have been identified.Intriguingly, consensus SIMs are present in most SUMO E3s, including the polycomb protein, Pc2/Cbx4. However, a role for SIMs in SUMO E3 activity remains to be shown. We show that Pc2 contains two functional SIMs, both of which contribute to full E3 activity in mammalian cells, and are also required for sumoylation of Pc2 itself. Pc2 forms distinct sub-nuclear foci, termed polycomb bodies, and can recruit partner proteins, such as the corepressor CtBP. We demonstrate that mutation of the SIMs in Pc2 prevents Pc2-dependent CtBP sumoylation, and decreases enrichment of SUMO1 and SUMO2 at polycomb foci. Furthermore, mutational analysis of both SUMO1 and SUMO2 reveals that the SIM-interacting residues of both SUMO isoforms are required for Pc2-mediated sumoylation and localization to polycomb foci.This work provides the first clear evidence for a role for SIMs in SUMO E3 activity.

  12. Non-covalent interactions of cadmium sulphide and gold nanoparticles with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Z. [Bogazici University, Department of Chemistry (Turkey); Biver, T., E-mail: tarita@dcci.unipi.i [Universita di Pisa, Dipartimento di Chimica e Chimica Industriale (Italy); Corti, A. [Universita di Pisa, Dipartimento di Patologia Sperimentale BMIE (Italy); Eltugral, N. [Universita di Pisa, Dipartimento di Chimica e Chimica Industriale (Italy); Lorenzini, E.; Masini, M.; Paolicchi, A. [Universita di Pisa, Dipartimento di Patologia Sperimentale BMIE (Italy); Pucci, A.; Ruggeri, G.; Secco, F.; Venturini, M. [Universita di Pisa, Dipartimento di Chimica e Chimica Industriale (Italy)

    2010-08-15

    Mercaptoethanol-capped CdS nanoparticles (CdS{sub np}) and monohydroxy-(1-mercaptoundec-11-yl)tetraethylene-glycol-capped Au nanoparticles (Au{sub np}) were synthesised, characterised and their interactions with DNA were investigated. Au{sub np} are stable in different aqueous solvents, whereas CdS{sub np} do precipitate in 0.1 M NaCl and form two different cluster types in 0.1 M NaNO{sub 3}. As regards the CdS{sub np}/DNA interaction, absorbance and fluorescence titrations, ethidium bromide displacement assays and gel electrophoresis experiments indicate that a non-covalent interaction between DNA and the CdS{sub np} external surface does take place. The binding constant was evaluated to be equal to (2.2 {+-} 0.5) x 10{sup 5} M{sup -1}. On the contrary, concerning Au{sub np}, no direct interaction with DNA could be observed. Possible interaction with serum albumin was also checked, but no effects could be observed for either CdS{sub np} or Au{sub np}. Finally, short-time exposure of cultured cells to nanoparticles revealed the ability of CdS{sub np} to enter the cells and allocate both in cytosol and nucleus, thus promoting cell proliferation at low concentration (p < 0.005), while longer-time exposure resulted in a significant inhibition of cell growth, accompanied by apoptotic cell death. Au{sub np} neither enter the cells, nor do affect cell proliferation. In conclusion, our data indicate that CdS{sub np} can strongly interact with living cells and nucleic acid while no effects or interactions were observed for Au{sub np}.

  13. The significance of the amorphous potential energy landscape for dictating glassy dynamics and driving solid-state crystallisation.

    Science.gov (United States)

    Ruggiero, Michael T; Krynski, Marcin; Kissi, Eric Ofosu; Sibik, Juraj; Markl, Daniel; Tan, Nicholas Y; Arslanov, Denis; van der Zande, Wim; Redlich, Britta; Korter, Timothy M; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Elliott, Stephen R; Zeitler, J Axel

    2017-11-15

    The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, T g , can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why T g can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.

  14. Oligomerization of optineurin and its oxidative stress- or E50K mutation-driven covalent cross-linking: possible relationship with glaucoma pathology.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available The optineurin gene, OPTN, is one of the causative genes of primary open-angle glaucoma. Although oligomerization of optineurin in cultured cells was previously observed by gel filtration analysis and blue native gel electrophoresis (BNE, little is known about the characteristics of optineurin oligomers. Here, we aimed to analyze the oligomeric state of optineurin and factors affecting oligomerization, such as environmental stimuli or mutations in OPTN. Using BNE or immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, we demonstrated that both endogenous and transfected optineurin exist as oligomers, rather than monomers, in NIH3T3 cells. We also applied an in situ proximity ligation assay to visualize the self-interaction of optineurin in fixed HeLaS3 cells and found that the optineurin oligomers were localized diffusely in the cytoplasm. Optineurin oligomers were usually detected as a single band of a size equal to that of the optineurin monomer upon SDS-PAGE, while an additional protein band of a larger size was observed when cells were treated with H2O2. We showed that larger protein complex is optineurin oligomers by immunoprecipitation and termed it covalent optineurin oligomers. In cells expressing OPTN bearing the most common glaucoma-associated mutation, E50K, covalent oligomers were formed even without H2O2 stimulation. Antioxidants inhibited the formation of E50K-induced covalent oligomers to various degrees. A series of truncated constructs of OPTN was used to reveal that covalent oligomers may be optineurin trimers and that the ubiquitin-binding domain is essential for formation of these trimers. Our results indicated that optineurin trimers may be the basic unit of these oligomers. The oligomeric state can be affected by many factors that induce covalent bonds, such as H2O2 or E50K, as demonstrated here; this provides novel insights into the pathogenicity of E50K. Furthermore

  15. Halonium Ions as Halogen Bond Donors in the Solid State [XL2]Y Complexes.

    Science.gov (United States)

    Rissanen, Kari; Haukka, Matti

    2015-01-01

    The utilization of halogen bonding interactions is one of the most rapidly developing areas of supramolecular chemistry. While the other weak non-covalent interactions and their influence on the structure and chemistry of various molecules, complexes, and materials have been investigated extensively, the understanding, utilizations, and true nature of halogen bonding are still relatively unexplored. Thus its final impact in chemistry in general and in materials science has not yet been fully established. Because of the polarized nature of a Z-X bond (Z=electron-withdrawing atom or moiety and X=halogen atom), such a moiety can act as halogen bond donor when the halogen is polarized enough by the atom/moiety Z. The most studied and utilized halogen bond donor molecules are the perfluorohalocarbons, where Z is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. Complementing the contemporary halogen bonding research, this chapter reviews the solid state structural chemistry of the most extremely polarized halogen atoms, viz. halonium ions, X+, and discussed them as halogen bond donors in the solid state [XL2]Y complexes (X=halonium ion, Y=any anion).

  16. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  17. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... of nanocrystals. STS measurements showed rectifying behaviour, with high currents at the opposite sample bias to that previously observed for CdSe nanocrystals adsorbed on Si substrates. We explain the rectifying behaviour by considering the interaction between the electronic states of the nanocrystals...

  18. Conformational Analysis of a Covalently Cross-Linked Watson-Crick Base Pair Model

    OpenAIRE

    Jensen, Erik A.; Allen, Benjamin D.; Kishi, Yoshito; O'Leary, Daniel J.

    2008-01-01

    Low temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH2–C(5′) (ψ) carbon-carbon bond, which is energetically preferred over the alternate CH2–N(3) (ϕ) carbon-nitrogen ...

  19. Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages

    Energy Technology Data Exchange (ETDEWEB)

    Lipińska, Monika E., E-mail: m.e.lipinska@gmail.com [REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Rebelo, Susana L.H., E-mail: susana.rebelo@fc.up.pt [REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Pereira, M. Fernando R., E-mail: fpereira@fe.up.pt [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Figueiredo, José L., E-mail: jlfig@fe.up.pt [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Freire, Cristina, E-mail: acfreire@fc.up.pt [REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal)

    2013-12-16

    Donor–acceptor nanohybrids by a covalent linkage between the β-position of a Zn(II)Porphyrin and multi-walled carbon nanotubes are reported for the first time, in a closer analogy to the natural light harvesting systems, which are based on β-substituted porphyrinoid structures, the chlorophylls. An unique and direct connection was established through the immobilization of the Zn(II)(β-NH{sub 2}-tetraphenylporphyrin), using diazonium chemistry, in order to afford i) a short and conjugated linkage between the two aromatic systems and ii) an amide bond resulting from a three-step functionalization synthesis. Electronic and steady-state fluorescence spectroscopies confirmed high photoinduced electron communication through the β-linkage when compared to analogous meso-phenyl linkers, stating its positive effect. The procedure involving the amide linkage allowed higher chromophore loadings; however, the direct conjugated bond showed improved photoinduced activity and a different emission pattern that can be associated with intense communication within the expanded π-system MWCNT–metalloporphyrin. - Graphical abstract: Preparation and photo-induced activity of two donor–acceptor nanohybrids is reported based on different linkages through β-position of porphyrin core to MWCNT, direct conjugation and amide bond. - Highlights: • β-linked Zn(II)Porphyrin–MWCNT nanohybrids were prepared through direct or amide bond. • Efficient and mild functionalizations were achieved using diazonium chemistry. • Good nanohybrid dispersibility was obtained in low boiling point solvent. • Nanohybrids showed strong photoinduced electronic transfer. • The emission quenching was higher for the π-expanded system.

  20. Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages

    International Nuclear Information System (INIS)

    Lipińska, Monika E.; Rebelo, Susana L.H.; Pereira, M. Fernando R.; Figueiredo, José L.; Freire, Cristina

    2013-01-01

    Donor–acceptor nanohybrids by a covalent linkage between the β-position of a Zn(II)Porphyrin and multi-walled carbon nanotubes are reported for the first time, in a closer analogy to the natural light harvesting systems, which are based on β-substituted porphyrinoid structures, the chlorophylls. An unique and direct connection was established through the immobilization of the Zn(II)(β-NH 2 -tetraphenylporphyrin), using diazonium chemistry, in order to afford i) a short and conjugated linkage between the two aromatic systems and ii) an amide bond resulting from a three-step functionalization synthesis. Electronic and steady-state fluorescence spectroscopies confirmed high photoinduced electron communication through the β-linkage when compared to analogous meso-phenyl linkers, stating its positive effect. The procedure involving the amide linkage allowed higher chromophore loadings; however, the direct conjugated bond showed improved photoinduced activity and a different emission pattern that can be associated with intense communication within the expanded π-system MWCNT–metalloporphyrin. - Graphical abstract: Preparation and photo-induced activity of two donor–acceptor nanohybrids is reported based on different linkages through β-position of porphyrin core to MWCNT, direct conjugation and amide bond. - Highlights: • β-linked Zn(II)Porphyrin–MWCNT nanohybrids were prepared through direct or amide bond. • Efficient and mild functionalizations were achieved using diazonium chemistry. • Good nanohybrid dispersibility was obtained in low boiling point solvent. • Nanohybrids showed strong photoinduced electronic transfer. • The emission quenching was higher for the π-expanded system

  1. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    International Nuclear Information System (INIS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  2. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  3. Ionic Conductivity and Potential Application for Fuel Cell of a Modified Imine-Based Covalent Organic Framework.

    Science.gov (United States)

    Montoro, Carmen; Rodríguez-San-Miguel, David; Polo, Eduardo; Escudero-Cid, Ricardo; Ruiz-González, Maria Luisa; Navarro, Jorge A R; Ocón, Pilar; Zamora, Félix

    2017-07-26

    We present the novel potential application of imine-based covalent organic frameworks (COFs), formed by the direct Schiff reaction between 1,3,5-tris(4-aminophenyl)benzene and 1,3,5-benzenetricarbaldehyde building blocks in m-cresol or acetic acid, named RT-COF-1 or RT-COF-1Ac/RT-COF-1AcB. The post-synthetic treatment of RT-COF-1 with LiCl leads to the formation of LiCl@RT-COF-1. The ionic conductivity of this series of polyimine COFs has been characterized at variable temperature and humidity, using electrochemical impedance spectroscopy. LiCl@RT-COF-1 exhibits a conductivity value of 6.45 × 10 -3 S cm -1 (at 313 K and 100% relative humidity) which is among the highest values so far reported in proton conduction for COFs. The mechanism of conduction has been determined using 1 H and 7 Li solid-state nuclear magnetic resonance spectroscopy. Interestingly, these materials, in the presence of controlled amounts of acetic acid and under pressure, show a remarkable processability that gives rise to quasi-transparent and flexible films showing in-plane structural order as confirmed by X-ray crystallography. Finally, we prove that these films are useful for the construction of proton exchange membrane fuel cells (PEMFC) reaching values up to 12.95 mW cm -2 and 53.1 mA cm -2 for maximum power and current density at 323 K, respectively.

  4. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding

    Science.gov (United States)

    Michelin, Sebastien Honore Roland

    The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of

  7. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  8. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Larry R.; Zhang, Ying; Li, Hua; Li, Ziyu; Lukasczyk, Ulrike; Choi, Yong-Mi; Han, Zuoning; Prisco, Joy; Fordham, Jeremy; Tsay, Joseph T.; Reiling, Stephan; Vaz, Roy J.; Li, Yi; (Sanofi)

    2010-10-28

    Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.

  9. Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry

    International Nuclear Information System (INIS)

    Whitby, Raymond L. D.; Korobeinyk, Alina; Mikhalovsky, Sergey V.; Fukuda, Takahiro; Maekawa, Toru

    2011-01-01

    Single-layer graphene oxide (SLGO) possesses carboxylic and hydroxyl groups suitable for reactions with aliphatic or aromatic diisocyanate molecules. TEM analysis reveals that aliphatic diisocyanate molecules caused SLGO to scroll into star-like formations, whereas aromatic diisocyanate molecules retained SGLO in a flat-sheet morphology. TGA confirms the stabilisation of the formed urea and urethane groups on SLGO, but the onset of sheet pyrolysis occurs at a lower temperature due to isocyanate reactions with anhydride and epoxide groups embedded in the sheet. Pendant isocyanate groups act as bridging units to facilitate the attachment of pyrrole molecules, which are then used as anchor sites for the covalent polymerisation of pyrrole to polypyrrole (PPy). The use of FeCl 3 as the polymerisation catalyst generated both covalent and free PPy, but also iron hydroxide nanoparticles were observed decorating the SLGO surface. When using ammonium persulfate as a catalyst and dodecylbenzenesulfonate as a dopant, free PPy could be removed under treatment with solvents to leave a purely covalent system. Discrete regions of SLGO were observed decorated with nanoparticles of PPy along the edge or across the surface of individual sheets. It was found that the flexibility of the SLGO sheet and the type of diisocyanate used directly affected the electrical resistance of the final composite.

  10. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications.

    Science.gov (United States)

    Muriel-Galet, V; Talbert, J N; Hernandez-Munoz, P; Gavara, R; Goddard, J M

    2013-07-10

    The objective of this study was to develop a new antimicrobial film, in which lysozyme was covalently attached onto two different ethylene vinyl alcohol copolymers (EVOH 29 and EVOH 44). The EVOH surface was modified with UV irradiation treatment to generate carboxylic acid groups, and lysozyme was covalently attached to the functionalized polymer surface. Surface characterization of control and modified films was performed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and dye assay. The value of protein loading after attachment on the surface was 8.49 μg protein/cm(2) and 5.74 μg protein/cm(2) for EVOH 29 and EVOH 44, respectively, after 10 min UV irradiation and bioconjugation. The efficacy of the EVOH-lysozyme films was assessed using Micrococcus lysodeikticus. The antimicrobial activity of the films was tested against Listeria monocytogenes and was similar to an equivalent amount of free enzyme. The reduction was 1.08 log for EVOH 29-lysozyme, 0.95 log for EVOH 44-lysozyme, and 1.34 log for free lysozyme. This work confirmed the successful use of lysozyme immobilization on the EVOH surface for antimicrobial packaging.

  11. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenzhi, E-mail: zhangwz@xatu.edu.cn [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2016-03-30

    Graphical abstract: A chemical bonding approach was proposed to prepare the PANI film covalently bonded to ITO substrate and the film exhibited high electrochemical activities and stability compared with that obtained by conventional film-forming approach. - Highlights: • The PANI film covalently bonded to ITO substrate was prepared using ABPA as modifier. • The oxidative potentials of the obtained PANI film were decreased. • The obtained PANI film exhibits high electrochemical activities and stability. - Abstract: Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV–vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C{sub 4}H{sub 9}){sub 4}N{sup +} under the positive and negative potentials as comparison with the small Li{sup +} ion.

  12. Identification of target cells by immunohistochemical detection of covalently rearranged estradiol in rehydrated paraffin sections.

    Science.gov (United States)

    Jungblut, P W; Sierralta, W D

    1998-04-01

    Estradiol is released from the binding niche of the receptor and covalently arrested in the molecular vicinity by the Mannich reaction during target fixation in acetic acid/formaldehyde. The exposed steroid is freely accessible for appropriate antibodies. It can be visualized in sections by the second antibody/enzyme technique in high resolution and without enhancements.

  13. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  14. Detection of free and covalently bound microcystins in animal tissues by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Neffling, Milla-Riina; Lance, Emilie; Meriluoto, Jussi

    2010-03-01

    Microcystins are cyanobacterial hepatotoxins capable of accumulation into animal tissues. The toxins act by inhibiting specific protein phosphatases and both non-covalent and covalent interactions occur. The 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) method determines the total, i.e. the sum of free and protein-bound microcystin in tissues. The aim of the method development in this paper was to tackle the problems with the MMPB methodology: the rather laborious workflow and the loss of material during different steps of the method. In the optimised workflow the oxidation recovery was of acceptable level (29-40%), the extraction efficiency good (62-97%), but the signal suppression effect from the matrix remained severe in our system (16-37% signal left). The extraction efficiency for the determination of the free, extractable microcystins, was found to be good, 52-100%, depending on the sample and the toxin variant and concentration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Self-healing polymer gels based on dynamic covalent bonds%基于动态共价键的可自愈合聚合物凝胶

    Institute of Scientific and Technical Information of China (English)

    张云飞; 邓国华

    2012-01-01

    简要介绍了动态共价键既具有普通共价键的高强度和稳定性,又能像分子间作用力(如氢键)那样可逆地断裂和重组的特点,以及基于动态共价键构筑智能凝胶材料的优势。综述了多种动态共价键,如芳香基苯并呋喃酮二聚体(diarylbibenzo furanone,DABBF)、三硫酯(trithiocarbonate,TTC)、芳基硼酸酯、酰腙键(acylhydrazone bond)、双硫键(disulfide bond)等的结构及其动态化学,以及应用它们合成聚合物凝胶的方法、凝胶的自愈合机理和性能。提出了发现和采用多种动态共价键构筑可自愈合聚合物凝胶的趋势,为此须解决多种动态共价键的相容性、凝胶自愈合机理与性能的光谱表征等问题,并加强应用研究。%Dynamic covalent bonds have high mechanical strength and stability like ordinary covalent bonds and can reversibly break and rebuild like intermolecular forces(such as hydrogen bonding).The properties of dynamic covalent bonds are introduced.The advantages of building smart gels based on dynamic covalent bonds are described.Specifically,the structure and dynamic chemistry of diarylbibenzo furanone(DABBF),trithiocarbonate(TTC),phenylboronic aciddiol ester bond,acylhydrazone bond and disulfide bond are reviewed.The methods of utilizing those dynamic covalent bonds to construct dynamic gels with self-healing properties,including the healing mechanisms,are presented.Combining two or more covalent bonds to construct dynamic gels with more complex responsiveness are proposed.Problems,such as compatibility of the dynamic covalent bonds,spectroscopic methods for characterizing self-healing mechanisms and capabilities,and application-oriented systems need to be further investigated.

  16. Sacrificial spacer and non-covalent routes toward the molecular imprinting of 'poorly-functionalized' N-heterocycles

    International Nuclear Information System (INIS)

    Kirsch, N.; Alexander, C.; Davies, S.; Whitcombe, M.J.

    2004-01-01

    A comparison of three different methods for the imprinting of small aromatic heterocycles containing only a single nitrogen atom, for the preparation of specific analytical phases, was carried out. A conventional non-covalent approach to the imprinting of pyridine using methacrylic acid as the functional monomer was compared with two sacrificial spacer methods, in which heterocycles were imprinted as covalent template analogues. The results of binding experiments showed that discrimination based on ligand size was possible when polymers were prepared using a silyl ester-based template. The most selective polymer was able to bind pyridine in preference to quinoline or acridine which is opposite to the trend predicted by the pK HB values for the three ligands. Curve fitting of the isotherm for pyridine binding to this polymer to the Langmuir model gave an approximate K d of 1.1±0.1 mM and a binding site concentration of 57±2 mmol g -1 . Acridine binding did not show saturation behaviour and was non-specific and cooperative in nature

  17. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  18. Conformal solids and holography

    Science.gov (United States)

    Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.

    2017-12-01

    We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.

  19. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Josypčuk, Bohdan, E-mail: josypcuk@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Barek, Jiří [Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic); Josypčuk, Oksana [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic)

    2013-05-17

    Graphical abstract: -- Highlights: •Flow amperometric enzymatic biosensor was constructed. •The biosensor is based on a reactor of a novel material – porous silver solid amalgam. •Tubular amalgam detector was used for determination of decrease of O{sub 2} concentration. •Covalent bonds amalgam−thiol−enzyme contributed to the sensor long-term stability. •LOD of glucose was 0.01 mmol L{sup −1} with RSD = 1.3% (n = 11). -- Abstract: A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L{sup −1} with detection limit of 0.01 mmol L{sup −1}. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days)

  20. Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: Importance of the protein rearrangement for the intracomplex electron-transfer reaction

    International Nuclear Information System (INIS)

    Peerey, L.M.; Kostic, N.M.

    1989-01-01

    Horse heart cytochrome c and French bean plastocyanin are cross-linked one-to-one by a carbodiimide in the same general orientation in which they associate electrostatically. The reduction potentials of the Fe and Cu atoms in the covalent diprotein complex are respectively 245 and 385 mV vs NHE; the EPR spectra of the two metals are not perturbed by cross-linking. For isomers of the covalent diprotein complex, which probably differ slightly from one another in the manner of cross-linking, are separated efficiently by cation-exchange chromatography. Stopped-flow spectrophotometric experiments with the covalent diprotein complex show that the presence of plastocyanin somewhat inhibits oxidation of ferrocytochrome c by [Fe(CN) 6 ] 3- and somewhat promotes oxidation of this protein by [Fe(C 5 H 5 ) 2 ] + . These changes in reactivity are explained in terms of electrostatic and steric effects. Pulse-radiolysis experiments with the electrostatic diprotein complex yield association constants of ≥5 x 10 6 and 1 x 10 5 M -1 at ionic strengths of 1 and 40 mM, respectively, and the rate constant of 1.05 x 10 3 s -1 , regardless of the ionic strength, for the intracomplex electron-transfer reaction. Analogous pulse-radiolysis experiments with each of the four isomers of the covalent diprotein complex, at ionic strengths of both 2 and 200 mM, show an absence of the intracomplex electron-transfer reaction. A rearrangement of the proteins for this reaction seems to be possible (or unnecessary) in the electrostatic complex but impossible in the covalent complex

  1. Covalent bond orders and atomic valences from correlated wavefunctions

    Science.gov (United States)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  2. A novel, eco-friendly technique for covalent functionalization of graphene nanoplatelets and the potential of their nanofluids for heat transfer applications

    Science.gov (United States)

    Sadri, Rad; Hosseini, Maryam; Kazi, S. N.; Bagheri, Samira; Zubir, Nashrul; Ahmadi, Goodarz; Dahari, Mahidzal; Zaharinie, Tuan

    2017-05-01

    In this study, a facile and eco-friendly covalent functionalization technique is developed to synthesize highly stable graphene nanoplatelets (GNPs) in aqueous media. This technique involves free radical grafting of gallic acid onto the surface of GNPs rather than corrosive inorganic acids. Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy are used to confirm the covalent functionalization of GNPs with gallic acid (GAGNPs). The solubility of the GAGNPs in aqueous media is verified using zeta potential and UV-vis spectra measurements. The nanofluid shows significant improvement in thermo-physical properties, indicating its superb potential for various thermal applications.

  3. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    Science.gov (United States)

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  5. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  6. Development and evaluation of a magnetic solid-phase radioimmunoassay for total human thyroxine (T4)

    International Nuclear Information System (INIS)

    Abbas, S. H.; Hassan, A. M. E.; Abdalla, O. M.; Zahran, A. B.; Shabbo, N. M.; Ali, N. I.; Gubara, A.

    2009-02-01

    In this study a simple and rapid magnetic solid-phase radioimmunoassay (RIA) for human thyroxine (T4) was developed using locally raised sheep thyroxine antibody and radioiodinated thyroxine (T4) tracer by chloramine-T method. The assay involves two hours incubation at ambient temperature rang (30 to 35 o C ) associated with the antibody covalently linked by the easily performed carbonyldiimidazole (CDI) method to magnetic particles obtained from SIPAC. 0.1% triton with sodium azide used as a wash buffer. L-Thyroxine Na-salt peta hydrate from sigma was used for the preparation of standards and quality control sera. The coupled magnetic anti-T4 solid phase titrated in order to find out the suitable antibody concentration (titre) to be used in the assay. Optimizations followed by validation procedures were done. When correlated with kits imported from NETRIA and AMERSHAM, results were found to be highly comparable r=0.965 and p<0.05. Shelf life was also studied, so that the local prepared T4 RIA magnetic reagents can be used for the measurement of total human thyroxine with a very low cost compared to imported kits. (Author)

  7. Weak and Strong Gels and the Emergence of the Amorphous Solid State

    Directory of Open Access Journals (Sweden)

    Jack F. Douglas

    2018-02-01

    Full Text Available Gels are amorphous solids whose macroscopic viscoelastic response derives from constraints in the material that serve to localize the constituent molecules or particles about their average positions in space. These constraints may either be local in nature, as in chemical cross-linking and direct physical associations, or non-local, as in case of topological “entanglement” interactions between highly extended fiber or sheet structures in the fluid. Either of these interactions, or both combined, can lead to “gelation” or “amorphous solidification”. While gels are often considered to be inherently non-equilibrium materials, and correspondingly termed “soft glassy matter”, this is not generally the case. For example, the formation of vulcanized rubbers by cross-linking macromolecules can be exactly described as a second order phase transition from an equilibrium fluid to an equilibrium solid state, and amorphous solidification also arises in diverse physical gels in which molecular and particle localization occurs predominantly through transient molecuar associations, or even topological interactions. As equilibrium, or near equilibrium systems, such gels can be expected to exhibit universal linear and non-linear viscoelastic properties, especially near the “critical” conditions at which the gel state first emerges. In particular, a power-law viscoelastic response is frequently observed in gel materials near their “gelation” or “amorphous solidification” transition. Another basic property of physical gels of both theoretical and practical interest is their response to large stresses at constant shear rate or under a fixed macrocopic strain. In particular, these materials are often quite sensitive to applied stresses that can cause the self-assembled structure to progressively break down under flow or deformation. This disintegration of gel structure can lead to “yield” of the gel material, i.e., a fluidization

  8. Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable non-covalently bound anionic FAD semiquinone

    NARCIS (Netherlands)

    Gygli, G.A.; Berkel, van W.J.H.

    2017-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum is a covalent flavoprotein that has emerged as a promising biocatalyst for the production of aromatic fine chemicals such as vanillin, coniferyl alcohol and enantiopure 1-(4’-hydroxyphenyl) alcohols. The largescale production of this

  9. Covalent organic polymer functionalized activated carbon: A novel material for water contaminant removal and CO2 capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water. COPs exhibit many remarkable properties that other leading advanced materi...

  10. HBV-Specific shRNA is Capable of Reducing the Formation of Hepatitis B Virus Covalently Closed Circular DNA, but has No Effect on Established Covalently Closed Circular DNA in vitro

    OpenAIRE

    Starkey, Jason L.; Chiari, Estelle F.; Isom, Harriet C.

    2009-01-01

    Hepatitis B virus (HBV) covalently closed circular DNA (CCC DNA) is the source of HBV transcripts and persistence in chronically infected patients. The novel aspect of this study was to determine the effect of RNA interference (RNAi) on HBV CCC DNA when administered prior to establishment of HBV replication or during chronic HBV infection. HBV replication was initiated in HepG2 cells by transduction with HBV baculovirus. Subculture of HBV expressing HepG2 cells at 10 days post-transduction ge...

  11. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  12. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bingye; Cao, Meirong; Fang, Guozhen; Liu, Bing; Dong, Xv; Pan, Mingfei [Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Shuo, E-mail: elisasw2002@yahoo.com.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Schiff base-chitosan grafted MWCNTs were synthesized via covalent modification. Black-Right-Pointing-Pointer The S-CS-MWCNTs were successfully characterized by FT-IR, TEM and TGA. Black-Right-Pointing-Pointer The S-CS-MWCNTs were used for solid-phase extraction of metal ions. Black-Right-Pointing-Pointer A method was developed detection of metal ions from samples coupled with ICP-MS. - Abstract: A novel Schiff base-chitosan-grafted multiwalled carbon nanotubes (S-CS-MWCNTs) solid-phase extraction adsorbent was synthesized by covalently grafting a Schiff base-chitosan (S-CS) onto the surfaces of oxidized MWCNTs. The adsorbent was characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and thermal gravimetric analysis. The results showed that S-CS was successfully grafted onto the surfaces of MWCNTs. A method was developed for the determination of heavy metals, namely V(V), Cr(VI), Cu(II), As(V) and Pb(II) in biological and environmental samples by inductively coupled plasma mass spectrometry coupled with preconcentration with S-CS-MWCNTs. The parameters influencing preconcentration of target ions, such as the pH of the sample solution, the flow rate of sample loading, the eluent concentration, and eluent volume, were investigated and optimized. Under the optimal conditions, the enrichment factors of V(V), Cr(VI), Cu(II), As(V), and Pb(II) reached 111, 95, 60, 52, and 128, respectively, and the detection limits were as low as 1.3-3.8 ng L{sup -1}. The developed method was successfully applied to the determination of trace-metal ions in herring, spinach, river water, and tap water with good recoveries ranging from 91.0% to 105.0%.

  13. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS

    International Nuclear Information System (INIS)

    Dai, Bingye; Cao, Meirong; Fang, Guozhen; Liu, Bing; Dong, Xv; Pan, Mingfei; Wang, Shuo

    2012-01-01

    Highlights: ► Schiff base-chitosan grafted MWCNTs were synthesized via covalent modification. ► The S-CS-MWCNTs were successfully characterized by FT-IR, TEM and TGA. ► The S-CS-MWCNTs were used for solid-phase extraction of metal ions. ► A method was developed detection of metal ions from samples coupled with ICP-MS. - Abstract: A novel Schiff base-chitosan-grafted multiwalled carbon nanotubes (S-CS-MWCNTs) solid-phase extraction adsorbent was synthesized by covalently grafting a Schiff base-chitosan (S-CS) onto the surfaces of oxidized MWCNTs. The adsorbent was characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and thermal gravimetric analysis. The results showed that S-CS was successfully grafted onto the surfaces of MWCNTs. A method was developed for the determination of heavy metals, namely V(V), Cr(VI), Cu(II), As(V) and Pb(II) in biological and environmental samples by inductively coupled plasma mass spectrometry coupled with preconcentration with S-CS-MWCNTs. The parameters influencing preconcentration of target ions, such as the pH of the sample solution, the flow rate of sample loading, the eluent concentration, and eluent volume, were investigated and optimized. Under the optimal conditions, the enrichment factors of V(V), Cr(VI), Cu(II), As(V), and Pb(II) reached 111, 95, 60, 52, and 128, respectively, and the detection limits were as low as 1.3–3.8 ng L −1 . The developed method was successfully applied to the determination of trace-metal ions in herring, spinach, river water, and tap water with good recoveries ranging from 91.0% to 105.0%.

  14. Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates

    OpenAIRE

    Homa Torabizadeh; Asieh Mahmoudi

    2018-01-01

    Inulinase can produce a high amount of fructose syrup from inulin in a one-step enzymatic process. Inulinase from Aspergillus niger was immobilized covalently on Fe3O4 magnetic nanoparticles functionalized with wheat gluten hydrolysates (WGHs). Wheat gluten was enzymatically hydrolyzed by two endopeptidases Alcalase and Neutrase and related nanoparticles were prepared by desolvation method. Magnetite nanoparticles were coated with WGHs nanoparticles and then inulinase was immobilized onto it ...

  15. Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing.

    Science.gov (United States)

    Lv, Chunguang; Heiter, Jaana; Haljasorg, Tõiv; Leito, Ivo

    2016-08-17

    A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0-12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min(-1), acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 (-14) m(2), applying acetonitrile-water 70:30 (v/v) as a mobile phase. The column performance was reproducible from column to column and was evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode (acetonitrile-water 70:30, v/v). The numbers of plates per meter at optimal flow rate were found to be between 26 000 and 32 000 for the different analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  17. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B.

    Science.gov (United States)

    Chen, En-Qiang; Feng, Shu; Wang, Meng-Lan; Liang, Ling-Bo; Zhou, Ling-Yun; Du, Ling-Yao; Yan, Li-Bo; Tao, Chuan-Min; Tang, Hong

    2017-03-14

    Recently, hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. This study aimed to investigate whether serum quantitative HBcrAg (qHBcrAg) was a satisfactory surrogate marker of intrahepatic covalently closed circular DNA (cccDNA). A total of 139 patients with liver biopsy were enrolled, consisting of 59 patients in immune tolerance (IT) phase, 52 patients in immune clearance (IC) phase, 18 patients in low-replication (LR) phase, and 10 patients in reactivation phase. All patients in IC phase have received entecavir (ETV) therapy, and 32 of them undergone a second liver biopsy at 24 months. Among those patients, qHBcrAg was strongly correlated with intrahepatic cccDNA, which is superior to that of qHBsAg and HBV DNA. And similar findings were also observed in patients in IT, IC, LR and reactivation phases. Among the 32 ETV-treated patients with a second liver biopsy in IC phase, the decline of intrahepatic cccDNA was accompanied by changes in both qHBcrAg and qHBsAg. However, as compared to qHBsAg, the change of qHBcrAg was more strongly associated with intrahepatic cccDNA-decline. In summary, serum qHBcrAg should be a satisfactory surrogate of intrahepatic HBV cccDNA in CHB patients.

  18. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    Science.gov (United States)

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  19. Influence of waste solid on nuclide dispersal

    International Nuclear Information System (INIS)

    Seitz, M.G.; Steindler, M.J.

    1981-01-01

    The method most often considered for permanent disposal of radioactive waste is to incorporate the waste into a solid, which is then placed in a geologic formation. The solid is made of waste and nonradioactive additives, with the formulation selected to produce a durable solid that will minimize the potential for dispersal of the radionuclides. Leach rates of radionuclides incorporated in the solid waste indicate the quantity of radioactivity available for dispersal at any time; but leach rates of stable constituents can be just as important to radionuclide dispersal by groundwater. The constituents of the solid will perturb the chemical character of the groundwater and, thereby, profoundly affect the interaction of radionuclides with the geologic medium. An explicit example of how the solid waste can affect radionuclide dispersal is illustrated by the results of experiments that measure cesium adsorption in the presence of rubidium. The experiments were performed with granulated oolitic limestone that absorbed cesium from groundwater solutions to which various concentrations of stable rubidium chloride had been added. The results are expressed as partition coefficients. Large coefficients indicate strong adsorption by the rock and, hence, slow migration. The partition coefficient for cesium decreases as the rubidium concentration in solution is increased. Because the coeficient for cesium depends on the amount of rubidium in solution, it will depend on the leach rate of rubidium from the solid. Rubidium has no radionuclides of concern for long-term isolation of nuclear waste, so its leach rate from a waste solid is rarely ever reported

  20. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    Science.gov (United States)

    Zhang, Suling; Du, Zhuo; Li, Gongke

    2011-10-01

    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  1. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  2. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak

    Science.gov (United States)

    Lukyanov, Alexey; Lubchenko, Vassiliy

    2017-09-01

    We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in

  3. Tunability of Open-Shell Character, Charge Asymmetry, and Third-Order Nonlinear Optical Properties of Covalently Linked (Hetero)Phenalenyl Dimers.

    Science.gov (United States)

    Minamida, Yuka; Kishi, Ryohei; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Yamane, Masaki; Tonami, Takayoshi; Nakano, Masayoshi

    2018-02-06

    Tunability of the open-shell character, charge asymmetry, and third-order nonlinear optical (NLO) properties of covalently linked (hetero)phenalenyl dimers are investigated by using the density functional theory method. By changing the molecular species X and substitution position (i, j) for the linker part, a variety of intermonomer distances R and relative alignments between the phenalenyl dimers can be realized from the geometry optimizations, resulting in a wide-range tuning of diradical character y and charge asymmetry. It is found that the static second hyperpolarizabilities along the stacking direction, γ yyyy , are one-order enhanced for phenalenyl dimer systems exhibiting intermediate y, a feature that is in good agreement with the "y-γ correlation". By replacing the central carbon atoms of the phenalenyl rings with a boron or a nitrogen, we have also designed covalently linked heterophenalenyl dimers. The introduction of such a charge asymmetry to the open-shell systems, which leads to closed-shell ionic ground states, is found to further enhance the γ yyyy values of the systems having longer intermonomer distance R with intermediate ionic character, that is, charge asymmetry. The present results demonstrate a promising potential of covalently linked NLO dimers with intermediate open-shell/ionic characters as a new building block of highly efficient NLO systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Allali, Naoual [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Universite de Lorraine, 54602 Villers-les-Nancy (France); Laboratoire de Structure et Reactivite des Systemes Moleculaires Complexes, UMR 7565 CNRS-Universite de Lorraine, 54506 Vandoeuvre-les-Nancy (France); Department of Engineering Sciences and Mathematics, Luleaa University of Technology, 97187 Luleaa (Sweden); Urbanova, Veronika; Waldbock, Jeremy; Etienne, Mathieu; Mallet, Martine; Walcarius, Alain; Dossot, Manuel [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Universite de Lorraine, 54602 Villers-les-Nancy (France); Mamane, Victor; Fort, Yves [Laboratoire de Structure et Reactivite des Systemes Moleculaires Complexes, UMR 7565 CNRS-Universite de Lorraine, 54506 Vandoeuvre-les-Nancy (France); Devaux, Xavier [Insitut Jean Lamour, Department P2M, UMR 7198 CNRS-Universite de Lorraine, Ecole des Mines, 54042 Nancy (France); Vigolo, Brigitte; McRae, Edward [Insitut Jean Lamour, Department CP2S, UMR 7198 CNRS-Universite de Lorraine, 54506 Vandoeuvre-les-Nancy (France); Noel, Maxime [Department of Engineering Sciences and Mathematics, Luleaa University of Technology, 97187 Luleaa (Sweden); Soldatov, Alexander V. [Department of Engineering Sciences and Mathematics, Luleaa University of Technology, 97187 Luleaa (Sweden); Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2012-12-15

    The present work reports the covalent functionalization of few-wall CNTs (FWCNTs) by ferrocene derivatives to (i) improve their dispersion efficiency in water and (ii) graft electroactive chemical groups on their side-walls in order to promote electron transfer to biomolecules. The functionalized CNTs (f-CNTs) are used to modify a glassy carbon electrode and this modified electrode is used for oxidizing the cofactor NADH (dihydronicotinamide adenine dinucleotide). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  6. Influence of Multi-Valency, Electrostatics and Molecular Recognition on the Adsorption of Transition Metal Complexes on Metal Oxides: A Molecular Approach to Catalyst Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-31

    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and alumina materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.

  7. Sensitivity analysis of uranium solubility under strongly oxidizing conditions

    International Nuclear Information System (INIS)

    Liu, L.; Neretnieks, I.

    1999-01-01

    To evaluate the effect of geochemical conditions in the repository on the solubility of uranium under strongly oxidizing conditions, a mathematical model has been developed to determine the solubility, by utilizing a set of nonlinear algebraic equations to describe the chemical equilibria in the groundwater environment. The model takes into account the predominant precipitation-dissolution reactions, hydrolysis reactions and complexation reactions that may occur under strongly oxidizing conditions. The model also includes the solubility-limiting solids induced by the presence of carbonate, phosphate, silicate, calcium, and sodium in the groundwater. The thermodynamic equilibrium constants used in the solubility calculations are essentially taken from the NEA Thermochemical Data Base of Uranium, with some modification and some uranium minerals added, such as soddyite, rutherfordite, uranophane, uranyl orthophosphate, and becquerelite. By applying this model, the sensitivities of uranium solubility to variations in the concentrations of various groundwater component species are systematically investigated. The results show that the total analytical concentrations of carbonate, phosphate, silicate, and calcium in deep groundwater play the most important role in determining the solubility of uranium under strongly oxidizing conditions

  8. Laser waveform control of extreme ultraviolet high harmonics from solids.

    Science.gov (United States)

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  9. Detection of HBV Covalently Closed Circular DNA

    Directory of Open Access Journals (Sweden)

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  10. Superior H2 production by hydrophilic ultrafine Ta2O5 engineered covalently on graphene

    International Nuclear Information System (INIS)

    Mao, Lin; Zhu, Shenmin; Shi, Dian; Chen, Yixin; Yin, Chao; Li, Yao; Zhang, Di; Ma, Jun; Chen, Zhixin

    2014-01-01

    A H 2 O 2 -mediated hydrothermal method was developed for the fabrication of hydrophilic Ta 2 O 5 /graphene composite. The composite shows a superior H 2 productivity, up to 30 mmol g −1 h −1 when used as a photocatalyst for water splitting, corresponding to an apparent quantum efficiency of 33.8% at 254 nm. This superior performance is due to the hydrophilic nature of the composite and more importantly due to the ultrafine Ta 2 O 5 nanoparticles (about 4.0 ± 1.5 nm) which are covalently bonded with the conductive graphene. The hydrophilic property of the composite is attributed to the use of H 2 O 2 in the hydrothermal process. The ultrafine size of the Ta 2 O 5 particles which are covalently bonded with the graphene sheets is attributed to the use of sonication in the synthesis process. Furthermore, the hydrophilic Ta 2 O 5 /Gr composite is durable, which is beneficial to long term photocatalysis. The strategy reported here provides a new approach to designing photocatalysts with superior performance for H 2 production. (papers)

  11. Detection of free and covalently bound microcystins in animal tissues by liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Neffling, Milla-Riina; Lance, Emilie; Meriluoto, Jussi

    2010-01-01

    Microcystins are cyanobacterial hepatotoxins capable of accumulation into animal tissues. The toxins act by inhibiting specific protein phosphatases and both non-covalent and covalent interactions occur. The 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) method determines the total, i.e. the sum of free and protein-bound microcystin in tissues. The aim of the method development in this paper was to tackle the problems with the MMPB methodology: the rather laborious workflow and the loss of material during different steps of the method. In the optimised workflow the oxidation recovery was of acceptable level (29-40%), the extraction efficiency good (62-97%), but the signal suppression effect from the matrix remained severe in our system (16-37% signal left). The extraction efficiency for the determination of the free, extractable microcystins, was found to be good, 52-100%, depending on the sample and the toxin variant and concentration. - The study concerns method development for the LC-MS-MS analysis of both free and protein-bound microcystin in tissue materials.

  12. Detection of free and covalently bound microcystins in animal tissues by liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Neffling, Milla-Riina, E-mail: mneffling@gmail.co [Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistoekatu 6 A, Biocity 3rd floor, FI-20520, Turku (Finland); Lance, Emilie [UMR CNRS Ecobio 6553, University of Rennes 1, Avenue du General Leclerc, 35042, Rennes Cedex (France); Meriluoto, Jussi [Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistoekatu 6 A, Biocity 3rd floor, FI-20520, Turku (Finland)

    2010-03-15

    Microcystins are cyanobacterial hepatotoxins capable of accumulation into animal tissues. The toxins act by inhibiting specific protein phosphatases and both non-covalent and covalent interactions occur. The 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) method determines the total, i.e. the sum of free and protein-bound microcystin in tissues. The aim of the method development in this paper was to tackle the problems with the MMPB methodology: the rather laborious workflow and the loss of material during different steps of the method. In the optimised workflow the oxidation recovery was of acceptable level (29-40%), the extraction efficiency good (62-97%), but the signal suppression effect from the matrix remained severe in our system (16-37% signal left). The extraction efficiency for the determination of the free, extractable microcystins, was found to be good, 52-100%, depending on the sample and the toxin variant and concentration. - The study concerns method development for the LC-MS-MS analysis of both free and protein-bound microcystin in tissue materials.

  13. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  14. An Economic Analysis of Municipal Solid Waste Management of Toyohashi City, Japan: Evidences from Environmental Kuznets Curve

    OpenAIRE

    Miyata, Yuzuru; Shibusawa, Hiroyuki; Hossain, Nahid

    2013-01-01

    The study of Toyohashi cityfs economic growth and resultant growth in municipal solid waste management were empirically examined by the relation between city economic growth, city expenditure for solid waste management and municipal solid waste. The growth in the economy and the population has increased discharge of municipal solid waste in Toyohashi city. The economic size of the city is identified as a strong explanatory variable. Various kinds of municipal solid waste were generated with ...

  15. Synthesis and Characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride – Mesoporous Silica Composite as Adsorbent for Dehydration in Industrial Processes

    OpenAIRE

    Liévano,Javier F. Plata; Díaz,Luz A. Carreno

    2016-01-01

    Ionic liquid – mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix...

  16. Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.

    Science.gov (United States)

    Ou, Qingdong; Zhang, Yupeng; Wang, Ziyu; Yuwono, Jodie A; Wang, Rongbin; Dai, Zhigao; Li, Wei; Zheng, Changxi; Xu, Zai-Quan; Qi, Xiang; Duhm, Steffen; Medhekar, Nikhil V; Zhang, Han; Bao, Qiaoliang

    2018-04-01

    A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH 3 NH 3 PbI 3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO 3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  18. Development of a Textile Nanocomposite as Naked Eye Indicator of the Exposition to Strong Acids

    Directory of Open Access Journals (Sweden)

    Isabel Pallás

    2017-09-01

    Full Text Available Chemical burns, mainly produced by acids, are a topic of concern. A new sensing material for the detection of strong acids able to be incorporated into textiles has been developed. The material is prepared by the covalent attachment of 2,2′,4,4′,4″-pentamethoxy triphenyl methanol to a mesoporous material which further is included in a nitro resin to obtain a colourless composite. The response of this composite to diverse acid solutions was tested showing the appearance of an intense purple colour (with a colour difference higher than 160 that can be monitored by the naked eye or could be easily digitised to feed an instrumental sensor. Reversibility and resistance to washing cycles were studied with positive results. Finally, the response of the sensing composite to acid vapours was assayed, observing a colour change similar to that found in solution.

  19. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar; Wang, Xinbo; Ostwal, Mayur; Lai, Zhiping

    2016-01-01

    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff

  20. Effect of alkali doping on the structural stability of solid C36

    International Nuclear Information System (INIS)

    Zettl, A.; Piskoti, C.; Grossman, Jeffery C.; Cohen, Marvin L.; Louie, Steven G.

    1999-01-01

    We demonstrate that alkali-doping C 36 solids causes the C 36 cage molecules to be bonded less strongly to each other in the solid. Laser irradiation mass spectroscopy experiments show that for pure C 36 solid, no isolated C 36 subunits are observed in the ablated material, while for potassium-doped C 36 , isolated C 36 molecules are readily produced by laser irradiation. Theoretical modelling shows that charge transfer from the alkali to the C 36 molecules greatly hinders C 36 dimer formation, consistent with these experiments. (c) 1999 American Institute of Physics

  1. Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import

    DEFF Research Database (Denmark)

    Welinder, Karen Gjesing; Jørgensen, Malene

    that the path is via the Golgi apparatus. However, the vacuolar targeting signal has never been identified for this storage and defence protein, which amounts to 25-40% of tuber protein. We propose that a six-residue ct-propeptide, -ANKASY-COO- composes this signal. The crystallographic structure...... the Danish Research Council for Technology and Production, and grant 2052-03-0022 from the Danish Research Agency.   Reference Welinder KG, Jørgensen M (2009) Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import. J. Biol. Chem., Feb 2009; doi:10.1074/jbc.M809674200....

  2. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  3. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation

    Science.gov (United States)

    Neves, Juliana C.; de Castro, Vinícius G.; Assis, Ana L. S.; Veiga, Amanda G.; Rocco, Maria Luiza M.; Silva, Glaura G.

    2018-04-01

    An effective nanofiller-matrix interaction is considered crucial to produce enhanced nanocomposites. Nevertheless, there is lack of experiments focused in the direct measurement of possible filler-matrix covalent linkage, which was the main goal of this work for a carbon nanotube (CNT)/epoxy system. CNT were functionalized with oxygenated (ox) functions and further with triethylenetetramine (TETA). An in-situ determination methodology of epoxy-CNTs heat of reaction was developed by Differential Scanning Calorimetry (DSC). Values of -(8.7 ± 0.4) and -(6.0 ± 0.6) J/g were observed for epoxy with CNT-ox and CNT-TETA, respectively. These results confirm the occurrence of covalent bonds for both functionalized CNTs, a very important information due to the literature generally disregard this possibility for oxygenated functions. The higher value obtained for CNT-ox can be attributed to a not complete amidation and to steric impediments in the CNT-TETA structure. The modified CNTs produced by DSC experiments were then characterized by X-Ray Photoelectron Spectroscopy, Transmission Electron Microscopy and Thermogravimetry, which confirmed the covalent linkage. This characterization methodology can be used to verify the occurrence of covalent bonds in various nanocomposites with a quantitative evaluation, providing data for better understanding of the role of CNT functional groups and for tailoring its interface with polymers.

  4. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders

    2011-01-01

    Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...

  5. Unipolar time-differential charge sensing in non-dispersive amorphous solids

    International Nuclear Information System (INIS)

    Goldan, A. H.; Rowlands, J. A.; Tousignant, O.; Karim, K. S.

    2013-01-01

    The use of high resistivity amorphous solids as photodetectors, especially amorphous selenium, is currently of great interest because they are readily produced over large area at substantially lower cost compared to grown crystalline solids. However, amorphous solids have been ruled out as viable radiation detection media for high frame-rate applications, such as single-photon-counting imaging, because of low carrier mobilities, transit-time-limited photoresponse, and consequently, poor time resolution. To circumvent the problem of poor charge transport in amorphous solids, we propose unipolar time-differential charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. For the first time, we have fabricated a true Frisch grid inside a solid-state detector by evaporating amorphous selenium over photolithographically prepared multi-well substrates. The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Results prove the proposed unipolar time-differential property and show that time resolution in non-dispersive amorphous solids can be improved substantially to reach the theoretical limit set by spatial spreading of the collected Gaussian carrier cloud.

  6. Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Nesztor, Dániel [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Novák, Levente [Department of Colloid and Environmental Chemistry, University of Debrecen, Egyetem square 1, Debrecen (Hungary); Illés, Erzsébet; Szekeres, Márta; Szabó, Tamás [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary)

    2017-04-01

    Carboxylated magnetite nanoparticles (MNPs) are frequently used to develop materials with enhanced properties for MRI and hyperthermia. The controlled clustering of MNPs via covalent or electrostatic approaches provides opportunity to prepare high quality materials. MNPs were prepared by co-precipitation and coated by poly(acrylic acid-co-maleic acid) (PAM@MNP). The clusters were synthesized from purified PAM@MNPs and polyethylenimine (PEI) solution via electrostatic interaction and covalent bond formation (ES-cluster and CB-cluster, respectively). The electrostatic adhesion (–NH{sub 3}{sup +} and –COO{sup –}) and the formed amide bond were confirmed by ATR-FTIR. The averaged area of CB-clusters was about twice as large as that of ES-cluster, based on TEM. The SAXS results showed that the surface of MNPs was smooth and the nanoparticles were close packed in both clusters. The pH-dependent aggregation state and zeta potential of clusters were characterized by DLS and electrophoresis measurements, the clusters were colloidally stable at pH>5. In hyperthermia experiments, the values of SAR were about two times larger for the chemically bonded cluster. The MRI studies showed exceptionally high transversion relaxivities, the r{sub 2} values are 457 mM{sup −1} s{sup −1} and 691 mM{sup −1} s{sup −1} for ES-cluster and CB-cluster, respectively. Based on these results, the chemically clustered product shows greater potential for feasible biomedical applications. - Highlights: • Chemically bonded clusters (CB-cluster) were prepared from PEI and PAM-coated MNPs. • The electrostatically clustered units (ES-cluster) are smaller and more compact. • The electrostatic adhesion and the amide bond formation were confirmed by ATR-FTIR. • CB-cluster dispersions are colloidally stable under physiological conditions. • CB-cluster shows great potential for application in MRI and hyperthermia.

  7. Electronic basis of hardness and phase transformations (covalent crystals)

    International Nuclear Information System (INIS)

    Gilman, J J

    2008-01-01

    Several electronic parameters measure the stabilities of covalent crystals, including minimum energy band-gap densities, inverse polarizabilities, plasma frequencies, transverse vibrational frequencies and elastic shear moduli. Convenient is the band-gap density (energy/volume; called the 'bond modulus'). For a given bonding type, the indentation hardness is proportional to the bond modulus. Examples are the group IV elements, III-V compounds; and II-VI compounds. The motion of dislocation kinks requires the excitation of bonding electrons into anti-bonding states. The bond modulus measures this together with the work done by the applied stress when a kink moves. In addition to hardness, the bond modulus measures the compressive strain (pressure) needed to transform an ambient structure into a more dense structure. Activation of such transformations also requires the excitation of bonding electrons into anti-bonding states together with the work done by the compressive stress

  8. Strong coupling of a single electron in silicon to a microwave photon

    Science.gov (United States)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  9. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  10. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    Directory of Open Access Journals (Sweden)

    Michael A Cook

    Full Text Available BACKGROUND: Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM, we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. CONCLUSIONS/SIGNIFICANCE: These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  11. The Covalent Binding of Photosensitive Dyes to Monocrystalline Silicon Surface and Their Spectral Response

    Institute of Scientific and Technical Information of China (English)

    郭志新; 郝纪祥; 张祖训; 曹子祥

    1993-01-01

    A chemical method is proposed to bond photo-sensitive dyes directly to the surface of polished monocrystalline silicon. A methincyanine dye and a trimethincyanine dye have been bonded covalently onto silicon surface through Si—N bond, which are characterized by XPS technique and laser Raman spectra. Photovoltaic effect has been observed with the In/dye/n-Si sandwich devices composed of the dye-bonded n-Si wafers. Significant spectral response shows the characteristic absorptance maxima of the bonded dyes.

  12. The use of Wannier function in the calculations of band structure of covalent crystals

    International Nuclear Information System (INIS)

    Lu Dong; Yang Guang

    1985-10-01

    A variational procedure has been used to build up Wannier functions to study the energy bands of diamond, silicon and α-tin. For the case of silicon the Wannier function, density of charge and band structure are calculated self-consistently and a simple method in a non-self-consistent way has been used to compute the band structure of diamond, silicon and α-tin. The method seems to be effective to describe the electronic properties of covalent crystals. (author)

  13. Slow aggregation of lysozyme in alkaline pH monitored in real time employing the fluorescence anisotropy of covalently labelled dansyl probe.

    Science.gov (United States)

    Homchaudhuri, Lopamudra; Kumar, Satish; Swaminathan, Rajaram

    2006-04-03

    The onset of hen egg white lysozyme aggregation on exposure to alkaline pH of 12.2 and subsequent slow growth of soluble lysozyme aggregates (at 298 K) was directly monitored by steady-state and time-resolved fluorescence anisotropy of covalently attached dansyl probe over a period of 24 h. The rotational correlation time accounting for tumbling of lysozyme in solution (40 microM) increased from approximately 3.6 ns (in pH 7) to approximately 40ns on exposure to pH 12.2 over a period of 6 h and remained stable thereafter. The growth of aggregates was strongly concentration dependent, irreversible after 60 min and inhibited by the presence of 0.9 M l-arginine in the medium. The day old aggregates were resistant to denaturation by 6 M guanidine.HCl. Our results reveal slow segmental motion of the dansyl probe in day old aggregates in the absence of L-arginine (0.9 M), but a much faster motion in its presence, when growth of aggregates is halted.

  14. Sapphire: A kinking nonlinear elastic solid

    Science.gov (United States)

    Basu, S.; Barsoum, M. W.; Kalidindi, S. R.

    2006-03-01

    Kinking nonlinear elastic (KNE) solids are a recently identified large class of solids that deform fully reversibly by the formation of dislocation-based kink bands [Barsoum et al. Phys. Rev. Lett. 92, 255508 (2004)]. We further conjectured that a high c/a ratio-that ensures that only basal slip is operative-is a sufficient condition for a solid to be KNE. The c/a ratio of sapphire is 2.73 and thus, if our conjecture is correct, it should be a KNE solid. Herein by repeatedly loading-up to 30 times-the same location of sapphire single crystals of two orientations-A and C-with a 1 μm radius spherical nanoindenter, followed by atomic force microscopy, we showed that sapphire is indeed a KNE solid. After pop-ins of the order of 100 nm, the repeated loadings give rise to fully reversible, reproducible hysteresis loops wherein the energy dissipated per unit volume per cycle Wd is of the order of 0.5 GJ/m3. Wd is due to the back and fro motion of the dislocations making up the incipient kink bands that are fully reversible. The results presented here strongly suggest that-like in graphite and mica-kink bands play a more critical role in the room temperature constrained deformation of sapphire than had hitherto been appreciated. Our interpretation is also in agreement with, and can explain most, recent nanoindentation results on sapphire.

  15. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  16. Physics of solids

    CERN Document Server

    Ketterson, John B

    2016-01-01

    This comprehensive text covers the basic physics of the solid state starting at an elementary level suitable for undergraduates but then advancing, in stages, to a graduate and advanced graduate level. In addition to treating the fundamental elastic, electrical, thermal, magnetic, structural, electronic, transport, optical, mechanical and compositional properties, we also discuss topics like superfluidity and superconductivity along with special topics such as strongly correlated systems, high-temperature superconductors, the quantum Hall effects, and graphene. Particular emphasis is given to so-called first principles calculations utilizing modern density functional theory which for many systems now allow accurate calculations of the electronic, magnetic, and thermal properties.

  17. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin

    Directory of Open Access Journals (Sweden)

    Raja Zaidatul Akhmar Raja Jamaluddin

    2018-04-01

    Full Text Available A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb covalently immobilized on the succinimide functionalized poly(n-butyl acrylate-graphene [poly(nBA-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE. The immobilized Hb on the poly(nBA-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.

  18. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  19. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces

    International Nuclear Information System (INIS)

    Lin Shangchao; Buehler, Markus J

    2013-01-01

    The intrinsic interfacial thermal resistance at graphene/organic interfaces, as a result of mismatches in the phonon vibrational spectra of the two materials, diminishes the overall heat transfer performance of graphene/organic nanocomposites. In this paper, we use molecular dynamics (MD) simulations to design alkyl-pyrene molecules that can non-covalently functionalize graphene surfaces in contact with a model organic phase composed of octane. The alkyl-pyrene molecules possess phonon-spectra features of both graphene and octane and, therefore, can serve as phonon-spectra linkers to bridge the vibrational mismatch at the graphene/octane interface. In support of this hypothesis, we find that the best linker candidate can enhance the out-of-plane graphene/organic interfacial thermal conductance by ∼22%, attributed to its capability to compensate the low-frequency phonon mode of graphene. We also find that the length of the alkyl chain indirectly affects the interfacial thermal conductance through different orientations of these chains because they dictate the contribution of the out-of-plane high-frequency carbon–hydrogen bond vibrations to the overall phonon transport. This study advances our understanding of the less destructive non-covalent functionalization method and design principles of suitable linker molecules to enhance the thermal performance of graphene/organic nanocomposites while retaining the intrinsic chemical, thermal, and mechanical properties of pristine graphene. (paper)

  20. Optimization of Solid Phase Micro-Extraction (SPME for Monitoring Occupational Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    H Heidari

    2012-05-01

    Full Text Available

    <strong>Background and Objectivesstrong>>: strong>Analytical methods for volatile organic compounds (VOCs in different samples need extraction of compounds, by applying hazardous solvents. Solid phase micro-extraction (SPME is a solvent-free equilibrium extraction method, in which proper calibration can allow quantitative determinations of VOCs at a very good sensitivity without the use of any organic solvent. VOCs are generally present in urine only at trace levels, therefore, a sensitive procedure is needed for their trace determinations. Throughout this study, headspace solid phase micro-extraction (HS-SPME was followed by GC-FID for ethyl benzene in spiked urine was optimized.<strong>

    Methods>: strong>In this study, the parameters influencing SPME and gas chromatography of ethyl benzene, including extraction time, temperature, desorption temperature, desorption time, salt addition, sample pH, sample volume and sample agitation were investigated. <strong>

    Results>: strong>Extraction procedure was performed at 30°C for 6 min, using 0.2 gml-1 of NaCl in the sample solution. The sample volume and sample pH were optimized at 5 ml and 7 (neutral pH, respectively. Desorption of the ethyl benzene was carried out for 60 sec. at 250°C. The method was also validated with three different spiked urine samples and illustrated an appropriate reproducibility over six consecutive days as well as six within-day experiments. During this investigation, parameters of accuracy, linearity, and detection limits of the procedure were also evaluated.<strong>

    Conclusion:> strong>The developed method of HS- SPME-GC-FID proved to be a simple, convenient, and practical procedure, and was successfully used for measuring of ethyl benzene in spiked urine.<strong>>